Don't use profit_percent for backtesting results anymore
This commit is contained in:
@@ -58,14 +58,14 @@ def _generate_result_line(result: DataFrame, max_open_trades: int, first_column:
|
||||
"""
|
||||
Generate one result dict, with "first_column" as key.
|
||||
"""
|
||||
profit_sum = result['profit_percent'].sum()
|
||||
profit_sum = result['profit_ratio'].sum()
|
||||
profit_total = profit_sum / max_open_trades
|
||||
|
||||
return {
|
||||
'key': first_column,
|
||||
'trades': len(result),
|
||||
'profit_mean': result['profit_percent'].mean() if len(result) > 0 else 0.0,
|
||||
'profit_mean_pct': result['profit_percent'].mean() * 100.0 if len(result) > 0 else 0.0,
|
||||
'profit_mean': result['profit_ratio'].mean() if len(result) > 0 else 0.0,
|
||||
'profit_mean_pct': result['profit_ratio'].mean() * 100.0 if len(result) > 0 else 0.0,
|
||||
'profit_sum': profit_sum,
|
||||
'profit_sum_pct': round(profit_sum * 100.0, 2),
|
||||
'profit_total_abs': result['profit_abs'].sum(),
|
||||
@@ -124,8 +124,8 @@ def generate_sell_reason_stats(max_open_trades: int, results: DataFrame) -> List
|
||||
for reason, count in results['sell_reason'].value_counts().iteritems():
|
||||
result = results.loc[results['sell_reason'] == reason]
|
||||
|
||||
profit_mean = result['profit_percent'].mean()
|
||||
profit_sum = result['profit_percent'].sum()
|
||||
profit_mean = result['profit_ratio'].mean()
|
||||
profit_sum = result['profit_ratio'].sum()
|
||||
profit_total = profit_sum / max_open_trades
|
||||
|
||||
tabular_data.append(
|
||||
@@ -150,7 +150,7 @@ def generate_sell_reason_stats(max_open_trades: int, results: DataFrame) -> List
|
||||
def generate_strategy_metrics(all_results: Dict) -> List[Dict]:
|
||||
"""
|
||||
Generate summary per strategy
|
||||
:param all_results: Dict of <Strategyname: BacktestResult> containing results for all strategies
|
||||
:param all_results: Dict of <Strategyname: DataFrame> containing results for all strategies
|
||||
:return: List of Dicts containing the metrics per Strategy
|
||||
"""
|
||||
|
||||
@@ -199,15 +199,15 @@ def generate_daily_stats(results: DataFrame) -> Dict[str, Any]:
|
||||
'winner_holding_avg': timedelta(),
|
||||
'loser_holding_avg': timedelta(),
|
||||
}
|
||||
daily_profit = results.resample('1d', on='close_date')['profit_percent'].sum()
|
||||
daily_profit = results.resample('1d', on='close_date')['profit_ratio'].sum()
|
||||
worst = min(daily_profit)
|
||||
best = max(daily_profit)
|
||||
winning_days = sum(daily_profit > 0)
|
||||
draw_days = sum(daily_profit == 0)
|
||||
losing_days = sum(daily_profit < 0)
|
||||
|
||||
winning_trades = results.loc[results['profit_percent'] > 0]
|
||||
losing_trades = results.loc[results['profit_percent'] < 0]
|
||||
winning_trades = results.loc[results['profit_ratio'] > 0]
|
||||
losing_trades = results.loc[results['profit_ratio'] < 0]
|
||||
|
||||
return {
|
||||
'backtest_best_day': best,
|
||||
@@ -273,8 +273,8 @@ def generate_backtest_stats(btdata: Dict[str, DataFrame],
|
||||
'sell_reason_summary': sell_reason_stats,
|
||||
'left_open_trades': left_open_results,
|
||||
'total_trades': len(results),
|
||||
'profit_mean': results['profit_percent'].mean() if len(results) > 0 else 0,
|
||||
'profit_total': results['profit_percent'].sum(),
|
||||
'profit_mean': results['profit_ratio'].mean() if len(results) > 0 else 0,
|
||||
'profit_total': results['profit_ratio'].sum(),
|
||||
'profit_total_abs': results['profit_abs'].sum(),
|
||||
'backtest_start': min_date.datetime,
|
||||
'backtest_start_ts': min_date.int_timestamp * 1000,
|
||||
@@ -314,7 +314,7 @@ def generate_backtest_stats(btdata: Dict[str, DataFrame],
|
||||
|
||||
try:
|
||||
max_drawdown, drawdown_start, drawdown_end = calculate_max_drawdown(
|
||||
results, value_col='profit_percent')
|
||||
results, value_col='profit_ratio')
|
||||
strat_stats.update({
|
||||
'max_drawdown': max_drawdown,
|
||||
'drawdown_start': drawdown_start,
|
||||
@@ -392,7 +392,7 @@ def text_table_strategy(strategy_results, stake_currency: str) -> str:
|
||||
Generate summary table per strategy
|
||||
:param stake_currency: stake-currency - used to correctly name headers
|
||||
:param max_open_trades: Maximum allowed open trades used for backtest
|
||||
:param all_results: Dict of <Strategyname: BacktestResult> containing results for all strategies
|
||||
:param all_results: Dict of <Strategyname: DataFrame> containing results for all strategies
|
||||
:return: pretty printed table with tabulate as string
|
||||
"""
|
||||
floatfmt = _get_line_floatfmt()
|
||||
@@ -409,8 +409,8 @@ def text_table_strategy(strategy_results, stake_currency: str) -> str:
|
||||
|
||||
def text_table_add_metrics(strat_results: Dict) -> str:
|
||||
if len(strat_results['trades']) > 0:
|
||||
best_trade = max(strat_results['trades'], key=lambda x: x['profit_percent'])
|
||||
worst_trade = min(strat_results['trades'], key=lambda x: x['profit_percent'])
|
||||
best_trade = max(strat_results['trades'], key=lambda x: x['profit_ratio'])
|
||||
worst_trade = min(strat_results['trades'], key=lambda x: x['profit_ratio'])
|
||||
metrics = [
|
||||
('Backtesting from', strat_results['backtest_start'].strftime(DATETIME_PRINT_FORMAT)),
|
||||
('Backtesting to', strat_results['backtest_end'].strftime(DATETIME_PRINT_FORMAT)),
|
||||
@@ -424,9 +424,9 @@ def text_table_add_metrics(strat_results: Dict) -> str:
|
||||
f"{round(strat_results['best_pair']['profit_sum_pct'], 2)}%"),
|
||||
('Worst Pair', f"{strat_results['worst_pair']['key']} "
|
||||
f"{round(strat_results['worst_pair']['profit_sum_pct'], 2)}%"),
|
||||
('Best trade', f"{best_trade['pair']} {round(best_trade['profit_percent'] * 100, 2)}%"),
|
||||
('Best trade', f"{best_trade['pair']} {round(best_trade['profit_ratio'] * 100, 2)}%"),
|
||||
('Worst trade', f"{worst_trade['pair']} "
|
||||
f"{round(worst_trade['profit_percent'] * 100, 2)}%"),
|
||||
f"{round(worst_trade['profit_ratio'] * 100, 2)}%"),
|
||||
|
||||
('Best day', f"{round(strat_results['backtest_best_day'] * 100, 2)}%"),
|
||||
('Worst day', f"{round(strat_results['backtest_worst_day'] * 100, 2)}%"),
|
||||
|
Reference in New Issue
Block a user