Merge branch 'freqtrade:develop' into dca

This commit is contained in:
Reigo Reinmets 2022-01-08 14:57:15 +02:00 committed by GitHub
commit 8e424f7c73
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
41 changed files with 280 additions and 325 deletions

View File

@ -196,7 +196,7 @@ jobs:
uses: rjstone/discord-webhook-notify@v1
if: failure() && ( github.event_name != 'pull_request' || github.event.pull_request.head.repo.fork == false)
with:
severity: error
severity: info
details: Test Succeeded!
webhookUrl: ${{ secrets.DISCORD_WEBHOOK }}

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -6,16 +6,16 @@ python -m pip install --upgrade pip wheel
$pyv = python -c "import sys; print(f'{sys.version_info.major}.{sys.version_info.minor}')"
if ($pyv -eq '3.7') {
pip install build_helpers\TA_Lib-0.4.22-cp37-cp37m-win_amd64.whl
pip install build_helpers\TA_Lib-0.4.23-cp37-cp37m-win_amd64.whl
}
if ($pyv -eq '3.8') {
pip install build_helpers\TA_Lib-0.4.22-cp38-cp38-win_amd64.whl
pip install build_helpers\TA_Lib-0.4.23-cp38-cp38-win_amd64.whl
}
if ($pyv -eq '3.9') {
pip install build_helpers\TA_Lib-0.4.22-cp39-cp39-win_amd64.whl
pip install build_helpers\TA_Lib-0.4.23-cp39-cp39-win_amd64.whl
}
if ($pyv -eq '3.10') {
pip install build_helpers\TA_Lib-0.4.22-cp310-cp310-win_amd64.whl
pip install build_helpers\TA_Lib-0.4.23-cp310-cp310-win_amd64.whl
}
pip install -r requirements-dev.txt
pip install -e .

View File

@ -18,6 +18,7 @@
"sell_profit_only": false,
"sell_profit_offset": 0.0,
"ignore_roi_if_buy_signal": false,
"ignore_buying_expired_candle_after": 300,
"minimal_roi": {
"40": 0.0,
"30": 0.01,

View File

@ -312,7 +312,7 @@ A backtesting result will look like that:
| | |
| Min balance | 0.00945123 BTC |
| Max balance | 0.01846651 BTC |
| Drawdown | 50.63% |
| Drawdown (Account) | 13.33% |
| Drawdown | 0.0015 BTC |
| Drawdown high | 0.0013 BTC |
| Drawdown low | -0.0002 BTC |
@ -399,7 +399,7 @@ It contains some useful key metrics about performance of your strategy on backte
| | |
| Min balance | 0.00945123 BTC |
| Max balance | 0.01846651 BTC |
| Drawdown | 50.63% |
| Drawdown (Account) | 13.33% |
| Drawdown | 0.0015 BTC |
| Drawdown high | 0.0013 BTC |
| Drawdown low | -0.0002 BTC |
@ -426,7 +426,8 @@ It contains some useful key metrics about performance of your strategy on backte
- `Avg. Duration Winners` / `Avg. Duration Loser`: Average durations for winning and losing trades.
- `Rejected Buy signals`: Buy signals that could not be acted upon due to max_open_trades being reached.
- `Min balance` / `Max balance`: Lowest and Highest Wallet balance during the backtest period.
- `Drawdown`: Maximum drawdown experienced. For example, the value of 50% means that from highest to subsequent lowest point, a 50% drop was experienced).
- `Drawdown (Account)`: Maximum Account Drawdown experienced. Calculated as $(Absolute Drawdown) / (DrawdownHigh + startingBalance)$.
- `Drawdown`: Maximum, absolute drawdown experienced. Difference between Drawdown High and Subsequent Low point.
- `Drawdown high` / `Drawdown low`: Profit at the beginning and end of the largest drawdown period. A negative low value means initial capital lost.
- `Drawdown Start` / `Drawdown End`: Start and end datetime for this largest drawdown (can also be visualized via the `plot-dataframe` sub-command).
- `Market change`: Change of the market during the backtest period. Calculated as average of all pairs changes from the first to the last candle using the "close" column.

View File

@ -15,8 +15,8 @@ This command line option was deprecated in 2019.7-dev (develop branch) and remov
### The **--dynamic-whitelist** command line option
This command line option was deprecated in 2018 and removed freqtrade 2019.6-dev (develop branch)
and in freqtrade 2019.7.
This command line option was deprecated in 2018 and removed freqtrade 2019.6-dev (develop branch) and in freqtrade 2019.7.
Please refer to [pairlists](plugins.md#pairlists-and-pairlist-handlers) instead.
### the `--live` command line option

View File

@ -222,9 +222,9 @@ should be rewritten to
```python
frames = [dataframe]
for val in self.buy_ema_short.range:
frames.append({
frames.append(DataFrame({
f'ema_short_{val}': ta.EMA(dataframe, timeperiod=val)
})
}))
# Append columns to existing dataframe
merged_frame = pd.concat(frames, axis=1)

View File

@ -23,7 +23,7 @@ git clone https://github.com/freqtrade/freqtrade.git
Install ta-lib according to the [ta-lib documentation](https://github.com/mrjbq7/ta-lib#windows).
As compiling from source on windows has heavy dependencies (requires a partial visual studio installation), there is also a repository of unofficial pre-compiled windows Wheels [here](https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib), which need to be downloaded and installed using `pip install TA_Lib0.4.22cp38cp38win_amd64.whl` (make sure to use the version matching your python version).
As compiling from source on windows has heavy dependencies (requires a partial visual studio installation), there is also a repository of unofficial pre-compiled windows Wheels [here](https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib), which need to be downloaded and installed using `pip install TA_Lib-0.4.23-cp38-cp38-win_amd64.whl` (make sure to use the version matching your python version).
Freqtrade provides these dependencies for the latest 3 Python versions (3.7, 3.8, 3.9 and 3.10) and for 64bit Windows.
Other versions must be downloaded from the above link.

View File

@ -9,21 +9,13 @@ import numpy as np
import pandas as pd
from freqtrade.constants import LAST_BT_RESULT_FN
from freqtrade.exceptions import OperationalException
from freqtrade.misc import json_load
from freqtrade.persistence import LocalTrade, Trade, init_db
logger = logging.getLogger(__name__)
# Old format - maybe remove?
BT_DATA_COLUMNS_OLD = ["pair", "profit_percent", "open_date", "close_date", "index",
"trade_duration", "open_rate", "close_rate", "open_at_end", "sell_reason"]
# Mid-term format, created by BacktestResult Named Tuple
BT_DATA_COLUMNS_MID = ['pair', 'profit_percent', 'open_date', 'close_date', 'trade_duration',
'open_rate', 'close_rate', 'open_at_end', 'sell_reason', 'fee_open',
'fee_close', 'amount', 'profit_abs', 'profit_ratio']
# Newest format
BT_DATA_COLUMNS = ['pair', 'stake_amount', 'amount', 'open_date', 'close_date',
'open_rate', 'close_rate',
@ -167,23 +159,9 @@ def load_backtest_data(filename: Union[Path, str], strategy: Optional[str] = Non
)
else:
# old format - only with lists.
df = pd.DataFrame(data, columns=BT_DATA_COLUMNS_OLD)
if not df.empty:
df['open_date'] = pd.to_datetime(df['open_date'],
unit='s',
utc=True,
infer_datetime_format=True
)
df['close_date'] = pd.to_datetime(df['close_date'],
unit='s',
utc=True,
infer_datetime_format=True
)
# Create compatibility with new format
df['profit_abs'] = df['close_rate'] - df['open_rate']
raise OperationalException(
"Backtest-results with only trades data are no longer supported.")
