Merge branch 'feat/freqai' of github.com:lolongcovas/freqtrade into feat/freqai
This commit is contained in:
commit
9036d1177b
@ -15,9 +15,9 @@ repos:
|
|||||||
additional_dependencies:
|
additional_dependencies:
|
||||||
- types-cachetools==5.2.1
|
- types-cachetools==5.2.1
|
||||||
- types-filelock==3.2.7
|
- types-filelock==3.2.7
|
||||||
- types-requests==2.28.1
|
- types-requests==2.28.3
|
||||||
- types-tabulate==0.8.11
|
- types-tabulate==0.8.11
|
||||||
- types-python-dateutil==2.8.18
|
- types-python-dateutil==2.8.19
|
||||||
# stages: [push]
|
# stages: [push]
|
||||||
|
|
||||||
- repo: https://github.com/pycqa/isort
|
- repo: https://github.com/pycqa/isort
|
||||||
|
@ -50,6 +50,8 @@ This applies across all pairs, unless `only_per_pair` is set to true, which will
|
|||||||
|
|
||||||
Similarly, this protection will by default look at all trades (long and short). For futures bots, setting `only_per_side` will make the bot only consider one side, and will then only lock this one side, allowing for example shorts to continue after a series of long stoplosses.
|
Similarly, this protection will by default look at all trades (long and short). For futures bots, setting `only_per_side` will make the bot only consider one side, and will then only lock this one side, allowing for example shorts to continue after a series of long stoplosses.
|
||||||
|
|
||||||
|
`required_profit` will determine the required relative profit (or loss) for stoplosses to consider. This should normally not be set and defaults to 0.0 - which means all losing stoplosses will be triggering a block.
|
||||||
|
|
||||||
The below example stops trading for all pairs for 4 candles after the last trade if the bot hit stoploss 4 times within the last 24 candles.
|
The below example stops trading for all pairs for 4 candles after the last trade if the bot hit stoploss 4 times within the last 24 candles.
|
||||||
|
|
||||||
``` python
|
``` python
|
||||||
@ -61,6 +63,7 @@ def protections(self):
|
|||||||
"lookback_period_candles": 24,
|
"lookback_period_candles": 24,
|
||||||
"trade_limit": 4,
|
"trade_limit": 4,
|
||||||
"stop_duration_candles": 4,
|
"stop_duration_candles": 4,
|
||||||
|
"required_profit": 0.0,
|
||||||
"only_per_pair": False,
|
"only_per_pair": False,
|
||||||
"only_per_side": False
|
"only_per_side": False
|
||||||
}
|
}
|
||||||
|
@ -1,5 +1,5 @@
|
|||||||
markdown==3.4.1
|
markdown==3.3.7
|
||||||
mkdocs==1.3.0
|
mkdocs==1.3.1
|
||||||
mkdocs-material==8.3.9
|
mkdocs-material==8.3.9
|
||||||
mdx_truly_sane_lists==1.3
|
mdx_truly_sane_lists==1.3
|
||||||
pymdown-extensions==9.5
|
pymdown-extensions==9.5
|
||||||
|
@ -1264,7 +1264,7 @@ class Exchange:
|
|||||||
return False
|
return False
|
||||||
|
|
||||||
required = ('fee', 'status', 'amount')
|
required = ('fee', 'status', 'amount')
|
||||||
return all(k in corder for k in required)
|
return all(corder.get(k, None) is not None for k in required)
|
||||||
|
|
||||||
def cancel_order_with_result(self, order_id: str, pair: str, amount: float) -> Dict:
|
def cancel_order_with_result(self, order_id: str, pair: str, amount: float) -> Dict:
|
||||||
"""
|
"""
|
||||||
|
@ -8,10 +8,10 @@ from pathlib import Path
|
|||||||
from typing import Any, Dict, Tuple
|
from typing import Any, Dict, Tuple
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import numpy.typing as npt
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
from joblib import dump, load
|
from joblib import dump, load
|
||||||
from joblib.externals import cloudpickle
|
from joblib.externals import cloudpickle
|
||||||
|
from numpy.typing import ArrayLike
|
||||||
from pandas import DataFrame
|
from pandas import DataFrame
|
||||||
|
|
||||||
from freqtrade.configuration import TimeRange
|
from freqtrade.configuration import TimeRange
|
||||||
@ -81,8 +81,7 @@ class FreqaiDataDrawer:
|
|||||||
"""
|
"""
|
||||||
Locate and load a previously saved data drawer full of all pair model metadata in
|
Locate and load a previously saved data drawer full of all pair model metadata in
|
||||||
present model folder.
