provide user directions, clean up strategy, remove unnecessary code.
This commit is contained in:
parent
b44bd0171c
commit
90c03178b1
@ -75,7 +75,6 @@
|
|||||||
"weight_factor": 0.9,
|
"weight_factor": 0.9,
|
||||||
"principal_component_analysis": false,
|
"principal_component_analysis": false,
|
||||||
"use_SVM_to_remove_outliers": true,
|
"use_SVM_to_remove_outliers": true,
|
||||||
"stratify_training_data": 0,
|
|
||||||
"indicator_max_period_candles": 20,
|
"indicator_max_period_candles": 20,
|
||||||
"indicator_periods_candles": [10, 20]
|
"indicator_periods_candles": [10, 20]
|
||||||
},
|
},
|
||||||
|
@ -1,64 +1,72 @@
|
|||||||
import logging
|
import logging
|
||||||
from datetime import datetime, timedelta
|
|
||||||
from functools import reduce
|
|
||||||
from typing import Optional
|
from typing import Optional
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import talib.abstract as ta
|
import talib.abstract as ta
|
||||||
from freqtrade.exchange import timeframe_to_prev_date
|
|
||||||
from freqtrade.persistence import Trade
|
|
||||||
from freqtrade.strategy import (DecimalParameter, IntParameter, IStrategy,
|
from freqtrade.strategy import (DecimalParameter, IntParameter, IStrategy,
|
||||||
merge_informative_pair)
|
merge_informative_pair)
|
||||||
from numpy.lib import math
|
|
||||||
from pandas import DataFrame
|
from pandas import DataFrame
|
||||||
from technical import qtpylib
|
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
class FreqaiExampleHybridStrategy(IStrategy):
|
class FreqaiExampleHybridStrategy(IStrategy):
|
||||||
"""
|
"""
|
||||||
Example classifier hybrid strategy showing how the user connects their own
|
Example of a hybrid FreqAI strat, designed to illustrate how a user may employ
|
||||||
IFreqaiModel to the strategy. Namely, the user uses:
|
FreqAI to bolster a typical Freqtrade strategy.
|
||||||
self.freqai.start(dataframe, metadata)
|
|
||||||
|
Launching this strategy would be:
|
||||||
|
|
||||||
|
freqtrade trade --strategy FreqaiExampleHyridStrategy --strategy-path freqtrade/templates
|
||||||
|
--freqaimodel CatboostClassifier --config config_examples/config_freqai.example.json
|
||||||
|
|
||||||
|
or the user simply adds this to their config:
|
||||||
|
|
||||||
|
"freqai": {
|
||||||
|
"enabled": true,
|
||||||
|
"purge_old_models": true,
|
||||||
|
"train_period_days": 15,
|
||||||
|
"identifier": "uniqe-id",
|
||||||
|
"feature_parameters": {
|
||||||
|
"include_timeframes": [
|
||||||
|
"3m",
|
||||||
|
"15m",
|
||||||
|
"1h"
|
||||||
|
],
|
||||||
|
"include_corr_pairlist": [
|
||||||
|
"BTC/USDT",
|
||||||
|
"ETH/USDT"
|
||||||
|
],
|
||||||
|
"label_period_candles": 20,
|
||||||
|
"include_shifted_candles": 2,
|
||||||
|
"DI_threshold": 0.9,
|
||||||
|
"weight_factor": 0.9,
|
||||||
|
"principal_component_analysis": false,
|
||||||
|
"use_SVM_to_remove_outliers": true,
|
||||||
|
"indicator_max_period_candles": 20,
|
||||||
|
"indicator_periods_candles": [10, 20]
|
||||||
|
},
|
||||||
|
"data_split_parameters": {
|
||||||
|
"test_size": 0.33,
|
||||||
|
"random_state": 1
|
||||||
|
},
|
||||||
|
"model_training_parameters": {
|
||||||
|
"n_estimators": 800
|
||||||
|
}
|
||||||
|
},
|
||||||
|
|
||||||
to make predictions on their data. populate_any_indicators() automatically
|
|
||||||
generates the variety of features indicated by the user in the
|
|
||||||
canonical freqtrade configuration file under config['freqai'].