if not df.empty:
if 'profit_ratio' not in df.columns:
df['profit_ratio'] = df['profit_percent']
df = df.sort_values("open_date").reset_index(drop=True)
return df
@ -392,15 +370,17 @@ def calculate_underwater(trades: pd.DataFrame, *, date_col: str = 'close_date',
def calculate_max_drawdown(trades: pd.DataFrame, *, date_col: str = 'close_date',
value_col: str = 'profit_ratio'
) -> Tuple[float, pd.Timestamp, pd.Timestamp, float, float]:
value_col: str = 'profit_abs', starting_balance: float = 0
) -> Tuple[float, pd.Timestamp, pd.Timestamp, float, float, float]:
"""
Calculate max drawdown and the corresponding close dates
:param trades: DataFrame containing trades (requires columns close_date and profit_ratio)
:param date_col: Column in DataFrame to use for dates (defaults to 'close_date')
:param value_col: Column in DataFrame to use for values (defaults to 'profit_ratio')
:return: Tuple (float, highdate, lowdate, highvalue, lowvalue) with absolute max drawdown,
high and low time and high and low value.
:param value_col: Column in DataFrame to use for values (defaults to 'profit_abs')
:param starting_balance: Portfolio starting balance - properly calculate relative drawdown.
:return: Tuple (float, highdate, lowdate, highvalue, lowvalue, relative_drawdown)
with absolute max drawdown, high and low time and high and low value,
and the relative account drawdown
:raise: ValueError if trade-dataframe was found empty.
"""
if len(trades) == 0:
@ -416,7 +396,18 @@ def calculate_max_drawdown(trades: pd.DataFrame, *, date_col: str = 'close_date'
high_val = max_drawdown_df.loc[max_drawdown_df.iloc[:idxmin]
['high_value'].idxmax(), 'cumulative']
low_val = max_drawdown_df.loc[idxmin, 'cumulative']
return abs(min(max_drawdown_df['drawdown'])), high_date, low_date, high_val, low_val
max_drawdown_rel = 0.0
if high_val + starting_balance != 0:
max_drawdown_rel = (high_val - low_val) / (high_val + starting_balance)
return (
abs(min(max_drawdown_df['drawdown'])),
high_date,
low_date,
high_val,
low_val,
max_drawdown_rel
)
def calculate_csum(trades: pd.DataFrame, starting_balance: float = 0) -> Tuple[float, float]:

View File

@ -67,6 +67,8 @@ class Exchange:
"ohlcv_params": {},
"ohlcv_candle_limit": 500,
"ohlcv_partial_candle": True,
# Check https://github.com/ccxt/ccxt/issues/10767 for removal of ohlcv_volume_currency
"ohlcv_volume_currency": "base", # "base" or "quote"
"trades_pagination": "time", # Possible are "time" or "id"
"trades_pagination_arg": "since",
"l2_limit_range": None,
@ -656,7 +658,8 @@ class Exchange:
max_slippage_val = rate * ((1 + slippage) if side == 'buy' else (1 - slippage))
remaining_amount = amount
filled_amount = 0
filled_amount = 0.0
book_entry_price = 0.0
for book_entry in ob[ob_type]:
book_entry_price = book_entry[0]
book_entry_coin_volume = book_entry[1]

View File

@ -19,6 +19,7 @@ class Ftx(Exchange):
_ft_has: Dict = {
"stoploss_on_exchange": True,
"ohlcv_candle_limit": 1500,
"ohlcv_volume_currency": "quote",
}
def market_is_tradable(self, market: Dict[str, Any]) -> bool:

View File

@ -21,6 +21,7 @@ class Gateio(Exchange):
_ft_has: Dict = {
"ohlcv_candle_limit": 1000,
"ohlcv_volume_currency": "quote",
}
_headers = {'X-Gate-Channel-Id': 'freqtrade'}

View File

@ -14,5 +14,5 @@ class Okex(Exchange):
"""
_ft_has: Dict = {
"ohlcv_candle_limit": 100,
"ohlcv_candle_limit": 300,
}

View File

@ -270,8 +270,8 @@ class Backtesting:
df_analyzed = self.strategy.advise_sell(
self.strategy.advise_buy(pair_data, {'pair': pair}), {'pair': pair}).copy()
# Trim startup period from analyzed dataframe
df_analyzed = trim_dataframe(df_analyzed, self.timerange,
startup_candles=self.required_startup)
df_analyzed = processed[pair] = pair_data = trim_dataframe(
df_analyzed, self.timerange, startup_candles=self.required_startup)
# To avoid using data from future, we use buy/sell signals shifted
# from the previous candle
df_analyzed.loc[:, 'buy'] = df_analyzed.loc[:, 'buy'].shift(1)
@ -287,9 +287,6 @@ class Backtesting:
# Convert from Pandas to list for performance reasons
# (Looping Pandas is slow.)
data[pair] = df_analyzed[headers].values.tolist()
# Do not hold on to old data to reduce memory usage
processed[pair] = pair_data = None
return data
def _get_close_rate(self, sell_row: Tuple, trade: LocalTrade, sell: SellCheckTuple,
@ -445,7 +442,9 @@ class Backtesting:
return self._get_sell_trade_entry_for_candle(trade, sell_row)
detail_data.loc[:, 'buy'] = sell_row[BUY_IDX]
detail_data.loc[:, 'sell'] = sell_row[SELL_IDX]
headers = ['date', 'buy', 'open', 'close', 'sell', 'low', 'high']
detail_data.loc[:, 'buy_tag'] = sell_row[BUY_TAG_IDX]
detail_data.loc[:, 'exit_tag'] = sell_row[EXIT_TAG_IDX]
headers = ['date', 'buy', 'open', 'close', 'sell', 'low', 'high', 'buy_tag', 'exit_tag']
for det_row in detail_data[headers].values.tolist():
res = self._get_sell_trade_entry_for_candle(trade, det_row)
if res:

View File

@ -76,6 +76,7 @@ class Hyperopt:
self.config = config
self.backtesting = Backtesting(self.config)
self.pairlist = self.backtesting.pairlists.whitelist
if not self.config.get('hyperopt'):
self.custom_hyperopt = HyperOptAuto(self.config)
@ -332,7 +333,7 @@ class Hyperopt:
params_details = self._get_params_details(params_dict)
strat_stats = generate_strategy_stats(
processed, self.backtesting.strategy.get_strategy_name(),
self.pairlist, self.backtesting.strategy.get_strategy_name(),
backtesting_results, min_date, max_date, market_change=0
)
results_explanation = HyperoptTools.format_results_explanation_string(

View File

@ -47,10 +47,9 @@ class CalmarHyperOptLoss(IHyperOptLoss):
# calculate max drawdown
try:
_, _, _, high_val, low_val = calculate_max_drawdown(
_, _, _, _, _, max_drawdown = calculate_max_drawdown(
results, value_col="profit_abs"
)
max_drawdown = (high_val - low_val) / high_val
except ValueError:
max_drawdown = 0

View File

@ -299,8 +299,7 @@ class HyperoptTools():
f"Objective: {results['loss']:.5f}")
@staticmethod
def prepare_trials_columns(trials: pd.DataFrame, legacy_mode: bool,
has_drawdown: bool) -> pd.DataFrame:
def prepare_trials_columns(trials: pd.DataFrame, has_drawdown: bool) -> pd.DataFrame:
trials['Best'] = ''
if 'results_metrics.winsdrawslosses' not in trials.columns:
@ -309,33 +308,26 @@ class HyperoptTools():
if not has_drawdown:
# Ensure compatibility with older versions of hyperopt results
trials['results_metrics.max_drawdown_abs'] = None
trials['results_metrics.max_drawdown'] = None
trials['results_metrics.max_drawdown_account'] = None
if not legacy_mode:
# New mode, using backtest result for metrics
trials['results_metrics.winsdrawslosses'] = trials.apply(
lambda x: f"{x['results_metrics.wins']} {x['results_metrics.draws']:>4} "
f"{x['results_metrics.losses']:>4}", axis=1)
trials = trials[['Best', 'current_epoch', 'results_metrics.total_trades',
'results_metrics.winsdrawslosses',
'results_metrics.profit_mean', 'results_metrics.profit_total_abs',
'results_metrics.profit_total', 'results_metrics.holding_avg',
'results_metrics.max_drawdown', 'results_metrics.max_drawdown_abs',
'loss', 'is_initial_point', 'is_best']]
# New mode, using backtest result for metrics
trials['results_metrics.winsdrawslosses'] = trials.apply(
lambda x: f"{x['results_metrics.wins']} {x['results_metrics.draws']:>4} "
f"{x['results_metrics.losses']:>4}", axis=1)
else:
# Legacy mode
trials = trials[['Best', 'current_epoch', 'results_metrics.trade_count',
'results_metrics.winsdrawslosses', 'results_metrics.avg_profit',
'results_metrics.total_profit', 'results_metrics.profit',
'results_metrics.duration', 'results_metrics.max_drawdown',
'results_metrics.max_drawdown_abs', 'loss', 'is_initial_point',
'is_best']]
trials = trials[['Best', 'current_epoch', 'results_metrics.total_trades',
'results_metrics.winsdrawslosses',
'results_metrics.profit_mean', 'results_metrics.profit_total_abs',
'results_metrics.profit_total', 'results_metrics.holding_avg',
'results_metrics.max_drawdown',
'results_metrics.max_drawdown_account', 'results_metrics.max_drawdown_abs',
'loss', 'is_initial_point', 'is_best']]
trials.columns = ['Best', 'Epoch', 'Trades', ' Win Draw Loss', 'Avg profit',
'Total profit', 'Profit', 'Avg duration', 'Max Drawdown',
'max_drawdown_abs', 'Objective', 'is_initial_point', 'is_best']
trials.columns = [
'Best', 'Epoch', 'Trades', ' Win Draw Loss', 'Avg profit',
'Total profit', 'Profit', 'Avg duration', 'max_drawdown', 'max_drawdown_account',
'max_drawdown_abs', 'Objective', 'is_initial_point', 'is_best'
]
return trials
@ -351,10 +343,9 @@ class HyperoptTools():
tabulate.PRESERVE_WHITESPACE = True
trials = json_normalize(results, max_level=1)
legacy_mode = 'results_metrics.total_trades' not in trials
has_drawdown = 'results_metrics.max_drawdown_abs' in trials.columns
has_account_drawdown = 'results_metrics.max_drawdown_account' in trials.columns
trials = HyperoptTools.prepare_trials_columns(trials, legacy_mode, has_drawdown)
trials = HyperoptTools.prepare_trials_columns(trials, has_account_drawdown)
trials['is_profit'] = False
trials.loc[trials['is_initial_point'], 'Best'] = '* '
@ -362,12 +353,12 @@ class HyperoptTools():
trials.loc[trials['is_initial_point'] & trials['is_best'], 'Best'] = '* Best'
trials.loc[trials['Total profit'] > 0, 'is_profit'] = True
trials['Trades'] = trials['Trades'].astype(str)
perc_multi = 1 if legacy_mode else 100
# perc_multi = 1 if legacy_mode else 100
trials['Epoch'] = trials['Epoch'].apply(
lambda x: '{}/{}'.format(str(x).rjust(len(str(total_epochs)), ' '), total_epochs)
)
trials['Avg profit'] = trials['Avg profit'].apply(
lambda x: f'{x * perc_multi:,.2f}%'.rjust(7, ' ') if not isna(x) else "--".rjust(7, ' ')
lambda x: f'{x:,.2%}'.rjust(7, ' ') if not isna(x) else "--".rjust(7, ' ')
)
trials['Avg duration'] = trials['Avg duration'].apply(
lambda x: f'{x:,.1f} m'.rjust(7, ' ') if isinstance(x, float) else f"{x}"
@ -379,24 +370,25 @@ class HyperoptTools():
stake_currency = config['stake_currency']
if has_drawdown:
trials['Max Drawdown'] = trials.apply(
lambda x: '{} {}'.format(
round_coin_value(x['max_drawdown_abs'], stake_currency),
'({:,.2f}%)'.format(x['Max Drawdown'] * perc_multi).rjust(10, ' ')
).rjust(25 + len(stake_currency))
if x['Max Drawdown'] != 0.0 else '--'.rjust(25 + len(stake_currency)),
axis=1
)
else:
trials = trials.drop(columns=['Max Drawdown'])
trials[f"Max Drawdown{' (Acct)' if has_account_drawdown else ''}"] = trials.apply(
lambda x: "{} {}".format(
round_coin_value(x['max_drawdown_abs'], stake_currency),
(f"({x['max_drawdown_account']:,.2%})"
if has_account_drawdown
else f"({x['max_drawdown']:,.2%})"
).rjust(10, ' ')
).rjust(25 + len(stake_currency))
if x['max_drawdown'] != 0.0 or x['max_drawdown_account'] != 0.0
else '--'.rjust(25 + len(stake_currency)),
axis=1
)
trials = trials.drop(columns=['max_drawdown_abs'])
trials = trials.drop(columns=['max_drawdown_abs', 'max_drawdown', 'max_drawdown_account'])
trials['Profit'] = trials.apply(
lambda x: '{} {}'.format(
round_coin_value(x['Total profit'], stake_currency),
'({:,.2f}%)'.format(x['Profit'] * perc_multi).rjust(10, ' ')
f"({x['Profit']:,.2%})".rjust(10, ' ')
).rjust(25+len(stake_currency))
if x['Total profit'] != 0.0 else '--'.rjust(25+len(stake_currency)),
axis=1

View File

@ -1,4 +1,5 @@
import logging
from copy import deepcopy
from datetime import datetime, timedelta, timezone
from pathlib import Path
from typing import Any, Dict, List, Union
@ -98,11 +99,11 @@ def _generate_result_line(result: DataFrame, starting_balance: int, first_column
}
def generate_pair_metrics(data: Dict[str, Dict], stake_currency: str, starting_balance: int,
def generate_pair_metrics(pairlist: List[str], stake_currency: str, starting_balance: int,
results: DataFrame, skip_nan: bool = False) -> List[Dict]:
"""
Generates and returns a list for the given backtest data and the results dataframe
:param data: Dict of <pair: dataframe> containing data that was used during backtesting.