|
present model folder.
|
||||||
:returns:
|
:return: bool - whether or not the drawer was located
|
||||||
exists: bool = whether or not the drawer was located
|
|
||||||
"""
|
"""
|
||||||
exists = self.pair_dictionary_path.is_file()
|
exists = self.pair_dictionary_path.is_file()
|
||||||
if exists:
|
if exists:
|
||||||
@ -101,8 +100,7 @@ class FreqaiDataDrawer:
|
|||||||
def load_historic_predictions_from_disk(self):
|
def load_historic_predictions_from_disk(self):
|
||||||
"""
|
"""
|
||||||
Locate and load a previously saved historic predictions.
|
Locate and load a previously saved historic predictions.
|
||||||
:returns:
|
:return: bool - whether or not the drawer was located
|
||||||
exists: bool = whether or not the drawer was located
|
|
||||||
"""
|
"""
|
||||||
exists = self.historic_predictions_path.is_file()
|
exists = self.historic_predictions_path.is_file()
|
||||||
if exists:
|
if exists:
|
||||||
@ -221,7 +219,7 @@ class FreqaiDataDrawer:
|
|||||||
self.pair_dict[pair]["priority"] = len(self.pair_dict)
|
self.pair_dict[pair]["priority"] = len(self.pair_dict)
|
||||||
|
|
||||||
def set_initial_return_values(self, pair: str, dk: FreqaiDataKitchen,
|
def set_initial_return_values(self, pair: str, dk: FreqaiDataKitchen,
|
||||||
pred_df: DataFrame, do_preds: npt.ArrayLike) -> None:
|
pred_df: DataFrame, do_preds: ArrayLike) -> None:
|
||||||
"""
|
"""
|
||||||
Set the initial return values to a persistent dataframe. This avoids needing to repredict on
|
Set the initial return values to a persistent dataframe. This avoids needing to repredict on
|
||||||
historical candles, and also stores historical predictions despite retrainings (so stored
|
historical candles, and also stores historical predictions despite retrainings (so stored
|
||||||
@ -240,7 +238,8 @@ class FreqaiDataDrawer:
|
|||||||
|
|
||||||
mrv_df["do_predict"] = do_preds
|
mrv_df["do_predict"] = do_preds
|
||||||
|
|
||||||
def append_model_predictions(self, pair: str, predictions, do_preds, dk, len_df) -> None:
|
def append_model_predictions(self, pair: str, predictions: DataFrame, do_preds: ArrayLike,
|
||||||
|
dk: FreqaiDataKitchen, len_df: int) -> None:
|
||||||
|
|
||||||
# strat seems to feed us variable sized dataframes - and since we are trying to build our
|
# strat seems to feed us variable sized dataframes - and since we are trying to build our
|
||||||
# own return array in the same shape, we need to figure out how the size has changed
|
# own return array in the same shape, we need to figure out how the size has changed
|
||||||
@ -295,7 +294,7 @@ class FreqaiDataDrawer:
|
|||||||
dataframe = pd.concat([dataframe[to_keep], df], axis=1)
|
dataframe = pd.concat([dataframe[to_keep], df], axis=1)
|
||||||
return dataframe
|
return dataframe
|
||||||
|
|
||||||
def return_null_values_to_strategy(self, dataframe: DataFrame, dk) -> None:
|
def return_null_values_to_strategy(self, dataframe: DataFrame, dk: FreqaiDataKitchen) -> None:
|
||||||
"""
|
"""
|
||||||
Build 0 filled dataframe to return to strategy
|
Build 0 filled dataframe to return to strategy
|
||||||
"""
|
"""
|
||||||
@ -422,7 +421,7 @@ class FreqaiDataDrawer:
|
|||||||
dk.model_filename = self.pair_dict[coin]["model_filename"]
|
dk.model_filename = self.pair_dict[coin]["model_filename"]
