🔀 Merged upstream branches and fixed merge conflicts
This commit is contained in:
@@ -17,6 +17,7 @@ from freqtrade.data import history
|
||||
from freqtrade.data.btanalysis import trade_list_to_dataframe
|
||||
from freqtrade.data.converter import trim_dataframes
|
||||
from freqtrade.data.dataprovider import DataProvider
|
||||
from freqtrade.enums import SellType
|
||||
from freqtrade.exceptions import DependencyException, OperationalException
|
||||
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_seconds
|
||||
from freqtrade.mixins import LoggingMixin
|
||||
@@ -26,7 +27,7 @@ from freqtrade.persistence import LocalTrade, PairLocks, Trade
|
||||
from freqtrade.plugins.pairlistmanager import PairListManager
|
||||
from freqtrade.plugins.protectionmanager import ProtectionManager
|
||||
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
|
||||
from freqtrade.strategy.interface import IStrategy, SellCheckTuple, SellType
|
||||
from freqtrade.strategy.interface import IStrategy, SellCheckTuple
|
||||
from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper
|
||||
from freqtrade.wallets import Wallets
|
||||
|
||||
@@ -224,6 +225,22 @@ class Backtesting:
|
||||
# sell at open price.
|
||||
return sell_row[OPEN_IDX]
|
||||
|
||||
# Special case: trailing triggers within same candle as trade opened. Assume most
|
||||
# pessimistic price movement, which is moving just enough to arm stoploss and
|
||||
# immediately going down to stop price.
|
||||
if (sell.sell_type == SellType.TRAILING_STOP_LOSS and trade_dur == 0
|
||||
and self.strategy.trailing_stop_positive):
|
||||
if self.strategy.trailing_only_offset_is_reached:
|
||||
# Worst case: price reaches stop_positive_offset and dives down.
|
||||
stop_rate = (sell_row[OPEN_IDX] *
|
||||
(1 + abs(self.strategy.trailing_stop_positive_offset) -
|
||||
abs(self.strategy.trailing_stop_positive)))
|
||||
else:
|
||||
# Worst case: price ticks tiny bit above open and dives down.
|
||||
stop_rate = sell_row[OPEN_IDX] * (1 - abs(self.strategy.trailing_stop_positive))
|
||||
assert stop_rate < sell_row[HIGH_IDX]
|
||||
return stop_rate
|
||||
|
||||
# Set close_rate to stoploss
|
||||
return trade.stop_loss
|
||||
elif sell.sell_type == (SellType.ROI):
|
||||
@@ -519,7 +536,7 @@ class Backtesting:
|
||||
stats = generate_backtest_stats(data, self.all_results,
|
||||
min_date=min_date, max_date=max_date)
|
||||
|
||||
if self.config.get('export', False):
|
||||
if self.config.get('export', 'none') == 'trades':
|
||||
store_backtest_stats(self.config['exportfilename'], stats)
|
||||
|
||||
# Show backtest results
|
||||
|
@@ -12,6 +12,7 @@ from math import ceil
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
import numpy as np
|
||||
import progressbar
|
||||
import rapidjson
|
||||
from colorama import Fore, Style
|
||||
@@ -162,8 +163,13 @@ class Hyperopt:
|
||||
While not a valid json object - this allows appending easily.
|
||||
:param epoch: result dictionary for this epoch.
|
||||
"""
|
||||
def default_parser(x):
|
||||
if isinstance(x, np.integer):
|
||||
return int(x)
|
||||
return str(x)
|
||||
|
||||
with self.results_file.open('a') as f:
|
||||
rapidjson.dump(epoch, f, default=str,
|
||||
rapidjson.dump(epoch, f, default=default_parser,
|
||||
number_mode=rapidjson.NM_NATIVE | rapidjson.NM_NAN)
|
||||
f.write("\n")
|
||||
|
||||
@@ -463,8 +469,8 @@ class Hyperopt:
|
||||
f"saved to '{self.results_file}'.")