:param pairlist: Pairlist used
:param stake_currency: stake-currency - used to correctly name headers
:param starting_balance: Starting balance
:param results: Dataframe containing the backtest results
@ -112,7 +113,7 @@ def generate_pair_metrics(data: Dict[str, Dict], stake_currency: str, starting_b
tabular_data = []
for pair in data:
for pair in pairlist:
result = results[results['pair'] == pair]
if skip_nan and result['profit_abs'].isnull().all():
continue
@ -194,29 +195,21 @@ def generate_sell_reason_stats(max_open_trades: int, results: DataFrame) -> List
return tabular_data
def generate_strategy_comparison(all_results: Dict) -> List[Dict]:
def generate_strategy_comparison(bt_stats: Dict) -> List[Dict]:
"""
Generate summary per strategy
:param all_results: Dict of <Strategyname: DataFrame> containing results for all strategies
:param bt_stats: Dict of <Strategyname: DataFrame> containing results for all strategies
:return: List of Dicts containing the metrics per Strategy
"""
tabular_data = []
for strategy, results in all_results.items():
tabular_data.append(_generate_result_line(
results['results'], results['config']['dry_run_wallet'], strategy)
)
try:
max_drawdown_per, _, _, _, _ = calculate_max_drawdown(results['results'],
value_col='profit_ratio')
max_drawdown_abs, _, _, _, _ = calculate_max_drawdown(results['results'],
value_col='profit_abs')
except ValueError:
max_drawdown_per = 0
max_drawdown_abs = 0
tabular_data[-1]['max_drawdown_per'] = round(max_drawdown_per * 100, 2)
tabular_data[-1]['max_drawdown_abs'] = \
round_coin_value(max_drawdown_abs, results['config']['stake_currency'], False)
for strategy, result in bt_stats.items():
tabular_data.append(deepcopy(result['results_per_pair'][-1]))
# Update "key" to strategy (results_per_pair has it as "Total").
tabular_data[-1]['key'] = strategy
tabular_data[-1]['max_drawdown_account'] = result['max_drawdown_account']
tabular_data[-1]['max_drawdown_abs'] = round_coin_value(
result['max_drawdown_abs'], result['stake_currency'], False)
return tabular_data
@ -352,14 +345,14 @@ def generate_daily_stats(results: DataFrame) -> Dict[str, Any]:
}
def generate_strategy_stats(btdata: Dict[str, DataFrame],
def generate_strategy_stats(pairlist: List[str],
strategy: str,
content: Dict[str, Any],
min_date: datetime, max_date: datetime,
market_change: float
) -> Dict[str, Any]:
"""
:param btdata: Backtest data
:param pairlist: List of pairs to backtest
:param strategy: Strategy name
:param content: Backtest result data in the format:
{'results: results, 'config: config}}.
@ -372,11 +365,11 @@ def generate_strategy_stats(btdata: Dict[str, DataFrame],
if not isinstance(results, DataFrame):
return {}
config = content['config']
max_open_trades = min(config['max_open_trades'], len(btdata.keys()))
max_open_trades = min(config['max_open_trades'], len(pairlist))
starting_balance = config['dry_run_wallet']
stake_currency = config['stake_currency']
pair_results = generate_pair_metrics(btdata, stake_currency=stake_currency,
pair_results = generate_pair_metrics(pairlist, stake_currency=stake_currency,
starting_balance=starting_balance,
results=results, skip_nan=False)
@ -385,7 +378,7 @@ def generate_strategy_stats(btdata: Dict[str, DataFrame],
sell_reason_stats = generate_sell_reason_stats(max_open_trades=max_open_trades,
results=results)
left_open_results = generate_pair_metrics(btdata, stake_currency=stake_currency,
left_open_results = generate_pair_metrics(pairlist, stake_currency=stake_currency,
starting_balance=starting_balance,
results=results.loc[results['is_open']],
skip_nan=True)
@ -429,7 +422,7 @@ def generate_strategy_stats(btdata: Dict[str, DataFrame],
'trades_per_day': round(len(results) / backtest_days, 2),
'market_change': market_change,
'pairlist': list(btdata.keys()),
'pairlist': pairlist,
'stake_amount': config['stake_amount'],
'stake_currency': config['stake_currency'],
'stake_currency_decimals': decimals_per_coin(config['stake_currency']),
@ -462,12 +455,14 @@ def generate_strategy_stats(btdata: Dict[str, DataFrame],
}
try:
max_drawdown, _, _, _, _ = calculate_max_drawdown(
max_drawdown_legacy, _, _, _, _, _ = calculate_max_drawdown(
results, value_col='profit_ratio')
drawdown_abs, drawdown_start, drawdown_end, high_val, low_val = calculate_max_drawdown(
results, value_col='profit_abs')
(drawdown_abs, drawdown_start, drawdown_end, high_val, low_val,
max_drawdown) = calculate_max_drawdown(
results, value_col='profit_abs', starting_balance=starting_balance)
strat_stats.update({
'max_drawdown': max_drawdown,
'max_drawdown': max_drawdown_legacy, # Deprecated - do not use
'max_drawdown_account': max_drawdown,
'max_drawdown_abs': drawdown_abs,
'drawdown_start': drawdown_start.strftime(DATETIME_PRINT_FORMAT),
'drawdown_start_ts': drawdown_start.timestamp() * 1000,
@ -487,6 +482,7 @@ def generate_strategy_stats(btdata: Dict[str, DataFrame],
except ValueError:
strat_stats.update({
'max_drawdown': 0.0,
'max_drawdown_account': 0.0,
'max_drawdown_abs': 0.0,
'max_drawdown_low': 0.0,
'max_drawdown_high': 0.0,
@ -515,13 +511,13 @@ def generate_backtest_stats(btdata: Dict[str, DataFrame],
"""
result: Dict[str, Any] = {'strategy': {}}
market_change = calculate_market_change(btdata, 'close')
pairlist = list(btdata.keys())
for strategy, content in all_results.items():
strat_stats = generate_strategy_stats(btdata, strategy, content,
strat_stats = generate_strategy_stats(pairlist, strategy, content,
min_date, max_date, market_change=market_change)
result['strategy'][strategy] = strat_stats
strategy_results = generate_strategy_comparison(all_results=all_results)
strategy_results = generate_strategy_comparison(bt_stats=result['strategy'])
result['strategy_comparison'] = strategy_results
@ -646,7 +642,12 @@ def text_table_strategy(strategy_results, stake_currency: str) -> str:
headers.append('Drawdown')