|
|
||||||
|
|
||||||
The underlying original supertrend strat is authored by @juankysoriano (Juan Carlos Soriano)
|
|
||||||
* github: https://github.com/juankysoriano/
|
|
||||||
|
|
||||||
This strategy is not designed to be used live
|
This strategy is not designed to be used live
|
||||||
"""
|
"""
|
||||||
|
|
||||||
minimal_roi = {"0": 0.1, "30": 0.75, "60": 0.05, "120": 0.025, "240": -1}
|
minimal_roi = {"0": 0.1, "30": 0.75, "60": 0.05, "120": 0.025, "240": -1}
|
||||||
|
|
||||||
plot_config = {
|
|
||||||
"main_plot": {},
|
|
||||||
"subplots": {
|
|
||||||
"prediction": {"prediction": {"color": "blue"}},
|
|
||||||
"target_roi": {
|
|
||||||
"target_roi": {"color": "brown"},
|
|
||||||
},
|
|
||||||
"do_predict": {
|
|
||||||
"do_predict": {"color": "brown"},
|
|
||||||
},
|
|
||||||
},
|
|
||||||
}
|
|
||||||
|
|
||||||
process_only_new_candles = True
|
process_only_new_candles = True
|
||||||
stoploss = -0.1
|
stoploss = -0.1
|
||||||
use_exit_signal = True
|
use_exit_signal = True
|
||||||
startup_candle_count: int = 300
|
startup_candle_count: int = 300
|
||||||
can_short = True
|
can_short = True
|
||||||
|
|
||||||
linear_roi_offset = DecimalParameter(
|
|
||||||
0.00, 0.02, default=0.005, space="sell", optimize=False, load=True
|
|
||||||
)
|
|
||||||
max_roi_time_long = IntParameter(0, 800, default=400, space="sell", optimize=False, load=True)
|
|
||||||
|
|
||||||
buy_params = {
|
buy_params = {
|
||||||
"buy_m1": 4,
|
"buy_m1": 4,
|
||||||
"buy_m2": 7,
|
"buy_m2": 7,
|
||||||
@ -77,7 +85,7 @@ class FreqaiExampleHybridStrategy(IStrategy):
|
|||||||
"sell_p2": 18,
|
"sell_p2": 18,
|
||||||
"sell_p3": 18,
|
"sell_p3": 18,
|
||||||
}
|
}
|
||||||
|
|
||||||
buy_m1 = IntParameter(1, 7, default=1)
|
buy_m1 = IntParameter(1, 7, default=1)
|
||||||
buy_m2 = IntParameter(1, 7, default=3)
|
buy_m2 = IntParameter(1, 7, default=3)
|
||||||
buy_m3 = IntParameter(1, 7, default=4)
|
buy_m3 = IntParameter(1, 7, default=4)
|
||||||
@ -92,6 +100,7 @@ class FreqaiExampleHybridStrategy(IStrategy):
|
|||||||
sell_p2 = IntParameter(7, 21, default=10)
|
sell_p2 = IntParameter(7, 21, default=10)
|
||||||
sell_p3 = IntParameter(7, 21, default=10)
|
sell_p3 = IntParameter(7, 21, default=10)
|
||||||
|
|
||||||
|
# FreqAI required function, leave as is or add you additional informatives to existing structure.
|
||||||
def informative_pairs(self):
|
def informative_pairs(self):
|
||||||
whitelist_pairs = self.dp.current_whitelist()
|
whitelist_pairs = self.dp.current_whitelist()
|
||||||
corr_pairs = self.config["freqai"]["feature_parameters"]["include_corr_pairlist"]
|
corr_pairs = self.config["freqai"]["feature_parameters"]["include_corr_pairlist"]
|
||||||
@ -105,16 +114,15 @@ class FreqaiExampleHybridStrategy(IStrategy):
|
|||||||
informative_pairs.append((pair, tf))
|
informative_pairs.append((pair, tf))
|
||||||
return informative_pairs
|
return informative_pairs
|
||||||
|
|
||||||
|
# FreqAI required function, user can add or remove indicators, but general structure
|
||||||
|
# must stay the same.
|
||||||
def populate_any_indicators(
|
def populate_any_indicators(
|
||||||
self, pair, df, tf, informative=None, set_generalized_indicators=False
|
self, pair, df, tf, informative=None, set_generalized_indicators=False
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
Function designed to automatically generate, name and merge features
|
User feeds these indicators to FreqAI to train a classifier to decide
|
||||||
from user indicated timeframes in the configuration file. User controls the indicators
|
if the market will go up or down.