|
||||||
dk.data_path = Path(self.pair_dict[coin]["data_path"])
|
dk.data_path = Path(self.pair_dict[coin]["data_path"])
|
||||||
if self.freqai_info.get("follow_mode", False):
|
if self.freqai_info.get("follow_mode", False):
|
||||||
# follower can be on a different system which is rsynced to the leader:
|
# follower can be on a different system which is rsynced from the leader:
|
||||||
dk.data_path = Path(
|
dk.data_path = Path(
|
||||||
self.config["user_data_dir"]
|
self.config["user_data_dir"]
|
||||||
/ "models"
|
/ "models"
|
||||||
|
@ -11,8 +11,8 @@ from pathlib import Path
|
|||||||
from typing import Any, Dict, Tuple
|
from typing import Any, Dict, Tuple
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import numpy.typing as npt
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
from numpy.typing import ArrayLike
|
||||||
from pandas import DataFrame
|
from pandas import DataFrame
|
||||||
|
|
||||||
from freqtrade.configuration import TimeRange
|
from freqtrade.configuration import TimeRange
|
||||||
@ -61,19 +61,21 @@ class IFreqaiModel(ABC):
|
|||||||
|
|
||||||
self.config = config
|
self.config = config
|
||||||
self.assert_config(self.config)
|
self.assert_config(self.config)
|
||||||
self.freqai_info = config["freqai"]
|
self.freqai_info: Dict[str, Any] = config["freqai"]
|
||||||
self.data_split_parameters = config.get("freqai", {}).get("data_split_parameters")
|
self.data_split_parameters: Dict[str, Any] = config.get("freqai", {}).get(
|
||||||
self.model_training_parameters = config.get("freqai", {}).get("model_training_parameters")
|
"data_split_parameters", {})
|
||||||
|
self.model_training_parameters: Dict[str, Any] = config.get("freqai", {}).get(
|
||||||
|
"model_training_parameters", {})
|
||||||
self.feature_parameters = config.get("freqai", {}).get("feature_parameters")
|
self.feature_parameters = config.get("freqai", {}).get("feature_parameters")
|
||||||
self.retrain = False
|
self.retrain = False
|
||||||
self.first = True
|
self.first = True
|
||||||
self.set_full_path()
|
self.set_full_path()
|
||||||
self.follow_mode = self.freqai_info.get("follow_mode", False)
|
self.follow_mode: bool = self.freqai_info.get("follow_mode", False)
|
||||||
self.dd = FreqaiDataDrawer(Path(self.full_path), self.config, self.follow_mode)
|
self.dd = FreqaiDataDrawer(Path(self.full_path), self.config, self.follow_mode)
|
||||||
self.lock = threading.Lock()
|
self.lock = threading.Lock()
|
||||||
self.identifier = self.freqai_info.get("identifier", "no_id_provided")
|
self.identifier: str = self.freqai_info.get("identifier", "no_id_provided")
|
||||||
self.scanning = False
|
self.scanning = False
|
||||||
self.keras = self.freqai_info.get("keras", False)
|
self.keras: bool = self.freqai_info.get("keras", False)
|
||||||
if self.keras and self.freqai_info.get("feature_parameters", {}).get("DI_threshold", 0):
|
if self.keras and self.freqai_info.get("feature_parameters", {}).get("DI_threshold", 0):
|
||||||
self.freqai_info["feature_parameters"]["DI_threshold"] = 0
|
self.freqai_info["feature_parameters"]["DI_threshold"] = 0
|
||||||
logger.warning("DI threshold is not configured for Keras models yet. Deactivating.")
|
logger.warning("DI threshold is not configured for Keras models yet. Deactivating.")