# Align drawdown string on the center two space separator.
drawdown = [f'{t["max_drawdown_per"]:.2f}' for t in strategy_results]
if 'max_drawdown_account' in strategy_results[0]:
drawdown = [f'{t["max_drawdown_account"] * 100:.2f}' for t in strategy_results]
else:
# Support for prior backtest results
drawdown = [f'{t["max_drawdown_per"]:.2f}' for t in strategy_results]
dd_pad_abs = max([len(t['max_drawdown_abs']) for t in strategy_results])
dd_pad_per = max([len(dd) for dd in drawdown])
drawdown = [f'{t["max_drawdown_abs"]:>{dd_pad_abs}} {stake_currency} {dd:>{dd_pad_per}}%'
@ -716,7 +717,10 @@ def text_table_add_metrics(strat_results: Dict) -> str:
('Max balance', round_coin_value(strat_results['csum_max'],
strat_results['stake_currency'])),
('Drawdown', f"{strat_results['max_drawdown']:.2%}"),
# Compatibility to show old hyperopt results
('Drawdown (Account)', f"{strat_results['max_drawdown_account']:.2%}")
if 'max_drawdown_account' in strat_results else (
'Drawdown', f"{strat_results['max_drawdown']:.2%}"),
('Drawdown', round_coin_value(strat_results['max_drawdown_abs'],
strat_results['stake_currency'])),
('Drawdown high', round_coin_value(strat_results['max_drawdown_high'],

View File

@ -161,7 +161,7 @@ def add_max_drawdown(fig, row, trades: pd.DataFrame, df_comb: pd.DataFrame,
Add scatter points indicating max drawdown
"""
try:
max_drawdown, highdate, lowdate, _, _ = calculate_max_drawdown(trades)
_, highdate, lowdate, _, _, max_drawdown = calculate_max_drawdown(trades)
drawdown = go.Scatter(
x=[highdate, lowdate],

View File

@ -4,7 +4,6 @@ Volume PairList provider
Provides dynamic pair list based on trade volumes
"""
import logging
from functools import partial
from typing import Any, Dict, List
import arrow
@ -120,10 +119,17 @@ class VolumePairList(IPairList):
else:
# Use fresh pairlist
# Check if pair quote currency equals to the stake currency.
_pairlist = [k for k in self._exchange.get_markets(
quote_currencies=[self._stake_currency],
pairs_only=True, active_only=True).keys()]
# No point in testing for blacklisted pairs...
_pairlist = self.verify_blacklist(_pairlist, logger.info)
filtered_tickers = [
v for k, v in tickers.items()
if (self._exchange.get_pair_quote_currency(k) == self._stake_currency
and (self._use_range or v[self._sort_key] is not None))]
and (self._use_range or v[self._sort_key] is not None)
and v['symbol'] in _pairlist)]
pairlist = [s['symbol'] for s in filtered_tickers]
pairlist = self.filter_pairlist(pairlist, tickers)
@ -178,12 +184,16 @@ class VolumePairList(IPairList):
] if (p['symbol'], self._lookback_timeframe) in candles else None
# in case of candle data calculate typical price and quoteVolume for candle
if pair_candles is not None and not pair_candles.empty:
pair_candles['typical_price'] = (pair_candles['high'] + pair_candles['low']
+ pair_candles['close']) / 3
pair_candles['quoteVolume'] = (
pair_candles['volume'] * pair_candles['typical_price']
)
if self._exchange._ft_has["ohlcv_volume_currency"] == "base":
pair_candles['typical_price'] = (pair_candles['high'] + pair_candles['low']
+ pair_candles['close']) / 3
pair_candles['quoteVolume'] = (
pair_candles['volume'] * pair_candles['typical_price']
)
else:
# Exchange ohlcv data is in quote volume already.
pair_candles['quoteVolume'] = pair_candles['volume']
# ensure that a rolling sum over the lookback_period is built
# if pair_candles contains more candles than lookback_period
quoteVolume = (pair_candles['quoteVolume']
@ -204,7 +214,7 @@ class VolumePairList(IPairList):
# Validate whitelist to only have active market pairs
pairs = self._whitelist_for_active_markets([s['symbol'] for s in sorted_tickers])
pairs = self.verify_blacklist(pairs, partial(self.log_once, logmethod=logger.info))
pairs = self.verify_blacklist(pairs, logmethod=logger.info)
# Limit pairlist to the requested number of pairs
pairs = pairs[:self._number_pairs]

View File

@ -55,7 +55,8 @@ class MaxDrawdown(IProtection):
# Drawdown is always positive
try:
drawdown, _, _, _, _ = calculate_max_drawdown(trades_df, value_col='close_profit')
# TODO: This should use absolute profit calculation, considering account balance.
drawdown, _, _, _, _, _ = calculate_max_drawdown(trades_df, value_col='close_profit')
except ValueError:
return False, None, None

View File

@ -7,5 +7,4 @@ scikit-learn==1.0.2
scikit-optimize==0.9.0
filelock==3.4.2
joblib==1.1.0
psutil==5.8.0
progressbar2==3.55.0

View File

@ -3,7 +3,7 @@ numpy==1.22.0; python_version > '3.7'
pandas==1.3.5
pandas-ta==0.3.14b
ccxt==1.66.20
ccxt==1.66.32
# Pin cryptography for now due to rust build errors with piwheels
cryptography==36.0.1
aiohttp==3.8.1
@ -14,7 +14,7 @@ cachetools==4.2.2
requests==2.26.0
urllib3==1.26.7
jsonschema==4.3.3
TA-Lib==0.4.22
TA-Lib==0.4.23
technical==1.3.0
tabulate==0.8.9
pycoingecko==2.2.0
@ -36,7 +36,7 @@ fastapi==0.70.1
uvicorn==0.16.0
pyjwt==2.3.0
aiofiles==0.8.0
psutil==5.8.0
psutil==5.9.0
# Support for colorized terminal output
colorama==0.4.4

View File

@ -43,7 +43,7 @@ setup(
],
install_requires=[
# from requirements.txt
'ccxt>=1.60.11',
'ccxt>=1.66.32',
'SQLAlchemy',
'python-telegram-bot>=13.4',
'arrow>=0.17.0',

View File

@ -2020,7 +2020,7 @@ def saved_hyperopt_results():
'params_dict': {
'mfi-value': 15, 'fastd-value': 20, 'adx-value': 25, 'rsi-value': 28, 'mfi-enabled': False, 'fastd-enabled': True, 'adx-enabled': True, 'rsi-enabled': True, 'trigger': 'macd_cross_signal', 'sell-mfi-value': 88, 'sell-fastd-value': 97, 'sell-adx-value': 51, 'sell-rsi-value': 67, 'sell-mfi-enabled': False, 'sell-fastd-enabled': False, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-bb_upper', 'roi_t1': 1190, 'roi_t2': 541, 'roi_t3': 408, 'roi_p1': 0.026035863879169705, 'roi_p2': 0.12508730043628782, 'roi_p3': 0.27766427921605896, 'stoploss': -0.2562930402099556}, # noqa: E501
