From 8e6ab0eaafa75d8b5dc3e2318854b8286bb6dba3 Mon Sep 17 00:00:00 2001 From: hroff-1902 Date: Wed, 5 Feb 2020 16:54:04 +0300 Subject: [PATCH] Reworked to fill leading and trailing days --- .../optimize/hyperopt_loss_sharpe_daily.py | 32 ++++++++++++------- 1 file changed, 20 insertions(+), 12 deletions(-) diff --git a/freqtrade/optimize/hyperopt_loss_sharpe_daily.py b/freqtrade/optimize/hyperopt_loss_sharpe_daily.py index d32e6d3b7..f9394d78a 100644 --- a/freqtrade/optimize/hyperopt_loss_sharpe_daily.py +++ b/freqtrade/optimize/hyperopt_loss_sharpe_daily.py @@ -6,7 +6,7 @@ Hyperoptimization. """ from datetime import datetime -from pandas import DataFrame +from pandas import DataFrame, date_range import numpy as np from freqtrade.optimize.hyperopt import IHyperOptLoss @@ -28,25 +28,33 @@ class SharpeHyperOptLossDaily(IHyperOptLoss): Uses Sharpe Ratio calculation. """ - # get profit_percent and apply slippage of 0.1% per trade - results.loc[:, 'profit_percent_after_slippage'] = results['profit_percent'] - 0.0005 + resample_freq = '1D' + slippage_per_trade_ratio = 0.0005 + days_in_year = 365 + annual_risk_free_rate = 0.03 + risk_free_rate = annual_risk_free_rate / days_in_year + + # apply slippage per trade to profit_percent + results.loc[:, 'profit_percent_after_slippage'] = results['profit_percent'] - slippage_per_trade_ratio + + # create the index within the min_date and end max_date + t_index = date_range(start=min_date, end=max_date, freq=resample_freq) sum_daily = ( - results.resample("D", on="close_time").agg( - {"profit_percent_after_slippage": sum} - ) - * 100.0 + results.resample(resample_freq, on='close_time').agg( + {"profit_percent_after_slippage": sum}).reindex(t_index).fillna(0) ) - total_profit = sum_daily["profit_percent_after_slippage"] + total_profit = sum_daily["profit_percent_after_slippage"] - risk_free_rate expected_returns_mean = total_profit.mean() - up_stdev = np.std(total_profit) + up_stdev = total_profit.std() - if (np.std(total_profit) != 0.): - sharp_ratio = expected_returns_mean / up_stdev * np.sqrt(365) + if (up_stdev != 0.): + sharp_ratio = expected_returns_mean / up_stdev * np.sqrt(days_in_year) else: # Define high (negative) sharpe ratio to be clear that this is NOT optimal. sharp_ratio = -20. - # print(expected_returns_mean, up_stdev, sharp_ratio) + #print(t_index, sum_daily, total_profit) + #print(risk_free_rate, expected_returns_mean, up_stdev, sharp_ratio) return -sharp_ratio