|
||||
|
||||
if self.current_best_epoch:
|
||||
HyperoptTools.print_epoch_details(self.current_best_epoch, self.total_epochs,
|
||||
self.print_json)
|
||||
HyperoptTools.show_epoch_details(self.current_best_epoch, self.total_epochs,
|
||||
self.print_json)
|
||||
else:
|
||||
# This is printed when Ctrl+C is pressed quickly, before first epochs have
|
||||
# a chance to be evaluated.
|
||||
|
@@ -9,23 +9,11 @@ from pandas import DataFrame
|
||||
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||
|
||||
|
||||
# This is assumed to be expected avg profit * expected trade count.
|
||||
# For example, for 0.35% avg per trade (or 0.0035 as ratio) and 1100 trades,
|
||||
# expected max profit = 3.85
|
||||
#
|
||||
# Note, this is ratio. 3.85 stated above means 385Σ%, 3.0 means 300Σ%.
|
||||
#
|
||||
# In this implementation it's only used in calculation of the resulting value
|
||||
# of the objective function as a normalization coefficient and does not
|
||||
# represent any limit for profits as in the Freqtrade legacy default loss function.
|
||||
EXPECTED_MAX_PROFIT = 3.0
|
||||
|
||||
|
||||
class OnlyProfitHyperOptLoss(IHyperOptLoss):
|
||||
"""
|
||||
Defines the loss function for hyperopt.
|
||||
|
||||
This implementation takes only profit into account.
|
||||
This implementation takes only absolute profit into account, not looking at any other indicator.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
@@ -34,5 +22,5 @@ class OnlyProfitHyperOptLoss(IHyperOptLoss):
|
||||
"""
|
||||
Objective function, returns smaller number for better results.
|
||||
"""
|
||||
total_profit = results['profit_ratio'].sum()
|
||||
return 1 - total_profit / EXPECTED_MAX_PROFIT
|
||||
total_profit = results['profit_abs'].sum()
|
||||
return -1 * total_profit
|
||||
|
@@ -1,8 +1,6 @@
|
||||
|
||||
import io
|
||||
import locale
|
||||
import logging
|
||||
from collections import OrderedDict
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List
|
||||
|
||||
@@ -74,8 +72,8 @@ class HyperoptTools():
|
||||
return epochs
|
||||
|
||||
@staticmethod
|
||||
def print_epoch_details(results, total_epochs: int, print_json: bool,
|
||||
no_header: bool = False, header_str: str = None) -> None:
|
||||
def show_epoch_details(results, total_epochs: int, print_json: bool,
|
||||
no_header: bool = False, header_str: str = None) -> None:
|
||||
"""
|
||||
Display details of the hyperopt result
|
||||
"""
|
||||
@@ -121,16 +119,9 @@ class HyperoptTools():
|
||||
if space in ['buy', 'sell']:
|
||||
result_dict.setdefault('params', {}).update(all_space_params)
|
||||
elif space == 'roi':
