@@ -1,5 +1,5 @@
|
||||
""" Freqtrade bot """
|
||||
__version__ = 'develop'
|
||||
__version__ = '2022.8.dev'
|
||||
|
||||
if 'dev' in __version__:
|
||||
try:
|
||||
|
@@ -67,7 +67,7 @@ def ask_user_config() -> Dict[str, Any]:
|
||||
"type": "text",
|
||||
"name": "stake_amount",
|
||||
"message": f"Please insert your stake amount (Number or '{UNLIMITED_STAKE_AMOUNT}'):",
|
||||
"default": "100",
|
||||
"default": "unlimited",
|
||||
"validate": lambda val: val == UNLIMITED_STAKE_AMOUNT or validate_is_float(val),
|
||||
"filter": lambda val: '"' + UNLIMITED_STAKE_AMOUNT + '"'
|
||||
if val == UNLIMITED_STAKE_AMOUNT
|
||||
@@ -164,7 +164,7 @@ def ask_user_config() -> Dict[str, Any]:
|
||||
"when": lambda x: x['telegram']
|
||||
},
|
||||
{
|
||||
"type": "text",
|
||||
"type": "password",
|
||||
"name": "telegram_chat_id",
|
||||
"message": "Insert Telegram chat id",
|
||||
"when": lambda x: x['telegram']
|
||||
@@ -191,7 +191,7 @@ def ask_user_config() -> Dict[str, Any]:
|
||||
"when": lambda x: x['api_server']
|
||||
},
|
||||
{
|
||||
"type": "text",
|
||||
"type": "password",
|
||||
"name": "api_server_password",
|
||||
"message": "Insert api-server password",
|
||||
"when": lambda x: x['api_server']
|
||||
|
@@ -4,5 +4,4 @@ from freqtrade.configuration.check_exchange import check_exchange
|
||||
from freqtrade.configuration.config_setup import setup_utils_configuration
|
||||
from freqtrade.configuration.config_validation import validate_config_consistency
|
||||
from freqtrade.configuration.configuration import Configuration
|
||||
from freqtrade.configuration.PeriodicCache import PeriodicCache
|
||||
from freqtrade.configuration.timerange import TimeRange
|
||||
|
@@ -85,7 +85,6 @@ def validate_config_consistency(conf: Dict[str, Any], preliminary: bool = False)
|
||||
_validate_unlimited_amount(conf)
|
||||
_validate_ask_orderbook(conf)
|
||||
validate_migrated_strategy_settings(conf)
|
||||
_validate_freqai(conf)
|
||||
|
||||
# validate configuration before returning
|
||||
logger.info('Validating configuration ...')
|
||||
@@ -164,22 +163,6 @@ def _validate_edge(conf: Dict[str, Any]) -> None:
|
||||
)
|
||||
|
||||
|
||||
def _validate_freqai(conf: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Freqai param validator
|
||||
"""
|
||||
|
||||
if not conf.get('freqai', {}):
|
||||
return
|
||||
|
||||
for param in constants.SCHEMA_FREQAI_REQUIRED:
|
||||
if param not in conf.get('freqai', {}):
|
||||
if param not in conf.get('freqai', {}).get('feature_parameters', {}):
|
||||
raise OperationalException(
|
||||
f'{param} not found in Freqai config'
|
||||
)
|
||||
|
||||
|
||||
def _validate_whitelist(conf: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Dynamic whitelist does not require pair_whitelist to be set - however StaticWhitelist does.
|
||||
|
@@ -241,6 +241,7 @@ CONF_SCHEMA = {
|
||||
},
|
||||
'exchange': {'$ref': '#/definitions/exchange'},
|
||||
'edge': {'$ref': '#/definitions/edge'},
|
||||
'freqai': {'$ref': '#/definitions/freqai'},
|
||||
'experimental': {
|
||||
'type': 'object',
|
||||
'properties': {
|
||||
@@ -318,6 +319,10 @@ CONF_SCHEMA = {
|
||||
'type': 'string',
|
||||
'enum': ['off', 'ohlc'],
|
||||
},
|
||||
'strategy_msg': {
|
||||
'type': 'string',
|
||||
'enum': TELEGRAM_SETTING_OPTIONS,
|
||||
},
|
||||
}
|
||||
},
|
||||
'reload': {'type': 'boolean'},
|
||||
@@ -481,21 +486,31 @@ CONF_SCHEMA = {
|
||||
"freqai": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"enabled": {"type": "boolean", "default": False},
|
||||
"keras": {"type": "boolean", "default": False},
|
||||
"conv_width": {"type": "integer", "default": 2},
|
||||
"train_period_days": {"type": "integer", "default": 0},
|
||||
"backtest_period_days": {"type": "float", "default": 7},
|
||||
"identifier": {"type": "str", "default": "example"},
|
||||
"backtest_period_days": {"type": "number", "default": 7},
|
||||
"identifier": {"type": "string", "default": "example"},
|
||||
"feature_parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"include_corr_pairlist": {"type": "list"},
|
||||
"include_timeframes": {"type": "list"},
|
||||
"include_corr_pairlist": {"type": "array"},
|
||||
"include_timeframes": {"type": "array"},
|
||||
"label_period_candles": {"type": "integer"},
|
||||
"include_shifted_candles": {"type": "integer", "default": 0},
|
||||
"DI_threshold": {"type": "float", "default": 0},
|
||||
"DI_threshold": {"type": "number", "default": 0},
|
||||
"weight_factor": {"type": "number", "default": 0},
|
||||
"principal_component_analysis": {"type": "boolean", "default": False},
|
||||
"use_SVM_to_remove_outliers": {"type": "boolean", "default": False},
|
||||
"svm_params": {"type": "object",
|
||||
"properties": {
|
||||
"shuffle": {"type": "boolean", "default": False},
|
||||
"nu": {"type": "number", "default": 0.1}
|
||||
},
|
||||
}
|
||||
},
|
||||
"required": ["include_timeframes", "include_corr_pairlist", ]
|
||||
},
|
||||
"data_split_parameters": {
|
||||
"type": "object",
|
||||
@@ -507,13 +522,19 @@ CONF_SCHEMA = {
|
||||
"model_training_parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"n_estimators": {"type": "integer", "default": 2000},
|
||||
"random_state": {"type": "integer", "default": 1},
|
||||
"learning_rate": {"type": "number", "default": 0.02},
|
||||
"task_type": {"type": "string", "default": "CPU"},
|
||||
"n_estimators": {"type": "integer", "default": 1000}
|
||||
},
|
||||
},
|
||||
},
|
||||
"required": [
|
||||
"enabled",
|
||||
"train_period_days",
|
||||
"backtest_period_days",
|
||||
"identifier",
|
||||
"feature_parameters",
|
||||
"data_split_parameters",
|
||||
"model_training_parameters"
|
||||
]
|
||||
},
|
||||
},
|
||||
}
|
||||
@@ -558,17 +579,6 @@ SCHEMA_MINIMAL_REQUIRED = [
|
||||
'dataformat_trades',
|
||||
]
|
||||
|
||||
SCHEMA_FREQAI_REQUIRED = [
|
||||
'include_timeframes',
|
||||
'train_period_days',
|
||||
'backtest_period_days',
|
||||
'identifier',
|
||||
'include_corr_pairlist',
|
||||
'feature_parameters',
|
||||
'data_split_parameters',
|
||||
'model_training_parameters'
|
||||
]
|
||||
|
||||
CANCEL_REASON = {
|
||||
"TIMEOUT": "cancelled due to timeout",
|
||||
"PARTIALLY_FILLED_KEEP_OPEN": "partially filled - keeping order open",
|
||||
|
@@ -5,6 +5,7 @@ including ticker and orderbook data, live and historical candle (OHLCV) data
|
||||
Common Interface for bot and strategy to access data.
|
||||
"""
|
||||
import logging
|
||||
from collections import deque
|
||||
from datetime import datetime, timezone
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
@@ -16,6 +17,7 @@ from freqtrade.data.history import load_pair_history
|
||||
from freqtrade.enums import CandleType, RunMode
|
||||
from freqtrade.exceptions import ExchangeError, OperationalException
|
||||
from freqtrade.exchange import Exchange, timeframe_to_seconds
|
||||
from freqtrade.util import PeriodicCache
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -33,6 +35,10 @@ class DataProvider:
|
||||
self.__cached_pairs: Dict[PairWithTimeframe, Tuple[DataFrame, datetime]] = {}
|
||||
self.__slice_index: Optional[int] = None
|
||||
self.__cached_pairs_backtesting: Dict[PairWithTimeframe, DataFrame] = {}
|
||||
self._msg_queue: deque = deque()
|
||||
|
||||
self.__msg_cache = PeriodicCache(
|
||||
maxsize=1000, ttl=timeframe_to_seconds(self._config.get('timeframe', '1h')))
|
||||
|
||||
def _set_dataframe_max_index(self, limit_index: int):
|
||||
"""
|
||||
@@ -265,3 +271,20 @@ class DataProvider:
|
||||
if self._exchange is None:
|
||||
raise OperationalException(NO_EXCHANGE_EXCEPTION)
|
||||
return self._exchange.fetch_l2_order_book(pair, maximum)
|
||||
|
||||
def send_msg(self, message: str, *, always_send: bool = False) -> None:
|
||||
"""
|
||||
Send custom RPC Notifications from your bot.
|
||||
Will not send any bot in modes other than Dry-run or Live.
|
||||
:param message: Message to be sent. Must be below 4096.
|
||||
:param always_send: If False, will send the message only once per candle, and surpress
|
||||
identical messages.
|
||||
Careful as this can end up spaming your chat.
|
||||
Defaults to False
|
||||
"""
|
||||
if self.runmode not in (RunMode.DRY_RUN, RunMode.LIVE):
|
||||
return
|
||||
|
||||
if always_send or message not in self.__msg_cache:
|
||||
self._msg_queue.append(message)
|
||||
self.__msg_cache[message] = True
|
||||
|
@@ -9,10 +9,12 @@ class ExitType(Enum):
|
||||
STOP_LOSS = "stop_loss"
|
||||
STOPLOSS_ON_EXCHANGE = "stoploss_on_exchange"
|
||||
TRAILING_STOP_LOSS = "trailing_stop_loss"
|
||||
LIQUIDATION = "liquidation"
|
||||
EXIT_SIGNAL = "exit_signal"
|
||||
FORCE_EXIT = "force_exit"
|
||||
EMERGENCY_EXIT = "emergency_exit"
|
||||
CUSTOM_EXIT = "custom_exit"
|
||||
PARTIAL_EXIT = "partial_exit"
|
||||
NONE = ""
|
||||
|
||||
def __str__(self):
|
||||
|
@@ -17,6 +17,8 @@ class RPCMessageType(Enum):
|
||||
PROTECTION_TRIGGER = 'protection_trigger'
|
||||
PROTECTION_TRIGGER_GLOBAL = 'protection_trigger_global'
|
||||
|
||||
STRATEGY_MSG = 'strategy_msg'
|
||||
|
||||
def __repr__(self):
|
||||
return self.value
|
||||
|
||||
|
@@ -16,7 +16,7 @@ import arrow
|
||||
import ccxt
|
||||
import ccxt.async_support as ccxt_async
|
||||
from cachetools import TTLCache
|
||||
from ccxt import ROUND_DOWN, ROUND_UP, TICK_SIZE, TRUNCATE, Precise, decimal_to_precision
|
||||
from ccxt import ROUND_DOWN, ROUND_UP, TICK_SIZE, TRUNCATE, decimal_to_precision
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.constants import (DEFAULT_AMOUNT_RESERVE_PERCENT, NON_OPEN_EXCHANGE_STATES, BuySell,
|
||||
@@ -32,6 +32,7 @@ from freqtrade.exchange.common import (API_FETCH_ORDER_RETRY_COUNT, BAD_EXCHANGE
|
||||
retrier_async)
|
||||
from freqtrade.misc import chunks, deep_merge_dicts, safe_value_fallback2
|
||||
from freqtrade.plugins.pairlist.pairlist_helpers import expand_pairlist
|
||||
from freqtrade.util import FtPrecise
|
||||
|
||||
|
||||
CcxtModuleType = Any
|
||||
@@ -708,10 +709,10 @@ class Exchange:
|
||||
# counting_mode=self.precisionMode,
|
||||
# ))
|
||||
if self.precisionMode == TICK_SIZE:
|
||||
precision = Precise(str(self.markets[pair]['precision']['price']))
|
||||
price_str = Precise(str(price))
|
||||
precision = FtPrecise(self.markets[pair]['precision']['price'])
|
||||
price_str = FtPrecise(price)
|
||||
missing = price_str % precision
|
||||
if not missing == Precise("0"):
|
||||
if not missing == FtPrecise("0"):
|
||||
price = round(float(str(price_str - missing + precision)), 14)
|
||||
else:
|
||||
symbol_prec = self.markets[pair]['precision']['price']
|
||||
@@ -849,6 +850,7 @@ class Exchange:
|
||||
dry_order.update({
|
||||
'average': average,
|
||||
'filled': _amount,
|
||||
'remaining': 0.0,
|
||||
'cost': (dry_order['amount'] * average) / leverage
|
||||
})
|
||||
# market orders will always incurr taker fees
|
||||
@@ -1332,11 +1334,19 @@ class Exchange:
|
||||
raise OperationalException(e) from e
|
||||
|
||||
@retrier
|
||||
def fetch_positions(self) -> List[Dict]:
|
||||
def fetch_positions(self, pair: str = None) -> List[Dict]:
|
||||
"""
|
||||
Fetch positions from the exchange.
|
||||
If no pair is given, all positions are returned.
|
||||
:param pair: Pair for the query
|
||||
"""
|
||||
if self._config['dry_run'] or self.trading_mode != TradingMode.FUTURES:
|
||||
return []
|
||||
try:
|
||||
positions: List[Dict] = self._api.fetch_positions()
|
||||
symbols = []
|
||||
if pair:
|
||||
symbols.append(pair)
|
||||
positions: List[Dict] = self._api.fetch_positions(symbols)
|
||||
self._log_exchange_response('fetch_positions', positions)
|
||||
return positions
|
||||
except ccxt.DDoSProtection as e:
|
||||
@@ -1499,7 +1509,8 @@ class Exchange:
|
||||
return price_side
|
||||
|
||||
def get_rate(self, pair: str, refresh: bool,
|
||||
side: EntryExit, is_short: bool) -> float:
|
||||
side: EntryExit, is_short: bool,
|
||||
order_book: Optional[dict] = None, ticker: Optional[dict] = None) -> float:
|
||||
"""
|
||||
Calculates bid/ask target
|
||||
bid rate - between current ask price and last price
|
||||
@@ -1531,22 +1542,24 @@ class Exchange:
|
||||
if conf_strategy.get('use_order_book', False):
|
||||
|
||||
order_book_top = conf_strategy.get('order_book_top', 1)
|
||||
order_book = self.fetch_l2_order_book(pair, order_book_top)
|
||||
if order_book is None:
|
||||
order_book = self.fetch_l2_order_book(pair, order_book_top)
|
||||
logger.debug('order_book %s', order_book)
|
||||
# top 1 = index 0
|
||||
try:
|
||||
rate = order_book[f"{price_side}s"][order_book_top - 1][0]
|
||||
except (IndexError, KeyError) as e:
|
||||
logger.warning(
|
||||
f"{name} Price at location {order_book_top} from orderbook could not be "
|
||||
f"determined. Orderbook: {order_book}"
|
||||
f"{pair} - {name} Price at location {order_book_top} from orderbook "
|
||||
f"could not be determined. Orderbook: {order_book}"
|
||||
)
|
||||
raise PricingError from e
|
||||
logger.debug(f"{name} price from orderbook {price_side_word}"
|
||||
logger.debug(f"{pair} - {name} price from orderbook {price_side_word}"
|
||||
f"side - top {order_book_top} order book {side} rate {rate:.8f}")
|
||||
else:
|
||||
logger.debug(f"Using Last {price_side_word} / Last Price")
|
||||
ticker = self.fetch_ticker(pair)
|
||||
if ticker is None:
|
||||
ticker = self.fetch_ticker(pair)
|
||||
ticker_rate = ticker[price_side]
|
||||
if ticker['last'] and ticker_rate:
|
||||
if side == 'entry' and ticker_rate > ticker['last']:
|
||||
@@ -1563,6 +1576,33 @@ class Exchange:
|
||||
|
||||
return rate
|
||||
|
||||
def get_rates(self, pair: str, refresh: bool, is_short: bool) -> Tuple[float, float]:
|
||||
entry_rate = None
|
||||
exit_rate = None
|
||||
if not refresh:
|
||||
entry_rate = self._entry_rate_cache.get(pair)
|
||||
exit_rate = self._exit_rate_cache.get(pair)
|
||||
if entry_rate:
|
||||
logger.debug(f"Using cached buy rate for {pair}.")
|
||||
if exit_rate:
|
||||
logger.debug(f"Using cached sell rate for {pair}.")
|
||||
|
||||
entry_pricing = self._config.get('entry_pricing', {})
|
||||
exit_pricing = self._config.get('exit_pricing', {})
|
||||
order_book = ticker = None
|
||||
if not entry_rate and entry_pricing.get('use_order_book', False):
|
||||
order_book_top = max(entry_pricing.get('order_book_top', 1),
|
||||
exit_pricing.get('order_book_top', 1))
|
||||
order_book = self.fetch_l2_order_book(pair, order_book_top)
|
||||
entry_rate = self.get_rate(pair, refresh, 'entry', is_short, order_book=order_book)
|
||||
elif not entry_rate:
|
||||
ticker = self.fetch_ticker(pair)
|
||||
entry_rate = self.get_rate(pair, refresh, 'entry', is_short, ticker=ticker)
|
||||
if not exit_rate:
|
||||
exit_rate = self.get_rate(pair, refresh, 'exit',
|
||||
is_short, order_book=order_book, ticker=ticker)
|
||||
return entry_rate, exit_rate
|
||||
|
||||
# Fee handling
|
||||
|
||||
@retrier
|
||||
@@ -1981,7 +2021,7 @@ class Exchange:
|
||||
else:
|
||||
logger.debug(
|
||||
"Fetching trades for pair %s, since %s %s...",
|
||||
pair, since,
|
||||
pair, since,
|
||||
'(' + arrow.get(since // 1000).isoformat() + ') ' if since is not None else ''
|
||||
)
|
||||
trades = await self._api_async.fetch_trades(pair, since=since, limit=1000)
|
||||
@@ -2539,7 +2579,6 @@ class Exchange:
|
||||
else:
|
||||
return 0.0
|
||||
|
||||
@retrier
|
||||
def get_or_calculate_liquidation_price(
|
||||
self,
|
||||
pair: str,
|
||||
@@ -2573,20 +2612,12 @@ class Exchange:
|
||||
upnl_ex_1=upnl_ex_1
|
||||
)
|
||||
else:
|
||||
try:
|
||||
positions = self._api.fetch_positions([pair])
|
||||
if len(positions) > 0:
|
||||
pos = positions[0]
|
||||
isolated_liq = pos['liquidationPrice']
|
||||
else:
|
||||
return None
|
||||
except ccxt.DDoSProtection as e:
|
||||
raise DDosProtection(e) from e
|
||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(
|
||||
f'Could not set margin mode due to {e.__class__.__name__}. Message: {e}') from e
|
||||
except ccxt.BaseError as e:
|
||||
raise OperationalException(e) from e
|
||||
positions = self.fetch_positions(pair)
|
||||
if len(positions) > 0:
|
||||
pos = positions[0]
|
||||
isolated_liq = pos['liquidationPrice']
|
||||
else:
|
||||
return None
|
||||
|
||||
if isolated_liq:
|
||||
buffer_amount = abs(open_rate - isolated_liq) * self.liquidation_buffer
|
||||
|
@@ -1,6 +1,6 @@
|
||||
""" FTX exchange subclass """
|
||||
import logging
|
||||
from typing import Any, Dict, List, Tuple
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
import ccxt
|
||||
|
||||
@@ -116,9 +116,17 @@ class Ftx(Exchange):
|
||||
if len(order) == 1:
|
||||
if order[0].get('status') == 'closed':
|
||||
# Trigger order was triggered ...
|
||||
real_order_id = order[0].get('info', {}).get('orderId')
|
||||
real_order_id: Optional[str] = order[0].get('info', {}).get('orderId')
|
||||
# OrderId may be None for stoploss-market orders
|
||||
# But contains "average" in these cases.
|
||||
# So we need to get it through the endpoint
|
||||
# /conditional_orders/{conditional_order_id}/triggers
|
||||
if not real_order_id:
|
||||
res = self._api.privateGetConditionalOrdersConditionalOrderIdTriggers(
|
||||
params={'conditional_order_id': order_id})
|
||||
self._log_exchange_response('fetch_stoploss_order2', res)
|
||||
real_order_id = res['result'][0]['orderId'] if res.get(
|
||||
'result', []) else None
|
||||
|
||||
if real_order_id:
|
||||
order1 = self._api.fetch_order(real_order_id, pair)
|
||||
self._log_exchange_response('fetch_stoploss_order1', order1)
|
||||
|
@@ -5,13 +5,14 @@ import re
|
||||
import shutil
|
||||
import threading
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Tuple
|
||||
from typing import Any, Dict, Tuple, TypedDict
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import rapidjson
|
||||
from joblib import dump, load
|
||||
from joblib.externals import cloudpickle
|
||||
from numpy.typing import ArrayLike
|
||||
from numpy.typing import ArrayLike, NDArray
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
@@ -24,6 +25,15 @@ from freqtrade.strategy.interface import IStrategy
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class pair_info(TypedDict):
|
||||
model_filename: str
|
||||
first: bool
|
||||
trained_timestamp: int
|
||||
priority: int
|
||||
data_path: str
|
||||
extras: dict
|
||||
|
||||
|
||||
class FreqaiDataDrawer:
|
||||
"""
|
||||
Class aimed at holding all pair models/info in memory for better inferencing/retrainig/saving
|
||||
@@ -39,7 +49,7 @@ class FreqaiDataDrawer:
|
||||
Robert Caulk @robcaulk
|
||||
|
||||
Theoretical brainstorming:
|
||||
Elin Törnquist @thorntwig
|
||||
Elin Törnquist @th0rntwig
|
||||
|
||||
Code review, software architecture brainstorming:
|
||||
@xmatthias
|
||||
@@ -54,14 +64,13 @@ class FreqaiDataDrawer:
|
||||
self.config = config
|
||||
self.freqai_info = config.get("freqai", {})
|
||||
# dictionary holding all pair metadata necessary to load in from disk
|
||||
self.pair_dict: Dict[str, Any] = {}
|
||||
self.pair_dict: Dict[str, pair_info] = {}
|
||||
# dictionary holding all actively inferenced models in memory given a model filename
|
||||
self.model_dictionary: Dict[str, Any] = {}
|
||||
self.model_return_values: Dict[str, Any] = {}
|
||||
self.pair_data_dict: Dict[str, Any] = {}
|
||||
self.historic_data: Dict[str, Any] = {}
|
||||
self.historic_predictions: Dict[str, Any] = {}
|
||||
self.follower_dict: Dict[str, Any] = {}
|
||||
self.model_return_values: Dict[str, DataFrame] = {}
|
||||
self.historic_data: Dict[str, Dict[str, DataFrame]] = {}
|
||||
self.historic_predictions: Dict[str, DataFrame] = {}
|
||||
self.follower_dict: Dict[str, pair_info] = {}
|
||||
self.full_path = full_path
|
||||
self.follower_name: str = self.config.get("bot_name", "follower1")
|
||||
self.follower_dict_path = Path(
|
||||
@@ -76,6 +85,10 @@ class FreqaiDataDrawer:
|
||||
self.load_historic_predictions_from_disk()
|
||||
self.training_queue: Dict[str, int] = {}
|
||||
self.history_lock = threading.Lock()
|
||||
self.old_DBSCAN_eps: Dict[str, float] = {}
|
||||
self.empty_pair_dict: pair_info = {
|
||||
"model_filename": "", "trained_timestamp": 0,
|
||||
"priority": 1, "first": True, "data_path": "", "extras": {}}
|
||||
|
||||
def load_drawer_from_disk(self):
|
||||
"""
|
||||
@@ -132,15 +145,17 @@ class FreqaiDataDrawer:
|
||||
"""
|
||||
Save data drawer full of all pair model metadata in present model folder.
|
||||
"""
|
||||
with open(self.pair_dictionary_path, "w") as fp:
|
||||
json.dump(self.pair_dict, fp, default=self.np_encoder)
|
||||
with open(self.pair_dictionary_path, 'w') as fp:
|
||||
rapidjson.dump(self.pair_dict, fp, default=self.np_encoder,
|
||||
number_mode=rapidjson.NM_NATIVE)
|
||||
|
||||
def save_follower_dict_to_disk(self):
|
||||
"""
|
||||
Save follower dictionary to disk (used by strategy for persistent prediction targets)
|
||||
"""
|
||||
with open(self.follower_dict_path, "w") as fp:
|
||||
json.dump(self.follower_dict, fp, default=self.np_encoder)
|
||||
rapidjson.dump(self.follower_dict, fp, default=self.np_encoder,
|
||||
number_mode=rapidjson.NM_NATIVE)
|
||||
|
||||
def create_follower_dict(self):
|
||||
"""
|
||||
@@ -174,18 +189,19 @@ class FreqaiDataDrawer:
|
||||
trained_timestamp: int = the last time the coin was trained
|
||||
return_null_array: bool = Follower could not find pair metadata
|
||||
"""
|
||||
|
||||
pair_dict = self.pair_dict.get(pair)
|
||||
data_path_set = self.pair_dict.get(pair, {}).get("data_path", None)
|
||||
data_path_set = self.pair_dict.get(pair, self.empty_pair_dict).get("data_path", "")
|
||||
return_null_array = False
|
||||
|
||||
if pair_dict:
|
||||
model_filename = pair_dict["model_filename"]
|
||||
trained_timestamp = pair_dict["trained_timestamp"]
|
||||
elif not self.follow_mode:
|
||||
pair_dict = self.pair_dict[pair] = {}
|
||||
model_filename = pair_dict["model_filename"] = ""
|
||||
trained_timestamp = pair_dict["trained_timestamp"] = 0
|
||||
pair_dict["priority"] = len(self.pair_dict)
|
||||
self.pair_dict[pair] = self.empty_pair_dict.copy()
|
||||
model_filename = ""
|
||||
trained_timestamp = 0
|
||||
self.pair_dict[pair]["priority"] = len(self.pair_dict)
|
||||
|
||||
if not data_path_set and self.follow_mode:
|
||||
logger.warning(
|
||||
@@ -204,11 +220,9 @@ class FreqaiDataDrawer:
|
||||
if pair_in_dict:
|
||||
return
|
||||
else:
|
||||
self.pair_dict[metadata["pair"]] = {}
|
||||
self.pair_dict[metadata["pair"]]["model_filename"] = ""
|
||||
self.pair_dict[metadata["pair"]]["first"] = True
|
||||
self.pair_dict[metadata["pair"]]["trained_timestamp"] = 0
|
||||
self.pair_dict[metadata["pair"]] = self.empty_pair_dict.copy()
|
||||
self.pair_dict[metadata["pair"]]["priority"] = len(self.pair_dict)
|
||||
|
||||
return
|
||||
|
||||
def pair_to_end_of_training_queue(self, pair: str) -> None:
|
||||
@@ -225,25 +239,59 @@ class FreqaiDataDrawer:
|
||||
historical candles, and also stores historical predictions despite retrainings (so stored
|
||||
predictions are true predictions, not just inferencing on trained data)
|
||||
"""
|
||||
|
||||
# dynamic df returned to strategy and plotted in frequi
|
||||
mrv_df = self.model_return_values[pair] = pd.DataFrame()
|
||||
|
||||
for label in dk.label_list:
|
||||
mrv_df[label] = pred_df[label]
|
||||
mrv_df[f"{label}_mean"] = dk.data["labels_mean"][label]
|
||||
mrv_df[f"{label}_std"] = dk.data["labels_std"][label]
|
||||
# if user reused `identifier` in config and has historical predictions collected, load them
|
||||
# so that frequi remains uninterrupted after a crash
|
||||
hist_df = self.historic_predictions
|
||||
if pair in hist_df:
|
||||
len_diff = len(hist_df[pair].index) - len(pred_df.index)
|
||||
if len_diff < 0:
|
||||
df_concat = pd.concat([pred_df.iloc[:abs(len_diff)], hist_df[pair]],
|
||||
ignore_index=True, keys=hist_df[pair].keys())
|
||||
else:
|
||||
df_concat = hist_df[pair].tail(len(pred_df.index)).reset_index(drop=True)
|
||||
df_concat = df_concat.fillna(0)
|
||||
self.model_return_values[pair] = df_concat
|
||||
logger.info(f'Setting initial FreqUI plots from historical data for {pair}.')
