Merge pull request #2439 from freqtrade/fix/plotprofit
Plot-profit does not work with db file
This commit is contained in:
@@ -150,15 +150,21 @@ def combine_tickers_with_mean(tickers: Dict[str, pd.DataFrame], column: str = "c
|
||||
return df_comb
|
||||
|
||||
|
||||
def create_cum_profit(df: pd.DataFrame, trades: pd.DataFrame, col_name: str) -> pd.DataFrame:
|
||||
def create_cum_profit(df: pd.DataFrame, trades: pd.DataFrame, col_name: str,
|
||||
timeframe: str) -> pd.DataFrame:
|
||||
"""
|
||||
Adds a column `col_name` with the cumulative profit for the given trades array.
|
||||
:param df: DataFrame with date index
|
||||
:param trades: DataFrame containing trades (requires columns close_time and profitperc)
|
||||
:param col_name: Column name that will be assigned the results
|
||||
:param timeframe: Timeframe used during the operations
|
||||
:return: Returns df with one additional column, col_name, containing the cumulative profit.
|
||||
"""
|
||||
# Use groupby/sum().cumsum() to avoid errors when multiple trades sold at the same candle.
|
||||
df[col_name] = trades.groupby('close_time')['profitperc'].sum().cumsum()
|
||||
from freqtrade.exchange import timeframe_to_minutes
|
||||
ticker_minutes = timeframe_to_minutes(timeframe)
|
||||
# Resample to ticker_interval to make sure trades match candles
|
||||
_trades_sum = trades.resample(f'{ticker_minutes}min', on='close_time')[['profitperc']].sum()
|
||||
df.loc[:, col_name] = _trades_sum.cumsum()
|
||||
# Set first value to 0
|
||||
df.loc[df.iloc[0].name, col_name] = 0
|
||||
# FFill to get continuous
|
||||
|
@@ -264,12 +264,12 @@ def generate_candlestick_graph(pair: str, data: pd.DataFrame, trades: pd.DataFra
|
||||
|
||||
|
||||
def generate_profit_graph(pairs: str, tickers: Dict[str, pd.DataFrame],
|
||||
trades: pd.DataFrame) -> go.Figure:
|
||||
trades: pd.DataFrame, timeframe: str) -> go.Figure:
|
||||
# Combine close-values for all pairs, rename columns to "pair"
|
||||
df_comb = combine_tickers_with_mean(tickers, "close")
|
||||
|
||||
# Add combined cumulative profit
|
||||
df_comb = create_cum_profit(df_comb, trades, 'cum_profit')
|
||||
df_comb = create_cum_profit(df_comb, trades, 'cum_profit', timeframe)
|
||||
|
||||
# Plot the pairs average close prices, and total profit growth
|
||||
avgclose = go.Scatter(
|
||||
@@ -293,7 +293,7 @@ def generate_profit_graph(pairs: str, tickers: Dict[str, pd.DataFrame],
|
||||
|
||||
for pair in pairs:
|
||||
profit_col = f'cum_profit_{pair}'
|
||||
df_comb = create_cum_profit(df_comb, trades[trades['pair'] == pair], profit_col)
|
||||
df_comb = create_cum_profit(df_comb, trades[trades['pair'] == pair], profit_col, timeframe)
|
||||
|
||||
fig = add_profit(fig, 3, df_comb, profit_col, f"Profit {pair}")
|
||||
|
||||
@@ -382,9 +382,9 @@ def plot_profit(config: Dict[str, Any]) -> None:
|
||||
)
|
||||
# Filter trades to relevant pairs
|
||||
trades = trades[trades['pair'].isin(plot_elements["pairs"])]
|
||||
|
||||
# Create an average close price of all the pairs that were involved.
|
||||
# this could be useful to gauge the overall market trend
|
||||
fig = generate_profit_graph(plot_elements["pairs"], plot_elements["tickers"], trades)
|
||||
fig = generate_profit_graph(plot_elements["pairs"], plot_elements["tickers"],
|
||||
trades, config.get('ticker_interval', '5m'))
|
||||
store_plot_file(fig, filename='freqtrade-profit-plot.html',
|
||||
directory=config['user_data_dir'] / "plot", auto_open=True)
|
||||
|
Reference in New Issue
Block a user