|
||||||
@ -253,7 +255,7 @@ class IFreqaiModel(ABC):
|
|||||||
# get the model metadata associated with the current pair
|
# get the model metadata associated with the current pair
|
||||||
(_, trained_timestamp, return_null_array) = self.dd.get_pair_dict_info(metadata["pair"])
|
(_, trained_timestamp, return_null_array) = self.dd.get_pair_dict_info(metadata["pair"])
|
||||||
|
|
||||||
# if the metadata doesnt exist, the follower returns null arrays to strategy
|
# if the metadata doesn't exist, the follower returns null arrays to strategy
|
||||||
if self.follow_mode and return_null_array:
|
if self.follow_mode and return_null_array:
|
||||||
logger.info("Returning null array from follower to strategy")
|
logger.info("Returning null array from follower to strategy")
|
||||||
self.dd.return_null_values_to_strategy(dataframe, dk)
|
self.dd.return_null_values_to_strategy(dataframe, dk)
|
||||||
@ -364,7 +366,7 @@ class IFreqaiModel(ABC):
|
|||||||
raise OperationalException(
|
raise OperationalException(
|
||||||
"Trying to access pretrained model with `identifier` "
|
"Trying to access pretrained model with `identifier` "
|
||||||
"but found different features furnished by current strategy."
|
"but found different features furnished by current strategy."
|
||||||
"Change `identifer` to train from scratch, or ensure the"
|
"Change `identifier` to train from scratch, or ensure the"
|
||||||
"strategy is furnishing the same features as the pretrained"
|
"strategy is furnishing the same features as the pretrained"
|
||||||
"model"
|
"model"
|
||||||
)
|
)
|
||||||
@ -457,7 +459,7 @@ class IFreqaiModel(ABC):
|
|||||||
data_load_timerange: TimeRange,
|
data_load_timerange: TimeRange,
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
Retreive data and train model in single threaded mode (only used if model directory is empty
|
Retrieve data and train model in single threaded mode (only used if model directory is empty
|
||||||
upon startup for dry/live )
|
upon startup for dry/live )
|
||||||
:param new_trained_timerange: TimeRange = the timerange to train the model on
|
:param new_trained_timerange: TimeRange = the timerange to train the model on
|
||||||
:param metadata: dict = strategy provided metadata
|
:param metadata: dict = strategy provided metadata
|
||||||
@ -548,7 +550,7 @@ class IFreqaiModel(ABC):
|
|||||||
@abstractmethod
|
@abstractmethod
|
||||||
def predict(
|
def predict(
|
||||||
self, dataframe: DataFrame, dk: FreqaiDataKitchen, first: bool = True
|
self, dataframe: DataFrame, dk: FreqaiDataKitchen, first: bool = True
|
||||||
) -> Tuple[DataFrame, npt.ArrayLike]:
|
) -> Tuple[DataFrame, ArrayLike]:
|
||||||
"""
|
"""
|
||||||
Filter the prediction features data and predict with it.
|
Filter the prediction features data and predict with it.
|
||||||
:param unfiltered_dataframe: Full dataframe for the current backtest period.
|
:param unfiltered_dataframe: Full dataframe for the current backtest period.
|
||||||
|
@ -23,13 +23,14 @@ class StoplossGuard(IProtection):
|
|||||||
self._trade_limit = protection_config.get('trade_limit', 10)
|
self._trade_limit = protection_config.get('trade_limit', 10)
|
||||||
self._disable_global_stop = protection_config.get('only_per_pair', False)
|
self._disable_global_stop = protection_config.get('only_per_pair', False)
|
||||||
self._only_per_side = protection_config.get('only_per_side', False)
|
self._only_per_side = protection_config.get('only_per_side', False)
|
||||||
|
self._profit_limit = protection_config.get('required_profit', 0.0)
|
||||||
|
|
||||||
def short_desc(self) -> str:
|
def short_desc(self) -> str:
|
||||||
"""
|
"""
|
||||||
Short method description - used for startup-messages
|
Short method description - used for startup-messages
|
||||||
"""
|
"""
|
||||||
return (f"{self.name} - Frequent Stoploss Guard, {self._trade_limit} stoplosses "
|
return (f"{self.name} - Frequent Stoploss Guard, {self._trade_limit} stoplosses "
|
||||||
f"within {self.lookback_period_str}.")
|
f"with profit < {self._profit_limit:.2%} within {self.lookback_period_str}.")