|
||||
|
||||
if self.freqai_info.get("feature_parameters", {}).get("DI_threshold", 0) > 0:
|
||||
mrv_df["DI_values"] = dk.DI_values
|
||||
else:
|
||||
for label in pred_df.columns:
|
||||
mrv_df[label] = pred_df[label]
|
||||
if mrv_df[label].dtype == object:
|
||||
continue
|
||||
mrv_df[f"{label}_mean"] = dk.data["labels_mean"][label]
|
||||
mrv_df[f"{label}_std"] = dk.data["labels_std"][label]
|
||||
|
||||
mrv_df["do_predict"] = do_preds
|
||||
if self.freqai_info["feature_parameters"].get("DI_threshold", 0) > 0:
|
||||
mrv_df["DI_values"] = dk.DI_values
|
||||
|
||||
def append_model_predictions(self, pair: str, predictions: DataFrame, do_preds: ArrayLike,
|
||||
mrv_df["do_predict"] = do_preds
|
||||
|
||||
if dk.data['extra_returns_per_train']:
|
||||
rets = dk.data['extra_returns_per_train']
|
||||
for return_str in rets:
|
||||
mrv_df[return_str] = rets[return_str]
|
||||
|
||||
# for keras type models, the conv_window needs to be prepended so
|
||||
# viewing is correct in frequi
|
||||
if self.freqai_info.get('keras', False):
|
||||
n_lost_points = self.freqai_info.get('conv_width', 2)
|
||||
zeros_df = DataFrame(np.zeros((n_lost_points, len(mrv_df.columns))),
|
||||
columns=mrv_df.columns)
|
||||
self.model_return_values[pair] = pd.concat(
|
||||
[zeros_df, mrv_df], axis=0, ignore_index=True)
|
||||
|
||||
def append_model_predictions(self, pair: str, predictions: DataFrame,
|
||||
do_preds: NDArray[np.int_],
|
||||
dk: FreqaiDataKitchen, len_df: int) -> None:
|
||||
|
||||
# strat seems to feed us variable sized dataframes - and since we are trying to build our
|
||||
# own return array in the same shape, we need to figure out how the size has changed
|
||||
# and adapt our stored/returned info accordingly.
|
||||
|
||||
length_difference = len(self.model_return_values[pair]) - len_df
|
||||
i = 0
|
||||
|
||||
@@ -262,19 +310,28 @@ class FreqaiDataDrawer:
|
||||
hp_df = pd.concat([hp_df, nan_df], ignore_index=True, axis=0)
|
||||
self.historic_predictions[pair] = hp_df[:-1]
|
||||
|
||||
for label in dk.label_list:
|
||||
# incase user adds additional "predictions" e.g. predict_proba output:
|
||||
for label in predictions.columns:
|
||||
df[label].iloc[-1] = predictions[label].iloc[-1]
|
||||
if df[label].dtype == object:
|
||||
continue
|
||||
df[f"{label}_mean"].iloc[-1] = dk.data["labels_mean"][label]
|
||||
df[f"{label}_std"].iloc[-1] = dk.data["labels_std"][label]
|
||||
# df['prediction'].iloc[-1] = predictions[-1]
|
||||
|
||||
df["do_predict"].iloc[-1] = do_preds[-1]
|
||||
|
||||
if self.freqai_info.get("feature_parameters", {}).get("DI_threshold", 0) > 0:
|
||||
if self.freqai_info["feature_parameters"].get("DI_threshold", 0) > 0:
|
||||
df["DI_values"].iloc[-1] = dk.DI_values[-1]
|
||||
|
||||
if dk.data['extra_returns_per_train']:
|
||||
rets = dk.data['extra_returns_per_train']
|
||||
for return_str in rets:
|
||||
df[return_str].iloc[-1] = rets[return_str]
|
||||
|
||||
# append the new predictions to persistent storage
|
||||
if pair in self.historic_predictions:
|
||||
self.historic_predictions[pair].iloc[-1] = df[label].iloc[-1]
|
||||
for key in df.keys():
|
||||
self.historic_predictions[pair][key].iloc[-1] = df[key].iloc[-1]
|
||||
|
||||
if length_difference < 0:
|
||||
prepend_df = pd.DataFrame(
|
||||
@@ -301,16 +358,25 @@ class FreqaiDataDrawer:
|
||||
|
||||
dk.find_features(dataframe)
|
||||
|
||||
for label in dk.label_list:
|
||||
if self.freqai_info.get('predict_proba', []):
|
||||
full_labels = dk.label_list + self.freqai_info['predict_proba']
|
||||
else:
|
||||
full_labels = dk.label_list
|
||||
|
||||
for label in full_labels:
|
||||
dataframe[label] = 0
|
||||
dataframe[f"{label}_mean"] = 0
|
||||
dataframe[f"{label}_std"] = 0
|
||||
|
||||
# dataframe['prediction'] = 0
|
||||
dataframe["do_predict"] = 0
|
||||
|
||||
if self.freqai_info.get("feature_parameters", {}).get("DI_threshold", 0) > 0:
|
||||
dataframe["DI_value"] = 0
|
||||
if self.freqai_info["feature_parameters"].get("DI_threshold", 0) > 0:
|
||||
dataframe["DI_values"] = 0
|
||||
|
||||
if dk.data['extra_returns_per_train']:
|
||||
rets = dk.data['extra_returns_per_train']
|
||||
for return_str in rets:
|
||||
dataframe[return_str] = 0
|
||||
|
||||
dk.return_dataframe = dataframe
|
||||
|
||||
@@ -379,24 +445,28 @@ class FreqaiDataDrawer:
|
||||
model.save(save_path / f"{dk.model_filename}_model.h5")
|
||||
|
||||
if dk.svm_model is not None:
|
||||
dump(dk.svm_model, save_path / str(dk.model_filename + "_svm_model.joblib"))
|
||||
dump(dk.svm_model, save_path / f"{dk.model_filename}_svm_model.joblib")
|
||||
|
||||
dk.data["data_path"] = str(dk.data_path)
|
||||
dk.data["model_filename"] = str(dk.model_filename)
|
||||
dk.data["training_features_list"] = list(dk.data_dictionary["train_features"].columns)
|
||||
dk.data["label_list"] = dk.label_list
|
||||
# store the metadata
|
||||
with open(save_path / str(dk.model_filename + "_metadata.json"), "w") as fp:
|
||||
json.dump(dk.data, fp, default=dk.np_encoder)
|
||||
with open(save_path / f"{dk.model_filename}_metadata.json", "w") as fp:
|
||||
rapidjson.dump(dk.data, fp, default=self.np_encoder, number_mode=rapidjson.NM_NATIVE)
|
||||
|
||||
# save the train data to file so we can check preds for area of applicability later
|
||||
dk.data_dictionary["train_features"].to_pickle(
|
||||
save_path / str(dk.model_filename + "_trained_df.pkl")
|
||||
save_path / f"{dk.model_filename}_trained_df.pkl"
|
||||
)
|
||||
|
||||
if self.freqai_info.get("feature_parameters", {}).get("principal_component_analysis"):
|
||||
dk.data_dictionary["train_dates"].to_pickle(
|
||||
save_path / f"{dk.model_filename}_trained_dates_df.pkl"
|
||||
)
|
||||
|
||||
if self.freqai_info["feature_parameters"].get("principal_component_analysis"):
|
||||
cloudpickle.dump(
|
||||
dk.pca, open(dk.data_path / str(dk.model_filename + "_pca_object.pkl"), "wb")
|
||||
dk.pca, open(dk.data_path / f"{dk.model_filename}_pca_object.pkl", "wb")
|
||||
)
|
||||
|
||||
# if self.live:
|
||||
@@ -429,27 +499,27 @@ class FreqaiDataDrawer:
|
||||
/ dk.data_path.parts[-1]
|
||||
)
|
||||
|
||||
with open(dk.data_path / str(dk.model_filename + "_metadata.json"), "r") as fp:
|
||||
with open(dk.data_path / f"{dk.model_filename}_metadata.json", "r") as fp:
|
||||
dk.data = json.load(fp)
|
||||
dk.training_features_list = dk.data["training_features_list"]
|
||||
dk.label_list = dk.data["label_list"]
|
||||
|
||||
dk.data_dictionary["train_features"] = pd.read_pickle(
|
||||
dk.data_path / str(dk.model_filename + "_trained_df.pkl")
|
||||
dk.data_path / f"{dk.model_filename}_trained_df.pkl"
|
||||
)
|
||||
|
||||
# try to access model in memory instead of loading object from disk to save time
|
||||
if dk.live and dk.model_filename in self.model_dictionary:
|
||||
model = self.model_dictionary[dk.model_filename]
|
||||
elif not dk.keras:
|
||||
model = load(dk.data_path / str(dk.model_filename + "_model.joblib"))
|
||||
model = load(dk.data_path / f"{dk.model_filename}_model.joblib")
|
||||
else:
|
||||
from tensorflow import keras
|
||||
|
||||
model = keras.models.load_model(dk.data_path / str(dk.model_filename + "_model.h5"))
|
||||
model = keras.models.load_model(dk.data_path / f"{dk.model_filename}_model.h5")
|
||||
|
||||
if Path(dk.data_path / str(dk.model_filename + "_svm_model.joblib")).resolve().exists():
|
||||
dk.svm_model = load(dk.data_path / str(dk.model_filename + "_svm_model.joblib"))
|
||||
if Path(dk.data_path / f"{dk.model_filename}_svm_model.joblib").is_file():
|
||||
dk.svm_model = load(dk.data_path / f"{dk.model_filename}_svm_model.joblib")
|
||||
|
||||
if not model:
|
||||
raise OperationalException(
|
||||
@@ -458,7 +528,7 @@ class FreqaiDataDrawer:
|
||||
|
||||
if self.config["freqai"]["feature_parameters"]["principal_component_analysis"]:
|
||||
dk.pca = cloudpickle.load(
|
||||
open(dk.data_path / str(dk.model_filename + "_pca_object.pkl"), "rb")
|
||||
open(dk.data_path / f"{dk.model_filename}_pca_object.pkl", "rb")
|
||||
)
|
||||
|
||||
return model
|
||||
@@ -471,7 +541,7 @@ class FreqaiDataDrawer:
|
||||
:params:
|
||||
dataframe: DataFrame = strategy provided dataframe
|
||||
"""
|
||||
feat_params = self.freqai_info.get("feature_parameters", {})
|
||||
feat_params = self.freqai_info["feature_parameters"]
|
||||
with self.history_lock:
|
||||
history_data = self.historic_data
|
||||
|
||||
@@ -524,7 +594,7 @@ class FreqaiDataDrawer:
|
||||
for pair in dk.all_pairs:
|
||||
if pair not in history_data:
|
||||
history_data[pair] = {}
|
||||
for tf in self.freqai_info.get("feature_parameters", {}).get("include_timeframes"):
|
||||
for tf in self.freqai_info["feature_parameters"].get("include_timeframes"):
|
||||
history_data[pair][tf] = load_pair_history(
|
||||
datadir=self.config["datadir"],
|
||||
timeframe=tf,
|
||||
@@ -550,11 +620,11 @@ class FreqaiDataDrawer:
|
||||
corr_dataframes: Dict[Any, Any] = {}
|
||||
base_dataframes: Dict[Any, Any] = {}
|
||||
historic_data = self.historic_data
|
||||
pairs = self.freqai_info.get("feature_parameters", {}).get(
|
||||
pairs = self.freqai_info["feature_parameters"].get(
|
||||
"include_corr_pairlist", []
|
||||
)
|
||||
|
||||
for tf in self.freqai_info.get("feature_parameters", {}).get("include_timeframes"):
|
||||
for tf in self.freqai_info["feature_parameters"].get("include_timeframes"):
|
||||
base_dataframes[tf] = dk.slice_dataframe(timerange, historic_data[pair][tf])
|
||||
if pairs:
|
||||
for p in pairs:
|
||||
|
@@ -10,13 +10,16 @@ import numpy.typing as npt
|
||||
import pandas as pd
|
||||
from pandas import DataFrame
|
||||
from sklearn import linear_model
|
||||
from sklearn.cluster import DBSCAN
|
||||
from sklearn.metrics.pairwise import pairwise_distances
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.neighbors import NearestNeighbors
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.data.dataprovider import DataProvider
|
||||
from freqtrade.data.history.history_utils import refresh_backtest_ohlcv_data
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.resolvers import ExchangeResolver
|
||||
from freqtrade.exchange import timeframe_to_seconds
|
||||
from freqtrade.strategy.interface import IStrategy
|
||||
|
||||
|
||||
@@ -39,7 +42,7 @@ class FreqaiDataKitchen:
|
||||
Robert Caulk @robcaulk
|
||||
|
||||
Theoretical brainstorming:
|
||||
Elin Törnquist @thorntwig
|
||||
Elin Törnquist @th0rntwig
|
||||
|
||||
Code review, software architecture brainstorming:
|
||||
@xmatthias
|
||||
@@ -55,10 +58,10 @@ class FreqaiDataKitchen:
|
||||
live: bool = False,
|
||||
pair: str = "",
|
||||
):
|
||||
self.data: Dict[Any, Any] = {}
|
||||
self.data_dictionary: Dict[Any, Any] = {}
|
||||
self.data: Dict[str, Any] = {}
|
||||
self.data_dictionary: Dict[str, DataFrame] = {}
|
||||
self.config = config
|
||||
self.freqai_config = config["freqai"]
|
||||
self.freqai_config: Dict[str, Any] = config["freqai"]
|
||||
self.full_df: DataFrame = DataFrame()
|
||||
self.append_df: DataFrame = DataFrame()
|
||||
self.data_path = Path()
|
||||
@@ -68,14 +71,14 @@ class FreqaiDataKitchen:
|
||||
self.live = live
|
||||
self.pair = pair
|
||||
self.svm_model: linear_model.SGDOneClassSVM = None
|
||||
self.keras = self.freqai_config.get("keras", False)
|
||||
self.keras: bool = self.freqai_config.get("keras", False)
|
||||
self.set_all_pairs()
|
||||
if not self.live:
|
||||
if not self.config["timerange"]:
|
||||
raise OperationalException(
|
||||
'Please pass --timerange if you intend to use FreqAI for backtesting.')
|
||||
self.full_timerange = self.create_fulltimerange(
|
||||
self.config["timerange"], self.freqai_config.get("train_period_days")
|
||||
self.config["timerange"], self.freqai_config.get("train_period_days", 0)
|
||||
)
|
||||
|
||||
(self.training_timeranges, self.backtesting_timeranges) = self.split_timerange(
|
||||
@@ -84,6 +87,10 @@ class FreqaiDataKitchen:
|
||||
config["freqai"]["backtest_period_days"],
|
||||
)
|
||||
|
||||
self.data['extra_returns_per_train'] = self.freqai_config.get('extra_returns_per_train', {})
|
||||
self.thread_count = self.freqai_config.get("data_kitchen_thread_count", -1)
|
||||
self.train_dates: DataFrame = pd.DataFrame()
|
||||
|
||||
def set_paths(
|
||||
self,
|
||||
pair: str,
|
||||
@@ -101,7 +108,7 @@ class FreqaiDataKitchen:
|
||||
|
||||
self.data_path = Path(
|
||||
self.full_path
|
||||
/ str("sub-train" + "-" + pair.split("/")[0] + "_" + str(trained_timestamp))
|
||||
/ f"sub-train-{pair.split('/')[0]}_{trained_timestamp}"
|
||||
)
|
||||
|
||||
return
|
||||
@@ -116,7 +123,7 @@ class FreqaiDataKitchen:
|
||||
:filtered_dataframe: cleaned dataframe ready to be split.
|
||||
:labels: cleaned labels ready to be split.
|
||||
"""
|
||||
feat_dict = self.freqai_config.get("feature_parameters", {})
|
||||
feat_dict = self.freqai_config["feature_parameters"]
|
||||
|
||||
weights: npt.ArrayLike
|
||||
if feat_dict.get("weight_factor", 0) > 0:
|
||||
@@ -188,20 +195,23 @@ class FreqaiDataKitchen:
|
||||
|
||||
drop_index = pd.isnull(filtered_dataframe).any(1) # get the rows that have NaNs,
|
||||
drop_index = drop_index.replace(True, 1).replace(False, 0) # pep8 requirement.
|
||||
if (
|
||||
training_filter
|
||||
): # we don't care about total row number (total no. datapoints) in training, we only care
|
||||
if (training_filter):
|
||||
# we don't care about total row number (total no. datapoints) in training, we only care
|
||||
# about removing any row with NaNs
|
||||
# if labels has multiple columns (user wants to train multiple models), we detect here
|
||||
# if labels has multiple columns (user wants to train multiple modelEs), we detect here
|
||||
labels = unfiltered_dataframe.filter(label_list, axis=1)
|
||||
drop_index_labels = pd.isnull(labels).any(1)
|
||||
drop_index_labels = drop_index_labels.replace(True, 1).replace(False, 0)
|
||||
dates = unfiltered_dataframe['date']
|
||||
filtered_dataframe = filtered_dataframe[
|
||||
(drop_index == 0) & (drop_index_labels == 0)
|
||||
] # dropping values
|
||||
labels = labels[
|
||||
(drop_index == 0) & (drop_index_labels == 0)
|
||||
] # assuming the labels depend entirely on the dataframe here.
|
||||
self.train_dates = dates[
|
||||
(drop_index == 0) & (drop_index_labels == 0)
|
||||
]
|
||||
logger.info(
|
||||
f"dropped {len(unfiltered_dataframe) - len(filtered_dataframe)} training points"
|
||||
f" due to NaNs in populated dataset {len(unfiltered_dataframe)}."
|
||||
@@ -252,6 +262,7 @@ class FreqaiDataKitchen:
|
||||
"test_labels": test_labels,
|
||||
"train_weights": train_weights,
|
||||
"test_weights": test_weights,
|
||||
"train_dates": self.train_dates
|
||||
}
|
||||
|
||||
return self.data_dictionary
|
||||
@@ -279,7 +290,7 @@ class FreqaiDataKitchen:
|
||||
self.data[item + "_min"] = train_min[item]
|
||||
|
||||
for item in data_dictionary["train_labels"].keys():
|
||||
if data_dictionary["train_labels"][item].dtype == str:
|
||||
if data_dictionary["train_labels"][item].dtype == object:
|
||||
continue
|
||||
train_labels_max = data_dictionary["train_labels"][item].max()
|
||||
train_labels_min = data_dictionary["train_labels"][item].min()
|
||||
@@ -305,8 +316,7 @@ class FreqaiDataKitchen:
|
||||
"""
|
||||
Normalize a set of data using the mean and standard deviation from
|
||||
the associated training data.
|
||||
:params:
|
||||
:df: Dataframe to be standardized
|
||||
:param df: Dataframe to be standardized
|
||||
"""
|
||||
|
||||
for item in df.keys():
|
||||
@@ -323,12 +333,11 @@ class FreqaiDataKitchen:
|
||||
"""
|
||||
Normalize a set of data using the mean and standard deviation from
|
||||
the associated training data.
|
||||
:params:
|
||||
:df: Dataframe of predictions to be denormalized
|
||||
:param df: Dataframe of predictions to be denormalized
|
||||
"""
|
||||
|
||||
for label in self.label_list:
|
||||
if df[label].dtype == str:
|
||||
for label in df.columns:
|
||||
if df[label].dtype == object:
|
||||
continue
|
||||
df[label] = (
|
||||
(df[label] + 1)
|
||||
@@ -339,7 +348,7 @@ class FreqaiDataKitchen:
|
||||
return df
|
||||
|
||||
def split_timerange(
|
||||
self, tr: str, train_split: int = 28, bt_split: int = 7
|
||||
self, tr: str, train_split: int = 28, bt_split: float = 7
|
||||
) -> Tuple[list, list]:
|
||||
"""
|
||||
Function which takes a single time range (tr) and splits it
|
||||
@@ -347,12 +356,12 @@ class FreqaiDataKitchen:
|
||||
tr: str, full timerange to train on
|
||||
train_split: the period length for the each training (days). Specified in user
|
||||
configuration file
|
||||
bt_split: the backtesting length (dats). Specified in user configuration file
|
||||
bt_split: the backtesting length (days). Specified in user configuration file
|
||||
"""
|
||||
|
||||
if not isinstance(train_split, int) or train_split < 1:
|
||||
raise OperationalException(
|
||||
"train_period_days must be an integer greater than 0. " f"Got {train_split}."
|
||||
f"train_period_days must be an integer greater than 0. Got {train_split}."
|
||||
)
|
||||
train_period_days = train_split * SECONDS_IN_DAY
|
||||
bt_period = bt_split * SECONDS_IN_DAY
|
||||
@@ -374,7 +383,7 @@ class FreqaiDataKitchen:
|
||||
|
||||
while True:
|
||||
if not first:
|
||||
timerange_train.startts = timerange_train.startts + bt_period
|
||||
timerange_train.startts = timerange_train.startts + int(bt_period)
|
||||
timerange_train.stopts = timerange_train.startts + train_period_days
|
||||
|
||||
first = False
|
||||
@@ -387,7 +396,7 @@ class FreqaiDataKitchen:
|
||||
|
||||
timerange_backtest.startts = timerange_train.stopts
|
||||
|
||||
timerange_backtest.stopts = timerange_backtest.startts + bt_period
|
||||
timerange_backtest.stopts = timerange_backtest.startts + int(bt_period)
|
||||
|
||||
if timerange_backtest.stopts > config_timerange.stopts:
|
||||
timerange_backtest.stopts = config_timerange.stopts
|
||||
@@ -408,10 +417,9 @@ class FreqaiDataKitchen:
|
||||
def slice_dataframe(self, timerange: TimeRange, df: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Given a full dataframe, extract the user desired window
|
||||
:params:
|
||||
:tr: timerange string that we wish to extract from df
|
||||
:df: Dataframe containing all candles to run the entire backtest. Here
|
||||
it is sliced down to just the present training period.
|
||||
:param tr: timerange string that we wish to extract from df
|
||||
:param df: Dataframe containing all candles to run the entire backtest. Here
|
||||
it is sliced down to just the present training period.
|
||||
"""
|
||||
|
||||
start = datetime.datetime.fromtimestamp(timerange.startts, tz=datetime.timezone.utc)
|
||||
@@ -489,11 +497,10 @@ class FreqaiDataKitchen:
|
||||
point. This metric defines the neighborhood of trained data and is used
|
||||
for prediction confidence in the Dissimilarity Index
|
||||
"""
|
||||
logger.info("computing average mean distance for all training points")
|
||||
tc = self.freqai_config.get("model_training_parameters", {}).get("thread_count", -1)
|
||||
pairwise = pairwise_distances(self.data_dictionary["train_features"], n_jobs=tc)
|
||||
# logger.info("computing average mean distance for all training points")
|
||||
pairwise = pairwise_distances(
|
||||
self.data_dictionary["train_features"], n_jobs=self.thread_count)
|
||||
avg_mean_dist = pairwise.mean(axis=1).mean()
|
||||
logger.info(f"avg_mean_dist {avg_mean_dist:.2f}")
|
||||
|
||||
return avg_mean_dist
|
||||
|
||||
@@ -515,21 +522,22 @@ class FreqaiDataKitchen:
|
||||
return
|
||||
|
||||
if predict:
|
||||
assert self.svm_model, "No svm model available for outlier removal"
|
||||
if not self.svm_model:
|
||||
logger.warning("No svm model available for outlier removal")
|
||||
return
|
||||
y_pred = self.svm_model.predict(self.data_dictionary["prediction_features"])
|
||||
do_predict = np.where(y_pred == -1, 0, y_pred)
|
||||
|
||||
if (len(do_predict) - do_predict.sum()) > 0:
|
||||
logger.info(
|
||||
f"svm_remove_outliers() tossed {len(do_predict) - do_predict.sum()} predictions"
|
||||
)
|
||||
logger.info(f"SVM tossed {len(do_predict) - do_predict.sum()} predictions.")
|
||||
self.do_predict += do_predict
|
||||
self.do_predict -= 1
|
||||
|
||||
else:
|
||||
# use SGDOneClassSVM to increase speed?
|
||||
nu = self.freqai_config.get("feature_parameters", {}).get("svm_nu", 0.2)
|
||||
self.svm_model = linear_model.SGDOneClassSVM(nu=nu).fit(
|
||||
svm_params = self.freqai_config["feature_parameters"].get(
|
||||
"svm_params", {"shuffle": False, "nu": 0.1})
|
||||
self.svm_model = linear_model.SGDOneClassSVM(**svm_params).fit(
|
||||
self.data_dictionary["train_features"]
|
||||
)
|
||||
y_pred = self.svm_model.predict(self.data_dictionary["train_features"])
|
||||
@@ -546,12 +554,14 @@ class FreqaiDataKitchen:
|
||||
]
|
||||
|
||||
logger.info(
|
||||
f"svm_remove_outliers() tossed {len(y_pred) - dropped_points.sum()}"
|
||||
f" train points from {len(y_pred)}"
|
||||
f"SVM tossed {len(y_pred) - dropped_points.sum()}"
|
||||
f" train points from {len(y_pred)} total points."
|
||||
)
|
||||
|
||||
# same for test data
|
||||
if self.freqai_config.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
|
||||
# TODO: This (and the part above) could be refactored into a separate function
|
||||
# to reduce code duplication
|
||||
if self.freqai_config['data_split_parameters'].get('test_size', 0.1) != 0:
|
||||
y_pred = self.svm_model.predict(self.data_dictionary["test_features"])
|
||||
dropped_points = np.where(y_pred == -1, 0, y_pred)
|
||||
self.data_dictionary["test_features"] = self.data_dictionary["test_features"][
|
||||
@@ -564,8 +574,77 @@ class FreqaiDataKitchen:
|
||||
]
|
||||
|
||||
logger.info(
|
||||
f"svm_remove_outliers() tossed {len(y_pred) - dropped_points.sum()}"
|
||||
f" test points from {len(y_pred)}"
|
||||
f"SVM tossed {len(y_pred) - dropped_points.sum()}"
|
||||
f" test points from {len(y_pred)} total points."
|
||||
)
|
||||
|
||||
return
|
||||
|
||||
def use_DBSCAN_to_remove_outliers(self, predict: bool, eps=None) -> None:
|
||||
"""
|
||||
Use DBSCAN to cluster training data and remove "noisy" data (read outliers).
|
||||
User controls this via the config param `DBSCAN_outlier_pct` which indicates the
|
||||
pct of training data that they want to be considered outliers.
|
||||
:params:
|
||||
predict: bool = If False (training), iterate to find the best hyper parameters to match
|
||||
user requested outlier percent target. If True (prediction), use the parameters
|
||||
determined from the previous training to estimate if the current prediction point
|
||||
is an outlier.
|
||||
"""
|
||||
|
||||
if predict:
|
||||
train_ft_df = self.data_dictionary['train_features']
|
||||
pred_ft_df = self.data_dictionary['prediction_features']
|
||||
num_preds = len(pred_ft_df)
|
||||
df = pd.concat([train_ft_df, pred_ft_df], axis=0, ignore_index=True)
|
||||
clustering = DBSCAN(eps=self.data['DBSCAN_eps'],
|
||||
min_samples=self.data['DBSCAN_min_samples'],
|
||||
n_jobs=self.thread_count
|
||||
).fit(df)
|
||||
do_predict = np.where(clustering.labels_[-num_preds:] == -1, 0, 1)
|
||||
|
||||
if (len(do_predict) - do_predict.sum()) > 0:
|
||||
logger.info(f"DBSCAN tossed {len(do_predict) - do_predict.sum()} predictions")
|
||||
self.do_predict += do_predict
|
||||
self.do_predict -= 1
|
||||
|
||||
else:
|
||||
|
||||
MinPts = len(self.data_dictionary['train_features'].columns) * 2
|
||||
# measure pairwise distances to train_features.shape[1]*2 nearest neighbours
|
||||
neighbors = NearestNeighbors(
|
||||
n_neighbors=MinPts, n_jobs=self.thread_count)
|
||||
neighbors_fit = neighbors.fit(self.data_dictionary['train_features'])
|
||||
distances, _ = neighbors_fit.kneighbors(self.data_dictionary['train_features'])
|
||||
distances = np.sort(distances, axis=0)
|
||||
index_ten_pct = int(len(distances[:, 1]) * 0.1)
|
||||
distances = distances[index_ten_pct:, 1]
|
||||
epsilon = distances[-1]
|
||||
|
||||
clustering = DBSCAN(eps=epsilon, min_samples=MinPts,
|
||||
n_jobs=int(self.thread_count)).fit(
|
||||
self.data_dictionary['train_features']
|
||||
)
|
||||
|
||||
logger.info(f'DBSCAN found eps of {epsilon}.')