|
||||||
passed to the training/prediction by prepending indicators with `'%-' + coin `
|
|
||||||
(see convention below). I.e. user should not prepend any supporting metrics
|
|
||||||
(e.g. bb_lowerband below) with % unless they explicitly want to pass that metric to the
|
|
||||||
model.
|
|
||||||
:param pair: pair to be used as informative
|
:param pair: pair to be used as informative
|
||||||
:param df: strategy dataframe which will receive merges from informatives
|
:param df: strategy dataframe which will receive merges from informatives
|
||||||
:param tf: timeframe of the dataframe which will modify the feature names
|
:param tf: timeframe of the dataframe which will modify the feature names
|
||||||
@ -135,34 +143,14 @@ class FreqaiExampleHybridStrategy(IStrategy):
|
|||||||
informative[f"%-{coin}adx-period_{t}"] = ta.ADX(informative, window=t)
|
informative[f"%-{coin}adx-period_{t}"] = ta.ADX(informative, window=t)
|
||||||
informative[f"%-{coin}sma-period_{t}"] = ta.SMA(informative, timeperiod=t)
|
informative[f"%-{coin}sma-period_{t}"] = ta.SMA(informative, timeperiod=t)
|
||||||
informative[f"%-{coin}ema-period_{t}"] = ta.EMA(informative, timeperiod=t)
|
informative[f"%-{coin}ema-period_{t}"] = ta.EMA(informative, timeperiod=t)
|
||||||
|
|
||||||
informative[f"%-{coin}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
|
informative[f"%-{coin}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
|
||||||
|
|
||||||
bollinger = qtpylib.bollinger_bands(
|
|
||||||
qtpylib.typical_price(informative), window=t, stds=2.2
|
|
||||||
)
|
|
||||||
informative[f"{coin}bb_lowerband-period_{t}"] = bollinger["lower"]
|
|
||||||
informative[f"{coin}bb_middleband-period_{t}"] = bollinger["mid"]
|
|
||||||
informative[f"{coin}bb_upperband-period_{t}"] = bollinger["upper"]
|
|
||||||
|
|
||||||
informative[f"%-{coin}bb_width-period_{t}"] = (
|
|
||||||
informative[f"{coin}bb_upperband-period_{t}"]
|
|
||||||
- informative[f"{coin}bb_lowerband-period_{t}"]
|
|
||||||
) / informative[f"{coin}bb_middleband-period_{t}"]
|
|
||||||
informative[f"%-{coin}close-bb_lower-period_{t}"] = (
|
|
||||||
informative["close"] / informative[f"{coin}bb_lowerband-period_{t}"]
|
|
||||||
)
|
|
||||||
|
|
||||||
informative[f"%-{coin}roc-period_{t}"] = ta.ROC(informative, timeperiod=t)
|
informative[f"%-{coin}roc-period_{t}"] = ta.ROC(informative, timeperiod=t)
|
||||||
|
|
||||||
informative[f"%-{coin}relative_volume-period_{t}"] = (
|
informative[f"%-{coin}relative_volume-period_{t}"] = (
|
||||||
informative["volume"] / informative["volume"].rolling(t).mean()
|
informative["volume"] / informative["volume"].rolling(t).mean()
|
||||||
)
|
)
|
||||||
|
|
||||||
informative[f"%-{coin}pct-change"] = informative["close"].pct_change()
|
# FreqAI needs the following lines in order to detect features and automatically
|
||||||
informative[f"%-{coin}raw_volume"] = informative["volume"]