'params_details': {'buy': {'mfi-value': 15, 'fastd-value': 20, 'adx-value': 25, 'rsi-value': 28, 'mfi-enabled': False, 'fastd-enabled': True, 'adx-enabled': True, 'rsi-enabled': True, 'trigger': 'macd_cross_signal'}, 'sell': {'sell-mfi-value': 88, 'sell-fastd-value': 97, 'sell-adx-value': 51, 'sell-rsi-value': 67, 'sell-mfi-enabled': False, 'sell-fastd-enabled': False, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-bb_upper'}, 'roi': {0: 0.4287874435315165, 408: 0.15112316431545753, 949: 0.026035863879169705, 2139: 0}, 'stoploss': {'stoploss': -0.2562930402099556}}, # noqa: E501
'results_metrics': {'total_trades': 2, 'wins': 0, 'draws': 0, 'losses': 2, 'profit_mean': -0.01254995, 'profit_median': -0.012222, 'profit_total': -0.00125625, 'profit_total_abs': -2.50999, 'holding_avg': timedelta(minutes=3930.0), 'stake_currency': 'BTC', 'strategy_name': 'SampleStrategy'}, # noqa: E501
'results_metrics': {'total_trades': 2, 'wins': 0, 'draws': 0, 'losses': 2, 'profit_mean': -0.01254995, 'profit_median': -0.012222, 'profit_total': -0.00125625, 'profit_total_abs': -2.50999, 'max_drawdown': 0.23, 'max_drawdown_abs': -0.00125625, 'holding_avg': timedelta(minutes=3930.0), 'stake_currency': 'BTC', 'strategy_name': 'SampleStrategy'}, # noqa: E501
'results_explanation': ' 2 trades. Avg profit -1.25%. Total profit -0.00125625 BTC ( -2.51Σ%). Avg duration 3930.0 min.', # noqa: E501
'total_profit': -0.00125625,
'current_epoch': 1,
@ -2036,7 +2036,7 @@ def saved_hyperopt_results():
'sell': {'sell-mfi-value': 96, 'sell-fastd-value': 68, 'sell-adx-value': 63, 'sell-rsi-value': 81, 'sell-mfi-enabled': False, 'sell-fastd-enabled': True, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-sar_reversal'}, # noqa: E501
'roi': {0: 0.4449309386008759, 140: 0.11955965746663, 823: 0.06403981740598495, 1157: 0}, # noqa: E501
'stoploss': {'stoploss': -0.338070047333259}},
'results_metrics': {'total_trades': 1, 'wins': 0, 'draws': 0, 'losses': 1, 'profit_mean': 0.012357, 'profit_median': -0.012222, 'profit_total': 6.185e-05, 'profit_total_abs': 0.12357, 'holding_avg': timedelta(minutes=1200.0)}, # noqa: E501
'results_metrics': {'total_trades': 1, 'wins': 0, 'draws': 0, 'losses': 1, 'profit_mean': 0.012357, 'profit_median': -0.012222, 'profit_total': 6.185e-05, 'profit_total_abs': 0.12357, 'max_drawdown': 0.23, 'max_drawdown_abs': -0.00125625, 'holding_avg': timedelta(minutes=1200.0)}, # noqa: E501
'results_explanation': ' 1 trades. Avg profit 0.12%. Total profit 0.00006185 BTC ( 0.12Σ%). Avg duration 1200.0 min.', # noqa: E501
'total_profit': 6.185e-05,
'current_epoch': 2,
@ -2046,7 +2046,7 @@ def saved_hyperopt_results():
'loss': 14.241196856510731,
'params_dict': {'mfi-value': 25, 'fastd-value': 16, 'adx-value': 29, 'rsi-value': 20, 'mfi-enabled': False, 'fastd-enabled': False, 'adx-enabled': False, 'rsi-enabled': False, 'trigger': 'macd_cross_signal', 'sell-mfi-value': 98, 'sell-fastd-value': 72, 'sell-adx-value': 51, 'sell-rsi-value': 82, 'sell-mfi-enabled': True, 'sell-fastd-enabled': True, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-macd_cross_signal', 'roi_t1': 889, 'roi_t2': 533, 'roi_t3': 263, 'roi_p1': 0.04759065393663096, 'roi_p2': 0.1488819964638463, 'roi_p3': 0.4102801822104605, 'stoploss': -0.05394588767607611}, # noqa: E501
'params_details': {'buy': {'mfi-value': 25, 'fastd-value': 16, 'adx-value': 29, 'rsi-value': 20, 'mfi-enabled': False, 'fastd-enabled': False, 'adx-enabled': False, 'rsi-enabled': False, 'trigger': 'macd_cross_signal'}, 'sell': {'sell-mfi-value': 98, 'sell-fastd-value': 72, 'sell-adx-value': 51, 'sell-rsi-value': 82, 'sell-mfi-enabled': True, 'sell-fastd-enabled': True, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-macd_cross_signal'}, 'roi': {0: 0.6067528326109377, 263: 0.19647265040047726, 796: 0.04759065393663096, 1685: 0}, 'stoploss': {'stoploss': -0.05394588767607611}}, # noqa: E501
'results_metrics': {'total_trades': 621, 'wins': 320, 'draws': 0, 'losses': 301, 'profit_mean': -0.043883302093397747, 'profit_median': -0.012222, 'profit_total': -0.13639474, 'profit_total_abs': -272.515306, 'holding_avg': timedelta(minutes=1691.207729468599)}, # noqa: E501
'results_metrics': {'total_trades': 621, 'wins': 320, 'draws': 0, 'losses': 301, 'profit_mean': -0.043883302093397747, 'profit_median': -0.012222, 'profit_total': -0.13639474, 'profit_total_abs': -272.515306, 'max_drawdown': 0.25, 'max_drawdown_abs': -272.515306, 'holding_avg': timedelta(minutes=1691.207729468599)}, # noqa: E501
'results_explanation': ' 621 trades. Avg profit -0.44%. Total profit -0.13639474 BTC (-272.52Σ%). Avg duration 1691.2 min.', # noqa: E501
'total_profit': -0.13639474,
'current_epoch': 3,
@ -2063,7 +2063,7 @@ def saved_hyperopt_results():
'loss': 0.22195522184191518,
'params_dict': {'mfi-value': 17, 'fastd-value': 21, 'adx-value': 38, 'rsi-value': 33, 'mfi-enabled': True, 'fastd-enabled': False, 'adx-enabled': True, 'rsi-enabled': False, 'trigger': 'macd_cross_signal', 'sell-mfi-value': 87, 'sell-fastd-value': 82, 'sell-adx-value': 78, 'sell-rsi-value': 69, 'sell-mfi-enabled': True, 'sell-fastd-enabled': False, 'sell-adx-enabled': True, 'sell-rsi-enabled': False, 'sell-trigger': 'sell-macd_cross_signal', 'roi_t1': 1269, 'roi_t2': 601, 'roi_t3': 444, 'roi_p1': 0.07280999507931168, 'roi_p2': 0.08946698095898986, 'roi_p3': 0.1454876733325284, 'stoploss': -0.18181041180901014}, # noqa: E501
'params_details': {'buy': {'mfi-value': 17, 'fastd-value': 21, 'adx-value': 38, 'rsi-value': 33, 'mfi-enabled': True, 'fastd-enabled': False, 'adx-enabled': True, 'rsi-enabled': False, 'trigger': 'macd_cross_signal'}, 'sell': {'sell-mfi-value': 87, 'sell-fastd-value': 82, 'sell-adx-value': 78, 'sell-rsi-value': 69, 'sell-mfi-enabled': True, 'sell-fastd-enabled': False, 'sell-adx-enabled': True, 'sell-rsi-enabled': False, 'sell-trigger': 'sell-macd_cross_signal'}, 'roi': {0: 0.3077646493708299, 444: 0.16227697603830155, 1045: 0.07280999507931168, 2314: 0}, 'stoploss': {'stoploss': -0.18181041180901014}}, # noqa: E501