|
||||
# TODO: get rid of OrderedDict when support for python 3.6 will be
|
||||
# dropped (dicts keep the order as the language feature)
|
||||
|
||||
# Convert keys in min_roi dict to strings because
|
||||
# rapidjson cannot dump dicts with integer keys...
|
||||
# OrderedDict is used to keep the numeric order of the items
|
||||
# in the dict.
|
||||
result_dict['minimal_roi'] = OrderedDict(
|
||||
(str(k), v) for k, v in all_space_params.items()
|
||||
)
|
||||
result_dict['minimal_roi'] = {str(k): v for k, v in all_space_params.items()}
|
||||
else: # 'stoploss', 'trailing'
|
||||
result_dict.update(all_space_params)
|
||||
|
||||
@@ -142,13 +133,9 @@ class HyperoptTools():
|
||||
if space == 'stoploss':
|
||||
result += f"stoploss = {space_params.get('stoploss')}"
|
||||
elif space == 'roi':
|
||||
# TODO: get rid of OrderedDict when support for python 3.6 will be
|
||||
# dropped (dicts keep the order as the language feature)
|
||||
minimal_roi_result = rapidjson.dumps(
|
||||
OrderedDict(
|
||||
(str(k), v) for k, v in space_params.items()
|
||||
),
|
||||
default=str, indent=4, number_mode=rapidjson.NM_NATIVE)
|
||||
minimal_roi_result = rapidjson.dumps({
|
||||
str(k): v for k, v in space_params.items()
|
||||
}, default=str, indent=4, number_mode=rapidjson.NM_NATIVE)
|
||||
result += f"minimal_roi = {minimal_roi_result}"
|
||||
elif space == 'trailing':
|
||||
|
||||
@@ -204,9 +191,9 @@ class HyperoptTools():
|
||||
f"Avg profit {results_metrics['profit_mean'] * 100: 6.2f}%. "
|
||||
f"Median profit {results_metrics['profit_median'] * 100: 6.2f}%. "
|
||||
f"Total profit {results_metrics['profit_total_abs']: 11.8f} {stake_currency} "
|
||||
f"({results_metrics['profit_total'] * 100: 7.2f}\N{GREEK CAPITAL LETTER SIGMA}%). "
|
||||
f"({results_metrics['profit_total'] * 100: 7.2f}%). "
|
||||
f"Avg duration {results_metrics['holding_avg']} min."
|
||||
).encode(locale.getpreferredencoding(), 'replace').decode('utf-8')
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _format_explanation_string(results, total_epochs) -> str:
|
||||
@@ -215,6 +202,47 @@ class HyperoptTools():
|
||||
f"{results['results_explanation']} " +
|
||||
f"Objective: {results['loss']:.5f}")
|
||||
|
||||
@staticmethod
|
||||
def prepare_trials_columns(trials, legacy_mode: bool, has_drawdown: bool) -> str:
|
||||
|
||||
trials['Best'] = ''
|
||||
|
||||
if 'results_metrics.winsdrawslosses' not in trials.columns:
|
||||
# Ensure compatibility with older versions of hyperopt results
|
||||
trials['results_metrics.winsdrawslosses'] = 'N/A'
|
||||
|
||||
if not has_drawdown:
|
||||
# Ensure compatibility with older versions of hyperopt results
|
||||
trials['results_metrics.max_drawdown_abs'] = None
|
||||
trials['results_metrics.max_drawdown'] = None
|
||||
|
||||
if not legacy_mode:
|
||||
# New mode, using backtest result for metrics
|
||||
trials['results_metrics.winsdrawslosses'] = trials.apply(
|
||||
lambda x: f"{x['results_metrics.wins']} {x['results_metrics.draws']:>4} "
|
||||
f"{x['results_metrics.losses']:>4}", axis=1)
|
||||
trials = trials[['Best', 'current_epoch', 'results_metrics.total_trades',
|
||||
'results_metrics.winsdrawslosses',
|
||||
'results_metrics.profit_mean', 'results_metrics.profit_total_abs',
|
||||
'results_metrics.profit_total', 'results_metrics.holding_avg',
|
||||
'results_metrics.max_drawdown', 'results_metrics.max_drawdown_abs',
|
||||
'loss', 'is_initial_point', 'is_best']]
|
||||
|
||||
else:
|
||||
# Legacy mode
|
||||