|
||||||
|
|
||||||
def _reason(self) -> str:
|
def _reason(self) -> str:
|
||||||
"""
|
"""
|
||||||
@ -49,7 +50,7 @@ class StoplossGuard(IProtection):
|
|||||||
trades = [trade for trade in trades1 if (str(trade.exit_reason) in (
|
trades = [trade for trade in trades1 if (str(trade.exit_reason) in (
|
||||||
ExitType.TRAILING_STOP_LOSS.value, ExitType.STOP_LOSS.value,
|
ExitType.TRAILING_STOP_LOSS.value, ExitType.STOP_LOSS.value,
|
||||||
ExitType.STOPLOSS_ON_EXCHANGE.value)
|
ExitType.STOPLOSS_ON_EXCHANGE.value)
|
||||||
and trade.close_profit and trade.close_profit < 0)]
|
and trade.close_profit and trade.close_profit < self._profit_limit)]
|
||||||
|
|
||||||
if self._only_per_side:
|
if self._only_per_side:
|
||||||
# Long or short trades only
|
# Long or short trades only
|
||||||
|
@ -8,7 +8,7 @@
|
|||||||
coveralls==3.3.1
|
coveralls==3.3.1
|
||||||
flake8==4.0.1
|
flake8==4.0.1
|
||||||
flake8-tidy-imports==4.8.0
|
flake8-tidy-imports==4.8.0
|
||||||
mypy==0.961
|
mypy==0.971
|
||||||
pre-commit==2.20.0
|
pre-commit==2.20.0
|
||||||
pytest==7.1.2
|
pytest==7.1.2
|
||||||
pytest-asyncio==0.19.0
|
pytest-asyncio==0.19.0
|
||||||
@ -25,6 +25,6 @@ nbconvert==6.5.0
|
|||||||
# mypy types
|
# mypy types
|
||||||
types-cachetools==5.2.1
|
types-cachetools==5.2.1
|
||||||
types-filelock==3.2.7
|
types-filelock==3.2.7
|
||||||
types-requests==2.28.1
|
types-requests==2.28.3
|
||||||
types-tabulate==0.8.11
|
types-tabulate==0.8.11
|
||||||
types-python-dateutil==2.8.18
|
types-python-dateutil==2.8.19
|
||||||
|
@ -2,7 +2,7 @@ numpy==1.23.1
|
|||||||
pandas==1.4.3
|
pandas==1.4.3
|
||||||
pandas-ta==0.3.14b
|
pandas-ta==0.3.14b
|
||||||
|
|
||||||
ccxt==1.90.89
|
ccxt==1.91.29
|
||||||
# Pin cryptography for now due to rust build errors with piwheels
|
# Pin cryptography for now due to rust build errors with piwheels
|
||||||
cryptography==37.0.4
|
cryptography==37.0.4
|
||||||
aiohttp==3.8.1
|
aiohttp==3.8.1
|
||||||
@ -28,7 +28,7 @@ py_find_1st==1.1.5
|
|||||||
# Load ticker files 30% faster
|
# Load ticker files 30% faster
|
||||||
python-rapidjson==1.8
|
python-rapidjson==1.8
|
||||||
# Properly format api responses
|
# Properly format api responses
|
||||||
orjson==3.7.7
|
orjson==3.7.8
|
||||||
|
|
||||||
# Notify systemd
|
# Notify systemd
|
||||||
sdnotify==0.3.2
|
sdnotify==0.3.2
|
||||||
|
@ -2910,6 +2910,9 @@ def test_check_order_canceled_empty(mocker, default_conf, exchange_name, order,
|
|||||||
({'amount': 10.0, 'fee': {}}, False),
|
({'amount': 10.0, 'fee': {}}, False),
|
||||||
({'result': 'testest123'}, False),
|
({'result': 'testest123'}, False),
|
||||||
('hello_world', False),
|
('hello_world', False),
|
||||||
|
({'status': 'canceled', 'amount': None, 'fee': None}, False),
|
||||||
|
({'status': 'canceled', 'filled': None, 'amount': None, 'fee': None}, False),
|
||||||
|
|
||||||
])
|
])
|
||||||
def test_is_cancel_order_result_suitable(mocker, default_conf, exchange_name, order, result):
|
def test_is_cancel_order_result_suitable(mocker, default_conf, exchange_name, order, result):