|
||||
|
||||
self.data['DBSCAN_eps'] = epsilon
|
||||
self.data['DBSCAN_min_samples'] = MinPts
|
||||
dropped_points = np.where(clustering.labels_ == -1, 1, 0)
|
||||
|
||||
self.data_dictionary['train_features'] = self.data_dictionary['train_features'][
|
||||
(clustering.labels_ != -1)
|
||||
]
|
||||
self.data_dictionary["train_labels"] = self.data_dictionary["train_labels"][
|
||||
(clustering.labels_ != -1)
|
||||
]
|
||||
self.data_dictionary["train_weights"] = self.data_dictionary["train_weights"][
|
||||
(clustering.labels_ != -1)
|
||||
]
|
||||
|
||||
logger.info(
|
||||
f"DBSCAN tossed {dropped_points.sum()}"
|
||||
f" train points from {len(clustering.labels_)}"
|
||||
)
|
||||
|
||||
return
|
||||
@@ -573,9 +652,8 @@ class FreqaiDataKitchen:
|
||||
def find_features(self, dataframe: DataFrame) -> None:
|
||||
"""
|
||||
Find features in the strategy provided dataframe
|
||||
:params:
|
||||
dataframe: DataFrame = strategy provided dataframe
|
||||
:returns:
|
||||
:param dataframe: DataFrame = strategy provided dataframe
|
||||
:return:
|
||||
features: list = the features to be used for training/prediction
|
||||
"""
|
||||
column_names = dataframe.columns
|
||||
@@ -586,7 +664,6 @@ class FreqaiDataKitchen:
|
||||
|
||||
self.training_features_list = features
|
||||
self.label_list = labels
|
||||
# return features, labels
|
||||
|
||||
def check_if_pred_in_training_spaces(self) -> None:
|
||||
"""
|
||||
@@ -599,13 +676,13 @@ class FreqaiDataKitchen:
|
||||
distance = pairwise_distances(
|
||||
self.data_dictionary["train_features"],
|
||||
self.data_dictionary["prediction_features"],
|
||||
n_jobs=-1,
|
||||
n_jobs=self.thread_count,
|
||||
)
|
||||
|
||||
self.DI_values = distance.min(axis=0) / self.data["avg_mean_dist"]
|
||||
|
||||
do_predict = np.where(
|
||||
self.DI_values < self.freqai_config.get("feature_parameters", {}).get("DI_threshold"),
|
||||
self.DI_values < self.freqai_config["feature_parameters"]["DI_threshold"],
|
||||
1,
|
||||
0,
|
||||
)
|
||||
@@ -628,25 +705,27 @@ class FreqaiDataKitchen:
|
||||
weights = np.exp(-np.arange(num_weights) / (wfactor * num_weights))[::-1]
|
||||
return weights
|
||||
|
||||
def append_predictions(self, predictions, do_predict, len_dataframe):
|
||||
def append_predictions(self, predictions: DataFrame, do_predict: npt.ArrayLike) -> None:
|
||||
"""
|
||||
Append backtest prediction from current backtest period to all previous periods
|
||||
"""
|
||||
|
||||
self.append_df = DataFrame()
|
||||
for label in self.label_list:
|
||||
self.append_df[label] = predictions[label]
|
||||
self.append_df[f"{label}_mean"] = self.data["labels_mean"][label]
|
||||
self.append_df[f"{label}_std"] = self.data["labels_std"][label]
|
||||
append_df = DataFrame()
|
||||
for label in predictions.columns:
|
||||
append_df[label] = predictions[label]
|
||||
if append_df[label].dtype == object:
|
||||
continue
|
||||
append_df[f"{label}_mean"] = self.data["labels_mean"][label]
|
||||
append_df[f"{label}_std"] = self.data["labels_std"][label]
|
||||
|
||||
self.append_df["do_predict"] = do_predict
|
||||
if self.freqai_config.get("feature_parameters", {}).get("DI_threshold", 0) > 0:
|
||||
self.append_df["DI_values"] = self.DI_values
|
||||
append_df["do_predict"] = do_predict
|
||||
if self.freqai_config["feature_parameters"].get("DI_threshold", 0) > 0:
|
||||
append_df["DI_values"] = self.DI_values
|
||||
|
||||
if self.full_df.empty:
|
||||
self.full_df = self.append_df
|
||||
self.full_df = append_df
|
||||
else:
|
||||
self.full_df = pd.concat([self.full_df, self.append_df], axis=0)
|
||||
self.full_df = pd.concat([self.full_df, append_df], axis=0)
|
||||
|
||||
return
|
||||
|
||||
@@ -666,7 +745,6 @@ class FreqaiDataKitchen:
|
||||
to_keep = [col for col in dataframe.columns if not col.startswith("&")]
|
||||
self.return_dataframe = pd.concat([dataframe[to_keep], self.full_df], axis=1)
|
||||
|
||||
self.append_df = DataFrame()
|
||||
self.full_df = DataFrame()
|
||||
|
||||
return
|
||||
@@ -683,7 +761,7 @@ class FreqaiDataKitchen:
|
||||
|
||||
if backtest_timerange.stopts == 0:
|
||||
# typically open ended time ranges do work, however, there are some edge cases where
|
||||
# it does not. accomodating these kinds of edge cases just to allow open-ended
|
||||
# it does not. accommodating these kinds of edge cases just to allow open-ended
|
||||
# timerange is not high enough priority to warrant the effort. It is safer for now
|
||||
# to simply ask user to add their end date
|
||||
raise OperationalException("FreqAI backtesting does not allow open ended timeranges. "
|
||||
@@ -701,7 +779,7 @@ class FreqaiDataKitchen:
|
||||
full_timerange = start.strftime("%Y%m%d") + "-" + stop.strftime("%Y%m%d")
|
||||
|
||||
self.full_path = Path(
|
||||
self.config["user_data_dir"] / "models" / str(self.freqai_config.get("identifier"))
|
||||
self.config["user_data_dir"] / "models" / f"{self.freqai_config['identifier']}"
|
||||
)
|
||||
|
||||
config_path = Path(self.config["config_files"][0])
|
||||
@@ -719,10 +797,9 @@ class FreqaiDataKitchen:
|
||||
"""
|
||||
A model age checker to determine if the model is trustworthy based on user defined
|
||||
`expiration_hours` in the configuration file.
|
||||
:params:
|
||||
trained_timestamp: int = The time of training for the most recent model.
|
||||
:returns:
|
||||
bool = If the model is expired or not.
|
||||
:param trained_timestamp: int = The time of training for the most recent model.
|
||||
:return:
|
||||
bool = If the model is expired or not.
|
||||
"""
|
||||
time = datetime.datetime.now(tz=datetime.timezone.utc).timestamp()
|
||||
elapsed_time = (time - trained_timestamp) / 3600 # hours
|
||||
@@ -740,30 +817,21 @@ class FreqaiDataKitchen:
|
||||
trained_timerange = TimeRange()
|
||||
data_load_timerange = TimeRange()
|
||||
|
||||
# find the max indicator length required
|
||||
max_timeframe_chars = self.freqai_config.get("feature_parameters", {}).get(
|
||||
"include_timeframes"
|
||||
)[-1]
|
||||
max_period = self.freqai_config.get("feature_parameters", {}).get(
|
||||
"indicator_max_period_candles", 50
|
||||
)
|
||||
additional_seconds = 0
|
||||
if max_timeframe_chars[-1] == "d":
|
||||
additional_seconds = max_period * SECONDS_IN_DAY * int(max_timeframe_chars[-2])
|
||||
elif max_timeframe_chars[-1] == "h":
|
||||
additional_seconds = max_period * 3600 * int(max_timeframe_chars[-2])
|
||||
elif max_timeframe_chars[-1] == "m":
|
||||
if len(max_timeframe_chars) == 2:
|
||||
additional_seconds = max_period * 60 * int(max_timeframe_chars[-2])
|
||||
elif len(max_timeframe_chars) == 3:
|
||||
additional_seconds = max_period * 60 * int(float(max_timeframe_chars[0:2]))
|
||||
else:
|
||||
logger.warning(
|
||||
"FreqAI could not detect max timeframe and therefore may not "
|
||||
"download the proper amount of data for training"
|
||||
)
|
||||
timeframes = self.freqai_config["feature_parameters"].get("include_timeframes")
|
||||
|
||||
# logger.info(f'Extending data download by {additional_seconds/SECONDS_IN_DAY:.2f} days')
|
||||
max_tf_seconds = 0
|
||||
for tf in timeframes:
|
||||
secs = timeframe_to_seconds(tf)
|
||||
if secs > max_tf_seconds:
|
||||
max_tf_seconds = secs
|
||||
|
||||
# We notice that users like to use exotic indicators where
|
||||
# they do not know the required timeperiod. Here we include a factor
|
||||
# of safety by multiplying the user considered "max" by 2.
|
||||
max_period = self.freqai_config["feature_parameters"].get(
|
||||
"indicator_max_period_candles", 20
|
||||
) * 2
|
||||
additional_seconds = max_period * max_tf_seconds
|
||||
|
||||
if trained_timestamp != 0:
|
||||
elapsed_time = (time - trained_timestamp) / SECONDS_IN_HOUR
|
||||
@@ -784,7 +852,7 @@ class FreqaiDataKitchen:
|
||||
data_load_timerange.stopts = int(time)
|
||||
else: # user passed no live_trained_timerange in config
|
||||
trained_timerange.startts = int(
|
||||
time - self.freqai_config.get("train_period_days") * SECONDS_IN_DAY
|
||||
time - self.freqai_config.get("train_period_days", 0) * SECONDS_IN_DAY
|
||||
)
|
||||
trained_timerange.stopts = int(time)
|
||||
|
||||
@@ -815,24 +883,22 @@ class FreqaiDataKitchen:
|
||||
|
||||
self.model_filename = f"cb_{coin.lower()}_{int(trained_timerange.stopts)}"
|
||||
|
||||
def download_all_data_for_training(self, timerange: TimeRange) -> None:
|
||||
def download_all_data_for_training(self, timerange: TimeRange, dp: DataProvider) -> None:
|
||||
"""
|
||||
Called only once upon start of bot to download the necessary data for
|
||||
populating indicators and training the model.
|
||||
:params:
|
||||
timerange: TimeRange = The full data timerange for populating the indicators
|
||||
and training the model.
|
||||
:param timerange: TimeRange = The full data timerange for populating the indicators
|
||||
and training the model.
|
||||
:param dp: DataProvider instance attached to the strategy
|
||||
"""
|
||||
exchange = ExchangeResolver.load_exchange(
|
||||
self.config["exchange"]["name"], self.config, validate=False, load_leverage_tiers=False
|
||||
)
|
||||
|
||||
new_pairs_days = int((timerange.stopts - timerange.startts) / SECONDS_IN_DAY)
|
||||
|
||||
if not dp._exchange:
|
||||
# Not realistic - this is only called in live mode.
|
||||
raise OperationalException("Dataprovider did not have an exchange attached.")
|
||||
refresh_backtest_ohlcv_data(
|
||||
exchange,
|
||||
dp._exchange,
|
||||
pairs=self.all_pairs,
|
||||
timeframes=self.freqai_config.get("feature_parameters", {}).get("include_timeframes"),
|
||||
timeframes=self.freqai_config["feature_parameters"].get("include_timeframes"),
|
||||
datadir=self.config["datadir"],
|
||||
timerange=timerange,
|
||||
new_pairs_days=new_pairs_days,
|
||||
@@ -845,7 +911,7 @@ class FreqaiDataKitchen:
|
||||
def set_all_pairs(self) -> None:
|
||||
|
||||
self.all_pairs = copy.deepcopy(
|
||||
self.freqai_config.get("feature_parameters", {}).get("include_corr_pairlist", [])
|
||||
self.freqai_config["feature_parameters"].get("include_corr_pairlist", [])
|
||||
)
|
||||
for pair in self.config.get("exchange", "").get("pair_whitelist"):
|
||||
if pair not in self.all_pairs:
|
||||
@@ -876,8 +942,8 @@ class FreqaiDataKitchen:
|
||||
# for prediction dataframe creation, we let dataprovider handle everything in the strategy
|
||||
# so we create empty dictionaries, which allows us to pass None to
|
||||
# `populate_any_indicators()`. Signaling we want the dp to give us the live dataframe.
|
||||
tfs = self.freqai_config.get("feature_parameters", {}).get("include_timeframes")
|
||||
pairs = self.freqai_config.get("feature_parameters", {}).get("include_corr_pairlist", [])
|
||||
tfs = self.freqai_config["feature_parameters"].get("include_timeframes")
|
||||
pairs = self.freqai_config["feature_parameters"].get("include_corr_pairlist", [])
|
||||
if not prediction_dataframe.empty:
|
||||
dataframe = prediction_dataframe.copy()
|
||||
for tf in tfs:
|
||||
@@ -889,29 +955,26 @@ class FreqaiDataKitchen:
|
||||
else:
|
||||
dataframe = base_dataframes[self.config["timeframe"]].copy()
|
||||
|
||||
sgi = True
|
||||
sgi = False
|
||||
for tf in tfs:
|
||||
if tf == tfs[-1]:
|
||||
sgi = True # doing this last allows user to use all tf raw prices in labels
|
||||
dataframe = strategy.populate_any_indicators(
|
||||
pair,
|
||||
pair,
|
||||
dataframe.copy(),
|
||||
tf,
|
||||
informative=base_dataframes[tf],
|
||||
coin=pair.split("/")[0] + "-",
|
||||
set_generalized_indicators=sgi,
|
||||
set_generalized_indicators=sgi
|
||||
)
|
||||
sgi = False
|
||||
if pairs:
|
||||
for i in pairs:
|
||||
if pair in i:
|
||||
continue # dont repeat anything from whitelist
|
||||
dataframe = strategy.populate_any_indicators(
|
||||
pair,
|
||||
i,
|
||||
dataframe.copy(),
|
||||
tf,
|
||||
informative=corr_dataframes[i][tf],
|
||||
coin=i.split("/")[0] + "-",
|
||||
informative=corr_dataframes[i][tf]
|
||||
)
|
||||
|
||||
return dataframe
|
||||
@@ -923,17 +986,12 @@ class FreqaiDataKitchen:
|
||||
import scipy as spy
|
||||
|
||||
self.data["labels_mean"], self.data["labels_std"] = {}, {}
|
||||
for label in self.label_list:
|
||||
for label in self.data_dictionary["train_labels"].columns:
|
||||
if self.data_dictionary["train_labels"][label].dtype == object:
|
||||
continue
|
||||
f = spy.stats.norm.fit(self.data_dictionary["train_labels"][label])
|
||||
self.data["labels_mean"][label], self.data["labels_std"][label] = f[0], f[1]
|
||||
|
||||
# KEEPME incase we want to let user start to grab quantiles.
|
||||
# upper_q = spy.stats.norm.ppf(self.freqai_config['feature_parameters'][
|
||||
# 'target_quantile'], *f)
|
||||
# lower_q = spy.stats.norm.ppf(1 - self.freqai_config['feature_parameters'][
|
||||
# 'target_quantile'], *f)
|
||||
# self.data["upper_quantile"] = upper_q
|
||||
# self.data["lower_quantile"] = lower_q
|
||||
return
|
||||
|
||||
def remove_features_from_df(self, dataframe: DataFrame) -> DataFrame:
|
||||
@@ -945,168 +1003,3 @@ class FreqaiDataKitchen:
|
||||
col for col in dataframe.columns if not col.startswith("%") or col.startswith("%%")
|
||||
]
|
||||
return dataframe[to_keep]
|
||||
|
||||
def np_encoder(self, object):
|
||||
if isinstance(object, np.generic):
|
||||
return object.item()
|
||||
|
||||
# Functions containing useful data manpulation examples. but not actively in use.
|
||||
|
||||
# Possibly phasing these outlier removal methods below out in favor of
|
||||
# use_SVM_to_remove_outliers (computationally more efficient and apparently higher performance).
|
||||
# But these have good data manipulation examples, so keep them commented here for now.
|
||||
|
||||
# def determine_statistical_distributions(self) -> None:
|
||||
# from fitter import Fitter
|
||||
|
||||
# logger.info('Determining best model for all features, may take some time')
|
||||
|
||||
# def compute_quantiles(ft):
|
||||
# f = Fitter(self.data_dictionary["train_features"][ft],
|
||||
# distributions=['gamma', 'cauchy', 'laplace',
|
||||
# 'beta', 'uniform', 'lognorm'])
|
||||
# f.fit()
|
||||
# # f.summary()
|
||||
# dist = list(f.get_best().items())[0][0]
|
||||
# params = f.get_best()[dist]
|
||||
# upper_q = getattr(spy.stats, list(f.get_best().items())[0][0]).ppf(0.999, **params)
|
||||
# lower_q = getattr(spy.stats, list(f.get_best().items())[0][0]).ppf(0.001, **params)
|
||||
|
||||
# return ft, upper_q, lower_q, dist
|
||||
|
||||
# quantiles_tuple = Parallel(n_jobs=-1)(
|
||||
# delayed(compute_quantiles)(ft) for ft in self.data_dictionary[
|
||||
# 'train_features'].columns)
|
||||
|
||||
# df = pd.DataFrame(quantiles_tuple, columns=['features', 'upper_quantiles',
|
||||
# 'lower_quantiles', 'dist'])
|
||||
# self.data_dictionary['upper_quantiles'] = df['upper_quantiles']
|
||||
# self.data_dictionary['lower_quantiles'] = df['lower_quantiles']
|
||||
|
||||
# return
|
||||
|
||||
# def remove_outliers(self, predict: bool) -> None:
|
||||
# """
|
||||
# Remove data that looks like an outlier based on the distribution of each
|
||||
# variable.
|
||||
# :params:
|
||||
# :predict: boolean which tells the function if this is prediction data or
|
||||
# training data coming in.
|
||||
# """
|
||||
|
||||
# lower_quantile = self.data_dictionary["lower_quantiles"].to_numpy()
|
||||
# upper_quantile = self.data_dictionary["upper_quantiles"].to_numpy()
|
||||
|
||||
# if predict:
|
||||
|
||||
# df = self.data_dictionary["prediction_features"][
|
||||
# (self.data_dictionary["prediction_features"] < upper_quantile)
|
||||
# & (self.data_dictionary["prediction_features"] > lower_quantile)
|
||||
# ]
|
||||
# drop_index = pd.isnull(df).any(1)
|
||||
# self.data_dictionary["prediction_features"].fillna(0, inplace=True)
|
||||
# drop_index = ~drop_index
|
||||
# do_predict = np.array(drop_index.replace(True, 1).replace(False, 0))
|
||||
|
||||
# logger.info(
|
||||
# "remove_outliers() tossed %s predictions",
|
||||
# len(do_predict) - do_predict.sum(),
|
||||
# )
|
||||
# self.do_predict += do_predict
|
||||
# self.do_predict -= 1
|
||||
|
||||
# else:
|
||||
|
||||
# filter_train_df = self.data_dictionary["train_features"][
|
||||
# (self.data_dictionary["train_features"] < upper_quantile)
|
||||
# & (self.data_dictionary["train_features"] > lower_quantile)
|
||||
# ]
|
||||
# drop_index = pd.isnull(filter_train_df).any(1)
|
||||
# drop_index = drop_index.replace(True, 1).replace(False, 0)
|
||||
# self.data_dictionary["train_features"] = self.data_dictionary["train_features"][
|
||||
# (drop_index == 0)
|
||||
# ]
|
||||
# self.data_dictionary["train_labels"] = self.data_dictionary["train_labels"][
|
||||
# (drop_index == 0)
|
||||
# ]
|
||||
# self.data_dictionary["train_weights"] = self.data_dictionary["train_weights"][
|
||||
# (drop_index == 0)
|
||||
# ]
|
||||
|
||||
# logger.info(
|
||||
# f'remove_outliers() tossed {drop_index.sum()}'
|
||||
# f' training points from {len(filter_train_df)}'
|
||||
# )
|
||||
|
||||
# # do the same for the test data
|
||||
# filter_test_df = self.data_dictionary["test_features"][
|
||||
# (self.data_dictionary["test_features"] < upper_quantile)
|
||||
# & (self.data_dictionary["test_features"] > lower_quantile)
|
||||
# ]
|
||||
# drop_index = pd.isnull(filter_test_df).any(1)
|
||||
# drop_index = drop_index.replace(True, 1).replace(False, 0)
|
||||
# self.data_dictionary["test_labels"] = self.data_dictionary["test_labels"][
|
||||
# (drop_index == 0)
|
||||
# ]
|
||||
# self.data_dictionary["test_features"] = self.data_dictionary["test_features"][
|
||||
# (drop_index == 0)
|
||||
# ]
|
||||
# self.data_dictionary["test_weights"] = self.data_dictionary["test_weights"][
|
||||
# (drop_index == 0)
|
||||
# ]
|
||||
|
||||
# logger.info(
|
||||
# f'remove_outliers() tossed {drop_index.sum()}'
|
||||
# f' test points from {len(filter_test_df)}'
|
||||
# )
|
||||
|
||||
# return
|
||||
|
||||
# def standardize_data(self, data_dictionary: Dict) -> Dict[Any, Any]:
|
||||
# """
|
||||
# standardize all data in the data_dictionary according to the training dataset
|
||||
# :params:
|
||||
# :data_dictionary: dictionary containing the cleaned and split training/test data/labels
|
||||
# :returns:
|
||||
# :data_dictionary: updated dictionary with standardized values.
|
||||
# """
|
||||
# # standardize the data by training stats
|
||||
# train_mean = data_dictionary["train_features"].mean()
|
||||
# train_std = data_dictionary["train_features"].std()
|
||||
# data_dictionary["train_features"] = (
|
||||
# data_dictionary["train_features"] - train_mean
|
||||
# ) / train_std
|
||||
# data_dictionary["test_features"] = (
|
||||
# data_dictionary["test_features"] - train_mean
|
||||
# ) / train_std
|
||||
|
||||
# train_labels_std = data_dictionary["train_labels"].std()
|
||||
# train_labels_mean = data_dictionary["train_labels"].mean()
|
||||
# data_dictionary["train_labels"] = (
|
||||
# data_dictionary["train_labels"] - train_labels_mean
|
||||
# ) / train_labels_std
|
||||
# data_dictionary["test_labels"] = (
|
||||
# data_dictionary["test_labels"] - train_labels_mean
|
||||
# ) / train_labels_std
|
||||
|
||||
# for item in train_std.keys():
|
||||
# self.data[item + "_std"] = train_std[item]
|
||||
# self.data[item + "_mean"] = train_mean[item]
|
||||
|
||||
# self.data["labels_std"] = train_labels_std
|
||||
# self.data["labels_mean"] = train_labels_mean
|
||||
|
||||
# return data_dictionary
|
||||
|
||||
# def standardize_data_from_metadata(self, df: DataFrame) -> DataFrame:
|
||||
# """
|
||||
# Normalizes a set of data using the mean and standard deviation from
|
||||
# the associated training data.
|
||||
# :params:
|
||||
# :df: Dataframe to be standardized
|
||||
# """
|
||||
|
||||
# for item in df.keys():
|
||||
# df[item] = (df[item] - self.data[item + "_mean"]) / self.data[item + "_std"]
|
||||
|
||||
# return df
|
||||
|
@@ -1,7 +1,5 @@
|
||||
# import contextlib
|
||||
import copy
|
||||
import datetime
|
||||
import gc
|
||||
import logging
|
||||
import shutil
|
||||
import threading
|
||||
@@ -12,7 +10,7 @@ from typing import Any, Dict, Tuple
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from numpy.typing import ArrayLike
|
||||
from numpy.typing import NDArray
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
@@ -47,7 +45,7 @@ class IFreqaiModel(ABC):
|
||||
Robert Caulk @robcaulk
|
||||
|
||||
Theoretical brainstorming:
|
||||
Elin Törnquist @thorntwig
|
||||
Elin Törnquist @th0rntwig
|
||||
|
||||
Code review, software architecture brainstorming:
|
||||
@xmatthias
|
||||
@@ -82,6 +80,8 @@ class IFreqaiModel(ABC):
|
||||
self.CONV_WIDTH = self.freqai_info.get("conv_width", 2)
|
||||
self.pair_it = 0
|
||||
self.total_pairs = len(self.config.get("exchange", {}).get("pair_whitelist"))
|
||||
self.last_trade_database_summary: DataFrame = {}
|
||||
self.current_trade_database_summary: DataFrame = {}
|
||||
|
||||
def assert_config(self, config: Dict[str, Any]) -> None:
|
||||
|
||||
@@ -123,7 +123,7 @@ class IFreqaiModel(ABC):
|
||||
|
||||
dataframe = dk.remove_features_from_df(dk.return_dataframe)
|
||||
del dk
|
||||
return self.return_values(dataframe)
|
||||
return dataframe
|
||||
|
||||
@threaded
|
||||
def start_scanning(self, strategy: IStrategy) -> None:
|
||||
@@ -183,8 +183,6 @@ class IFreqaiModel(ABC):
|
||||
(_, _, _) = self.dd.get_pair_dict_info(metadata["pair"])
|
||||
train_it += 1
|
||||
total_trains = len(dk.backtesting_timeranges)
|
||||
gc.collect()
|
||||
dk.data = {} # clean the pair specific data between training window sliding
|
||||
self.training_timerange = tr_train
|
||||
dataframe_train = dk.slice_dataframe(tr_train, dataframe)
|
||||
dataframe_backtest = dk.slice_dataframe(tr_backtest, dataframe)
|
||||
@@ -204,14 +202,9 @@ class IFreqaiModel(ABC):
|
||||
|
||||
dk.data_path = Path(
|
||||
dk.full_path
|
||||
/ str(
|
||||
"sub-train"
|
||||
+ "-"
|
||||
+ metadata["pair"].split("/")[0]
|
||||
+ "_"
|
||||
+ str(int(trained_timestamp.stopts))
|
||||
/
|
||||
f"sub-train-{metadata['pair'].split('/')[0]}_{int(trained_timestamp.stopts)}"
|
||||
)
|
||||
)
|
||||
if not self.model_exists(
|
||||
metadata["pair"], dk, trained_timestamp=int(trained_timestamp.stopts)
|
||||
):
|
||||
@@ -228,7 +221,7 @@ class IFreqaiModel(ABC):
|
||||
|
||||
pred_df, do_preds = self.predict(dataframe_backtest, dk)
|
||||
|
||||
dk.append_predictions(pred_df, do_preds, len(dataframe_backtest))
|
||||
dk.append_predictions(pred_df, do_preds)
|
||||
|
||||
dk.fill_predictions(dataframe)
|
||||
|
||||
@@ -280,7 +273,7 @@ class IFreqaiModel(ABC):
|
||||
"corr_pairlist, this may take a while if you do not have the "
|
||||
"data saved"
|
||||
)
|
||||
dk.download_all_data_for_training(data_load_timerange)
|
||||
dk.download_all_data_for_training(data_load_timerange, strategy.dp)
|
||||
self.dd.load_all_pair_histories(data_load_timerange, dk)
|
||||
|
||||
if not self.scanning:
|
||||
@@ -331,7 +324,8 @@ class IFreqaiModel(ABC):
|
||||
return
|
||||
elif self.dk.check_if_model_expired(trained_timestamp):
|
||||
pred_df = DataFrame(np.zeros((2, len(dk.label_list))), columns=dk.label_list)
|
||||
do_preds, dk.DI_values = np.ones(2) * 2, np.zeros(2)
|
||||
do_preds = np.ones(2, dtype=np.int_) * 2
|
||||
dk.DI_values = np.zeros(2)
|
||||
logger.warning(
|
||||
f"Model expired for {pair}, returning null values to strategy. Strategy "
|
||||
"construction should take care to consider this event with "
|
||||
@@ -379,17 +373,25 @@ class IFreqaiModel(ABC):
|
||||
example of how outlier data points are dropped from the dataframe used for training.