trials = trials[['Best', 'current_epoch', 'results_metrics.trade_count',
|
||||
'results_metrics.winsdrawslosses', 'results_metrics.avg_profit',
|
||||
'results_metrics.total_profit', 'results_metrics.profit',
|
||||
'results_metrics.duration', 'results_metrics.max_drawdown',
|
||||
'results_metrics.max_drawdown_abs', 'loss', 'is_initial_point',
|
||||
'is_best']]
|
||||
|
||||
trials.columns = ['Best', 'Epoch', 'Trades', ' Win Draw Loss', 'Avg profit',
|
||||
'Total profit', 'Profit', 'Avg duration', 'Max Drawdown',
|
||||
'max_drawdown_abs', 'Objective', 'is_initial_point', 'is_best']
|
||||
|
||||
return trials
|
||||
|
||||
@staticmethod
|
||||
def get_result_table(config: dict, results: list, total_epochs: int, highlight_best: bool,
|
||||
print_colorized: bool, remove_header: int) -> str:
|
||||
@@ -225,36 +253,13 @@ class HyperoptTools():
|
||||
return ''
|
||||
|
||||
tabulate.PRESERVE_WHITESPACE = True
|
||||
|
||||
trials = json_normalize(results, max_level=1)
|
||||
trials['Best'] = ''
|
||||
if 'results_metrics.winsdrawslosses' not in trials.columns:
|
||||
# Ensure compatibility with older versions of hyperopt results
|
||||
trials['results_metrics.winsdrawslosses'] = 'N/A'
|
||||
legacy_mode = True
|
||||
|
||||
if 'results_metrics.total_trades' in trials:
|
||||
legacy_mode = False
|
||||
# New mode, using backtest result for metrics
|
||||
trials['results_metrics.winsdrawslosses'] = trials.apply(
|
||||
lambda x: f"{x['results_metrics.wins']} {x['results_metrics.draws']:>4} "
|
||||
f"{x['results_metrics.losses']:>4}", axis=1)
|
||||
trials = trials[['Best', 'current_epoch', 'results_metrics.total_trades',
|
||||
'results_metrics.winsdrawslosses',
|
||||
'results_metrics.profit_mean', 'results_metrics.profit_total_abs',
|
||||
'results_metrics.profit_total', 'results_metrics.holding_avg',
|
||||
'loss', 'is_initial_point', 'is_best']]
|
||||
else:
|
||||
# Legacy mode
|
||||
trials = trials[['Best', 'current_epoch', 'results_metrics.trade_count',
|
||||
'results_metrics.winsdrawslosses',
|
||||
'results_metrics.avg_profit', 'results_metrics.total_profit',
|
||||
'results_metrics.profit', 'results_metrics.duration',
|
||||
'loss', 'is_initial_point', 'is_best']]
|
||||
legacy_mode = 'results_metrics.total_trades' not in trials
|
||||
has_drawdown = 'results_metrics.max_drawdown_abs' in trials.columns
|
||||
|
||||
trials = HyperoptTools.prepare_trials_columns(trials, legacy_mode, has_drawdown)
|
||||
|
||||
trials.columns = ['Best', 'Epoch', 'Trades', ' Win Draw Loss', 'Avg profit',
|
||||
'Total profit', 'Profit', 'Avg duration', 'Objective',
|
||||
'is_initial_point', 'is_best']
|
||||
trials['is_profit'] = False
|
||||
trials.loc[trials['is_initial_point'], 'Best'] = '* '
|
||||
trials.loc[trials['is_best'], 'Best'] = 'Best'
|
||||
@@ -277,6 +282,21 @@ class HyperoptTools():
|
||||
)
|
||||
|
||||
stake_currency = config['stake_currency']
|
||||
|
||||
if has_drawdown:
|
||||
trials['Max Drawdown'] = trials.apply(
|
||||
lambda x: '{} {}'.format(
|
||||
round_coin_value(x['max_drawdown_abs'], stake_currency),
|
||||
'({:,.2f}%)'.format(x['Max Drawdown'] * perc_multi).rjust(10, ' ')
|
||||
).rjust(25 + len(stake_currency))
|
||||
if x['Max Drawdown'] != 0.0 else '--'.rjust(25 + len(stake_currency)),
|
||||
axis=1
|
||||
)
|
||||
else:
|
||||
trials = trials.drop(columns=['Max Drawdown'])
|
||||
|
||||
trials = trials.drop(columns=['max_drawdown_abs'])
|
||||
|
||||
trials['Profit'] = trials.apply(
|
||||
lambda x: '{} {}'.format(
|
||||
round_coin_value(x['Total profit'], stake_currency),
|