|
||||||
exchange = get_patched_exchange(mocker, default_conf, id=exchange_name)
|
exchange = get_patched_exchange(mocker, default_conf, id=exchange_name)
|
||||||
|
@ -424,7 +424,7 @@ def test_MaxDrawdown(mocker, default_conf, fee, caplog):
|
|||||||
@pytest.mark.parametrize("protectionconf,desc_expected,exception_expected", [
|
@pytest.mark.parametrize("protectionconf,desc_expected,exception_expected", [
|
||||||
({"method": "StoplossGuard", "lookback_period": 60, "trade_limit": 2, "stop_duration": 60},
|
({"method": "StoplossGuard", "lookback_period": 60, "trade_limit": 2, "stop_duration": 60},
|
||||||
"[{'StoplossGuard': 'StoplossGuard - Frequent Stoploss Guard, "
|
"[{'StoplossGuard': 'StoplossGuard - Frequent Stoploss Guard, "
|
||||||
"2 stoplosses within 60 minutes.'}]",
|
"2 stoplosses with profit < 0.00% within 60 minutes.'}]",
|
||||||
None
|
None
|
||||||
),
|
),
|
||||||
({"method": "CooldownPeriod", "stop_duration": 60},
|
({"method": "CooldownPeriod", "stop_duration": 60},
|
||||||
@ -442,9 +442,9 @@ def test_MaxDrawdown(mocker, default_conf, fee, caplog):
|
|||||||
None
|
None
|
||||||
),
|
),
|
||||||
({"method": "StoplossGuard", "lookback_period_candles": 12, "trade_limit": 2,
|
({"method": "StoplossGuard", "lookback_period_candles": 12, "trade_limit": 2,
|
||||||
"stop_duration": 60},
|
"required_profit": -0.05, "stop_duration": 60},
|
||||||
"[{'StoplossGuard': 'StoplossGuard - Frequent Stoploss Guard, "
|
"[{'StoplossGuard': 'StoplossGuard - Frequent Stoploss Guard, "
|
||||||
"2 stoplosses within 12 candles.'}]",
|
"2 stoplosses with profit < -5.00% within 12 candles.'}]",
|
||||||
None
|
None
|
||||||
),
|
),
|
||||||
({"method": "CooldownPeriod", "stop_duration_candles": 5},
|
({"method": "CooldownPeriod", "stop_duration_candles": 5},
|
||||||
|
@ -1402,7 +1402,6 @@ def test_api_strategies(botclient):
|
|||||||
'InformativeDecoratorTest',
|
'InformativeDecoratorTest',
|
||||||
'StrategyTestV2',
|
'StrategyTestV2',
|
||||||
'StrategyTestV3',
|
'StrategyTestV3',
|
||||||
'StrategyTestV3Analysis',
|
|
||||||
'StrategyTestV3Futures',
|
'StrategyTestV3Futures',
|
||||||
'freqai_test_multimodel_strat',
|
'freqai_test_multimodel_strat',
|
||||||
'freqai_test_strat'
|
'freqai_test_strat'
|
||||||
|
@ -1,175 +0,0 @@
|
|||||||
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
|
|
||||||
|
|
||||||
import talib.abstract as ta
|
|
||||||
from pandas import DataFrame
|
|
||||||
|
|
||||||
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
|
||||||
from freqtrade.strategy import (BooleanParameter, DecimalParameter, IntParameter, IStrategy,
|
|
||||||
RealParameter)
|
|
||||||
|
|
||||||
|
|
||||||
class StrategyTestV3Analysis(IStrategy):
|
|
||||||
"""
|
|
||||||
Strategy used by tests freqtrade bot.
|
|
||||||
Please do not modify this strategy, it's intended for internal use only.
|
|
||||||
Please look at the SampleStrategy in the user_data/strategy directory
|
|
||||||
or strategy repository https://github.com/freqtrade/freqtrade-strategies
|
|
||||||
for samples and inspiration.