|
||||
"""
|
||||
|
||||
if self.freqai_info.get("feature_parameters", {}).get(
|
||||
if self.freqai_info["feature_parameters"].get(
|
||||
"principal_component_analysis", False
|
||||
):
|
||||
dk.principal_component_analysis()
|
||||
|
||||
if self.freqai_info.get("feature_parameters", {}).get("use_SVM_to_remove_outliers", False):
|
||||
if self.freqai_info["feature_parameters"].get("use_SVM_to_remove_outliers", False):
|
||||
dk.use_SVM_to_remove_outliers(predict=False)
|
||||
|
||||
if self.freqai_info.get("feature_parameters", {}).get("DI_threshold", 0):
|
||||
if self.freqai_info["feature_parameters"].get("DI_threshold", 0):
|
||||
dk.data["avg_mean_dist"] = dk.compute_distances()
|
||||
|
||||
if self.freqai_info["feature_parameters"].get("use_DBSCAN_to_remove_outliers", False):
|
||||
if dk.pair in self.dd.old_DBSCAN_eps:
|
||||
eps = self.dd.old_DBSCAN_eps[dk.pair]
|
||||
else:
|
||||
eps = None
|
||||
dk.use_DBSCAN_to_remove_outliers(predict=False, eps=eps)
|
||||
self.dd.old_DBSCAN_eps[dk.pair] = dk.data['DBSCAN_eps']
|
||||
|
||||
def data_cleaning_predict(self, dk: FreqaiDataKitchen, dataframe: DataFrame) -> None:
|
||||
"""
|
||||
Base data cleaning method for predict.
|
||||
@@ -401,17 +403,20 @@ class IFreqaiModel(ABC):
|
||||
of how the do_predict vector is modified. do_predict is ultimately passed back to strategy
|
||||
for buy signals.
|
||||
"""
|
||||
if self.freqai_info.get("feature_parameters", {}).get(
|
||||
if self.freqai_info["feature_parameters"].get(
|
||||
"principal_component_analysis", False
|
||||
):
|
||||
dk.pca_transform(dataframe)
|
||||
|
||||
if self.freqai_info.get("feature_parameters", {}).get("use_SVM_to_remove_outliers", False):
|
||||
if self.freqai_info["feature_parameters"].get("use_SVM_to_remove_outliers", False):
|
||||
dk.use_SVM_to_remove_outliers(predict=True)
|
||||
|
||||
if self.freqai_info.get("feature_parameters", {}).get("DI_threshold", 0):
|
||||
if self.freqai_info["feature_parameters"].get("DI_threshold", 0):
|
||||
dk.check_if_pred_in_training_spaces()
|
||||
|
||||
if self.freqai_info["feature_parameters"].get("use_DBSCAN_to_remove_outliers", False):
|
||||
dk.use_DBSCAN_to_remove_outliers(predict=True)
|
||||
|
||||
def model_exists(
|
||||
self,
|
||||
pair: str,
|
||||
@@ -430,9 +435,9 @@ class IFreqaiModel(ABC):
|
||||
coin, _ = pair.split("/")
|
||||
|
||||
if not self.live:
|
||||
dk.model_filename = model_filename = "cb_" + coin.lower() + "_" + str(trained_timestamp)
|
||||
dk.model_filename = model_filename = f"cb_{coin.lower()}_{trained_timestamp}"
|
||||
|
||||
path_to_modelfile = Path(dk.data_path / str(model_filename + "_model.joblib"))
|
||||
path_to_modelfile = Path(dk.data_path / f"{model_filename}_model.joblib")
|
||||
file_exists = path_to_modelfile.is_file()
|
||||
if file_exists and not scanning:
|
||||
logger.info("Found model at %s", dk.data_path / dk.model_filename)
|
||||
@@ -442,7 +447,7 @@ class IFreqaiModel(ABC):
|
||||
|
||||
def set_full_path(self) -> None:
|
||||
self.full_path = Path(
|
||||
self.config["user_data_dir"] / "models" / str(self.freqai_info.get("identifier"))
|
||||
self.config["user_data_dir"] / "models" / f"{self.freqai_info['identifier']}"
|
||||
)
|
||||
self.full_path.mkdir(parents=True, exist_ok=True)
|
||||
shutil.copy(
|
||||
@@ -500,13 +505,54 @@ class IFreqaiModel(ABC):
|
||||
def set_initial_historic_predictions(
|
||||
self, df: DataFrame, model: Any, dk: FreqaiDataKitchen, pair: str
|
||||
) -> None:
|
||||
trained_predictions = model.predict(df)
|
||||
"""
|
||||
This function is called only if the datadrawer failed to load an
|
||||
existing set of historic predictions. In this case, it builds
|
||||
the structure and sets fake predictions off the first training
|
||||
data. After that, FreqAI will append new real predictions to the
|
||||
set of historic predictions.
|
||||
|
||||
These values are used to generate live statistics which can be used
|
||||
in the strategy for adaptive values. E.g. &*_mean/std are quantities
|
||||
that can computed based on live predictions from the set of historical
|
||||
predictions. Those values can be used in the user strategy to better
|
||||
assess prediction rarity, and thus wait for probabilistically favorable
|
||||
entries relative to the live historical predictions.
|
||||
|
||||
If the user reuses an identifier on a subsequent instance,
|
||||
this function will not be called. In that case, "real" predictions
|
||||
will be appended to the loaded set of historic predictions.
|
||||
:param: df: DataFrame = the dataframe containing the training feature data
|
||||
:param: model: Any = A model which was `fit` using a common library such as
|
||||
catboost or lightgbm
|
||||
:param: dk: FreqaiDataKitchen = object containing methods for data analysis
|
||||
:param: pair: str = current pair
|
||||
"""
|
||||
num_candles = self.freqai_info.get('fit_live_predictions_candles', 600)
|
||||
if not num_candles:
|
||||
num_candles = 600
|
||||
df_tail = df.tail(num_candles)
|
||||
trained_predictions = model.predict(df_tail)
|
||||
pred_df = DataFrame(trained_predictions, columns=dk.label_list)
|
||||
|
||||
pred_df = dk.denormalize_labels_from_metadata(pred_df)
|
||||
|
||||
self.dd.historic_predictions[pair] = pd.DataFrame()
|
||||
self.dd.historic_predictions[pair] = copy.deepcopy(pred_df)
|
||||
self.dd.historic_predictions[pair] = pred_df
|
||||
hist_preds_df = self.dd.historic_predictions[pair]
|
||||
|
||||
for label in hist_preds_df.columns:
|
||||
if hist_preds_df[label].dtype == object:
|
||||
continue
|
||||
hist_preds_df[f'{label}_mean'] = 0
|
||||
hist_preds_df[f'{label}_std'] = 0
|
||||
|
||||
hist_preds_df['do_predict'] = 0
|
||||
|
||||
if self.freqai_info['feature_parameters'].get('DI_threshold', 0) > 0:
|
||||
hist_preds_df['DI_values'] = 0
|
||||
|
||||
for return_str in dk.data['extra_returns_per_train']:
|
||||
hist_preds_df[return_str] = 0
|
||||
|
||||
def fit_live_predictions(self, dk: FreqaiDataKitchen) -> None:
|
||||
"""
|
||||
@@ -517,13 +563,15 @@ class IFreqaiModel(ABC):
|
||||
num_candles = self.freqai_info.get("fit_live_predictions_candles", 100)
|
||||
dk.data["labels_mean"], dk.data["labels_std"] = {}, {}
|
||||
for label in dk.label_list:
|
||||
if self.dd.historic_predictions[dk.pair][label].dtype == object:
|
||||
continue
|
||||
f = spy.stats.norm.fit(self.dd.historic_predictions[dk.pair][label].tail(num_candles))
|
||||
dk.data["labels_mean"][label], dk.data["labels_std"][label] = f[0], f[1]
|
||||
|
||||
return
|
||||
|
||||
# Following methods which are overridden by user made prediction models.
|
||||
# See freqai/prediction_models/CatboostPredictionModlel.py for an example.
|
||||
# See freqai/prediction_models/CatboostPredictionModel.py for an example.
|
||||
|
||||
@abstractmethod
|
||||
def train(self, unfiltered_dataframe: DataFrame, pair: str, dk: FreqaiDataKitchen) -> Any:
|
||||
@@ -550,7 +598,7 @@ class IFreqaiModel(ABC):
|
||||
@abstractmethod
|
||||
def predict(
|
||||
self, dataframe: DataFrame, dk: FreqaiDataKitchen, first: bool = True
|
||||
) -> Tuple[DataFrame, ArrayLike]:
|
||||
) -> Tuple[DataFrame, NDArray[np.int_]]:
|
||||
"""
|
||||
Filter the prediction features data and predict with it.
|
||||
:param unfiltered_dataframe: Full dataframe for the current backtest period.
|
||||
@@ -561,14 +609,3 @@ class IFreqaiModel(ABC):
|
||||
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
|
||||
data (NaNs) or felt uncertain about data (i.e. SVM and/or DI index)
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def return_values(self, dataframe: DataFrame) -> DataFrame:
|
||||
"""
|
||||
User defines the dataframe to be returned to strategy here.
|
||||
:param dataframe: DataFrame = the full dataframe for the current prediction (live)
|
||||
or --timerange (backtesting)
|
||||
:return: dataframe: DataFrame = dataframe filled with user defined data
|
||||
"""
|
||||
|
||||
return
|
||||
|
@@ -1,6 +1,7 @@
|
||||
import logging
|
||||
from typing import Any, Tuple
|
||||
|
||||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
from pandas import DataFrame
|
||||
|
||||
@@ -18,15 +19,6 @@ class BaseRegressionModel(IFreqaiModel):
|
||||
such as prediction_models/CatboostPredictionModel.py for guidance.
|
||||
"""
|
||||
|
||||
def return_values(self, dataframe: DataFrame) -> DataFrame:
|
||||
"""
|
||||
User uses this function to add any additional return values to the dataframe.
|
||||
e.g.
|
||||
dataframe['volatility'] = dk.volatility_values
|
||||
"""
|
||||
|
||||
return dataframe
|
||||
|
||||
def train(
|
||||
self, unfiltered_dataframe: DataFrame, pair: str, dk: FreqaiDataKitchen
|
||||
) -> Any:
|
||||
@@ -55,6 +47,8 @@ class BaseRegressionModel(IFreqaiModel):
|
||||
f"{end_date}--------------------")
|
||||
# split data into train/test data.
|
||||
data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
|
||||
if not self.freqai_info.get('fit_live_predictions', 0) or not self.live:
|
||||
dk.fit_labels()
|
||||
# normalize all data based on train_dataset only
|
||||
data_dictionary = dk.normalize_data(data_dictionary)
|
||||
|
||||
@@ -74,8 +68,6 @@ class BaseRegressionModel(IFreqaiModel):
|
||||
|
||||
if self.freqai_info.get('fit_live_predictions_candles', 0) and self.live:
|
||||
self.fit_live_predictions(dk)
|
||||
else:
|
||||
dk.fit_labels()
|
||||
|
||||
self.dd.save_historic_predictions_to_disk()
|
||||
|
||||
@@ -85,7 +77,7 @@ class BaseRegressionModel(IFreqaiModel):
|
||||
|
||||
def predict(
|
||||
self, unfiltered_dataframe: DataFrame, dk: FreqaiDataKitchen, first: bool = False
|
||||
) -> Tuple[DataFrame, npt.ArrayLike]:
|
||||
) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
|
||||
"""
|
||||
Filter the prediction features data and predict with it.
|
||||
:param: unfiltered_dataframe: Full dataframe for the current backtest period.
|
||||
|
@@ -16,15 +16,6 @@ class BaseTensorFlowModel(IFreqaiModel):
|
||||
User *must* inherit from this class and set fit() and predict().
|
||||
"""
|
||||
|
||||
def return_values(self, dataframe: DataFrame) -> DataFrame:
|
||||
"""
|
||||
User uses this function to add any additional return values to the dataframe.
|
||||
e.g.
|
||||
dataframe['volatility'] = dk.volatility_values
|
||||
"""
|
||||
|
||||
return dataframe
|
||||
|
||||
def train(
|
||||
self, unfiltered_dataframe: DataFrame, pair: str, dk: FreqaiDataKitchen
|
||||
) -> Any:
|
||||
|
41
freqtrade/freqai/prediction_models/CatboostClassifier.py
Normal file
41
freqtrade/freqai/prediction_models/CatboostClassifier.py
Normal file
@@ -0,0 +1,41 @@
|
||||
import logging
|
||||
from typing import Any, Dict
|
||||
|
||||
from catboost import CatBoostClassifier, Pool
|
||||
|
||||
from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class CatboostClassifier(BaseRegressionModel):
|
||||
"""
|
||||
User created prediction model. The class needs to override three necessary
|
||||
functions, predict(), train(), fit(). The class inherits ModelHandler which
|
||||
has its own DataHandler where data is held, saved, loaded, and managed.
|
||||
"""
|
||||
|
||||
def fit(self, data_dictionary: Dict) -> Any:
|
||||
"""
|
||||
User sets up the training and test data to fit their desired model here
|
||||
:params:
|
||||
:data_dictionary: the dictionary constructed by DataHandler to hold
|
||||
all the training and test data/labels.
|
||||
"""
|
||||
|
||||
train_data = Pool(
|
||||
data=data_dictionary["train_features"],
|
||||
label=data_dictionary["train_labels"],
|
||||
weight=data_dictionary["train_weights"],
|
||||
)
|
||||
|
||||
cbr = CatBoostClassifier(
|
||||
allow_writing_files=False,
|
||||
loss_function='MultiClass',
|
||||
**self.model_training_parameters,
|
||||
)
|
||||
|
||||
cbr.fit(train_data)
|
||||
|
||||
return cbr
|
@@ -1,6 +1,7 @@
|
||||
import gc
|
||||
import logging
|
||||
from typing import Any, Dict
|
||||
import gc
|
||||
|
||||
from catboost import CatBoostRegressor, Pool
|
||||
|
||||
from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
|
||||
@@ -9,7 +10,7 @@ from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressio
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class CatboostPredictionModel(BaseRegressionModel):
|
||||
class CatboostRegressor(BaseRegressionModel):
|
||||
"""
|
||||
User created prediction model. The class needs to override three necessary
|
||||
functions, predict(), train(), fit(). The class inherits ModelHandler which
|
@@ -10,7 +10,7 @@ from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressio
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class CatboostPredictionMultiModel(BaseRegressionModel):
|
||||
class CatboostRegressorMultiTarget(BaseRegressionModel):
|
||||
"""
|
||||
User created prediction model. The class needs to override three necessary
|
||||
functions, predict(), train(), fit(). The class inherits ModelHandler which
|
38
freqtrade/freqai/prediction_models/LightGBMClassifier.py
Normal file
38
freqtrade/freqai/prediction_models/LightGBMClassifier.py
Normal file
@@ -0,0 +1,38 @@
|
||||
import logging
|
||||
from typing import Any, Dict
|
||||
|
||||
from lightgbm import LGBMClassifier
|
||||
|
||||
from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class LightGBMClassifier(BaseRegressionModel):
|
||||
"""
|
||||
User created prediction model. The class needs to override three necessary
|
||||
functions, predict(), train(), fit(). The class inherits ModelHandler which
|
||||
has its own DataHandler where data is held, saved, loaded, and managed.
|
||||
"""
|
||||
|
||||
def fit(self, data_dictionary: Dict) -> Any:
|
||||
"""
|
||||
User sets up the training and test data to fit their desired model here
|
||||
:params:
|
||||
:data_dictionary: the dictionary constructed by DataHandler to hold
|
||||
all the training and test data/labels.
|
||||
"""
|
||||
|
||||
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) == 0:
|
||||
eval_set = None
|
||||
else:
|
||||
eval_set = (data_dictionary["test_features"], data_dictionary["test_labels"])
|
||||
X = data_dictionary["train_features"]
|
||||
y = data_dictionary["train_labels"]
|
||||
|
||||
model = LGBMClassifier(**self.model_training_parameters)
|
||||
|
||||
model.fit(X=X, y=y, eval_set=eval_set)
|
||||
|
||||
return model
|
@@ -9,7 +9,7 @@ from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressio
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class LightGBMPredictionModel(BaseRegressionModel):
|
||||
class LightGBMRegressor(BaseRegressionModel):
|
||||
"""
|
||||
User created prediction model. The class needs to override three necessary
|
||||
functions, predict(), train(), fit(). The class inherits ModelHandler which
|
@@ -10,7 +10,7 @@ from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressio
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class LightGBMPredictionMultiModel(BaseRegressionModel):
|
||||
class LightGBMRegressorMultiTarget(BaseRegressionModel):
|
||||
"""
|
||||
User created prediction model. The class needs to override three necessary
|
||||
functions, predict(), train(), fit(). The class inherits ModelHandler which
|
@@ -5,6 +5,7 @@ import copy
|
||||
import logging
|
||||
import traceback
|
||||
from datetime import datetime, time, timedelta, timezone
|
||||
from decimal import Decimal
|
||||
from math import isclose
|
||||
from threading import Lock
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
@@ -25,7 +26,7 @@ from freqtrade.exchange import timeframe_to_minutes, timeframe_to_seconds
|
||||
from freqtrade.exchange.exchange import timeframe_to_next_date
|
||||
from freqtrade.misc import safe_value_fallback, safe_value_fallback2
|
||||
from freqtrade.mixins import LoggingMixin
|
||||
from freqtrade.persistence import Order, PairLocks, Trade, cleanup_db, init_db
|
||||
from freqtrade.persistence import Order, PairLocks, Trade, init_db
|
||||
from freqtrade.plugins.pairlistmanager import PairListManager
|
||||
from freqtrade.plugins.protectionmanager import ProtectionManager
|
||||
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
|
||||
@@ -149,7 +150,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
self.check_for_open_trades()
|
||||
|
||||
self.rpc.cleanup()
|
||||
cleanup_db()
|
||||
Trade.commit()
|
||||
self.exchange.close()
|
||||
|
||||
def startup(self) -> None:
|
||||
@@ -214,6 +215,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
if self.trading_mode == TradingMode.FUTURES:
|
||||
self._schedule.run_pending()
|
||||
Trade.commit()
|
||||
self.rpc.process_msg_queue(self.dataprovider._msg_queue)
|
||||
self.last_process = datetime.now(timezone.utc)
|
||||
|
||||
def process_stopped(self) -> None:
|
||||
@@ -524,39 +526,61 @@ class FreqtradeBot(LoggingMixin):
|
||||
If the strategy triggers the adjustment, a new order gets issued.
|
||||
Once that completes, the existing trade is modified to match new data.
|
||||
"""
|
||||
if self.strategy.max_entry_position_adjustment > -1:
|
||||
count_of_buys = trade.nr_of_successful_entries
|
||||
if count_of_buys > self.strategy.max_entry_position_adjustment:
|
||||
logger.debug(f"Max adjustment entries for {trade.pair} has been reached.")
|
||||
return
|
||||
else:
|
||||
logger.debug("Max adjustment entries is set to unlimited.")
|
||||
current_rate = self.exchange.get_rate(
|
||||
trade.pair, side='entry', is_short=trade.is_short, refresh=True)
|
||||
current_profit = trade.calc_profit_ratio(current_rate)
|
||||
current_entry_rate, current_exit_rate = self.exchange.get_rates(
|
||||
trade.pair, True, trade.is_short)
|
||||
|
||||
min_stake_amount = self.exchange.get_min_pair_stake_amount(trade.pair,
|
||||
current_rate,
|
||||
self.strategy.stoploss)
|
||||
max_stake_amount = self.exchange.get_max_pair_stake_amount(trade.pair, current_rate)
|
||||
current_entry_profit = trade.calc_profit_ratio(current_entry_rate)
|
||||
current_exit_profit = trade.calc_profit_ratio(current_exit_rate)
|
||||
|
||||
min_entry_stake = self.exchange.get_min_pair_stake_amount(trade.pair,
|
||||
current_entry_rate,
|
||||
self.strategy.stoploss)
|
||||
min_exit_stake = self.exchange.get_min_pair_stake_amount(trade.pair,
|
||||
current_exit_rate,
|
||||
self.strategy.stoploss)
|
||||
max_entry_stake = self.exchange.get_max_pair_stake_amount(trade.pair, current_entry_rate)
|
||||
stake_available = self.wallets.get_available_stake_amount()
|
||||
logger.debug(f"Calling adjust_trade_position for pair {trade.pair}")
|
||||
stake_amount = strategy_safe_wrapper(self.strategy.adjust_trade_position,
|
||||
default_retval=None)(
|
||||
trade=trade, current_time=datetime.now(timezone.utc), current_rate=current_rate,
|
||||
current_profit=current_profit, min_stake=min_stake_amount,
|
||||
max_stake=min(max_stake_amount, stake_available))
|
||||
trade=trade,
|
||||
current_time=datetime.now(timezone.utc), current_rate=current_entry_rate,
|
||||
current_profit=current_entry_profit, min_stake=min_entry_stake,
|
||||
max_stake=min(max_entry_stake, stake_available),
|
||||
current_entry_rate=current_entry_rate, current_exit_rate=current_exit_rate,
|
||||
current_entry_profit=current_entry_profit, current_exit_profit=current_exit_profit
|
||||
)
|
||||
|
||||
if stake_amount is not None and stake_amount > 0.0:
|
||||
# We should increase our position
|
||||
self.execute_entry(trade.pair, stake_amount, price=current_rate,
|
||||
if self.strategy.max_entry_position_adjustment > -1:
|
||||
count_of_entries = trade.nr_of_successful_entries
|
||||
if count_of_entries > self.strategy.max_entry_position_adjustment:
|
||||
logger.debug(f"Max adjustment entries for {trade.pair} has been reached.")
|
||||
return
|
||||
else:
|
||||
logger.debug("Max adjustment entries is set to unlimited.")
|
||||
self.execute_entry(trade.pair, stake_amount, price=current_entry_rate,
|
||||
trade=trade, is_short=trade.is_short)
|
||||
|
||||
if stake_amount is not None and stake_amount < 0.0:
|
||||
# We should decrease our position
|
||||
# TODO: Selling part of the trade not implemented yet.
|
||||
logger.error(f"Unable to decrease trade position / sell partially"
|
||||
f" for pair {trade.pair}, feature not implemented.")
|
||||
amount = abs(float(Decimal(stake_amount) / Decimal(current_exit_rate)))
|
||||
if amount > trade.amount:
|
||||
# This is currently ineffective as remaining would become < min tradable
|
||||
# Fixing this would require checking for 0.0 there -
|
||||
# if we decide that this callback is allowed to "fully exit"
|
||||
logger.info(
|
||||
f"Adjusting amount to trade.amount as it is higher. {amount} > {trade.amount}")
|
||||
amount = trade.amount
|
||||
|
||||
remaining = (trade.amount - amount) * current_exit_rate
|
||||
if remaining < min_exit_stake:
|
||||
logger.info(f'Remaining amount of {remaining} would be too small.')
|
||||
return
|
||||
|
||||
self.execute_trade_exit(trade, current_exit_rate, exit_check=ExitCheckTuple(
|
||||
exit_type=ExitType.PARTIAL_EXIT), sub_trade_amt=amount)
|
||||
|
||||
def _check_depth_of_market(self, pair: str, conf: Dict, side: SignalDirection) -> bool:
|
||||
"""
|
||||
@@ -600,7 +624,8 @@ class FreqtradeBot(LoggingMixin):
|
||||
ordertype: Optional[str] = None,
|
||||
enter_tag: Optional[str] = None,
|
||||
trade: Optional[Trade] = None,
|
||||
order_adjust: bool = False
|
||||
order_adjust: bool = False,
|
||||
leverage_: Optional[float] = None,
|
||||
) -> bool:
|
||||
"""
|
||||
Executes a limit buy for the given pair
|
||||
@@ -616,7 +641,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
pos_adjust = trade is not None
|
||||
|
||||
enter_limit_requested, stake_amount, leverage = self.get_valid_enter_price_and_stake(
|
||||
pair, price, stake_amount, trade_side, enter_tag, trade, order_adjust)
|
||||
pair, price, stake_amount, trade_side, enter_tag, trade, order_adjust, leverage_)
|
||||
|
||||
if not stake_amount:
|
||||
return False
|
||||
@@ -730,7 +755,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
# Updating wallets
|
||||
self.wallets.update()
|
||||
|
||||
self._notify_enter(trade, order, order_type)
|
||||
self._notify_enter(trade, order_obj, order_type, sub_trade=pos_adjust)
|
||||
|
||||
if pos_adjust:
|
||||
if order_status == 'closed':
|
||||
@@ -739,8 +764,8 @@ class FreqtradeBot(LoggingMixin):
|
||||
else:
|
||||
logger.info(f"DCA order {order_status}, will wait for resolution: {trade}")
|
||||
|
||||
# Update fees if order is closed
|
||||
if order_status == 'closed':
|
||||
# Update fees if order is non-opened
|
||||
if order_status in constants.NON_OPEN_EXCHANGE_STATES:
|
||||
self.update_trade_state(trade, order_id, order)
|
||||
|
||||
return True
|
||||
@@ -763,6 +788,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
entry_tag: Optional[str],
|
||||
trade: Optional[Trade],
|
||||
order_adjust: bool,
|
||||
leverage_: Optional[float],
|
||||
) -> Tuple[float, float, float]:
|
||||
|
||||
if price:
|
||||
@@ -785,16 +811,19 @@ class FreqtradeBot(LoggingMixin):
|
||||
if not enter_limit_requested:
|
||||
raise PricingError('Could not determine entry price.')
|
||||
|
||||
if trade is None:
|
||||
if self.trading_mode != TradingMode.SPOT and trade is None:
|
||||
max_leverage = self.exchange.get_max_leverage(pair, stake_amount)
|
||||
leverage = strategy_safe_wrapper(self.strategy.leverage, default_retval=1.0)(
|
||||
pair=pair,
|
||||
current_time=datetime.now(timezone.utc),
|
||||
current_rate=enter_limit_requested,
|
||||
proposed_leverage=1.0,
|
||||
max_leverage=max_leverage,
|
||||
side=trade_side, entry_tag=entry_tag,
|
||||
) if self.trading_mode != TradingMode.SPOT else 1.0
|
||||
if leverage_:
|
||||
leverage = leverage_
|
||||
else:
|
||||
leverage = strategy_safe_wrapper(self.strategy.leverage, default_retval=1.0)(
|
||||
pair=pair,
|
||||
current_time=datetime.now(timezone.utc),
|
||||
current_rate=enter_limit_requested,
|
||||
proposed_leverage=1.0,
|
||||
max_leverage=max_leverage,
|
||||
side=trade_side, entry_tag=entry_tag,
|
||||
)
|
||||
# Cap leverage between 1.0 and max_leverage.
|
||||
leverage = min(max(leverage, 1.0), max_leverage)
|
||||
else:
|
||||
@@ -829,13 +858,14 @@ class FreqtradeBot(LoggingMixin):
|
||||
|
||||
return enter_limit_requested, stake_amount, leverage
|
||||
|
||||
def _notify_enter(self, trade: Trade, order: Dict, order_type: Optional[str] = None,
|
||||
fill: bool = False) -> None:
|
||||
def _notify_enter(self, trade: Trade, order: Order, order_type: Optional[str] = None,
|
||||
fill: bool = False, sub_trade: bool = False) -> None:
|
||||
"""
|
||||
Sends rpc notification when a entry order occurred.