|
# expand upon them.
|
||||||
informative[f"%-{coin}raw_price"] = informative["close"]
|
|
||||||
|
|
||||||
indicators = [col for col in informative if col.startswith("%")]
|
indicators = [col for col in informative if col.startswith("%")]
|
||||||
# This loop duplicates and shifts all indicators to add a sense of recency to data
|
# This loop duplicates and shifts all indicators to add a sense of recency to data
|
||||||
for n in range(self.freqai_info["feature_parameters"]["include_shifted_candles"] + 1):
|
for n in range(self.freqai_info["feature_parameters"]["include_shifted_candles"] + 1):
|
||||||
@ -178,56 +166,22 @@ class FreqaiExampleHybridStrategy(IStrategy):
|
|||||||
]
|
]
|
||||||
df = df.drop(columns=skip_columns)
|
df = df.drop(columns=skip_columns)
|
||||||
|
|
||||||
# Add generalized indicators here (because in live, it will call this
|
# User can set the "target" here (in present case it is the
|
||||||
# function to populate indicators during training). Notice how we ensure not to
|
# "up" or "down")
|
||||||
# add them multiple times
|
|
||||||
if set_generalized_indicators:
|
if set_generalized_indicators:
|
||||||
df["%-day_of_week"] = (df["date"].dt.dayofweek + 1) / 7
|
# User "looks into the future" here to figure out if the future
|
||||||
df["%-hour_of_day"] = (df["date"].dt.hour + 1) / 25
|
# will be "up" or "down". This same column name is available to
|
||||||
|
# the user
|
||||||
# Classifiers are typically set up with strings as targets:
|
df['&s-up_or_down'] = np.where(df["close"].shift(-50) >
|
||||||
df['&s-up_or_down'] = np.where( df["close"].shift(-50) >
|
df["close"], 'up', 'down')
|
||||||
df["close"], 'up', 'down')
|
|
||||||
|
|
||||||
# REGRESSOR Model: Can use single or multi traget
|
|
||||||
# user adds targets here by prepending them with &- (see convention below)
|
|
||||||
#df["&-s_close"] = (
|
|
||||||
# df["close"]
|
|
||||||
# .shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
|
|
||||||
# .rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
|
|
||||||
# .mean()
|
|
||||||
# / df["close"]
|
|
||||||
# - 1
|
|
||||||
#)
|
|
||||||
# If user wishes to use multiple targets, they can add more by
|
|
||||||
# appending more columns with '&'. User should keep in mind that multi targets
|
|
||||||
# requires a multioutput prediction model such as
|
|
||||||
# templates/CatboostPredictionMultiModel.py,
|
|
||||||
|
|
||||||
# df["&-s_range"] = (
|
|
||||||
# df["close"]
|
|
||||||
# .shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
|
|
||||||
# .rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
|
|
||||||
# .max()
|
|
||||||
# -
|
|
||||||
# df["close"]
|
|
||||||
# .shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
|
|
||||||
# .rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
|
|
||||||
# .min()
|
|
||||||
# )
|
|
||||||
|
|
||||||
return df
|
return df
|
||||||
|
|
||||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||||
|
|
||||||
# All indicators must be populated by populate_any_indicators() for live functionality
|
# User creates their own custom strat here. Present example is a supertrend
|
||||||
# to work correctly.
|
# based strategy.
|
||||||
|
|
||||||
# the model will return all labels created by user in `populate_any_indicators`
|
|
||||||
# (& appended targets), an indication of whether or not the prediction should be accepted,
|
|
||||||
# the target mean/std values for each of the labels created by user in
|
|
||||||
# `populate_any_indicators()` for each training period.
|
|
||||||
|
|
||||||
for multiplier in self.buy_m1.range:
|
for multiplier in self.buy_m1.range:
|
||||||
for period in self.buy_p1.range:
|
for period in self.buy_p1.range:
|
||||||
dataframe[f"supertrend_1_buy_{multiplier}_{period}"] = self.supertrend(
|
dataframe[f"supertrend_1_buy_{multiplier}_{period}"] = self.supertrend(
|
||||||
@ -270,20 +224,23 @@ class FreqaiExampleHybridStrategy(IStrategy):