'results_metrics': {'total_trades': 14, 'wins': 6, 'draws': 0, 'losses': 8, 'profit_mean': -0.003539515, 'profit_median': -0.012222, 'profit_total': -0.002480140000000001, 'profit_total_abs': -4.955321, 'holding_avg': timedelta(minutes=3402.8571428571427)}, # noqa: E501
'results_metrics': {'total_trades': 14, 'wins': 6, 'draws': 0, 'losses': 8, 'profit_mean': -0.003539515, 'profit_median': -0.012222, 'profit_total': -0.002480140000000001, 'profit_total_abs': -4.955321, 'max_drawdown': 0.34, 'max_drawdown_abs': -4.955321, 'holding_avg': timedelta(minutes=3402.8571428571427)}, # noqa: E501
'results_explanation': ' 14 trades. Avg profit -0.35%. Total profit -0.00248014 BTC ( -4.96Σ%). Avg duration 3402.9 min.', # noqa: E501
'total_profit': -0.002480140000000001,
'current_epoch': 5,
@ -2073,7 +2073,7 @@ def saved_hyperopt_results():
'loss': 0.545315889154162,
'params_dict': {'mfi-value': 22, 'fastd-value': 43, 'adx-value': 46, 'rsi-value': 20, 'mfi-enabled': False, 'fastd-enabled': False, 'adx-enabled': True, 'rsi-enabled': True, 'trigger': 'bb_lower', 'sell-mfi-value': 87, 'sell-fastd-value': 65, 'sell-adx-value': 94, 'sell-rsi-value': 63, 'sell-mfi-enabled': False, 'sell-fastd-enabled': True, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-macd_cross_signal', 'roi_t1': 319, 'roi_t2': 556, 'roi_t3': 216, 'roi_p1': 0.06251955472249589, 'roi_p2': 0.11659519602202795, 'roi_p3': 0.0953744132197762, 'stoploss': -0.024551752215582423}, # noqa: E501
'params_details': {'buy': {'mfi-value': 22, 'fastd-value': 43, 'adx-value': 46, 'rsi-value': 20, 'mfi-enabled': False, 'fastd-enabled': False, 'adx-enabled': True, 'rsi-enabled': True, 'trigger': 'bb_lower'}, 'sell': {'sell-mfi-value': 87, 'sell-fastd-value': 65, 'sell-adx-value': 94, 'sell-rsi-value': 63, 'sell-mfi-enabled': False, 'sell-fastd-enabled': True, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-macd_cross_signal'}, 'roi': {0: 0.2744891639643, 216: 0.17911475074452382, 772: 0.06251955472249589, 1091: 0}, 'stoploss': {'stoploss': -0.024551752215582423}}, # noqa: E501
'results_metrics': {'total_trades': 39, 'wins': 20, 'draws': 0, 'losses': 19, 'profit_mean': -0.0021400679487179478, 'profit_median': -0.012222, 'profit_total': -0.0041773, 'profit_total_abs': -8.346264999999997, 'holding_avg': timedelta(minutes=636.9230769230769)}, # noqa: E501
'results_metrics': {'total_trades': 39, 'wins': 20, 'draws': 0, 'losses': 19, 'profit_mean': -0.0021400679487179478, 'profit_median': -0.012222, 'profit_total': -0.0041773, 'profit_total_abs': -8.346264999999997, 'max_drawdown': 0.45, 'max_drawdown_abs': -4.955321, 'holding_avg': timedelta(minutes=636.9230769230769)}, # noqa: E501
'results_explanation': ' 39 trades. Avg profit -0.21%. Total profit -0.00417730 BTC ( -8.35Σ%). Avg duration 636.9 min.', # noqa: E501
'total_profit': -0.0041773,
'current_epoch': 6,
@ -2085,7 +2085,7 @@ def saved_hyperopt_results():
'params_details': {
'buy': {'mfi-value': 13, 'fastd-value': 41, 'adx-value': 21, 'rsi-value': 29, 'mfi-enabled': False, 'fastd-enabled': True, 'adx-enabled': False, 'rsi-enabled': False, 'trigger': 'bb_lower'}, 'sell': {'sell-mfi-value': 99, 'sell-fastd-value': 60, 'sell-adx-value': 81, 'sell-rsi-value': 69, 'sell-mfi-enabled': True, 'sell-fastd-enabled': True, 'sell-adx-enabled': True, 'sell-rsi-enabled': False, 'sell-trigger': 'sell-macd_cross_signal'}, 'roi': {0: 0.4837436938134452, 145: 0.10853310701097472, 765: 0.0586919200378493, 1536: 0}, # noqa: E501
'stoploss': {'stoploss': -0.14613268022709905}}, # noqa: E501
'results_metrics': {'total_trades': 318, 'wins': 100, 'draws': 0, 'losses': 218, 'profit_mean': -0.0039833954716981146, 'profit_median': -0.012222, 'profit_total': -0.06339929, 'profit_total_abs': -126.67197600000004, 'holding_avg': timedelta(minutes=3140.377358490566)}, # noqa: E501
'results_metrics': {'total_trades': 318, 'wins': 100, 'draws': 0, 'losses': 218, 'profit_mean': -0.0039833954716981146, 'profit_median': -0.012222, 'profit_total': -0.06339929, 'profit_total_abs': -126.67197600000004, 'max_drawdown': 0.50, 'max_drawdown_abs': -200.955321, 'holding_avg': timedelta(minutes=3140.377358490566)}, # noqa: E501
'results_explanation': ' 318 trades. Avg profit -0.40%. Total profit -0.06339929 BTC (-126.67Σ%). Avg duration 3140.4 min.', # noqa: E501
'total_profit': -0.06339929,
'current_epoch': 7,
@ -2095,7 +2095,7 @@ def saved_hyperopt_results():
'loss': 20.0, # noqa: E501
'params_dict': {'mfi-value': 24, 'fastd-value': 43, 'adx-value': 33, 'rsi-value': 20, 'mfi-enabled': False, 'fastd-enabled': True, 'adx-enabled': True, 'rsi-enabled': True, 'trigger': 'sar_reversal', 'sell-mfi-value': 89, 'sell-fastd-value': 74, 'sell-adx-value': 70, 'sell-rsi-value': 70, 'sell-mfi-enabled': False, 'sell-fastd-enabled': False, 'sell-adx-enabled': False, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-sar_reversal', 'roi_t1': 1149, 'roi_t2': 375, 'roi_t3': 289, 'roi_p1': 0.05571820757172588, 'roi_p2': 0.0606240398618907, 'roi_p3': 0.1729012220156157, 'stoploss': -0.1588514289110401}, # noqa: E501
'params_details': {'buy': {'mfi-value': 24, 'fastd-value': 43, 'adx-value': 33, 'rsi-value': 20, 'mfi-enabled': False, 'fastd-enabled': True, 'adx-enabled': True, 'rsi-enabled': True, 'trigger': 'sar_reversal'}, 'sell': {'sell-mfi-value': 89, 'sell-fastd-value': 74, 'sell-adx-value': 70, 'sell-rsi-value': 70, 'sell-mfi-enabled': False, 'sell-fastd-enabled': False, 'sell-adx-enabled': False, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-sar_reversal'}, 'roi': {0: 0.2892434694492323, 289: 0.11634224743361658, 664: 0.05571820757172588, 1813: 0}, 'stoploss': {'stoploss': -0.1588514289110401}}, # noqa: E501
'results_metrics': {'total_trades': 1, 'wins': 0, 'draws': 1, 'losses': 0, 'profit_mean': 0.0, 'profit_median': 0.0, 'profit_total': 0.0, 'profit_total_abs': 0.0, 'holding_avg': timedelta(minutes=5340.0)}, # noqa: E501