|
||||
"""
|
||||
msg_type = RPCMessageType.ENTRY_FILL if fill else RPCMessageType.ENTRY
|
||||
open_rate = safe_value_fallback(order, 'average', 'price')
|
||||
open_rate = order.safe_price
|
||||
|
||||
if open_rate is None:
|
||||
open_rate = trade.open_rate
|
||||
|
||||
@@ -859,15 +889,17 @@ class FreqtradeBot(LoggingMixin):
|
||||
'stake_amount': trade.stake_amount,
|
||||
'stake_currency': self.config['stake_currency'],
|
||||
'fiat_currency': self.config.get('fiat_display_currency', None),
|
||||
'amount': safe_value_fallback(order, 'filled', 'amount') or trade.amount,
|
||||
'amount': order.safe_amount_after_fee,
|
||||
'open_date': trade.open_date or datetime.utcnow(),
|
||||
'current_rate': current_rate,
|
||||
'sub_trade': sub_trade,
|
||||
}
|
||||
|
||||
# Send the message
|
||||
self.rpc.send_msg(msg)
|
||||
|
||||
def _notify_enter_cancel(self, trade: Trade, order_type: str, reason: str) -> None:
|
||||
def _notify_enter_cancel(self, trade: Trade, order_type: str, reason: str,
|
||||
sub_trade: bool = False) -> None:
|
||||
"""
|
||||
Sends rpc notification when a entry order cancel occurred.
|
||||
"""
|
||||
@@ -892,6 +924,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
'open_date': trade.open_date,
|
||||
'current_rate': current_rate,
|
||||
'reason': reason,
|
||||
'sub_trade': sub_trade,
|
||||
}
|
||||
|
||||
# Send the message
|
||||
@@ -1015,7 +1048,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
trade.stoploss_order_id = None
|
||||
logger.error(f'Unable to place a stoploss order on exchange. {e}')
|
||||
logger.warning('Exiting the trade forcefully')
|
||||
self.execute_trade_exit(trade, trade.stop_loss, exit_check=ExitCheckTuple(
|
||||
self.execute_trade_exit(trade, stop_price, exit_check=ExitCheckTuple(
|
||||
exit_type=ExitType.EMERGENCY_EXIT))
|
||||
|
||||
except ExchangeError:
|
||||
@@ -1085,7 +1118,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
if (trade.is_open
|
||||
and stoploss_order
|
||||
and stoploss_order['status'] in ('canceled', 'cancelled')):
|
||||
if self.create_stoploss_order(trade=trade, stop_price=trade.stop_loss):
|
||||
if self.create_stoploss_order(trade=trade, stop_price=trade.stoploss_or_liquidation):
|
||||
return False
|
||||
else:
|
||||
trade.stoploss_order_id = None
|
||||
@@ -1114,7 +1147,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
:param order: Current on exchange stoploss order
|
||||
:return: None
|
||||
"""
|
||||
stoploss_norm = self.exchange.price_to_precision(trade.pair, trade.stop_loss)
|
||||
stoploss_norm = self.exchange.price_to_precision(trade.pair, trade.stoploss_or_liquidation)
|
||||
|
||||
if self.exchange.stoploss_adjust(stoploss_norm, order, side=trade.exit_side):
|
||||
# we check if the update is necessary
|
||||
@@ -1132,7 +1165,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
f"for pair {trade.pair}")
|
||||
|
||||
# Create new stoploss order
|
||||
if not self.create_stoploss_order(trade=trade, stop_price=trade.stop_loss):
|
||||
if not self.create_stoploss_order(trade=trade, stop_price=stoploss_norm):
|
||||
logger.warning(f"Could not create trailing stoploss order "
|
||||
f"for pair {trade.pair}.")
|
||||
|
||||
@@ -1365,16 +1398,22 @@ class FreqtradeBot(LoggingMixin):
|
||||
trade.open_order_id = None
|
||||
trade.exit_reason = None
|
||||
cancelled = True
|
||||
self.wallets.update()
|
||||
else:
|
||||
# TODO: figure out how to handle partially complete sell orders
|
||||
reason = constants.CANCEL_REASON['PARTIALLY_FILLED_KEEP_OPEN']
|
||||
cancelled = False
|
||||
|
||||
self.wallets.update()
|
||||
order_obj = trade.select_order_by_order_id(order['id'])
|
||||
if not order_obj:
|
||||
raise DependencyException(
|
||||
f"Order_obj not found for {order['id']}. This should not have happened.")
|
||||
|
||||
sub_trade = order_obj.amount != trade.amount
|
||||
self._notify_exit_cancel(
|
||||
trade,
|
||||
order_type=self.strategy.order_types['exit'],
|
||||
reason=reason
|
||||
reason=reason, order=order_obj, sub_trade=sub_trade
|
||||
)
|
||||
return cancelled
|
||||
|
||||
@@ -1415,6 +1454,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
*,
|
||||
exit_tag: Optional[str] = None,
|
||||
ordertype: Optional[str] = None,
|
||||
sub_trade_amt: float = None,
|
||||
) -> bool:
|
||||
"""
|
||||
Executes a trade exit for the given trade and limit
|
||||
@@ -1431,14 +1471,15 @@ class FreqtradeBot(LoggingMixin):
|
||||
)
|
||||
exit_type = 'exit'
|
||||
exit_reason = exit_tag or exit_check.exit_reason
|
||||
if exit_check.exit_type in (ExitType.STOP_LOSS, ExitType.TRAILING_STOP_LOSS):
|
||||
if exit_check.exit_type in (
|
||||
ExitType.STOP_LOSS, ExitType.TRAILING_STOP_LOSS, ExitType.LIQUIDATION):
|
||||
exit_type = 'stoploss'
|
||||
|
||||
# if stoploss is on exchange and we are on dry_run mode,
|
||||
# we consider the sell price stop price
|
||||
if (self.config['dry_run'] and exit_type == 'stoploss'
|
||||
and self.strategy.order_types['stoploss_on_exchange']):
|
||||
limit = trade.stop_loss
|
||||
and self.strategy.order_types['stoploss_on_exchange']):
|
||||
limit = trade.stoploss_or_liquidation
|
||||
|
||||
# set custom_exit_price if available
|
||||
proposed_limit_rate = limit
|
||||
@@ -1460,14 +1501,17 @@ class FreqtradeBot(LoggingMixin):
|
||||
# Emergency sells (default to market!)
|
||||
order_type = self.strategy.order_types.get("emergency_exit", "market")
|
||||
|
||||
amount = self._safe_exit_amount(trade.pair, trade.amount)
|
||||
amount = self._safe_exit_amount(trade.pair, sub_trade_amt or trade.amount)
|
||||
time_in_force = self.strategy.order_time_in_force['exit']
|
||||
|
||||
if not strategy_safe_wrapper(self.strategy.confirm_trade_exit, default_retval=True)(
|
||||
pair=trade.pair, trade=trade, order_type=order_type, amount=amount, rate=limit,
|
||||
time_in_force=time_in_force, exit_reason=exit_reason,
|
||||
sell_reason=exit_reason, # sellreason -> compatibility
|
||||
current_time=datetime.now(timezone.utc)):
|
||||
if (exit_check.exit_type != ExitType.LIQUIDATION
|
||||
and not sub_trade_amt
|
||||
and not strategy_safe_wrapper(
|
||||
self.strategy.confirm_trade_exit, default_retval=True)(
|
||||
pair=trade.pair, trade=trade, order_type=order_type, amount=amount, rate=limit,
|
||||
time_in_force=time_in_force, exit_reason=exit_reason,
|
||||
sell_reason=exit_reason, # sellreason -> compatibility
|
||||
current_time=datetime.now(timezone.utc))):
|
||||
logger.info(f"User denied exit for {trade.pair}.")
|
||||
return False
|
||||
|
||||
@@ -1501,7 +1545,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
self.strategy.lock_pair(trade.pair, datetime.now(timezone.utc),
|
||||
reason='Auto lock')
|
||||
|
||||
self._notify_exit(trade, order_type)
|
||||
self._notify_exit(trade, order_type, sub_trade=bool(sub_trade_amt), order=order_obj)
|
||||
# In case of market sell orders the order can be closed immediately
|
||||
if order.get('status', 'unknown') in ('closed', 'expired'):
|
||||
self.update_trade_state(trade, trade.open_order_id, order)
|
||||
@@ -1509,16 +1553,27 @@ class FreqtradeBot(LoggingMixin):
|
||||
|
||||
return True
|
||||
|
||||
def _notify_exit(self, trade: Trade, order_type: str, fill: bool = False) -> None:
|
||||
def _notify_exit(self, trade: Trade, order_type: str, fill: bool = False,
|
||||
sub_trade: bool = False, order: Order = None) -> None:
|
||||
"""
|
||||
Sends rpc notification when a sell occurred.
|
||||
"""
|
||||
profit_rate = trade.close_rate if trade.close_rate else trade.close_rate_requested
|
||||
profit_trade = trade.calc_profit(rate=profit_rate)
|
||||
# Use cached rates here - it was updated seconds ago.
|
||||
current_rate = self.exchange.get_rate(
|
||||
trade.pair, side='exit', is_short=trade.is_short, refresh=False) if not fill else None
|
||||
profit_ratio = trade.calc_profit_ratio(profit_rate)
|
||||
|
||||
# second condition is for mypy only; order will always be passed during sub trade
|
||||
if sub_trade and order is not None:
|
||||
amount = order.safe_filled if fill else order.amount
|
||||
profit_rate = order.safe_price
|
||||
|
||||
profit = trade.calc_profit(rate=profit_rate, amount=amount, open_rate=trade.open_rate)
|
||||
profit_ratio = trade.calc_profit_ratio(profit_rate, amount, trade.open_rate)
|
||||
else:
|
||||
profit_rate = trade.close_rate if trade.close_rate else trade.close_rate_requested
|
||||
profit = trade.calc_profit(rate=profit_rate) + (0.0 if fill else trade.realized_profit)
|
||||
profit_ratio = trade.calc_profit_ratio(profit_rate)
|
||||
amount = trade.amount
|
||||
gain = "profit" if profit_ratio > 0 else "loss"
|
||||
|
||||
msg = {
|
||||
@@ -1532,11 +1587,11 @@ class FreqtradeBot(LoggingMixin):
|
||||
'gain': gain,
|
||||
'limit': profit_rate,
|
||||
'order_type': order_type,
|
||||
'amount': trade.amount,
|
||||
'amount': amount,
|
||||
'open_rate': trade.open_rate,
|
||||
'close_rate': trade.close_rate,
|
||||
'close_rate': profit_rate,
|
||||
'current_rate': current_rate,
|
||||
'profit_amount': profit_trade,
|
||||
'profit_amount': profit,
|
||||
'profit_ratio': profit_ratio,
|
||||
'buy_tag': trade.enter_tag,
|
||||
'enter_tag': trade.enter_tag,
|
||||
@@ -1544,19 +1599,18 @@ class FreqtradeBot(LoggingMixin):
|
||||
'exit_reason': trade.exit_reason,
|
||||
'open_date': trade.open_date,
|
||||
'close_date': trade.close_date or datetime.utcnow(),
|
||||
'stake_amount': trade.stake_amount,
|
||||
'stake_currency': self.config['stake_currency'],
|
||||
'fiat_currency': self.config.get('fiat_display_currency'),
|
||||
'sub_trade': sub_trade,
|
||||
'cumulative_profit': trade.realized_profit,
|
||||
}
|
||||
|
||||
if 'fiat_display_currency' in self.config:
|
||||
msg.update({
|
||||
'fiat_currency': self.config['fiat_display_currency'],
|
||||
})
|
||||
|
||||
# Send the message
|
||||
self.rpc.send_msg(msg)
|
||||
|
||||
def _notify_exit_cancel(self, trade: Trade, order_type: str, reason: str) -> None:
|
||||
def _notify_exit_cancel(self, trade: Trade, order_type: str, reason: str,
|
||||
order: Order, sub_trade: bool = False) -> None:
|
||||
"""
|
||||
Sends rpc notification when a sell cancel occurred.
|
||||
"""
|
||||
@@ -1582,7 +1636,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
'gain': gain,
|
||||
'limit': profit_rate or 0,
|
||||
'order_type': order_type,
|
||||
'amount': trade.amount,
|
||||
'amount': order.safe_amount_after_fee,
|
||||
'open_rate': trade.open_rate,
|
||||
'current_rate': current_rate,
|
||||
'profit_amount': profit_trade,
|
||||
@@ -1596,6 +1650,8 @@ class FreqtradeBot(LoggingMixin):
|
||||
'stake_currency': self.config['stake_currency'],
|
||||
'fiat_currency': self.config.get('fiat_display_currency', None),
|
||||
'reason': reason,
|
||||
'sub_trade': sub_trade,
|
||||
'stake_amount': trade.stake_amount,
|
||||
}
|
||||
|
||||
if 'fiat_display_currency' in self.config:
|
||||
@@ -1650,41 +1706,51 @@ class FreqtradeBot(LoggingMixin):
|
||||
self.handle_order_fee(trade, order_obj, order)
|
||||
|
||||
trade.update_trade(order_obj)
|
||||
# TODO: is the below necessary? it's already done in update_trade for filled buys
|
||||
trade.recalc_trade_from_orders()
|
||||
Trade.commit()
|
||||
|
||||
if order['status'] in constants.NON_OPEN_EXCHANGE_STATES:
|
||||
if order.get('status') in constants.NON_OPEN_EXCHANGE_STATES:
|
||||
# If a entry order was closed, force update on stoploss on exchange
|
||||
if order.get('side') == trade.entry_side:
|
||||
trade = self.cancel_stoploss_on_exchange(trade)
|
||||
if not self.edge:
|
||||
# TODO: should shorting/leverage be supported by Edge,
|
||||
# then this will need to be fixed.
|
||||
trade.adjust_stop_loss(trade.open_rate, self.strategy.stoploss, initial=True)
|
||||
if order.get('side') == trade.entry_side or trade.amount > 0:
|
||||
# Must also run for partial exits
|
||||
# TODO: Margin will need to use interest_rate as well.
|
||||
# interest_rate = self.exchange.get_interest_rate()
|
||||
trade.set_isolated_liq(self.exchange.get_liquidation_price(
|
||||
trade.set_liquidation_price(self.exchange.get_liquidation_price(
|
||||
leverage=trade.leverage,
|
||||
pair=trade.pair,
|
||||
amount=trade.amount,
|
||||
open_rate=trade.open_rate,
|
||||
is_short=trade.is_short
|
||||
))
|
||||
if not self.edge:
|
||||
# TODO: should shorting/leverage be supported by Edge,
|
||||
# then this will need to be fixed.
|
||||
trade.adjust_stop_loss(trade.open_rate, self.strategy.stoploss, initial=True)
|
||||
|
||||
# Updating wallets when order is closed
|
||||
self.wallets.update()
|
||||
Trade.commit()
|
||||
|
||||
if not trade.is_open:
|
||||
if send_msg and not stoploss_order and not trade.open_order_id:
|
||||
self._notify_exit(trade, '', True)
|
||||
self.handle_protections(trade.pair, trade.trade_direction)
|
||||
elif send_msg and not trade.open_order_id and not stoploss_order:
|
||||
# Enter fill
|
||||
self._notify_enter(trade, order, fill=True)
|
||||
self.order_close_notify(trade, order_obj, stoploss_order, send_msg)
|
||||
|
||||
return False
|
||||
|
||||
def order_close_notify(
|
||||
self, trade: Trade, order: Order, stoploss_order: bool, send_msg: bool):
|
||||
"""send "fill" notifications"""
|
||||
|
||||
sub_trade = not isclose(order.safe_amount_after_fee,
|
||||
trade.amount, abs_tol=constants.MATH_CLOSE_PREC)
|
||||
if order.ft_order_side == trade.exit_side:
|
||||
# Exit notification
|
||||
if send_msg and not stoploss_order and not trade.open_order_id:
|
||||
self._notify_exit(trade, '', fill=True, sub_trade=sub_trade, order=order)
|
||||
if not trade.is_open:
|
||||
self.handle_protections(trade.pair, trade.trade_direction)
|
||||
elif send_msg and not trade.open_order_id and not stoploss_order:
|
||||
# Enter fill
|
||||
self._notify_enter(trade, order, fill=True, sub_trade=sub_trade)
|
||||
|
||||
def handle_protections(self, pair: str, side: LongShort) -> None:
|
||||
prot_trig = self.protections.stop_per_pair(pair, side=side)
|
||||
if prot_trig:
|
||||
|
149
freqtrade/optimize/backtesting.py
Executable file → Normal file
149
freqtrade/optimize/backtesting.py
Executable file → Normal file
@@ -89,6 +89,9 @@ class Backtesting:
|
||||
self.dataprovider = DataProvider(self.config, self.exchange)
|
||||
|
||||
if self.config.get('strategy_list'):
|
||||
if self.config.get('freqai', {}).get('enabled', False):
|
||||
raise OperationalException(
|
||||
"You can't use strategy_list and freqai at the same time.")
|
||||
for strat in list(self.config['strategy_list']):
|
||||
stratconf = deepcopy(self.config)
|
||||
stratconf['strategy'] = strat
|
||||
@@ -207,8 +210,12 @@ class Backtesting:
|
||||
"""
|
||||
self.progress.init_step(BacktestState.DATALOAD, 1)
|
||||
|
||||
if self.config.get('freqai') is not None:
|
||||
self.required_startup += int(self.config.get('freqai', {}).get('startup_candles', 1000))
|
||||
if self.config.get('freqai', {}).get('enabled', False):
|
||||
startup_candles = int(self.config.get('freqai', {}).get('startup_candles', 0))
|
||||
if not startup_candles:
|
||||
raise OperationalException('FreqAI backtesting module requires user set '
|
||||
'startup_candles in config.')
|
||||
self.required_startup += int(self.config.get('freqai', {}).get('startup_candles', 0))
|
||||
logger.info(f'Increasing startup_candle_count for freqai to {self.required_startup}')
|
||||
self.config['startup_candle_count'] = self.required_startup
|
||||
|
||||
@@ -292,8 +299,8 @@ class Backtesting:
|
||||
|
||||
if unavailable_pairs:
|
||||
raise OperationalException(
|
||||
f"Pairs {', '.join(unavailable_pairs)} got no leverage tiers available. "
|
||||
"It is therefore impossible to backtest with this pair at the moment.")
|
||||
f"Pairs {', '.join(unavailable_pairs)} got no leverage tiers available. "
|
||||
"It is therefore impossible to backtest with this pair at the moment.")
|
||||
else:
|
||||
self.futures_data = {}
|
||||
|
||||
@@ -386,7 +393,8 @@ class Backtesting:
|
||||
Get close rate for backtesting result
|
||||
"""
|
||||
# Special handling if high or low hit STOP_LOSS or ROI
|
||||
if exit.exit_type in (ExitType.STOP_LOSS, ExitType.TRAILING_STOP_LOSS):
|
||||
if exit.exit_type in (
|
||||
ExitType.STOP_LOSS, ExitType.TRAILING_STOP_LOSS, ExitType.LIQUIDATION):
|
||||
return self._get_close_rate_for_stoploss(row, trade, exit, trade_dur)
|
||||
elif exit.exit_type == (ExitType.ROI):
|
||||
return self._get_close_rate_for_roi(row, trade, exit, trade_dur)
|
||||
@@ -401,11 +409,16 @@ class Backtesting:
|
||||
is_short = trade.is_short or False
|
||||
leverage = trade.leverage or 1.0
|
||||
side_1 = -1 if is_short else 1
|
||||
if exit.exit_type == ExitType.LIQUIDATION and trade.liquidation_price:
|
||||
stoploss_value = trade.liquidation_price
|
||||
else:
|
||||
stoploss_value = trade.stop_loss
|
||||
|
||||
if is_short:
|
||||
if trade.stop_loss < row[LOW_IDX]:
|
||||
if stoploss_value < row[LOW_IDX]:
|
||||
return row[OPEN_IDX]
|
||||
else:
|
||||
if trade.stop_loss > row[HIGH_IDX]:
|
||||
if stoploss_value > row[HIGH_IDX]:
|
||||
return row[OPEN_IDX]
|
||||
|
||||
# Special case: trailing triggers within same candle as trade opened. Assume most
|
||||
@@ -438,7 +451,7 @@ class Backtesting:
|
||||
return max(row[LOW_IDX], stop_rate)
|
||||
|
||||
# Set close_rate to stoploss
|
||||
return trade.stop_loss
|
||||
return stoploss_value
|
||||
|
||||
def _get_close_rate_for_roi(self, row: Tuple, trade: LocalTrade, exit: ExitCheckTuple,
|
||||
trade_dur: int) -> float:
|
||||
@@ -502,16 +515,20 @@ class Backtesting:
|
||||
|
||||
def _get_adjust_trade_entry_for_candle(self, trade: LocalTrade, row: Tuple
|
||||
) -> LocalTrade:
|
||||
current_profit = trade.calc_profit_ratio(row[OPEN_IDX])
|
||||
min_stake = self.exchange.get_min_pair_stake_amount(trade.pair, row[OPEN_IDX], -0.1)
|
||||
max_stake = self.exchange.get_max_pair_stake_amount(trade.pair, row[OPEN_IDX])
|
||||
current_rate = row[OPEN_IDX]
|
||||
current_date = row[DATE_IDX].to_pydatetime()
|
||||
current_profit = trade.calc_profit_ratio(current_rate)
|
||||
min_stake = self.exchange.get_min_pair_stake_amount(trade.pair, current_rate, -0.1)
|
||||
max_stake = self.exchange.get_max_pair_stake_amount(trade.pair, current_rate)
|
||||
stake_available = self.wallets.get_available_stake_amount()
|
||||
stake_amount = strategy_safe_wrapper(self.strategy.adjust_trade_position,
|
||||
default_retval=None)(
|
||||
trade=trade, # type: ignore[arg-type]
|
||||
current_time=row[DATE_IDX].to_pydatetime(), current_rate=row[OPEN_IDX],
|
||||
current_time=current_date, current_rate=current_rate,
|
||||
current_profit=current_profit, min_stake=min_stake,
|
||||
max_stake=min(max_stake, stake_available))
|
||||
max_stake=min(max_stake, stake_available),
|
||||
current_entry_rate=current_rate, current_exit_rate=current_rate,
|
||||
current_entry_profit=current_profit, current_exit_profit=current_profit)
|
||||
|
||||
# Check if we should increase our position
|
||||
if stake_amount is not None and stake_amount > 0.0:
|
||||
@@ -522,6 +539,24 @@ class Backtesting:
|
||||
self.wallets.update()
|
||||
return pos_trade
|
||||
|
||||
if stake_amount is not None and stake_amount < 0.0:
|
||||
amount = abs(stake_amount) / current_rate
|
||||
if amount > trade.amount:
|
||||
# This is currently ineffective as remaining would become < min tradable
|
||||
amount = trade.amount
|
||||
remaining = (trade.amount - amount) * current_rate
|
||||
if remaining < min_stake:
|
||||
# Remaining stake is too low to be sold.
|
||||
return trade
|
||||
pos_trade = self._exit_trade(trade, row, current_rate, amount)
|
||||
if pos_trade is not None:
|
||||
order = pos_trade.orders[-1]
|
||||
if self._get_order_filled(order.price, row):
|
||||
order.close_bt_order(current_date, trade)
|
||||
trade.recalc_trade_from_orders()
|
||||
self.wallets.update()
|
||||
return pos_trade
|
||||
|
||||
return trade
|
||||
|
||||
def _get_order_filled(self, rate: float, row: Tuple) -> bool:
|
||||
@@ -572,7 +607,7 @@ class Backtesting:
|
||||
if exit_.exit_type in (ExitType.EXIT_SIGNAL, ExitType.CUSTOM_EXIT):
|
||||
# Checks and adds an exit tag, after checking that the length of the
|
||||
# row has the length for an exit tag column
|
||||
if(
|
||||
if (
|
||||
len(row) > EXIT_TAG_IDX
|
||||
and row[EXIT_TAG_IDX] is not None
|
||||
and len(row[EXIT_TAG_IDX]) > 0
|
||||
@@ -597,46 +632,53 @@ class Backtesting:
|
||||
# Confirm trade exit:
|
||||
time_in_force = self.strategy.order_time_in_force['exit']
|
||||
|
||||
if not strategy_safe_wrapper(self.strategy.confirm_trade_exit, default_retval=True)(
|
||||
if (exit_.exit_type != ExitType.LIQUIDATION and not strategy_safe_wrapper(
|
||||
self.strategy.confirm_trade_exit, default_retval=True)(
|
||||
pair=trade.pair,
|
||||
trade=trade, # type: ignore[arg-type]
|
||||
order_type='limit',
|
||||
order_type=order_type,
|
||||
amount=trade.amount,
|
||||
rate=close_rate,
|
||||
time_in_force=time_in_force,
|
||||
sell_reason=exit_reason, # deprecated
|
||||
exit_reason=exit_reason,
|
||||
current_time=exit_candle_time):
|
||||
current_time=exit_candle_time)):
|
||||
return None
|
||||
|
||||
trade.exit_reason = exit_reason
|
||||
|
||||
self.order_id_counter += 1
|
||||
order = Order(
|
||||
id=self.order_id_counter,
|
||||
ft_trade_id=trade.id,
|
||||
order_date=exit_candle_time,
|
||||
order_update_date=exit_candle_time,
|
||||
ft_is_open=True,
|
||||
ft_pair=trade.pair,
|
||||
order_id=str(self.order_id_counter),
|
||||
symbol=trade.pair,
|
||||
ft_order_side=trade.exit_side,
|
||||
side=trade.exit_side,
|
||||
order_type=order_type,
|
||||
status="open",
|
||||
price=close_rate,
|
||||
average=close_rate,
|
||||
amount=trade.amount,
|
||||
filled=0,
|
||||
remaining=trade.amount,
|
||||
cost=trade.amount * close_rate,
|
||||
)
|
||||
trade.orders.append(order)
|
||||
return trade
|
||||
|
||||
return self._exit_trade(trade, row, close_rate, trade.amount)
|
||||
return None
|
||||
|
||||
def _exit_trade(self, trade: LocalTrade, sell_row: Tuple,
|
||||
close_rate: float, amount: float = None) -> Optional[LocalTrade]:
|
||||
self.order_id_counter += 1
|
||||
exit_candle_time = sell_row[DATE_IDX].to_pydatetime()
|
||||
order_type = self.strategy.order_types['exit']
|
||||
amount = amount or trade.amount
|
||||
order = Order(
|
||||
id=self.order_id_counter,
|
||||
ft_trade_id=trade.id,
|
||||
order_date=exit_candle_time,
|
||||
order_update_date=exit_candle_time,
|
||||
ft_is_open=True,
|
||||
ft_pair=trade.pair,
|
||||
order_id=str(self.order_id_counter),
|
||||
symbol=trade.pair,
|
||||
ft_order_side=trade.exit_side,
|
||||
side=trade.exit_side,
|
||||
order_type=order_type,
|
||||
status="open",
|
||||
price=close_rate,
|
||||
average=close_rate,
|
||||
amount=amount,
|
||||
filled=0,
|
||||
remaining=amount,
|
||||
cost=amount * close_rate,
|
||||
)
|
||||
trade.orders.append(order)
|
||||
return trade
|
||||
|
||||
def _get_exit_trade_entry(self, trade: LocalTrade, row: Tuple) -> Optional[LocalTrade]:
|
||||
exit_candle_time: datetime = row[DATE_IDX].to_pydatetime()
|
||||
|
||||
@@ -812,7 +854,7 @@ class Backtesting:
|
||||
|
||||
trade.adjust_stop_loss(trade.open_rate, self.strategy.stoploss, initial=True)
|
||||
|
||||
trade.set_isolated_liq(self.exchange.get_liquidation_price(
|
||||
trade.set_liquidation_price(self.exchange.get_liquidation_price(
|
||||
pair=pair,
|
||||
open_rate=propose_rate,
|
||||
amount=amount,
|
||||
@@ -863,6 +905,8 @@ class Backtesting:
|
||||
# Ignore trade if entry-order did not fill yet
|
||||
continue
|
||||
exit_row = data[pair][-1]
|
||||
self._exit_trade(trade, exit_row, exit_row[OPEN_IDX], trade.amount)
|
||||
trade.orders[-1].close_bt_order(exit_row[DATE_IDX].to_pydatetime(), trade)
|
||||
|
||||
trade.close_date = exit_row[DATE_IDX].to_pydatetime()
|
||||
trade.exit_reason = ExitType.FORCE_EXIT.value
|
||||
@@ -1004,7 +1048,7 @@ class Backtesting:
|
||||
return None
|
||||
return row
|
||||
|
||||
def backtest(self, processed: Dict,
|
||||
def backtest(self, processed: Dict, # noqa: max-complexity: 13
|
||||
start_date: datetime, end_date: datetime,
|
||||
max_open_trades: int = 0, position_stacking: bool = False,
|
||||
enable_protections: bool = False) -> Dict[str, Any]:
|
||||
@@ -1106,14 +1150,19 @@ class Backtesting:
|
||||
if order and self._get_order_filled(order.price, row):
|
||||
order.close_bt_order(current_time, trade)
|
||||
trade.open_order_id = None
|
||||
trade.close_date = current_time
|
||||
trade.close(order.price, show_msg=False)
|
||||
sub_trade = order.safe_amount_after_fee != trade.amount
|
||||
if sub_trade:
|
||||
order.close_bt_order(current_time, trade)
|
||||
trade.recalc_trade_from_orders()
|
||||
else:
|
||||
trade.close_date = current_time
|
||||
trade.close(order.price, show_msg=False)
|
||||
|
||||
# logger.debug(f"{pair} - Backtesting exit {trade}")
|
||||
open_trade_count -= 1
|
||||
open_trades[pair].remove(trade)
|
||||
LocalTrade.close_bt_trade(trade)
|
||||
trades.append(trade)
|
||||
# logger.debug(f"{pair} - Backtesting exit {trade}")
|
||||
open_trade_count -= 1
|
||||
open_trades[pair].remove(trade)
|
||||
LocalTrade.close_bt_trade(trade)
|
||||
trades.append(trade)
|
||||
self.wallets.update()
|
||||
self.run_protections(
|
||||
enable_protections, pair, current_time, trade.trade_direction)
|
||||
|
@@ -639,7 +639,7 @@ def text_table_tags(tag_type: str, tag_results: List[Dict[str, Any]], stake_curr
|
||||
:param stake_currency: stake-currency - used to correctly name headers
|
||||
:return: pretty printed table with tabulate as string
|
||||
"""
|
||||
if(tag_type == "enter_tag"):
|
||||
if (tag_type == "enter_tag"):
|
||||
headers = _get_line_header("TAG", stake_currency)
|
||||
else:
|
||||
headers = _get_line_header("TAG", stake_currency, 'Sells')
|
||||
|
@@ -1,5 +1,5 @@
|
||||
# flake8: noqa: F401
|
||||
|
||||
from freqtrade.persistence.models import cleanup_db, init_db
|
||||
from freqtrade.persistence.models import init_db
|
||||
from freqtrade.persistence.pairlock_middleware import PairLocks
|
||||
from freqtrade.persistence.trade_model import LocalTrade, Order, Trade
|
||||
|
@@ -95,6 +95,7 @@ def migrate_trades_and_orders_table(
|
||||
exit_reason = get_column_def(cols, 'sell_reason', get_column_def(cols, 'exit_reason', 'null'))
|
||||
strategy = get_column_def(cols, 'strategy', 'null')
|
||||
enter_tag = get_column_def(cols, 'buy_tag', get_column_def(cols, 'enter_tag', 'null'))
|
||||
realized_profit = get_column_def(cols, 'realized_profit', '0.0')
|
||||
|
||||
trading_mode = get_column_def(cols, 'trading_mode', 'null')
|
||||
|
||||
@@ -155,7 +156,7 @@ def migrate_trades_and_orders_table(
|
||||
max_rate, min_rate, exit_reason, exit_order_status, strategy, enter_tag,
|
||||
timeframe, open_trade_value, close_profit_abs,
|
||||
trading_mode, leverage, liquidation_price, is_short,
|
||||
interest_rate, funding_fees
|
||||
interest_rate, funding_fees, realized_profit
|
||||
)
|
||||
select id, lower(exchange), pair, {base_currency} base_currency,
|
||||
{stake_currency} stake_currency,
|
||||
@@ -181,7 +182,7 @@ def migrate_trades_and_orders_table(
|
||||
{open_trade_value} open_trade_value, {close_profit_abs} close_profit_abs,
|
||||
{trading_mode} trading_mode, {leverage} leverage, {liquidation_price} liquidation_price,
|
||||
{is_short} is_short, {interest_rate} interest_rate,
|
||||
{funding_fees} funding_fees
|
||||
{funding_fees} funding_fees, {realized_profit} realized_profit
|
||||
from {trade_back_name}
|
||||
"""))
|
||||
|
||||
@@ -297,8 +298,9 @@ def check_migrate(engine, decl_base, previous_tables) -> None:
|
||||
|
||||
# Check if migration necessary
|
||||
# Migrates both trades and orders table!
|
||||
if not has_column(cols_orders, 'stop_price'):
|
||||
# if not has_column(cols_trades, 'base_currency'):
|
||||
# if ('orders' not in previous_tables
|
||||
# or not has_column(cols_orders, 'stop_price')):
|
||||
if not has_column(cols_trades, 'realized_profit'):
|
||||
logger.info(f"Running database migration for trades - "
|
||||
f"backup: {table_back_name}, {order_table_bak_name}")
|
||||
migrate_trades_and_orders_table(
|
||||
|
@@ -61,11 +61,3 @@ def init_db(db_url: str) -> None:
|
||||
previous_tables = inspect(engine).get_table_names()
|
||||
_DECL_BASE.metadata.create_all(engine)
|
||||
check_migrate(engine, decl_base=_DECL_BASE, previous_tables=previous_tables)
|
||||
|
||||
|
||||
def cleanup_db() -> None:
|
||||
"""
|
||||
Flushes all pending operations to disk.
|
||||
:return: None
|
||||
"""
|
||||
Trade.commit()
|
||||
|
@@ -4,13 +4,15 @@ This module contains the class to persist trades into SQLite
|
||||
import logging
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from decimal import Decimal
|
||||
from math import isclose
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from sqlalchemy import (Boolean, Column, DateTime, Enum, Float, ForeignKey, Integer, String,
|
||||
UniqueConstraint, desc, func)
|
||||
from sqlalchemy.orm import Query, lazyload, relationship
|
||||
|
||||
from freqtrade.constants import DATETIME_PRINT_FORMAT, NON_OPEN_EXCHANGE_STATES, BuySell, LongShort
|
||||
from freqtrade.constants import (DATETIME_PRINT_FORMAT, MATH_CLOSE_PREC, NON_OPEN_EXCHANGE_STATES,
|
||||
BuySell, LongShort)
|
||||
from freqtrade.enums import ExitType, TradingMode
|
||||
from freqtrade.exceptions import DependencyException, OperationalException
|
||||
from freqtrade.leverage import interest
|
||||
@@ -176,10 +178,9 @@ class Order(_DECL_BASE):
|
||||
self.remaining = 0
|
||||
self.status = 'closed'
|
||||
self.ft_is_open = False
|
||||
if (self.ft_order_side == trade.entry_side
|
||||
and len(trade.select_filled_orders(trade.entry_side)) == 1):
|
||||
if (self.ft_order_side == trade.entry_side):
|
||||
trade.open_rate = self.price
|
||||
trade.recalc_open_trade_value()
|
||||
trade.recalc_trade_from_orders()
|
||||
trade.adjust_stop_loss(trade.open_rate, trade.stop_loss_pct, refresh=True)
|
||||
|
||||
@staticmethod
|
||||
@@ -195,7 +196,7 @@ class Order(_DECL_BASE):
|
||||
if filtered_orders:
|
||||
oobj = filtered_orders[0]
|
||||
oobj.update_from_ccxt_object(order)
|
||||
Order.query.session.commit()
|
||||
Trade.commit()
|
||||
else:
|
||||
logger.warning(f"Did not find order for {order}.")
|
||||
|
||||
@@ -237,6 +238,7 @@ class LocalTrade():
|
||||
trades: List['LocalTrade'] = []
|
||||
trades_open: List['LocalTrade'] = []
|
||||
total_profit: float = 0
|
||||
realized_profit: float = 0
|
||||
|
||||
id: int = 0
|
||||
|
||||
@@ -302,6 +304,16 @@ class LocalTrade():
|
||||
# Futures properties
|
||||
funding_fees: Optional[float] = None
|
||||
|
||||
@property
|
||||
def stoploss_or_liquidation(self) -> float:
|
||||
if self.liquidation_price:
|
||||
if self.is_short:
|
||||
return min(self.stop_loss, self.liquidation_price)
|
||||
else:
|
||||
return max(self.stop_loss, self.liquidation_price)
|
||||
|
||||
return self.stop_loss
|
||||
|
||||
@property
|
||||
def buy_tag(self) -> Optional[str]:
|
||||
"""
|
||||
@@ -437,6 +449,7 @@ class LocalTrade():
|
||||
if self.close_date else None),
|
||||
'close_timestamp': int(self.close_date.replace(
|
||||
tzinfo=timezone.utc).timestamp() * 1000) if self.close_date else None,
|
||||
'realized_profit': self.realized_profit or 0.0,
|
||||
'close_rate': self.close_rate,
|
||||
'close_rate_requested': self.close_rate_requested,
|
||||
'close_profit': self.close_profit, # Deprecated
|
||||
@@ -497,7 +510,7 @@ class LocalTrade():
|
||||
self.max_rate = max(current_price, self.max_rate or self.open_rate)
|
||||
self.min_rate = min(current_price_low, self.min_rate or self.open_rate)
|
||||
|
||||
def set_isolated_liq(self, liquidation_price: Optional[float]):
|
||||
def set_liquidation_price(self, liquidation_price: Optional[float]):
|
||||
"""
|
||||
Method you should use to set self.liquidation price.
|
||||
Assures stop_loss is not passed the liquidation price
|
||||
@@ -506,22 +519,13 @@ class LocalTrade():
|
||||
return
|
||||
self.liquidation_price = liquidation_price
|
||||
|
||||
def _set_stop_loss(self, stop_loss: float, percent: float):
|
||||
def __set_stop_loss(self, stop_loss: float, percent: float):
|
||||
"""
|
||||
Method you should use to set self.stop_loss.
|
||||
Assures stop_loss is not passed the liquidation price
|
||||
Method used internally to set self.stop_loss.
|
||||
"""
|
||||
if self.liquidation_price is not None:
|
||||
if self.is_short:
|
||||
sl = min(stop_loss, self.liquidation_price)
|
||||
else:
|
||||
sl = max(stop_loss, self.liquidation_price)
|
||||
else:
|
||||
sl = stop_loss
|
||||
|
||||
if not self.stop_loss:
|
||||
self.initial_stop_loss = sl
|
||||
self.stop_loss = sl
|
||||
self.initial_stop_loss = stop_loss
|
||||
self.stop_loss = stop_loss
|
||||
|
||||
self.stop_loss_pct = -1 * abs(percent)
|
||||
self.stoploss_last_update = datetime.utcnow()
|
||||
@@ -543,18 +547,12 @@ class LocalTrade():
|
||||
leverage = self.leverage or 1.0
|
||||
if self.is_short:
|
||||
new_loss = float(current_price * (1 + abs(stoploss / leverage)))
|
||||
# If trading with leverage, don't set the stoploss below the liquidation price
|
||||
if self.liquidation_price:
|
||||
new_loss = min(self.liquidation_price, new_loss)
|
||||
else:
|
||||
new_loss = float(current_price * (1 - abs(stoploss / leverage)))
|
||||
# If trading with leverage, don't set the stoploss below the liquidation price
|
||||
if self.liquidation_price:
|
||||
new_loss = max(self.liquidation_price, new_loss)
|
||||
|
||||
# no stop loss assigned yet
|
||||
if self.initial_stop_loss_pct is None or refresh:
|
||||
self._set_stop_loss(new_loss, stoploss)
|
||||
self.__set_stop_loss(new_loss, stoploss)
|
||||
self.initial_stop_loss = new_loss
|
||||
self.initial_stop_loss_pct = -1 * abs(stoploss)
|
||||
|
||||
@@ -569,7 +567,7 @@ class LocalTrade():
|
||||
# ? decreasing the minimum stoploss
|
||||
if (higher_stop and not self.is_short) or (lower_stop and self.is_short):
|
||||
logger.debug(f"{self.pair} - Adjusting stoploss...")
|
||||
self._set_stop_loss(new_loss, stoploss)
|
||||
self.__set_stop_loss(new_loss, stoploss)
|
||||
else:
|
||||
logger.debug(f"{self.pair} - Keeping current stoploss...")
|
||||
|
||||
@@ -601,14 +599,28 @@ class LocalTrade():
|
||||
if self.is_open:
|
||||
payment = "SELL" if self.is_short else "BUY"
|
||||
logger.info(f'{order.order_type.upper()}_{payment} has been fulfilled for {self}.')
|
||||
self.open_order_id = None
|
||||
# condition to avoid reset value when updating fees
|
||||
if self.open_order_id == order.order_id:
|
||||
self.open_order_id = None
|
||||
else:
|
||||
logger.warning(
|
||||
f'Got different open_order_id {self.open_order_id} != {order.order_id}')
|
||||
self.recalc_trade_from_orders()
|
||||
elif order.ft_order_side == self.exit_side:
|
||||
if self.is_open:
|
||||
payment = "BUY" if self.is_short else "SELL"
|
||||
# * On margin shorts, you buy a little bit more than the amount (amount + interest)
|
||||
logger.info(f'{order.order_type.upper()}_{payment} has been fulfilled for {self}.')
|
||||
self.close(order.safe_price)
|
||||
# condition to avoid reset value when updating fees
|
||||
if self.open_order_id == order.order_id:
|
||||
self.open_order_id = None
|
||||
else:
|
||||
logger.warning(
|
||||
f'Got different open_order_id {self.open_order_id} != {order.order_id}')
|
||||
if isclose(order.safe_amount_after_fee, self.amount, abs_tol=MATH_CLOSE_PREC):
|
||||
self.close(order.safe_price)
|
||||
else:
|
||||
self.recalc_trade_from_orders()
|
||||
elif order.ft_order_side == 'stoploss':
|
||||
self.stoploss_order_id = None
|
||||
self.close_rate_requested = self.stop_loss
|
||||
@@ -627,11 +639,11 @@ class LocalTrade():
|
||||
"""
|
||||
self.close_rate = rate
|
||||
self.close_date = self.close_date or datetime.utcnow()
|
||||
self.close_profit = self.calc_profit_ratio(rate)
|
||||
self.close_profit_abs = self.calc_profit(rate)
|
||||
self.close_profit_abs = self.calc_profit(rate) + self.realized_profit
|
||||
self.is_open = False
|
||||
self.exit_order_status = 'closed'
|
||||
self.open_order_id = None
|
||||
self.recalc_trade_from_orders(is_closing=True)
|
||||
if show_msg:
|
||||
logger.info(
|
||||
'Marking %s as closed as the trade is fulfilled and found no open orders for it.',
|
||||
@@ -677,12 +689,12 @@ class LocalTrade():
|
||||
"""
|
||||
return len([o for o in self.orders if o.ft_order_side == self.exit_side])
|
||||
|
||||
def _calc_open_trade_value(self) -> float:
|
||||
def _calc_open_trade_value(self, amount: float, open_rate: float) -> float:
|
||||
"""
|
||||
Calculate the open_rate including open_fee.
|
||||
:return: Price in of the open trade incl. Fees
|
||||
"""
|
||||
open_trade = Decimal(self.amount) * Decimal(self.open_rate)
|
||||
open_trade = Decimal(amount) * Decimal(open_rate)
|
||||
fees = open_trade * Decimal(self.fee_open)
|
||||
if self.is_short:
|
||||
return float(open_trade - fees)
|
||||
@@ -694,7 +706,7 @@ class LocalTrade():
|
||||
Recalculate open_trade_value.
|
||||
Must be called whenever open_rate, fee_open is changed.
|
||||
"""
|
||||
self.open_trade_value = self._calc_open_trade_value()
|
||||
self.open_trade_value = self._calc_open_trade_value(self.amount, self.open_rate)
|
||||
|
||||
def calculate_interest(self) -> Decimal:
|
||||
"""
|
||||
@@ -726,7 +738,7 @@ class LocalTrade():
|
||||
else:
|
||||
return close_trade - fees
|
||||
|
||||
def calc_close_trade_value(self, rate: float) -> float:
|
||||
def calc_close_trade_value(self, rate: float, amount: float = None) -> float:
|
||||
"""
|
||||
Calculate the Trade's close value including fees
|
||||
:param rate: rate to compare with.
|
||||
@@ -735,96 +747,143 @@ class LocalTrade():
|
||||
if rate is None and not self.close_rate:
|
||||
return 0.0
|
||||
|
||||
amount = Decimal(self.amount)
|
||||
amount1 = Decimal(amount or self.amount)
|
||||
trading_mode = self.trading_mode or TradingMode.SPOT
|
||||
|
||||
if trading_mode == TradingMode.SPOT:
|
||||
return float(self._calc_base_close(amount, rate, self.fee_close))
|
||||
return float(self._calc_base_close(amount1, rate, self.fee_close))
|
||||
|
||||
elif (trading_mode == TradingMode.MARGIN):
|
||||
|
||||
total_interest = self.calculate_interest()
|
||||
|
||||
if self.is_short:
|
||||
amount = amount + total_interest
|
||||
return float(self._calc_base_close(amount, rate, self.fee_close))
|
||||
amount1 = amount1 + total_interest
|
||||
return float(self._calc_base_close(amount1, rate, self.fee_close))
|
||||
else:
|
||||
# Currency already owned for longs, no need to purchase
|
||||
return float(self._calc_base_close(amount, rate, self.fee_close) - total_interest)
|
||||
return float(self._calc_base_close(amount1, rate, self.fee_close) - total_interest)
|
||||
|
||||
elif (trading_mode == TradingMode.FUTURES):
|
||||
funding_fees = self.funding_fees or 0.0
|
||||
# Positive funding_fees -> Trade has gained from fees.
|
||||
# Negative funding_fees -> Trade had to pay the fees.
|
||||
if self.is_short:
|
||||
return float(self._calc_base_close(amount, rate, self.fee_close)) - funding_fees
|
||||
return float(self._calc_base_close(amount1, rate, self.fee_close)) - funding_fees
|
||||
else:
|
||||
return float(self._calc_base_close(amount, rate, self.fee_close)) + funding_fees
|
||||
return float(self._calc_base_close(amount1, rate, self.fee_close)) + funding_fees
|
||||
else:
|
||||
raise OperationalException(
|
||||
f"{self.trading_mode.value} trading is not yet available using freqtrade")
|
||||
|
||||
def calc_profit(self, rate: float) -> float:
|
||||
def calc_profit(self, rate: float, amount: float = None, open_rate: float = None) -> float:
|
||||
"""
|
||||
Calculate the absolute profit in stake currency between Close and Open trade
|
||||
:param rate: close rate to compare with.
|
||||
:param amount: Amount to use for the calculation. Falls back to trade.amount if not set.
|
||||
:param open_rate: open_rate to use. Defaults to self.open_rate if not provided.
|
||||
:return: profit in stake currency as float
|
||||
"""
|
||||
close_trade_value = self.calc_close_trade_value(rate)
|
||||
close_trade_value = self.calc_close_trade_value(rate, amount)
|
||||
if amount is None or open_rate is None:
|
||||
open_trade_value = self.open_trade_value
|
||||
else:
|
||||
open_trade_value = self._calc_open_trade_value(amount, open_rate)
|
||||
|
||||
if self.is_short:
|
||||
profit = self.open_trade_value - close_trade_value
|
||||
profit = open_trade_value - close_trade_value
|
||||
else:
|
||||
profit = close_trade_value - self.open_trade_value
|
||||
profit = close_trade_value - open_trade_value
|
||||
return float(f"{profit:.8f}")
|
||||
|
||||
def calc_profit_ratio(self, rate: float) -> float:
|
||||
def calc_profit_ratio(
|
||||
self, rate: float, amount: float = None, open_rate: float = None) -> float:
|
||||
"""
|
||||
Calculates the profit as ratio (including fee).
|
||||
:param rate: rate to compare with.
|
||||
:param amount: Amount to use for the calculation. Falls back to trade.amount if not set.
|
||||
:param open_rate: open_rate to use. Defaults to self.open_rate if not provided.
|
||||
:return: profit ratio as float
|
||||
"""
|
||||
close_trade_value = self.calc_close_trade_value(rate)
|
||||
close_trade_value = self.calc_close_trade_value(rate, amount)
|
||||
|
||||
if amount is None or open_rate is None:
|
||||
open_trade_value = self.open_trade_value
|
||||
else:
|
||||
open_trade_value = self._calc_open_trade_value(amount, open_rate)
|
||||
|
||||
short_close_zero = (self.is_short and close_trade_value == 0.0)
|
||||
long_close_zero = (not self.is_short and self.open_trade_value == 0.0)
|
||||
long_close_zero = (not self.is_short and open_trade_value == 0.0)
|
||||
leverage = self.leverage or 1.0
|
||||
|
||||
if (short_close_zero or long_close_zero):
|
||||
return 0.0
|
||||
else:
|
||||
if self.is_short:
|
||||
profit_ratio = (1 - (close_trade_value / self.open_trade_value)) * leverage
|
||||
profit_ratio = (1 - (close_trade_value / open_trade_value)) * leverage
|
||||
else:
|
||||
profit_ratio = ((close_trade_value / self.open_trade_value) - 1) * leverage
|
||||
profit_ratio = ((close_trade_value / open_trade_value) - 1) * leverage
|
||||
|
||||
return float(f"{profit_ratio:.8f}")
|
||||
|
||||
def recalc_trade_from_orders(self):
|
||||
def recalc_trade_from_orders(self, is_closing: bool = False):
|
||||
|
||||
current_amount = 0.0
|
||||
current_stake = 0.0
|
||||
total_stake = 0.0 # Total stake after all buy orders (does not subtract!)
|
||||
avg_price = 0.0
|
||||
close_profit = 0.0
|
||||
close_profit_abs = 0.0
|
||||
|
||||
total_amount = 0.0
|
||||
total_stake = 0.0
|
||||
for o in self.orders:
|
||||
if (o.ft_is_open or
|
||||
(o.ft_order_side != self.entry_side) or
|
||||
(o.status not in NON_OPEN_EXCHANGE_STATES)):
|
||||
if o.ft_is_open or not o.filled:
|
||||
continue
|
||||
|
||||
tmp_amount = o.safe_amount_after_fee
|
||||
tmp_price = o.average or o.price
|
||||
if tmp_amount > 0.0 and tmp_price is not None:
|
||||
total_amount += tmp_amount
|
||||
total_stake += tmp_price * tmp_amount
|
||||
tmp_price = o.safe_price
|
||||
|
||||
if total_amount > 0:
|
||||
is_exit = o.ft_order_side != self.entry_side
|
||||
side = -1 if is_exit else 1
|
||||
if tmp_amount > 0.0 and tmp_price is not None:
|
||||
current_amount += tmp_amount * side
|
||||
price = avg_price if is_exit else tmp_price
|
||||
current_stake += price * tmp_amount * side
|
||||
|
||||
if current_amount > 0:
|
||||
avg_price = current_stake / current_amount
|
||||
|
||||
if is_exit:
|
||||
# Process partial exits
|
||||
exit_rate = o.safe_price
|
||||
exit_amount = o.safe_amount_after_fee
|
||||
profit = self.calc_profit(rate=exit_rate, amount=exit_amount, open_rate=avg_price)
|
||||
close_profit_abs += profit
|
||||
close_profit = self.calc_profit_ratio(
|
||||
exit_rate, amount=exit_amount, open_rate=avg_price)
|
||||
if current_amount <= 0:
|
||||
profit = close_profit_abs
|
||||
else:
|
||||
total_stake = total_stake + self._calc_open_trade_value(tmp_amount, price)
|
||||
|
||||
if close_profit:
|
||||
self.close_profit = close_profit
|
||||
self.realized_profit = close_profit_abs
|
||||
self.close_profit_abs = profit
|
||||
|
||||
if current_amount > 0:
|
||||
# Trade is still open
|
||||
# Leverage not updated, as we don't allow changing leverage through DCA at the moment.
|
||||
self.open_rate = total_stake / total_amount
|
||||
self.stake_amount = total_stake / (self.leverage or 1.0)
|
||||
self.amount = total_amount
|
||||
self.fee_open_cost = self.fee_open * total_stake
|
||||
self.open_rate = current_stake / current_amount
|
||||
self.stake_amount = current_stake / (self.leverage or 1.0)
|
||||
self.amount = current_amount
|
||||
self.fee_open_cost = self.fee_open * current_stake
|
||||
self.recalc_open_trade_value()
|
||||
if self.stop_loss_pct is not None and self.open_rate is not None:
|
||||
self.adjust_stop_loss(self.open_rate, self.stop_loss_pct)
|
||||
elif is_closing and total_stake > 0:
|
||||
# Close profit abs / maximum owned
|
||||
# Fees are considered as they are part of close_profit_abs
|
||||
self.close_profit = (close_profit_abs / total_stake) * self.leverage
|
||||
|
||||
def select_order_by_order_id(self, order_id: str) -> Optional[Order]:
|
||||
"""
|
||||
@@ -846,7 +905,7 @@ class LocalTrade():
|
||||
"""
|
||||
orders = self.orders
|
||||
if order_side:
|
||||
orders = [o for o in self.orders if o.ft_order_side == order_side]
|
||||
orders = [o for o in orders if o.ft_order_side == order_side]
|
||||
if is_open is not None:
|
||||
orders = [o for o in orders if o.ft_is_open == is_open]
|
||||
if len(orders) > 0:
|
||||
@@ -861,9 +920,9 @@ class LocalTrade():
|
||||
:return: array of Order objects
|
||||
"""
|
||||
return [o for o in self.orders if ((o.ft_order_side == order_side) or (order_side is None))
|
||||
and o.ft_is_open is False and
|
||||
(o.filled or 0) > 0 and
|
||||
o.status in NON_OPEN_EXCHANGE_STATES]
|
||||
and o.ft_is_open is False
|
||||
and o.filled
|
||||
and o.status in NON_OPEN_EXCHANGE_STATES]
|
||||
|
||||
def select_filled_or_open_orders(self) -> List['Order']:
|
||||
"""
|
||||
@@ -1028,6 +1087,7 @@ class Trade(_DECL_BASE, LocalTrade):
|
||||
open_trade_value = Column(Float)
|
||||
close_rate: Optional[float] = Column(Float)
|
||||
close_rate_requested = Column(Float)
|
||||
realized_profit = Column(Float, default=0.0)
|
||||
close_profit = Column(Float)
|
||||
close_profit_abs = Column(Float)
|
||||
stake_amount = Column(Float, nullable=False)
|
||||
@@ -1073,6 +1133,7 @@ class Trade(_DECL_BASE, LocalTrade):
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.realized_profit = 0
|
||||
self.recalc_open_trade_value()
|
||||
|
||||
def delete(self) -> None:
|
||||
@@ -1087,6 +1148,10 @@ class Trade(_DECL_BASE, LocalTrade):
|
||||
def commit():
|
||||
Trade.query.session.commit()
|
||||
|
||||
@staticmethod
|
||||
def rollback():
|
||||
Trade.query.session.rollback()
|
||||
|
||||
@staticmethod
|
||||
def get_trades_proxy(*, pair: str = None, is_open: bool = None,
|
||||
open_date: datetime = None, close_date: datetime = None,
|
||||
@@ -1239,7 +1304,7 @@ class Trade(_DECL_BASE, LocalTrade):
|
||||
"""
|
||||
|
||||
filters = [Trade.is_open.is_(False)]
|
||||
if(pair is not None):
|
||||
if (pair is not None):
|
||||
filters.append(Trade.pair == pair)
|
||||
|
||||
enter_tag_perf = Trade.query.with_entities(
|
||||
@@ -1272,7 +1337,7 @@ class Trade(_DECL_BASE, LocalTrade):
|
||||
"""
|
||||
|
||||
filters = [Trade.is_open.is_(False)]
|
||||
if(pair is not None):
|
||||
if (pair is not None):
|
||||
filters.append(Trade.pair == pair)
|
||||
|
||||
sell_tag_perf = Trade.query.with_entities(
|
||||
@@ -1305,7 +1370,7 @@ class Trade(_DECL_BASE, LocalTrade):
|
||||
"""
|
||||
|
||||
filters = [Trade.is_open.is_(False)]
|
||||
if(pair is not None):
|
||||
if (pair is not None):
|
||||
filters.append(Trade.pair == pair)
|
||||
|
||||
mix_tag_perf = Trade.query.with_entities(
|
||||
@@ -1325,7 +1390,7 @@ class Trade(_DECL_BASE, LocalTrade):
|
||||
enter_tag = enter_tag if enter_tag is not None else "Other"
|
||||
exit_reason = exit_reason if exit_reason is not None else "Other"
|
||||
|
||||
if(exit_reason is not None and enter_tag is not None):
|
||||
if (exit_reason is not None and enter_tag is not None):
|
||||
mix_tag = enter_tag + " " + exit_reason
|
||||
i = 0
|
||||
if not any(item["mix_tag"] == mix_tag for item in return_list):
|
||||
|
@@ -8,11 +8,11 @@ from typing import Any, Dict, List, Optional
|
||||
import arrow
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.configuration import PeriodicCache
|
||||
from freqtrade.constants import ListPairsWithTimeframes
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.misc import plural
|
||||
from freqtrade.plugins.pairlist.IPairList import IPairList
|
||||
from freqtrade.util import PeriodicCache
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
@@ -43,12 +43,10 @@ def expand_pairlist(wildcardpl: List[str], available_pairs: List[str],
|
||||
|
||||
|
||||
def dynamic_expand_pairlist(config: dict, markets: list) -> List[str]:
|
||||
if config.get('freqai', {}):
|
||||
expanded_pairs = expand_pairlist(config['pairs'], markets)
|
||||
if config.get('freqai', {}).get('enabled', False):
|
||||
corr_pairlist = config['freqai']['feature_parameters']['include_corr_pairlist']
|
||||
full_pairs = config['pairs'] + [pair for pair in corr_pairlist
|
||||
if pair not in config['pairs']]
|
||||
expanded_pairs = expand_pairlist(full_pairs, markets)
|
||||
else:
|
||||
expanded_pairs = expand_pairlist(config['pairs'], markets)
|
||||
expanded_pairs += [pair for pair in corr_pairlist
|
||||
if pair not in config['pairs']]
|
||||
|
||||
return expanded_pairs
|
||||
|
@@ -49,7 +49,7 @@ class StoplossGuard(IProtection):
|
||||
trades1 = Trade.get_trades_proxy(pair=pair, is_open=False, close_date=look_back_until)
|
||||
trades = [trade for trade in trades1 if (str(trade.exit_reason) in (
|
||||
ExitType.TRAILING_STOP_LOSS.value, ExitType.STOP_LOSS.value,
|
||||
ExitType.STOPLOSS_ON_EXCHANGE.value)
|
||||
ExitType.STOPLOSS_ON_EXCHANGE.value, ExitType.LIQUIDATION.value)
|
||||
and trade.close_profit and trade.close_profit < self._profit_limit)]
|
||||
|
||||
if self._only_per_side:
|
||||
|
@@ -194,11 +194,11 @@ class OrderSchema(BaseModel):
|
||||
pair: str
|
||||
order_id: str
|
||||
status: str
|
||||
remaining: float
|
||||
remaining: Optional[float]
|
||||
amount: float
|
||||
safe_price: float
|
||||
cost: float
|
||||
filled: float
|
||||
filled: Optional[float]
|
||||
ft_order_side: str
|
||||
order_type: str
|
||||
is_open: bool
|
||||
@@ -325,11 +325,13 @@ class ForceEnterPayload(BaseModel):
|
||||
ordertype: Optional[OrderTypeValues]
|
||||
stakeamount: Optional[float]
|
||||
entry_tag: Optional[str]
|
||||
leverage: Optional[float]
|
||||
|
||||
|
||||
class ForceExitPayload(BaseModel):
|
||||
tradeid: str
|
||||
ordertype: Optional[OrderTypeValues]
|
||||
amount: Optional[float]
|
||||
|
||||
|
||||
class BlacklistPayload(BaseModel):
|
||||
|
@@ -37,7 +37,8 @@ logger = logging.getLogger(__name__)
|
||||
# 2.14: Add entry/exit orders to trade response
|
||||
# 2.15: Add backtest history endpoints
|
||||
# 2.16: Additional daily metrics
|
||||
API_VERSION = 2.16
|
||||
# 2.17: Forceentry - leverage, partial force_exit
|
||||
API_VERSION = 2.17
|
||||
|
||||
# Public API, requires no auth.
|
||||
router_public = APIRouter()
|
||||
@@ -142,12 +143,11 @@ def show_config(rpc: Optional[RPC] = Depends(get_rpc_optional), config=Depends(g
|
||||
@router.post('/forcebuy', response_model=ForceEnterResponse, tags=['trading'])
|
||||
def force_entry(payload: ForceEnterPayload, rpc: RPC = Depends(get_rpc)):
|
||||
ordertype = payload.ordertype.value if payload.ordertype else None
|
||||
stake_amount = payload.stakeamount if payload.stakeamount else None
|
||||
entry_tag = payload.entry_tag if payload.entry_tag else 'force_entry'
|
||||
|
||||
trade = rpc._rpc_force_entry(payload.pair, payload.price, order_side=payload.side,
|
||||
order_type=ordertype, stake_amount=stake_amount,
|
||||
enter_tag=entry_tag)
|
||||
order_type=ordertype, stake_amount=payload.stakeamount,
|
||||
enter_tag=payload.entry_tag or 'force_entry',
|
||||
leverage=payload.leverage)
|
||||
|
||||
if trade:
|
||||
return ForceEnterResponse.parse_obj(trade.to_json())
|
||||
@@ -161,7 +161,7 @@ def force_entry(payload: ForceEnterPayload, rpc: RPC = Depends(get_rpc)):
|
||||
@router.post('/forcesell', response_model=ResultMsg, tags=['trading'])
|
||||
def forceexit(payload: ForceExitPayload, rpc: RPC = Depends(get_rpc)):
|
||||
ordertype = payload.ordertype.value if payload.ordertype else None
|
||||
return rpc._rpc_force_exit(payload.tradeid, ordertype)
|
||||
return rpc._rpc_force_exit(payload.tradeid, ordertype, amount=payload.amount)
|
||||
|
||||
|
||||
@router.get('/blacklist', response_model=BlacklistResponse, tags=['info', 'pairlist'])
|
||||
|
@@ -18,9 +18,9 @@ def get_rpc_optional() -> Optional[RPC]:
|
||||
def get_rpc() -> Optional[Iterator[RPC]]:
|
||||
_rpc = get_rpc_optional()
|
||||
if _rpc:
|
||||
Trade.query.session.rollback()
|
||||
Trade.rollback()
|
||||
yield _rpc
|
||||
Trade.query.session.rollback()
|
||||
Trade.rollback()
|
||||
else:
|
||||
raise RPCException('Bot is not in the correct state')
|
||||
|
||||
|
@@ -1,4 +1,5 @@
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
from fastapi import APIRouter
|
||||
from fastapi.exceptions import HTTPException
|
||||
@@ -50,8 +51,12 @@ async def index_html(rest_of_path: str):
|
||||
filename = uibase / rest_of_path
|
||||
# It's security relevant to check "relative_to".
|
||||
# Without this, Directory-traversal is possible.
|
||||
media_type: Optional[str] = None
|
||||
if filename.suffix == '.js':
|
||||
# Force text/javascript for .js files - Circumvent faulty system configuration
|
||||
media_type = 'application/javascript'
|
||||
if filename.is_file() and is_relative_to(filename, uibase):
|
||||
return FileResponse(str(filename))
|
||||
return FileResponse(str(filename), media_type=media_type)
|
||||
|
||||
index_file = uibase / 'index.html'
|
||||
if not index_file.is_file():
|
||||
|
@@ -12,6 +12,7 @@ from pycoingecko import CoinGeckoAPI
|
||||
from requests.exceptions import RequestException
|
||||
|
||||
from freqtrade.constants import SUPPORTED_FIAT
|
||||
from freqtrade.mixins.logging_mixin import LoggingMixin
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -27,7 +28,7 @@ coingecko_mapping = {
|
||||
}
|
||||
|
||||
|
||||
class CryptoToFiatConverter:
|
||||
class CryptoToFiatConverter(LoggingMixin):
|
||||
"""
|
||||
Main class to initiate Crypto to FIAT.
|
||||
This object contains a list of pair Crypto, FIAT
|
||||
@@ -54,6 +55,7 @@ class CryptoToFiatConverter:
|
||||
# Timeout: 6h
|
||||
self._pair_price: TTLCache = TTLCache(maxsize=500, ttl=6 * 60 * 60)
|
||||
|
||||
LoggingMixin.__init__(self, logger, 3600)
|
||||
self._load_cryptomap()
|
||||
|
||||
def _load_cryptomap(self) -> None:
|
||||
@@ -177,7 +179,9 @@ class CryptoToFiatConverter:
|
||||
|
||||
if not _gekko_id:
|
||||
# return 0 for unsupported stake currencies (fiat-convert should not break the bot)
|
||||
logger.warning("unsupported crypto-symbol %s - returning 0.0", crypto_symbol)
|
||||
self.log_once(
|
||||
f"unsupported crypto-symbol {crypto_symbol.upper()} - returning 0.0",
|
||||
logger.warning)
|
||||
return 0.0
|
||||
|
||||
try:
|
||||
|
@@ -179,8 +179,10 @@ class RPC:
|
||||
else:
|
||||
current_rate = trade.close_rate
|
||||
if len(trade.select_filled_orders(trade.entry_side)) > 0:
|
||||
current_profit = trade.calc_profit_ratio(current_rate)
|
||||
current_profit_abs = trade.calc_profit(current_rate)
|
||||
current_profit = trade.calc_profit_ratio(
|
||||
current_rate) if not isnan(current_rate) else NAN
|
||||
current_profit_abs = trade.calc_profit(
|
||||
current_rate) if not isnan(current_rate) else NAN
|
||||
current_profit_fiat: Optional[float] = None
|
||||
# Calculate fiat profit
|
||||
if self._fiat_converter:
|
||||
@@ -201,7 +203,7 @@ class RPC:
|
||||
|
||||
trade_dict = trade.to_json()
|
||||
trade_dict.update(dict(
|
||||
close_profit=trade.close_profit if trade.close_profit is not None else None,
|
||||
close_profit=trade.close_profit if not trade.is_open else None,
|
||||
current_rate=current_rate,
|
||||
current_profit=current_profit, # Deprecated
|
||||
current_profit_pct=round(current_profit * 100, 2), # Deprecated
|
||||
@@ -239,12 +241,15 @@ class RPC:
|
||||
trade.pair, side='exit', is_short=trade.is_short, refresh=False)
|
||||
except (PricingError, ExchangeError):
|
||||
current_rate = NAN
|
||||
if len(trade.select_filled_orders(trade.entry_side)) > 0:
|
||||
trade_profit = trade.calc_profit(current_rate)
|
||||
profit_str = f'{trade.calc_profit_ratio(current_rate):.2%}'
|
||||
trade_profit = NAN
|
||||
profit_str = f'{NAN:.2%}'
|
||||
else:
|
||||
trade_profit = 0.0
|
||||
profit_str = f'{0.0:.2f}'
|
||||
if trade.nr_of_successful_entries > 0:
|
||||
trade_profit = trade.calc_profit(current_rate)
|
||||
profit_str = f'{trade.calc_profit_ratio(current_rate):.2%}'
|
||||
else:
|
||||
trade_profit = 0.0
|
||||
profit_str = f'{0.0:.2f}'
|
||||
direction_str = ('S' if trade.is_short else 'L') if nonspot else ''
|
||||
if self._fiat_converter:
|
||||
fiat_profit = self._fiat_converter.convert_amount(
|
||||
@@ -424,21 +429,20 @@ class RPC:
|
||||
for trade in trades:
|
||||
current_rate: float = 0.0
|
||||
|
||||
if not trade.open_rate:
|
||||
continue
|
||||
if trade.close_date:
|
||||
durations.append((trade.close_date - trade.open_date).total_seconds())
|
||||
|
||||
if not trade.is_open:
|
||||
profit_ratio = trade.close_profit
|
||||
profit_closed_coin.append(trade.close_profit_abs)
|
||||
profit_abs = trade.close_profit_abs
|
||||
profit_closed_coin.append(profit_abs)
|
||||
profit_closed_ratio.append(profit_ratio)
|
||||
if trade.close_profit >= 0:
|
||||
winning_trades += 1
|
||||
winning_profit += trade.close_profit_abs
|
||||
winning_profit += profit_abs
|
||||
else:
|
||||
losing_trades += 1
|
||||
losing_profit += trade.close_profit_abs
|
||||
losing_profit += profit_abs
|
||||
else:
|
||||
# Get current rate
|
||||
try:
|
||||
@@ -446,11 +450,15 @@ class RPC:
|
||||
trade.pair, side='exit', is_short=trade.is_short, refresh=False)
|
||||
except (PricingError, ExchangeError):
|
||||
current_rate = NAN
|
||||
profit_ratio = trade.calc_profit_ratio(rate=current_rate)
|
||||
if isnan(current_rate):
|
||||
profit_ratio = NAN
|
||||
profit_abs = NAN
|
||||
else:
|
||||
profit_ratio = trade.calc_profit_ratio(rate=current_rate)
|
||||
profit_abs = trade.calc_profit(
|
||||
rate=trade.close_rate or current_rate) + trade.realized_profit
|
||||
|
||||
profit_all_coin.append(
|
||||
trade.calc_profit(rate=trade.close_rate or current_rate)
|
||||
)
|
||||
profit_all_coin.append(profit_abs)
|
||||
profit_all_ratio.append(profit_ratio)
|
||||
|
||||
best_pair = Trade.get_best_pair(start_date)
|
||||
@@ -659,36 +667,48 @@ class RPC:
|
||||
|
||||
return {'status': 'No more buy will occur from now. Run /reload_config to reset.'}
|
||||
|
||||
def _rpc_force_exit(self, trade_id: str, ordertype: Optional[str] = None) -> Dict[str, str]:
|
||||
def __exec_force_exit(self, trade: Trade, ordertype: Optional[str],
|
||||
amount: Optional[float] = None) -> None:
|
||||
# Check if there is there is an open order
|
||||
fully_canceled = False
|
||||
if trade.open_order_id:
|
||||
order = self._freqtrade.exchange.fetch_order(trade.open_order_id, trade.pair)
|
||||
|
||||
if order['side'] == trade.entry_side:
|
||||
fully_canceled = self._freqtrade.handle_cancel_enter(
|
||||
trade, order, CANCEL_REASON['FORCE_EXIT'])
|
||||
|
||||
if order['side'] == trade.exit_side:
|
||||
# Cancel order - so it is placed anew with a fresh price.
|
||||
self._freqtrade.handle_cancel_exit(trade, order, CANCEL_REASON['FORCE_EXIT'])
|
||||
|
||||
if not fully_canceled:
|
||||
# Get current rate and execute sell
|
||||
current_rate = self._freqtrade.exchange.get_rate(
|
||||
trade.pair, side='exit', is_short=trade.is_short, refresh=True)
|
||||
exit_check = ExitCheckTuple(exit_type=ExitType.FORCE_EXIT)
|
||||
order_type = ordertype or self._freqtrade.strategy.order_types.get(
|
||||
"force_exit", self._freqtrade.strategy.order_types["exit"])
|
||||
sub_amount: Optional[float] = None
|
||||
if amount and amount < trade.amount:
|
||||
# Partial exit ...
|
||||
min_exit_stake = self._freqtrade.exchange.get_min_pair_stake_amount(
|
||||
trade.pair, current_rate, trade.stop_loss_pct)
|
||||
remaining = (trade.amount - amount) * current_rate
|
||||
if remaining < min_exit_stake:
|
||||
raise RPCException(f'Remaining amount of {remaining} would be too small.')
|
||||
sub_amount = amount
|
||||
|
||||
self._freqtrade.execute_trade_exit(
|
||||
trade, current_rate, exit_check, ordertype=order_type,
|
||||
sub_trade_amt=sub_amount)
|
||||
|
||||
def _rpc_force_exit(self, trade_id: str, ordertype: Optional[str] = None, *,
|
||||
amount: Optional[float] = None) -> Dict[str, str]:
|
||||
"""
|
||||
Handler for forceexit <id>.
|
||||
Sells the given trade at current price
|
||||
"""
|
||||
def _exec_force_exit(trade: Trade) -> None:
|
||||
# Check if there is there is an open order
|
||||
fully_canceled = False
|
||||
if trade.open_order_id:
|
||||
order = self._freqtrade.exchange.fetch_order(trade.open_order_id, trade.pair)
|
||||
|
||||
if order['side'] == trade.entry_side:
|
||||
fully_canceled = self._freqtrade.handle_cancel_enter(
|
||||
trade, order, CANCEL_REASON['FORCE_EXIT'])
|
||||
|
||||
if order['side'] == trade.exit_side:
|
||||
# Cancel order - so it is placed anew with a fresh price.
|
||||
self._freqtrade.handle_cancel_exit(trade, order, CANCEL_REASON['FORCE_EXIT'])
|
||||
|
||||
if not fully_canceled:
|
||||
# Get current rate and execute sell
|
||||
current_rate = self._freqtrade.exchange.get_rate(
|
||||
trade.pair, side='exit', is_short=trade.is_short, refresh=True)
|
||||
exit_check = ExitCheckTuple(exit_type=ExitType.FORCE_EXIT)
|
||||
order_type = ordertype or self._freqtrade.strategy.order_types.get(
|
||||
"force_exit", self._freqtrade.strategy.order_types["exit"])
|
||||
|
||||
self._freqtrade.execute_trade_exit(
|
||||
trade, current_rate, exit_check, ordertype=order_type)
|
||||
# ---- EOF def _exec_forcesell ----
|
||||
|
||||
if self._freqtrade.state != State.RUNNING:
|
||||
raise RPCException('trader is not running')
|
||||
@@ -697,7 +717,7 @@ class RPC:
|
||||
if trade_id == 'all':
|
||||
# Execute sell for all open orders
|
||||
for trade in Trade.get_open_trades():
|
||||
_exec_force_exit(trade)
|
||||
self.__exec_force_exit(trade, ordertype)
|
||||
Trade.commit()
|
||||
self._freqtrade.wallets.update()
|
||||
return {'result': 'Created sell orders for all open trades.'}
|
||||
@@ -710,7 +730,7 @@ class RPC:
|
||||
logger.warning('force_exit: Invalid argument received')
|
||||
raise RPCException('invalid argument')
|
||||
|
||||
_exec_force_exit(trade)
|
||||
self.__exec_force_exit(trade, ordertype, amount)
|
||||
Trade.commit()
|
||||
self._freqtrade.wallets.update()
|
||||
return {'result': f'Created sell order for trade {trade_id}.'}
|
||||
@@ -719,7 +739,8 @@ class RPC:
|
||||
order_type: Optional[str] = None,
|
||||
order_side: SignalDirection = SignalDirection.LONG,
|
||||
stake_amount: Optional[float] = None,
|
||||
enter_tag: Optional[str] = 'force_entry') -> Optional[Trade]:
|
||||
enter_tag: Optional[str] = 'force_entry',
|
||||
leverage: Optional[float] = None) -> Optional[Trade]:
|
||||
"""
|
||||
Handler for forcebuy <asset> <price>
|
||||
Buys a pair trade at the given or current price
|
||||
@@ -761,6 +782,7 @@ class RPC:
|
||||
ordertype=order_type, trade=trade,
|
||||
is_short=is_short,
|
||||
enter_tag=enter_tag,
|
||||
leverage_=leverage,
|
||||
):
|
||||
Trade.commit()
|
||||
trade = Trade.get_trades([Trade.is_open.is_(True), Trade.pair == pair]).first()
|
||||
@@ -875,7 +897,7 @@ class RPC:
|
||||
lock.active = False
|
||||
lock.lock_end_time = datetime.now(timezone.utc)
|
||||
|
||||
PairLock.query.session.commit()
|
||||
Trade.commit()
|
||||
|
||||
return self._rpc_locks()
|
||||
|
||||
|
@@ -2,6 +2,7 @@
|
||||
This module contains class to manage RPC communications (Telegram, API, ...)
|
||||
"""
|
||||
import logging
|
||||
from collections import deque
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from freqtrade.enums import RPCMessageType
|
||||
@@ -77,6 +78,17 @@ class RPCManager:
|
||||
except NotImplementedError:
|
||||
logger.error(f"Message type '{msg['type']}' not implemented by handler {mod.name}.")
|
||||
|
||||
def process_msg_queue(self, queue: deque) -> None:
|
||||
"""
|
||||
Process all messages in the queue.
|
||||
"""
|
||||
while queue:
|
||||
msg = queue.popleft()
|
||||
self.send_msg({
|
||||
'type': RPCMessageType.STRATEGY_MSG,
|
||||
'msg': msg,
|
||||
})
|
||||
|
||||
def startup_messages(self, config: Dict[str, Any], pairlist, protections) -> None:
|
||||
if config['dry_run']:
|
||||
self.send_msg({
|
||||
|
@@ -16,8 +16,8 @@ from typing import Any, Callable, Dict, List, Optional, Union
|
||||
|
||||
import arrow
|
||||
from tabulate import tabulate
|
||||
from telegram import (CallbackQuery, InlineKeyboardButton, InlineKeyboardMarkup, KeyboardButton,
|
||||
ParseMode, ReplyKeyboardMarkup, Update)
|
||||
from telegram import (MAX_MESSAGE_LENGTH, CallbackQuery, InlineKeyboardButton, InlineKeyboardMarkup,
|
||||
KeyboardButton, ParseMode, ReplyKeyboardMarkup, Update)
|
||||
from telegram.error import BadRequest, NetworkError, TelegramError
|
||||
from telegram.ext import CallbackContext, CallbackQueryHandler, CommandHandler, Updater
|
||||
from telegram.utils.helpers import escape_markdown
|
||||
@@ -35,8 +35,6 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
logger.debug('Included module rpc.telegram ...')
|
||||
|
||||
MAX_TELEGRAM_MESSAGE_LENGTH = 4096
|
||||
|
||||
|
||||
@dataclass
|
||||
class TimeunitMappings:
|
||||
@@ -72,7 +70,7 @@ def authorized_only(command_handler: Callable[..., None]) -> Callable[..., Any]:
|
||||
)
|
||||
return wrapper
|
||||
# Rollback session to avoid getting data stored in a transaction.
|
||||
Trade.query.session.rollback()
|
||||
Trade.rollback()
|
||||
logger.debug(
|
||||
'Executing handler: %s for chat_id: %s',
|
||||
command_handler.__name__,
|
||||
@@ -274,7 +272,7 @@ class Telegram(RPCHandler):
|
||||
f"{emoji} *{self._exchange_from_msg(msg)}:*"
|
||||
f" {entry_side['entered'] if is_fill else entry_side['enter']} {msg['pair']}"
|
||||
f" (#{msg['trade_id']})\n"
|
||||
)
|
||||
)
|
||||
message += self._add_analyzed_candle(msg['pair'])
|
||||
message += f"*Enter Tag:* `{msg['enter_tag']}`\n" if msg.get('enter_tag') else ""
|
||||
message += f"*Amount:* `{msg['amount']:.8f}`\n"
|
||||
@@ -315,20 +313,36 @@ class Telegram(RPCHandler):
|
||||
msg['profit_fiat'] = self._rpc._fiat_converter.convert_amount(
|
||||
msg['profit_amount'], msg['stake_currency'], msg['fiat_currency'])
|
||||
msg['profit_extra'] = (
|
||||
f" ({msg['gain']}: {msg['profit_amount']:.8f} {msg['stake_currency']}"
|
||||
f" / {msg['profit_fiat']:.3f} {msg['fiat_currency']})")
|
||||
f" / {msg['profit_fiat']:.3f} {msg['fiat_currency']}")
|
||||
else:
|
||||
msg['profit_extra'] = ''
|
||||
msg['profit_extra'] = (
|
||||
f" ({msg['gain']}: {msg['profit_amount']:.8f} {msg['stake_currency']}"
|
||||
f"{msg['profit_extra']})")
|
||||
is_fill = msg['type'] == RPCMessageType.EXIT_FILL
|
||||
is_sub_trade = msg.get('sub_trade')
|
||||
is_sub_profit = msg['profit_amount'] != msg.get('cumulative_profit')
|
||||
profit_prefix = ('Sub ' if is_sub_profit
|
||||
else 'Cumulative ') if is_sub_trade else ''
|
||||
cp_extra = ''
|
||||
if is_sub_profit and is_sub_trade:
|
||||
if self._rpc._fiat_converter:
|
||||
cp_fiat = self._rpc._fiat_converter.convert_amount(
|
||||
msg['cumulative_profit'], msg['stake_currency'], msg['fiat_currency'])
|
||||
cp_extra = f" / {cp_fiat:.3f} {msg['fiat_currency']}"
|
||||
else:
|
||||
cp_extra = ''
|
||||
cp_extra = f"*Cumulative Profit:* (`{msg['cumulative_profit']:.8f} " \
|
||||
f"{msg['stake_currency']}{cp_extra}`)\n"
|
||||
message = (
|
||||
f"{msg['emoji']} *{self._exchange_from_msg(msg)}:* "
|
||||
f"{'Exited' if is_fill else 'Exiting'} {msg['pair']} (#{msg['trade_id']})\n"
|
||||
f"{self._add_analyzed_candle(msg['pair'])}"
|
||||
f"*{'Profit' if is_fill else 'Unrealized Profit'}:* "
|
||||
f"*{f'{profit_prefix}Profit' if is_fill else f'Unrealized {profit_prefix}Profit'}:* "
|
||||
f"`{msg['profit_ratio']:.2%}{msg['profit_extra']}`\n"
|
||||
f"{cp_extra}"
|
||||
f"*Enter Tag:* `{msg['enter_tag']}`\n"
|
||||
f"*Exit Reason:* `{msg['exit_reason']}`\n"
|
||||
f"*Duration:* `{msg['duration']} ({msg['duration_min']:.1f} min)`\n"
|
||||
f"*Direction:* `{msg['direction']}`\n"
|
||||
f"{msg['leverage_text']}"
|
||||
f"*Amount:* `{msg['amount']:.8f}`\n"
|
||||
@@ -336,11 +350,25 @@ class Telegram(RPCHandler):
|
||||
)
|
||||
if msg['type'] == RPCMessageType.EXIT:
|
||||
message += (f"*Current Rate:* `{msg['current_rate']:.8f}`\n"
|
||||
f"*Close Rate:* `{msg['limit']:.8f}`")
|
||||
f"*Exit Rate:* `{msg['limit']:.8f}`")
|
||||
|
||||
elif msg['type'] == RPCMessageType.EXIT_FILL:
|
||||
message += f"*Close Rate:* `{msg['close_rate']:.8f}`"
|
||||
message += f"*Exit Rate:* `{msg['close_rate']:.8f}`"
|
||||
if msg.get('sub_trade'):
|
||||
if self._rpc._fiat_converter:
|
||||
msg['stake_amount_fiat'] = self._rpc._fiat_converter.convert_amount(
|
||||
msg['stake_amount'], msg['stake_currency'], msg['fiat_currency'])
|
||||
else:
|
||||
msg['stake_amount_fiat'] = 0
|
||||
rem = round_coin_value(msg['stake_amount'], msg['stake_currency'])
|
||||
message += f"\n*Remaining:* `({rem}"
|
||||
|
||||
if msg.get('fiat_currency', None):
|
||||
message += f", {round_coin_value(msg['stake_amount_fiat'], msg['fiat_currency'])}"
|
||||
|
||||
message += ")`"
|
||||
else:
|
||||
message += f"\n*Duration:* `{msg['duration']} ({msg['duration_min']:.1f} min)`"
|
||||
return message
|
||||
|
||||
def compose_message(self, msg: Dict[str, Any], msg_type: RPCMessageType) -> str:
|
||||
@@ -353,7 +381,8 @@ class Telegram(RPCHandler):
|
||||
elif msg_type in (RPCMessageType.ENTRY_CANCEL, RPCMessageType.EXIT_CANCEL):
|
||||
msg['message_side'] = 'enter' if msg_type in [RPCMessageType.ENTRY_CANCEL] else 'exit'
|
||||
message = (f"\N{WARNING SIGN} *{self._exchange_from_msg(msg)}:* "
|
||||
f"Cancelling {msg['message_side']} Order for {msg['pair']} "
|
||||
f"Cancelling {'partial ' if msg.get('sub_trade') else ''}"
|
||||
f"{msg['message_side']} Order for {msg['pair']} "
|
||||
f"(#{msg['trade_id']}). Reason: {msg['reason']}.")
