change BT prediction files to feather format
This commit is contained in:
parent
df979ece33
commit
8ea58ab352
@ -1317,41 +1317,24 @@ class FreqaiDataKitchen:
|
||||
self, append_df: DataFrame
|
||||
) -> None:
|
||||
"""
|
||||
Save prediction dataframe from backtesting to h5 file format
|
||||
Save prediction dataframe from backtesting to feather file format
|
||||
:param append_df: dataframe for backtesting period
|
||||
"""
|
||||
full_predictions_folder = Path(self.full_path / self.backtest_predictions_folder)
|
||||
if not full_predictions_folder.is_dir():
|
||||
full_predictions_folder.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
append_df.to_hdf(self.backtesting_results_path, key=self.model_filename)
|
||||
append_df.to_feather(self.backtesting_results_path)
|
||||
|
||||
def get_backtesting_prediction(
|
||||
self
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Get prediction dataframe from h5 file format
|
||||
Get prediction dataframe from feather file format
|
||||
"""
|
||||
append_df = self.backtesting_h5_data[self.model_filename]
|
||||
append_df = pd.read_feather(self.backtesting_results_path)
|
||||
return append_df
|
||||
|
||||
def load_prediction_pair_file(
|
||||
self
|
||||
) -> None:
|
||||
"""
|
||||
Load prediction file if it exists
|
||||
"""
|
||||
pair_file_name = self.pair.split(':')[0].replace('/', '_').lower()
|
||||
path_to_predictionfile = Path(self.full_path /
|
||||
self.backtest_predictions_folder /
|
||||
f"{pair_file_name}_prediction.h5")
|
||||
self.backtesting_results_path = path_to_predictionfile
|
||||
file_exists = path_to_predictionfile.is_file()
|
||||
if file_exists:
|
||||
self.backtesting_h5_data = pd.HDFStore(path_to_predictionfile)
|
||||
else:
|
||||
self.backtesting_h5_data = {}
|
||||
|
||||
def check_if_backtest_prediction_is_valid(
|
||||
self,
|
||||
len_backtest_df: int
|
||||
@ -1363,11 +1346,17 @@ class FreqaiDataKitchen:
|
||||
:return:
|
||||
:boolean: whether the prediction file is valid.
|
||||
"""
|
||||
if self.model_filename in self.backtesting_h5_data:
|
||||
path_to_predictionfile = Path(self.full_path /
|
||||
self.backtest_predictions_folder /
|
||||
f"{self.model_filename}_prediction.feather")
|
||||
self.backtesting_results_path = path_to_predictionfile
|
||||
|
||||
file_exists = path_to_predictionfile.is_file()
|
||||
|
||||
if file_exists:
|
||||
append_df = self.get_backtesting_prediction()
|
||||
if len(append_df) == len_backtest_df and 'date' in append_df:
|
||||
logger.info("Found backtesting prediction file "
|
||||
f"at {self.backtesting_results_path.name}")
|
||||
logger.info(f"Found backtesting prediction file at {path_to_predictionfile}")
|
||||
return True
|
||||
else:
|
||||
logger.info("A new backtesting prediction file is required. "
|
||||
@ -1376,8 +1365,7 @@ class FreqaiDataKitchen:
|
||||
return False
|
||||
else:
|
||||
logger.info(
|
||||
"Could not find backtesting prediction file "
|
||||
f"at {self.backtesting_results_path.name}"
|
||||
f"Could not find backtesting prediction file at {path_to_predictionfile}"
|
||||
)
|
||||
return False
|
||||
|
||||
|
@ -275,7 +275,6 @@ class IFreqaiModel(ABC):
|
||||
|
||||
self.pair_it += 1
|
||||
train_it = 0
|
||||
dk.load_prediction_pair_file()
|
||||
# Loop enforcing the sliding window training/backtesting paradigm
|
||||
# tr_train is the training time range e.g. 1 historical month
|
||||
# tr_backtest is the backtesting time range e.g. the week directly
|
||||
|
Loading…
Reference in New Issue
Block a user