|
|||||||
|
|
||||||
def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
||||||
|
|
||||||
|
# User now can use their custom strat creation in addition to their
|
||||||
|
# future prediction "up" or "down".
|
||||||
|
|
||||||
df.loc[
|
df.loc[
|
||||||
(df[f"supertrend_1_buy_{self.buy_m1.value}_{self.buy_p1.value}"] == "up") &
|
(df[f"supertrend_1_buy_{self.buy_m1.value}_{self.buy_p1.value}"] == "up") &
|
||||||
(df[f"supertrend_2_buy_{self.buy_m2.value}_{self.buy_p2.value}"] == "up") &
|
(df[f"supertrend_2_buy_{self.buy_m2.value}_{self.buy_p2.value}"] == "up") &
|
||||||
(df[f"supertrend_3_buy_{self.buy_m3.value}_{self.buy_p3.value}"] == "up") &
|
(df[f"supertrend_3_buy_{self.buy_m3.value}_{self.buy_p3.value}"] == "up") &
|
||||||
(df["do_predict"] == 1) &
|
(df["do_predict"] == 1) &
|
||||||
(df['&s-up_or_down'] == 'up'),
|
(df['&s-up_or_down'] == 'up'),
|
||||||
"enter_long",
|
"enter_long",
|
||||||
] = 1
|
] = 1
|
||||||
|
|
||||||
df.loc[
|
df.loc[
|
||||||
(df[f"supertrend_1_sell_{self.sell_m1.value}_{self.sell_p1.value}"] == "down") &
|
(df[f"supertrend_1_sell_{self.sell_m1.value}_{self.sell_p1.value}"] == "down") &
|
||||||
(df[f"supertrend_2_sell_{self.sell_m2.value}_{self.sell_p2.value}"] == "down") &
|
(df[f"supertrend_2_sell_{self.sell_m2.value}_{self.sell_p2.value}"] == "down") &
|
||||||
(df[f"supertrend_3_sell_{self.sell_m3.value}_{self.sell_p3.value}"] == "down") &
|
(df[f"supertrend_3_sell_{self.sell_m3.value}_{self.sell_p3.value}"] == "down") &
|
||||||
(df["do_predict"] == 1) &
|
(df["do_predict"] == 1) &
|
||||||
(df['&s-up_or_down'] == 'down'),
|
(df['&s-up_or_down'] == 'down'),
|
||||||
"enter_short",
|
"enter_short",
|
||||||
] = 1
|
] = 1
|
||||||
@ -291,7 +248,7 @@ class FreqaiExampleHybridStrategy(IStrategy):
|
|||||||
return df
|
return df
|
||||||
|
|
||||||
def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
||||||
|
|
||||||
df.loc[
|
df.loc[
|
||||||
(df[f"supertrend_2_sell_{self.sell_m2.value}_{self.sell_p2.value}"] == "down"),
|
(df[f"supertrend_2_sell_{self.sell_m2.value}_{self.sell_p2.value}"] == "down"),
|
||||||
"exit_long",
|
"exit_long",
|
||||||
@ -308,8 +265,8 @@ class FreqaiExampleHybridStrategy(IStrategy):
|
|||||||
return int(self.config["timeframe"][:-1])
|
return int(self.config["timeframe"][:-1])
|
||||||
|
|
||||||
def confirm_trade_entry(self, pair: str, order_type: str, amount: float,
|
def confirm_trade_entry(self, pair: str, order_type: str, amount: float,
|
||||||
rate: float, time_in_force: str, current_time, entry_tag, side: str,
|
rate: float, time_in_force: str, current_time, entry_tag, side: str,
|
||||||
**kwargs, ) -> bool:
|
**kwargs, ) -> bool:
|
||||||
|
|
||||||
df, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
|
df, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
|
||||||
last_candle = df.iloc[-1].squeeze()
|
last_candle = df.iloc[-1].squeeze()
|
||||||
@ -322,7 +279,7 @@ class FreqaiExampleHybridStrategy(IStrategy):
|
|||||||
return False
|
return False
|
||||||
|
|
||||||
return True
|
return True
|
||||||
|
|
||||||
def leverage(self, pair: str, current_time: datetime, current_rate: float,
|