|
||||
|
||||
elif msg_type == RPCMessageType.PROTECTION_TRIGGER:
|
||||
@@ -376,7 +405,8 @@ class Telegram(RPCHandler):
|
||||
|
||||
elif msg_type == RPCMessageType.STARTUP:
|
||||
message = f"{msg['status']}"
|
||||
|
||||
elif msg_type == RPCMessageType.STRATEGY_MSG:
|
||||
message = f"{msg['msg']}"
|
||||
else:
|
||||
raise NotImplementedError(f"Unknown message type: {msg_type}")
|
||||
return message
|
||||
@@ -423,54 +453,63 @@ class Telegram(RPCHandler):
|
||||
else:
|
||||
return "\N{CROSS MARK}"
|
||||
|
||||
def _prepare_entry_details(self, filled_orders: List, quote_currency: str, is_open: bool):
|
||||
def _prepare_order_details(self, filled_orders: List, quote_currency: str, is_open: bool):
|
||||
"""
|
||||
Prepare details of trade with entry adjustment enabled
|
||||
"""
|
||||
lines: List[str] = []
|
||||
lines_detail: List[str] = []
|
||||
if len(filled_orders) > 0:
|
||||
first_avg = filled_orders[0]["safe_price"]
|
||||
|
||||
for x, order in enumerate(filled_orders):
|
||||
if not order['ft_is_entry'] or order['is_open'] is True:
|
||||
lines: List[str] = []
|
||||
if order['is_open'] is True:
|
||||
continue
|
||||
wording = 'Entry' if order['ft_is_entry'] else 'Exit'
|
||||
|
||||
cur_entry_datetime = arrow.get(order["order_filled_date"])
|
||||
cur_entry_amount = order["amount"]
|
||||
cur_entry_amount = order["filled"] or order["amount"]
|
||||
cur_entry_average = order["safe_price"]
|
||||
lines.append(" ")
|
||||
if x == 0:
|
||||
lines.append(f"*Entry #{x+1}:*")
|
||||
lines.append(f"*{wording} #{x+1}:*")
|
||||
lines.append(
|
||||
f"*Entry Amount:* {cur_entry_amount} ({order['cost']:.8f} {quote_currency})")
|
||||
lines.append(f"*Average Entry Price:* {cur_entry_average}")
|
||||
f"*Amount:* {cur_entry_amount} ({order['cost']:.8f} {quote_currency})")
|
||||
lines.append(f"*Average Price:* {cur_entry_average}")
|
||||
else:
|
||||
sumA = 0
|
||||
sumB = 0
|
||||
for y in range(x):
|
||||
sumA += (filled_orders[y]["amount"] * filled_orders[y]["safe_price"])
|
||||
sumB += filled_orders[y]["amount"]
|
||||
amount = filled_orders[y]["filled"] or filled_orders[y]["amount"]
|
||||
sumA += amount * filled_orders[y]["safe_price"]
|
||||
sumB += amount
|
||||
prev_avg_price = sumA / sumB
|
||||
# TODO: This calculation ignores fees.
|
||||
price_to_1st_entry = ((cur_entry_average - first_avg) / first_avg)
|
||||
minus_on_entry = 0
|
||||
if prev_avg_price:
|
||||
minus_on_entry = (cur_entry_average - prev_avg_price) / prev_avg_price
|
||||
|
||||
dur_entry = cur_entry_datetime - arrow.get(
|
||||
filled_orders[x - 1]["order_filled_date"])
|
||||
days = dur_entry.days
|
||||
hours, remainder = divmod(dur_entry.seconds, 3600)
|
||||
minutes, seconds = divmod(remainder, 60)
|
||||
lines.append(f"*Entry #{x+1}:* at {minus_on_entry:.2%} avg profit")
|
||||
lines.append(f"*{wording} #{x+1}:* at {minus_on_entry:.2%} avg profit")
|
||||
if is_open:
|
||||
lines.append("({})".format(cur_entry_datetime
|
||||
.humanize(granularity=["day", "hour", "minute"])))
|
||||
lines.append(
|
||||
f"*Entry Amount:* {cur_entry_amount} ({order['cost']:.8f} {quote_currency})")
|
||||
lines.append(f"*Average Entry Price:* {cur_entry_average} "
|
||||
f"*Amount:* {cur_entry_amount} ({order['cost']:.8f} {quote_currency})")
|
||||
lines.append(f"*Average {wording} Price:* {cur_entry_average} "
|
||||
f"({price_to_1st_entry:.2%} from 1st entry rate)")
|
||||
lines.append(f"*Order filled at:* {order['order_filled_date']}")
|
||||
lines.append(f"({days}d {hours}h {minutes}m {seconds}s from previous entry)")
|
||||
return lines
|
||||
lines.append(f"*Order filled:* {order['order_filled_date']}")
|
||||
|
||||
# TODO: is this really useful?
|
||||
# dur_entry = cur_entry_datetime - arrow.get(
|
||||
# filled_orders[x - 1]["order_filled_date"])
|
||||
# days = dur_entry.days
|
||||
# hours, remainder = divmod(dur_entry.seconds, 3600)
|
||||
# minutes, seconds = divmod(remainder, 60)
|
||||
# lines.append(
|
||||
# f"({days}d {hours}h {minutes}m {seconds}s from previous {wording.lower()})")
|
||||
lines_detail.append("\n".join(lines))
|
||||
return lines_detail
|
||||
|
||||
@authorized_only
|
||||
def _status(self, update: Update, context: CallbackContext) -> None:
|
||||
@@ -485,7 +524,14 @@ class Telegram(RPCHandler):
|
||||
if context.args and 'table' in context.args:
|
||||
self._status_table(update, context)
|
||||
return
|
||||
else:
|
||||
self._status_msg(update, context)
|
||||
|
||||
def _status_msg(self, update: Update, context: CallbackContext) -> None:
|
||||
"""
|
||||
handler for `/status` and `/status <id>`.
|
||||
|
||||
"""
|
||||
try:
|
||||
|
||||
# Check if there's at least one numerical ID provided.
|
||||
@@ -497,14 +543,13 @@ class Telegram(RPCHandler):
|
||||
results = self._rpc._rpc_trade_status(trade_ids=trade_ids)
|
||||
position_adjust = self._config.get('position_adjustment_enable', False)
|
||||
max_entries = self._config.get('max_entry_position_adjustment', -1)
|
||||
messages = []
|
||||
for r in results:
|
||||
r['open_date_hum'] = arrow.get(r['open_date']).humanize()
|
||||
r['num_entries'] = len([o for o in r['orders'] if o['ft_is_entry']])
|
||||
r['exit_reason'] = r.get('exit_reason', "")
|
||||
lines = [
|
||||
"*Trade ID:* `{trade_id}`" +
|
||||
("` (since {open_date_hum})`" if r['is_open'] else ""),
|
||||
(" `(since {open_date_hum})`" if r['is_open'] else ""),
|
||||
"*Current Pair:* {pair}",
|
||||
"*Direction:* " + ("`Short`" if r.get('is_short') else "`Long`"),
|
||||
"*Leverage:* `{leverage}`" if r.get('leverage') else "",
|
||||
@@ -528,6 +573,8 @@ class Telegram(RPCHandler):
|
||||
])
|
||||
|
||||
if r['is_open']:
|
||||
if r.get('realized_profit'):
|
||||
lines.append("*Realized Profit:* `{realized_profit:.8f}`")
|
||||
if (r['stop_loss_abs'] != r['initial_stop_loss_abs']
|
||||
and r['initial_stop_loss_ratio'] is not None):
|
||||
# Adding initial stoploss only if it is different from stoploss
|
||||
@@ -540,24 +587,34 @@ class Telegram(RPCHandler):
|
||||
lines.append("*Stoploss distance:* `{stoploss_current_dist:.8f}` "
|
||||
"`({stoploss_current_dist_ratio:.2%})`")
|
||||
if r['open_order']:
|
||||
if r['exit_order_status']:
|
||||
lines.append("*Open Order:* `{open_order}` - `{exit_order_status}`")
|
||||
else:
|
||||
lines.append("*Open Order:* `{open_order}`")
|
||||
lines.append(
|
||||
"*Open Order:* `{open_order}`"
|
||||
+ "- `{exit_order_status}`" if r['exit_order_status'] else "")
|
||||
|
||||
lines_detail = self._prepare_entry_details(
|
||||
lines_detail = self._prepare_order_details(
|
||||
r['orders'], r['quote_currency'], r['is_open'])
|
||||
lines.extend(lines_detail if lines_detail else "")
|
||||
|
||||
# Filter empty lines using list-comprehension
|
||||
messages.append("\n".join([line for line in lines if line]).format(**r))
|
||||
|
||||
for msg in messages:
|
||||
self._send_msg(msg)
|
||||
self.__send_status_msg(lines, r)
|
||||
|
||||
except RPCException as e:
|
||||
self._send_msg(str(e))
|
||||
|
||||
def __send_status_msg(self, lines: List[str], r: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Send status message.
|
||||
"""
|
||||
msg = ''
|
||||
|
||||
for line in lines:
|
||||
if line:
|
||||
if (len(msg) + len(line) + 1) < MAX_MESSAGE_LENGTH:
|
||||
msg += line + '\n'
|
||||
else:
|
||||
self._send_msg(msg.format(**r))
|
||||
msg = "*Trade ID:* `{trade_id}` - continued\n" + line + '\n'
|
||||
|
||||
self._send_msg(msg.format(**r))
|
||||
|
||||
@authorized_only
|
||||
def _status_table(self, update: Update, context: CallbackContext) -> None:
|
||||
"""
|
||||
@@ -860,7 +917,7 @@ class Telegram(RPCHandler):
|
||||
total_dust_currencies += 1
|
||||
|
||||
# Handle overflowing message length
|
||||
if len(output + curr_output) >= MAX_TELEGRAM_MESSAGE_LENGTH:
|
||||
if len(output + curr_output) >= MAX_MESSAGE_LENGTH:
|
||||
self._send_msg(output)
|
||||
output = curr_output
|
||||
else:
|
||||
@@ -1123,7 +1180,7 @@ class Telegram(RPCHandler):
|
||||
f"({trade['profit_ratio']:.2%}) "
|
||||
f"({trade['count']})</code>\n")
|
||||
|
||||
if len(output + stat_line) >= MAX_TELEGRAM_MESSAGE_LENGTH:
|
||||
if len(output + stat_line) >= MAX_MESSAGE_LENGTH:
|
||||
self._send_msg(output, parse_mode=ParseMode.HTML)
|
||||
output = stat_line
|
||||
else:
|
||||
@@ -1158,7 +1215,7 @@ class Telegram(RPCHandler):
|
||||
f"({trade['profit_ratio']:.2%}) "
|
||||
f"({trade['count']})</code>\n")
|
||||
|
||||
if len(output + stat_line) >= MAX_TELEGRAM_MESSAGE_LENGTH:
|
||||
if len(output + stat_line) >= MAX_MESSAGE_LENGTH:
|
||||
self._send_msg(output, parse_mode=ParseMode.HTML)
|
||||
output = stat_line
|
||||
else:
|
||||
@@ -1193,7 +1250,7 @@ class Telegram(RPCHandler):
|
||||
f"({trade['profit_ratio']:.2%}) "
|
||||
f"({trade['count']})</code>\n")
|
||||
|
||||
if len(output + stat_line) >= MAX_TELEGRAM_MESSAGE_LENGTH:
|
||||
if len(output + stat_line) >= MAX_MESSAGE_LENGTH:
|
||||
self._send_msg(output, parse_mode=ParseMode.HTML)
|
||||
output = stat_line
|
||||
else:
|
||||
@@ -1228,7 +1285,7 @@ class Telegram(RPCHandler):
|
||||
f"({trade['profit']:.2%}) "
|
||||
f"({trade['count']})</code>\n")
|
||||
|
||||
if len(output + stat_line) >= MAX_TELEGRAM_MESSAGE_LENGTH:
|
||||
if len(output + stat_line) >= MAX_MESSAGE_LENGTH:
|
||||
self._send_msg(output, parse_mode=ParseMode.HTML)
|
||||
output = stat_line
|
||||
else:
|
||||
@@ -1367,7 +1424,7 @@ class Telegram(RPCHandler):
|
||||
escape_markdown(logrec[2], version=2),
|
||||
escape_markdown(logrec[3], version=2),
|
||||
escape_markdown(logrec[4], version=2))
|
||||
if len(msgs + msg) + 10 >= MAX_TELEGRAM_MESSAGE_LENGTH:
|
||||
if len(msgs + msg) + 10 >= MAX_MESSAGE_LENGTH:
|
||||
# Send message immediately if it would become too long
|
||||
self._send_msg(msgs, parse_mode=ParseMode.MARKDOWN_V2)
|
||||
msgs = msg + '\n'
|
||||
|
@@ -146,11 +146,19 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
self._ft_informative.append((informative_data, cls_method))
|
||||
|
||||
def load_freqAI_model(self) -> None:
|
||||
if self.config.get('freqai', None):
|
||||
if self.config.get('freqai', {}).get('enabled', False):
|
||||
# Import here to avoid importing this if freqAI is disabled
|
||||
from freqtrade.resolvers.freqaimodel_resolver import FreqaiModelResolver
|
||||
|
||||
self.freqai = FreqaiModelResolver.load_freqaimodel(self.config)
|
||||
self.freqai_info = self.config["freqai"]
|
||||
else:
|
||||
# Gracious failures if freqAI is disabled but "start" is called.
|
||||
class DummyClass():
|
||||
def start(self, *args, **kwargs):
|
||||
raise OperationalException(
|
||||
'freqAI is not enabled. Please enable it in your config to use this strategy.')
|
||||
self.freqai = DummyClass() # type: ignore
|
||||
|
||||
def ft_bot_start(self, **kwargs) -> None:
|
||||
"""
|
||||
@@ -472,10 +480,13 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
def adjust_trade_position(self, trade: Trade, current_time: datetime,
|
||||
current_rate: float, current_profit: float,
|
||||
min_stake: Optional[float], max_stake: float,
|
||||
current_entry_rate: float, current_exit_rate: float,
|
||||
current_entry_profit: float, current_exit_profit: float,
|
||||
**kwargs) -> Optional[float]:
|
||||
"""
|
||||
Custom trade adjustment logic, returning the stake amount that a trade should be increased.
|
||||
This means extra buy orders with additional fees.
|
||||
Custom trade adjustment logic, returning the stake amount that a trade should be
|
||||
increased or decreased.
|
||||
This means extra buy or sell orders with additional fees.
|
||||
Only called when `position_adjustment_enable` is set to True.
|
||||
|
||||
For full documentation please go to https://www.freqtrade.io/en/latest/strategy-advanced/
|
||||
@@ -486,10 +497,16 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
:param current_time: datetime object, containing the current datetime
|
||||
:param current_rate: Current buy rate.
|
||||
:param current_profit: Current profit (as ratio), calculated based on current_rate.
|
||||
:param min_stake: Minimal stake size allowed by exchange.
|
||||
:param max_stake: Balance available for trading.
|
||||
:param min_stake: Minimal stake size allowed by exchange (for both entries and exits)
|
||||
:param max_stake: Maximum stake allowed (either through balance, or by exchange limits).
|
||||
:param current_entry_rate: Current rate using entry pricing.
|
||||
:param current_exit_rate: Current rate using exit pricing.
|
||||
:param current_entry_profit: Current profit using entry pricing.
|
||||
:param current_exit_profit: Current profit using exit pricing.
|
||||
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
|
||||
:return float: Stake amount to adjust your trade
|
||||
:return float: Stake amount to adjust your trade,
|
||||
Positive values to increase position, Negative values to decrease position.
|
||||
Return None for no action.
|
||||
"""
|
||||
return None
|
||||
|
||||
@@ -557,8 +574,8 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
"""
|
||||
return None
|
||||
|
||||
def populate_any_indicators(self, basepair: str, pair: str, df: DataFrame, tf: str,
|
||||
informative: DataFrame = None, coin: str = "",
|
||||
def populate_any_indicators(self, pair: str, df: DataFrame, tf: str,
|
||||
informative: DataFrame = None,
|
||||
set_generalized_indicators: bool = False) -> DataFrame:
|
||||
"""
|
||||
Function designed to automatically generate, name and merge features
|
||||
@@ -570,7 +587,6 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
:param df: strategy dataframe which will receive merges from informatives
|
||||
:param tf: timeframe of the dataframe which will modify the feature names
|
||||
:param informative: the dataframe associated with the informative pair
|
||||
:param coin: the name of the coin which will modify the feature names.
|
||||
"""
|
||||
return df
|
||||
|
||||
@@ -989,7 +1005,7 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
# ROI
|
||||
# Trailing stoploss
|
||||
|
||||
if stoplossflag.exit_type == ExitType.STOP_LOSS:
|
||||
if stoplossflag.exit_type in (ExitType.STOP_LOSS, ExitType.LIQUIDATION):
|
||||
|
||||
logger.debug(f"{trade.pair} - Stoploss hit. exit_type={stoplossflag.exit_type}")
|
||||
exits.append(stoplossflag)
|
||||
@@ -1061,6 +1077,17 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
|
||||
sl_higher_long = (trade.stop_loss >= (low or current_rate) and not trade.is_short)
|
||||
sl_lower_short = (trade.stop_loss <= (high or current_rate) and trade.is_short)
|
||||
liq_higher_long = (trade.liquidation_price
|
||||
and trade.liquidation_price >= (low or current_rate)
|
||||
and not trade.is_short)
|
||||
liq_lower_short = (trade.liquidation_price
|
||||
and trade.liquidation_price <= (high or current_rate)
|
||||
and trade.is_short)
|
||||
|
||||
if (liq_higher_long or liq_lower_short):
|
||||
logger.debug(f"{trade.pair} - Liquidation price hit. exit_type=ExitType.LIQUIDATION")
|
||||
return ExitCheckTuple(exit_type=ExitType.LIQUIDATION)
|
||||
|
||||
# evaluate if the stoploss was hit if stoploss is not on exchange
|
||||
# in Dry-Run, this handles stoploss logic as well, as the logic will not be different to
|
||||
# regular stoploss handling.
|
||||
@@ -1078,13 +1105,6 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
f"stoploss is {trade.stop_loss:.6f}, "
|
||||
f"initial stoploss was at {trade.initial_stop_loss:.6f}, "
|
||||
f"trade opened at {trade.open_rate:.6f}")
|
||||
new_stoploss = (
|
||||
trade.stop_loss + trade.initial_stop_loss
|
||||
if trade.is_short else
|
||||
trade.stop_loss - trade.initial_stop_loss
|
||||
)
|
||||
logger.debug(f"{trade.pair} - Trailing stop saved "
|
||||
f"{new_stoploss:.6f}")
|
||||
|
||||
return ExitCheckTuple(exit_type=exit_type)
|
||||
|
||||
|
@@ -65,7 +65,7 @@ class FreqaiExampleStrategy(IStrategy):
|
||||
return informative_pairs
|
||||
|
||||
def populate_any_indicators(
|
||||
self, metadata, pair, df, tf, informative=None, coin="", set_generalized_indicators=False
|
||||
self, pair, df, tf, informative=None, set_generalized_indicators=False
|
||||
):
|
||||
"""
|
||||
Function designed to automatically generate, name and merge features
|
||||
@@ -78,9 +78,10 @@ class FreqaiExampleStrategy(IStrategy):
|
||||
:param df: strategy dataframe which will receive merges from informatives
|
||||
:param tf: timeframe of the dataframe which will modify the feature names
|
||||
:param informative: the dataframe associated with the informative pair
|
||||
:param coin: the name of the coin which will modify the feature names.
|
||||
"""
|
||||
|
||||
coin = pair.split('/')[0]
|
||||
|
||||
with self.freqai.lock:
|
||||
if informative is None:
|
||||
informative = self.dp.get_pair_dataframe(pair, tf)
|
||||
@@ -92,11 +93,8 @@ class FreqaiExampleStrategy(IStrategy):
|
||||
informative[f"%-{coin}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t)
|
||||
informative[f"%-{coin}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
|
||||
informative[f"%-{coin}adx-period_{t}"] = ta.ADX(informative, window=t)
|
||||
informative[f"{coin}20sma-period_{t}"] = ta.SMA(informative, timeperiod=t)
|
||||
informative[f"{coin}21ema-period_{t}"] = ta.EMA(informative, timeperiod=t)
|
||||
informative[f"%-{coin}close_over_20sma-period_{t}"] = (
|
||||
informative["close"] / informative[f"{coin}20sma-period_{t}"]
|
||||
)
|
||||
informative[f"%-{coin}sma-period_{t}"] = ta.SMA(informative, timeperiod=t)
|
||||
informative[f"%-{coin}ema-period_{t}"] = ta.EMA(informative, timeperiod=t)
|
||||
|
||||
informative[f"%-{coin}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
|
||||
|
||||
@@ -148,8 +146,6 @@ class FreqaiExampleStrategy(IStrategy):
|
||||
df["%-hour_of_day"] = (df["date"].dt.hour + 1) / 25
|
||||
|
||||
# user adds targets here by prepending them with &- (see convention below)
|
||||
# If user wishes to use multiple targets, a multioutput prediction model
|
||||
# needs to be used such as templates/CatboostPredictionMultiModel.py
|
||||
df["&-s_close"] = (
|
||||
df["close"]
|
||||
.shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
|
||||
@@ -159,12 +155,31 @@ class FreqaiExampleStrategy(IStrategy):
|
||||
- 1
|
||||
)
|
||||
|
||||
# Classifiers are typically set up with strings as targets:
|
||||
# df['&s-up_or_down'] = np.where( df["close"].shift(-100) >
|
||||
# df["close"], 'up', 'down')
|
||||
|
||||
# If user wishes to use multiple targets, they can add more by
|
||||
# appending more columns with '&'. User should keep in mind that multi targets
|
||||
# requires a multioutput prediction model such as
|
||||
# templates/CatboostPredictionMultiModel.py,
|
||||
|
||||
# df["&-s_range"] = (
|
||||
# df["close"]
|
||||
# .shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
|
||||
# .rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
|
||||
# .max()
|
||||
# -
|
||||
# df["close"]
|
||||
# .shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
|
||||
# .rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
|
||||
# .min()
|
||||
# )
|
||||
|
||||
return df
|
||||
|
||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
|
||||
self.freqai_info = self.config["freqai"]
|
||||
|
||||
# All indicators must be populated by populate_any_indicators() for live functionality
|
||||
# to work correctly.
|
||||
|
||||
@@ -235,16 +250,16 @@ class FreqaiExampleStrategy(IStrategy):
|
||||
|
||||
if (
|
||||
"prediction" + entry_tag not in pair_dict[pair]
|
||||
or pair_dict[pair]["prediction" + entry_tag] > 0
|
||||
or pair_dict[pair]['extras']["prediction" + entry_tag] == 0
|
||||
):
|
||||
with self.freqai.lock:
|
||||
pair_dict[pair]["prediction" + entry_tag] = abs(trade_candle["&-s_close"])
|
||||
pair_dict[pair]['extras']["prediction" + entry_tag] = abs(trade_candle["&-s_close"])
|
||||
if not follow_mode:
|
||||
self.freqai.dd.save_drawer_to_disk()
|
||||
else:
|
||||
self.freqai.dd.save_follower_dict_to_disk()
|
||||
|
||||
roi_price = pair_dict[pair]["prediction" + entry_tag]
|
||||
roi_price = pair_dict[pair]['extras']["prediction" + entry_tag]
|
||||
roi_time = self.max_roi_time_long.value
|
||||
|
||||
roi_decay = roi_price * (
|
||||
@@ -282,7 +297,7 @@ class FreqaiExampleStrategy(IStrategy):
|
||||
pair_dict = self.freqai.dd.follower_dict
|
||||
|
||||
with self.freqai.lock:
|
||||
pair_dict[pair]["prediction" + entry_tag] = 0
|
||||
pair_dict[pair]['extras']["prediction" + entry_tag] = 0
|
||||
if not follow_mode:
|
||||
self.freqai.dd.save_drawer_to_disk()
|
||||
else:
|
||||
|
@@ -12,6 +12,7 @@
|
||||
"tradable_balance_ratio": 0.99,
|
||||
"fiat_display_currency": "{{ fiat_display_currency }}",{{ ('\n "timeframe": "' + timeframe + '",') if timeframe else '' }}
|
||||
"dry_run": {{ dry_run | lower }},
|
||||
"dry_run_wallet": 1000,
|
||||
"cancel_open_orders_on_exit": false,
|
||||
"trading_mode": "{{ trading_mode }}",
|
||||
"margin_mode": "{{ margin_mode }}",
|
||||
|
@@ -247,12 +247,16 @@ def check_exit_timeout(self, pair: str, trade: 'Trade', order: 'Order',
|
||||
"""
|
||||
return False
|
||||
|
||||
def adjust_trade_position(self, trade: 'Trade', current_time: 'datetime',
|
||||
current_rate: float, current_profit: float, min_stake: Optional[float],
|
||||
max_stake: float, **kwargs) -> 'Optional[float]':
|
||||
def adjust_trade_position(self, trade: 'Trade', current_time: datetime,
|
||||
current_rate: float, current_profit: float,
|
||||
min_stake: Optional[float], max_stake: float,
|
||||
current_entry_rate: float, current_exit_rate: float,
|
||||
current_entry_profit: float, current_exit_profit: float,
|
||||
**kwargs) -> Optional[float]:
|
||||
"""
|
||||
Custom trade adjustment logic, returning the stake amount that a trade should be increased.
|
||||
This means extra buy orders with additional fees.
|
||||
Custom trade adjustment logic, returning the stake amount that a trade should be
|
||||
increased or decreased.
|
||||
This means extra buy or sell orders with additional fees.
|
||||
Only called when `position_adjustment_enable` is set to True.
|
||||
|
||||
For full documentation please go to https://www.freqtrade.io/en/latest/strategy-advanced/
|
||||
@@ -263,10 +267,16 @@ def adjust_trade_position(self, trade: 'Trade', current_time: 'datetime',
|
||||
:param current_time: datetime object, containing the current datetime
|
||||
:param current_rate: Current buy rate.
|
||||
:param current_profit: Current profit (as ratio), calculated based on current_rate.
|
||||
:param min_stake: Minimal stake size allowed by exchange.
|
||||
:param max_stake: Balance available for trading.
|
||||
:param min_stake: Minimal stake size allowed by exchange (for both entries and exits)
|
||||
:param max_stake: Maximum stake allowed (either through balance, or by exchange limits).
|
||||
:param current_entry_rate: Current rate using entry pricing.
|
||||
:param current_exit_rate: Current rate using exit pricing.
|
||||
:param current_entry_profit: Current profit using entry pricing.
|
||||
:param current_exit_profit: Current profit using exit pricing.
|
||||
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
|
||||
:return float: Stake amount to adjust your trade
|
||||
:return float: Stake amount to adjust your trade,
|
||||
Positive values to increase position, Negative values to decrease position.
|
||||
Return None for no action.
|
||||
"""
|
||||
return None
|
||||
|
||||
|
3
freqtrade/util/__init__.py
Normal file
3
freqtrade/util/__init__.py
Normal file
@@ -0,0 +1,3 @@
|
||||
# flake8: noqa: F401
|
||||
from freqtrade.util.ft_precise import FtPrecise
|
||||
from freqtrade.util.periodic_cache import PeriodicCache
|
12
freqtrade/util/ft_precise.py
Normal file
12
freqtrade/util/ft_precise.py
Normal file
@@ -0,0 +1,12 @@
|
||||
"""
|
||||
Slim wrapper around ccxt's Precise (string math)
|
||||
To have imports from freqtrade - and support float initializers
|
||||
"""
|
||||
from ccxt import Precise
|
||||
|
||||
|
||||
class FtPrecise(Precise):
|
||||
def __init__(self, number, decimals=None):
|
||||
if not isinstance(number, str):
|
||||
number = str(number)
|
||||
super().__init__(number, decimals)
|
Reference in New Issue
Block a user