|
|
||||||
"""
|
|
||||||
INTERFACE_VERSION = 3
|
|
||||||
|
|
||||||
# Minimal ROI designed for the strategy
|
|
||||||
minimal_roi = {
|
|
||||||
"40": 0.0,
|
|
||||||
"30": 0.01,
|
|
||||||
"20": 0.02,
|
|
||||||
"0": 0.04
|
|
||||||
}
|
|
||||||
|
|
||||||
# Optimal stoploss designed for the strategy
|
|
||||||
stoploss = -0.10
|
|
||||||
|
|
||||||
# Optimal timeframe for the strategy
|
|
||||||
timeframe = '5m'
|
|
||||||
|
|
||||||
# Optional order type mapping
|
|
||||||
order_types = {
|
|
||||||
'entry': 'limit',
|
|
||||||
'exit': 'limit',
|
|
||||||
'stoploss': 'limit',
|
|
||||||
'stoploss_on_exchange': False
|
|
||||||
}
|
|
||||||
|
|
||||||
# Number of candles the strategy requires before producing valid signals
|
|
||||||
startup_candle_count: int = 20
|
|
||||||
|
|
||||||
# Optional time in force for orders
|
|
||||||
order_time_in_force = {
|
|
||||||
'entry': 'gtc',
|
|
||||||
'exit': 'gtc',
|
|
||||||
}
|
|
||||||
|
|
||||||
buy_params = {
|
|
||||||
'buy_rsi': 35,
|
|
||||||
# Intentionally not specified, so "default" is tested
|
|
||||||
# 'buy_plusdi': 0.4
|
|
||||||
}
|
|
||||||
|
|
||||||
sell_params = {
|
|
||||||
'sell_rsi': 74,
|
|
||||||
'sell_minusdi': 0.4
|
|
||||||
}
|
|
||||||
|
|
||||||
buy_rsi = IntParameter([0, 50], default=30, space='buy')
|
|
||||||
buy_plusdi = RealParameter(low=0, high=1, default=0.5, space='buy')
|
|
||||||
sell_rsi = IntParameter(low=50, high=100, default=70, space='sell')
|
|
||||||
sell_minusdi = DecimalParameter(low=0, high=1, default=0.5001, decimals=3, space='sell',
|
|
||||||
load=False)
|
|
||||||
protection_enabled = BooleanParameter(default=True)
|
|
||||||
protection_cooldown_lookback = IntParameter([0, 50], default=30)
|
|
||||||
|
|
||||||
# TODO: Can this work with protection tests? (replace HyperoptableStrategy implicitly ... )
|
|
||||||
# @property
|
|
||||||
# def protections(self):
|
|
||||||
# prot = []
|
|
||||||
# if self.protection_enabled.value:
|
|
||||||
# prot.append({
|
|
||||||
# "method": "CooldownPeriod",
|
|
||||||
# "stop_duration_candles": self.protection_cooldown_lookback.value
|
|
||||||
# })
|
|
||||||
# return prot
|
|
||||||
|
|
||||||
bot_started = False
|
|
||||||
|
|
||||||
def bot_start(self):
|
|
||||||
self.bot_started = True
|
|
||||||
|
|
||||||
def informative_pairs(self):
|
|
||||||
|
|
||||||
return []
|
|
||||||
|
|
||||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
||||||
|
|
||||||
# Momentum Indicator
|
|
||||||
# ------------------------------------
|
|
||||||
|
|
||||||
# ADX
|
|
||||||
dataframe['adx'] = ta.ADX(dataframe)
|
|
||||||
|
|
||||||
# MACD
|
|
||||||
macd = ta.MACD(dataframe)
|
|
||||||
dataframe['macd'] = macd['macd']
|
|
||||||
dataframe['macdsignal'] = macd['macdsignal']
|
|
||||||
dataframe['macdhist'] = macd['macdhist']
|
|
||||||
|
|
||||||
# Minus Directional Indicator / Movement
|
|
||||||
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
|
||||||
|
|
||||||
# Plus Directional Indicator / Movement
|
|
||||||
dataframe['plus_di'] = ta.PLUS_DI(dataframe)
|
|
||||||
|
|
||||||
# RSI
|
|
||||||
dataframe['rsi'] = ta.RSI(dataframe)
|
|
||||||
|
|
||||||
# Stoch fast
|
|
||||||
stoch_fast = ta.STOCHF(dataframe)
|
|
||||||
dataframe['fastd'] = stoch_fast['fastd']
|
|
||||||
dataframe['fastk'] = stoch_fast['fastk']
|
|
||||||
|
|
||||||
# Bollinger bands
|
|
||||||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
|
||||||
dataframe['bb_lowerband'] = bollinger['lower']
|
|
||||||