def leverage(self, pair: str, current_time: datetime, current_rate: float,
|
||||||
proposed_leverage: float, max_leverage: float, entry_tag: Optional[str], side: str,
|
proposed_leverage: float, max_leverage: float, entry_tag: Optional[str], side: str,
|
||||||
**kwargs) -> float:
|
**kwargs) -> float:
|
||||||
@ -335,6 +292,7 @@ class FreqaiExampleHybridStrategy(IStrategy):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
def supertrend(self, dataframe: DataFrame, multiplier, period):
|
def supertrend(self, dataframe: DataFrame, multiplier, period):
|
||||||
|
|
||||||
df = dataframe.copy()
|
df = dataframe.copy()
|
||||||
last_row = dataframe.tail(1).index.item()
|
last_row = dataframe.tail(1).index.item()
|
||||||
|
|
||||||
@ -354,17 +312,19 @@ class FreqaiExampleHybridStrategy(IStrategy):
|
|||||||
|
|
||||||
# Compute final upper and lower bands
|
# Compute final upper and lower bands
|
||||||
for i in range(period, last_row + 1):
|
for i in range(period, last_row + 1):
|
||||||
FINAL_UB[i] = BASIC_UB[i] if BASIC_UB[i] < FINAL_UB[i - 1] or CLOSE[i - 1] > FINAL_UB[i - 1] else FINAL_UB[i - 1]
|
FINAL_UB[i] = BASIC_UB[i] if BASIC_UB[i] < FINAL_UB[i -
|
||||||
FINAL_LB[i] = BASIC_LB[i] if BASIC_LB[i] > FINAL_LB[i - 1] or CLOSE[i - 1] < FINAL_LB[i - 1] else FINAL_LB[i - 1]
|
1] or CLOSE[i - 1] > FINAL_UB[i - 1] else FINAL_UB[i - 1]
|
||||||
|
FINAL_LB[i] = BASIC_LB[i] if BASIC_LB[i] > FINAL_LB[i -
|
||||||
|
1] or CLOSE[i - 1] < FINAL_LB[i - 1] else FINAL_LB[i - 1]
|
||||||
|
|
||||||
# Set the Supertrend value
|
# Set the Supertrend value
|
||||||
for i in range(period, last_row + 1):
|
for i in range(period, last_row + 1):
|
||||||
ST[i] = FINAL_UB[i] if ST[i - 1] == FINAL_UB[i - 1] and CLOSE[i] <= FINAL_UB[i] else \
|
ST[i] = FINAL_UB[i] if ST[i - 1] == FINAL_UB[i - 1] and CLOSE[i] <= FINAL_UB[i] else \
|
||||||
FINAL_LB[i] if ST[i - 1] == FINAL_UB[i - 1] and CLOSE[i] > FINAL_UB[i] else \
|
FINAL_LB[i] if ST[i - 1] == FINAL_UB[i - 1] and CLOSE[i] > FINAL_UB[i] else \
|
||||||
FINAL_LB[i] if ST[i - 1] == FINAL_LB[i - 1] and CLOSE[i] >= FINAL_LB[i] else \
|
FINAL_LB[i] if ST[i - 1] == FINAL_LB[i - 1] and CLOSE[i] >= FINAL_LB[i] else \
|
||||||
FINAL_UB[i] if ST[i - 1] == FINAL_LB[i - 1] and CLOSE[i] < FINAL_LB[i] else 0.00
|
FINAL_UB[i] if ST[i - 1] == FINAL_LB[i - 1] and CLOSE[i] < FINAL_LB[i] else 0.00
|
||||||
df_ST = pd.DataFrame(ST, columns=[st])
|
df_ST = pd.DataFrame(ST, columns=[st])
|
||||||
df = pd.concat([df, df_ST],axis=1)
|
df = pd.concat([df, df_ST], axis=1)
|
||||||
|
|
||||||
# Mark the trend direction up/down
|
# Mark the trend direction up/down
|
||||||
df[stx] = np.where((df[st] > 0.00), np.where((df['close'] < df[st]), 'down', 'up'), np.NaN)
|
df[stx] = np.where((df[st] > 0.00), np.where((df['close'] < df[st]), 'down', 'up'), np.NaN)
|
||||||
@ -372,6 +332,6 @@ class FreqaiExampleHybridStrategy(IStrategy):
|
|||||||
df.fillna(0, inplace=True)
|
df.fillna(0, inplace=True)
|
||||||
|
|
||||||
return DataFrame(index=df.index, data={
|
return DataFrame(index=df.index, data={
|
||||||
'ST' : df[st],
|
'ST': df[st],
|
||||||
'STX' : df[stx]
|
'STX': df[stx]
|
||||||
})
|
})
|
||||||
|
Loading…
Reference in New Issue
Block a user