||||
@@ -385,10 +405,11 @@ class HyperoptTools():
|
||||
trials['Avg profit'] = trials['Avg profit'].apply(
|
||||
lambda x: f'{x * perc_multi:,.2f}%' if not isna(x) else ""
|
||||
)
|
||||
trials['Avg duration'] = trials['Avg duration'].apply(
|
||||
lambda x: f'{x:,.1f} m' if isinstance(
|
||||
x, float) else f"{x.total_seconds() // 60:,.1f} m" if not isna(x) else ""
|
||||
)
|
||||
if perc_multi == 1:
|
||||
trials['Avg duration'] = trials['Avg duration'].apply(
|
||||
lambda x: f'{x:,.1f} m' if isinstance(
|
||||
x, float) else f"{x.total_seconds() // 60:,.1f} m" if not isna(x) else ""
|
||||
)
|
||||
trials['Objective'] = trials['Objective'].apply(
|
||||
lambda x: f'{x:,.5f}' if x != 100000 else ""
|
||||
)
|
||||
|
@@ -232,16 +232,23 @@ def generate_trading_stats(results: DataFrame) -> Dict[str, Any]:
|
||||
zero_duration_trades = len(results.loc[(results['trade_duration'] == 0) &
|
||||
(results['sell_reason'] == 'trailing_stop_loss')])
|
||||
|
||||
holding_avg = (timedelta(minutes=round(results['trade_duration'].mean()))
|
||||
if not results.empty else timedelta())
|
||||
winner_holding_avg = (timedelta(minutes=round(winning_trades['trade_duration'].mean()))
|
||||
if not winning_trades.empty else timedelta())
|
||||
loser_holding_avg = (timedelta(minutes=round(losing_trades['trade_duration'].mean()))
|
||||
if not losing_trades.empty else timedelta())
|
||||
|
||||
return {
|
||||
'wins': len(winning_trades),
|
||||
'losses': len(losing_trades),
|
||||
'draws': len(draw_trades),
|
||||
'holding_avg': (timedelta(minutes=round(results['trade_duration'].mean()))
|
||||
if not results.empty else timedelta()),
|
||||
'winner_holding_avg': (timedelta(minutes=round(winning_trades['trade_duration'].mean()))
|
||||
if not winning_trades.empty else timedelta()),
|
||||
'loser_holding_avg': (timedelta(minutes=round(losing_trades['trade_duration'].mean()))
|
||||
if not losing_trades.empty else timedelta()),
|
||||
'holding_avg': holding_avg,
|
||||
'holding_avg_s': holding_avg.total_seconds(),
|
||||
'winner_holding_avg': winner_holding_avg,
|
||||
'winner_holding_avg_s': winner_holding_avg.total_seconds(),
|
||||
'loser_holding_avg': loser_holding_avg,
|
||||
'loser_holding_avg_s': loser_holding_avg.total_seconds(),
|
||||
'zero_duration_trades': zero_duration_trades,
|
||||
}
|
||||
|
||||
@@ -549,7 +556,8 @@ def text_table_add_metrics(strat_results: Dict) -> str:
|
||||
('Backtesting to', strat_results['backtest_end']),
|
||||
('Max open trades', strat_results['max_open_trades']),
|
||||
('', ''), # Empty line to improve readability
|
||||
('Total trades', strat_results['total_trades']),
|
||||
('Total/Daily Avg Trades',
|
||||
f"{strat_results['total_trades']} / {strat_results['trades_per_day']}"),
|
||||
('Starting balance', round_coin_value(strat_results['starting_balance'],
|
||||
strat_results['stake_currency'])),
|
||||
('Final balance', round_coin_value(strat_results['final_balance'],
|
||||
@@ -557,7 +565,6 @@ def text_table_add_metrics(strat_results: Dict) -> str:
|
||||
('Absolute profit ', round_coin_value(strat_results['profit_total_abs'],
|
||||
strat_results['stake_currency'])),
|
||||
('Total profit %', f"{round(strat_results['profit_total'] * 100, 2):}%"),
|
||||
('Trades per day', strat_results['trades_per_day']),
|
||||
('Avg. stake amount', round_coin_value(strat_results['avg_stake_amount'],
|
||||
strat_results['stake_currency'])),
|
||||
('Total trade volume', round_coin_value(strat_results['total_volume'],
|
||||
|
Reference in New Issue
Block a user