dataframe['bb_middleband'] = bollinger['mid']
|
|
||||||
dataframe['bb_upperband'] = bollinger['upper']
|
|
||||||
|
|
||||||
# EMA - Exponential Moving Average
|
|
||||||
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
|
|
||||||
|
|
||||||
return dataframe
|
|
||||||
|
|
||||||
def populate_entry_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
||||||
|
|
||||||
dataframe.loc[
|
|
||||||
(
|
|
||||||
(dataframe['rsi'] < self.buy_rsi.value) &
|
|
||||||
(dataframe['fastd'] < 35) &
|
|
||||||
(dataframe['adx'] > 30) &
|
|
||||||
(dataframe['plus_di'] > self.buy_plusdi.value)
|
|
||||||
) |
|
|
||||||
(
|
|
||||||
(dataframe['adx'] > 65) &
|
|
||||||
(dataframe['plus_di'] > self.buy_plusdi.value)
|
|
||||||
),
|
|
||||||
['enter_long', 'enter_tag']] = 1, 'enter_tag_long'
|
|
||||||
|
|
||||||
dataframe.loc[
|
|
||||||
(
|
|
||||||
qtpylib.crossed_below(dataframe['rsi'], self.sell_rsi.value)
|
|
||||||
),
|
|
||||||
['enter_short', 'enter_tag']] = 1, 'enter_tag_short'
|
|
||||||
|
|
||||||
return dataframe
|
|
||||||
|
|
||||||
def populate_exit_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
||||||
dataframe.loc[
|
|
||||||
(
|
|
||||||
(
|
|
||||||
(qtpylib.crossed_above(dataframe['rsi'], self.sell_rsi.value)) |
|
|
||||||
(qtpylib.crossed_above(dataframe['fastd'], 70))
|
|
||||||
) &
|
|
||||||
(dataframe['adx'] > 10) &
|
|
||||||
(dataframe['minus_di'] > 0)
|
|
||||||
) |
|
|
||||||
(
|
|
||||||
(dataframe['adx'] > 70) &
|
|
||||||
(dataframe['minus_di'] > self.sell_minusdi.value)
|
|
||||||
),
|
|
||||||
['exit_long', 'exit_tag']] = 1, 'exit_tag_long'
|
|
||||||
|
|
||||||
dataframe.loc[
|
|
||||||
(
|
|
||||||
qtpylib.crossed_above(dataframe['rsi'], self.buy_rsi.value)
|
|
||||||
),
|
|
||||||
['exit_long', 'exit_tag']] = 1, 'exit_tag_short'
|
|
||||||
|
|
||||||
return dataframe
|
|
@ -34,7 +34,7 @@ def test_search_all_strategies_no_failed():
|
|||||||
directory = Path(__file__).parent / "strats"
|
directory = Path(__file__).parent / "strats"
|
||||||
strategies = StrategyResolver.search_all_objects(directory, enum_failed=False)
|
strategies = StrategyResolver.search_all_objects(directory, enum_failed=False)
|
||||||
assert isinstance(strategies, list)
|
assert isinstance(strategies, list)
|
||||||
assert len(strategies) == 9
|
assert len(strategies) == 8
|
||||||
assert isinstance(strategies[0], dict)
|
assert isinstance(strategies[0], dict)
|
||||||
|
|
||||||
|
|
||||||
@ -42,10 +42,10 @@ def test_search_all_strategies_with_failed():
|
|||||||
directory = Path(__file__).parent / "strats"
|
directory = Path(__file__).parent / "strats"
|
||||||
strategies = StrategyResolver.search_all_objects(directory, enum_failed=True)
|
strategies = StrategyResolver.search_all_objects(directory, enum_failed=True)
|
||||||
assert isinstance(strategies, list)
|
assert isinstance(strategies, list)
|
||||||
assert len(strategies) == 10
|
assert len(strategies) == 9
|
||||||
# with enum_failed=True search_all_objects() shall find 2 good strategies
|
# with enum_failed=True search_all_objects() shall find 2 good strategies
|
||||||
# and 1 which fails to load
|
# and 1 which fails to load
|
||||||
assert len([x for x in strategies if x['class'] is not None]) == 9
|
assert len([x for x in strategies if x['class'] is not None]) == 8
|
||||||
assert len([x for x in strategies if x['class'] is None]) == 1
|
assert len([x for x in strategies if x['class'] is None]) == 1
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user