'results_metrics': {'total_trades': 1, 'wins': 0, 'draws': 1, 'losses': 0, 'profit_mean': 0.0, 'profit_median': 0.0, 'profit_total': 0.0, 'profit_total_abs': 0.0, 'max_drawdown': 0.0, 'max_drawdown_abs': 0.52, 'holding_avg': timedelta(minutes=5340.0)}, # noqa: E501
'results_explanation': ' 1 trades. Avg profit 0.00%. Total profit 0.00000000 BTC ( 0.00Σ%). Avg duration 5340.0 min.', # noqa: E501
'total_profit': 0.0,
'current_epoch': 8,
@ -2105,7 +2105,7 @@ def saved_hyperopt_results():
'loss': 2.4731817780991223,
'params_dict': {'mfi-value': 22, 'fastd-value': 20, 'adx-value': 29, 'rsi-value': 40, 'mfi-enabled': False, 'fastd-enabled': False, 'adx-enabled': False, 'rsi-enabled': False, 'trigger': 'sar_reversal', 'sell-mfi-value': 97, 'sell-fastd-value': 65, 'sell-adx-value': 81, 'sell-rsi-value': 64, 'sell-mfi-enabled': True, 'sell-fastd-enabled': True, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-bb_upper', 'roi_t1': 1012, 'roi_t2': 584, 'roi_t3': 422, 'roi_p1': 0.036764323603472565, 'roi_p2': 0.10335480573205287, 'roi_p3': 0.10322347377503042, 'stoploss': -0.2780610808108503}, # noqa: E501
'params_details': {'buy': {'mfi-value': 22, 'fastd-value': 20, 'adx-value': 29, 'rsi-value': 40, 'mfi-enabled': False, 'fastd-enabled': False, 'adx-enabled': False, 'rsi-enabled': False, 'trigger': 'sar_reversal'}, 'sell': {'sell-mfi-value': 97, 'sell-fastd-value': 65, 'sell-adx-value': 81, 'sell-rsi-value': 64, 'sell-mfi-enabled': True, 'sell-fastd-enabled': True, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-bb_upper'}, 'roi': {0: 0.2433426031105559, 422: 0.14011912933552545, 1006: 0.036764323603472565, 2018: 0}, 'stoploss': {'stoploss': -0.2780610808108503}}, # noqa: E501
'results_metrics': {'total_trades': 229, 'wins': 150, 'draws': 0, 'losses': 79, 'profit_mean': -0.0038433433624454144, 'profit_median': -0.012222, 'profit_total': -0.044050070000000004, 'profit_total_abs': -88.01256299999999, 'holding_avg': timedelta(minutes=6505.676855895196)}, # noqa: E501
'results_metrics': {'total_trades': 229, 'wins': 150, 'draws': 0, 'losses': 79, 'profit_mean': -0.0038433433624454144, 'profit_median': -0.012222, 'profit_total': -0.044050070000000004, 'profit_total_abs': -88.01256299999999, 'max_drawdown': 0.41, 'max_drawdown_abs': -150.955321, 'holding_avg': timedelta(minutes=6505.676855895196)}, # noqa: E501
'results_explanation': ' 229 trades. Avg profit -0.38%. Total profit -0.04405007 BTC ( -88.01Σ%). Avg duration 6505.7 min.', # noqa: E501
'total_profit': -0.044050070000000004, # noqa: E501
'current_epoch': 9,
@ -2115,7 +2115,7 @@ def saved_hyperopt_results():
'loss': -0.2604606005845212, # noqa: E501
'params_dict': {'mfi-value': 23, 'fastd-value': 24, 'adx-value': 22, 'rsi-value': 24, 'mfi-enabled': False, 'fastd-enabled': False, 'adx-enabled': False, 'rsi-enabled': True, 'trigger': 'macd_cross_signal', 'sell-mfi-value': 97, 'sell-fastd-value': 70, 'sell-adx-value': 64, 'sell-rsi-value': 80, 'sell-mfi-enabled': False, 'sell-fastd-enabled': True, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-sar_reversal', 'roi_t1': 792, 'roi_t2': 464, 'roi_t3': 215, 'roi_p1': 0.04594053535385903, 'roi_p2': 0.09623192684243963, 'roi_p3': 0.04428219070850663, 'stoploss': -0.16992287161634415}, # noqa: E501
'params_details': {'buy': {'mfi-value': 23, 'fastd-value': 24, 'adx-value': 22, 'rsi-value': 24, 'mfi-enabled': False, 'fastd-enabled': False, 'adx-enabled': False, 'rsi-enabled': True, 'trigger': 'macd_cross_signal'}, 'sell': {'sell-mfi-value': 97, 'sell-fastd-value': 70, 'sell-adx-value': 64, 'sell-rsi-value': 80, 'sell-mfi-enabled': False, 'sell-fastd-enabled': True, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-sar_reversal'}, 'roi': {0: 0.18645465290480528, 215: 0.14217246219629864, 679: 0.04594053535385903, 1471: 0}, 'stoploss': {'stoploss': -0.16992287161634415}}, # noqa: E501
'results_metrics': {'total_trades': 4, 'wins': 0, 'draws': 0, 'losses': 4, 'profit_mean': 0.001080385, 'profit_median': -0.012222, 'profit_total': 0.00021629, 'profit_total_abs': 0.432154, 'holding_avg': timedelta(minutes=2850.0)}, # noqa: E501
'results_metrics': {'total_trades': 4, 'wins': 0, 'draws': 0, 'losses': 4, 'profit_mean': 0.001080385, 'profit_median': -0.012222, 'profit_total': 0.00021629, 'profit_total_abs': 0.432154, 'max_drawdown': 0.13, 'max_drawdown_abs': -4.955321, 'holding_avg': timedelta(minutes=2850.0)}, # noqa: E501
'results_explanation': ' 4 trades. Avg profit 0.11%. Total profit 0.00021629 BTC ( 0.43Σ%). Avg duration 2850.0 min.', # noqa: E501
'total_profit': 0.00021629,
'current_epoch': 10,
@ -2126,7 +2126,7 @@ def saved_hyperopt_results():
'params_dict': {'mfi-value': 20, 'fastd-value': 32, 'adx-value': 49, 'rsi-value': 23, 'mfi-enabled': True, 'fastd-enabled': True, 'adx-enabled': False, 'rsi-enabled': False, 'trigger': 'bb_lower', 'sell-mfi-value': 75, 'sell-fastd-value': 56, 'sell-adx-value': 61, 'sell-rsi-value': 62, 'sell-mfi-enabled': False, 'sell-fastd-enabled': False, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-macd_cross_signal', 'roi_t1': 579, 'roi_t2': 614, 'roi_t3': 273, 'roi_p1': 0.05307643172744114, 'roi_p2': 0.1352282078262871, 'roi_p3': 0.1913307406325751, 'stoploss': -0.25728526022513887}, # noqa: E501
'params_details': {'buy': {'mfi-value': 20, 'fastd-value': 32, 'adx-value': 49, 'rsi-value': 23, 'mfi-enabled': True, 'fastd-enabled': True, 'adx-enabled': False, 'rsi-enabled': False, 'trigger': 'bb_lower'}, 'sell': {'sell-mfi-value': 75, 'sell-fastd-value': 56, 'sell-adx-value': 61, 'sell-rsi-value': 62, 'sell-mfi-enabled': False, 'sell-fastd-enabled': False, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-macd_cross_signal'}, 'roi': {0: 0.3796353801863034, 273: 0.18830463955372825, 887: 0.05307643172744114, 1466: 0}, 'stoploss': {'stoploss': -0.25728526022513887}}, # noqa: E501
# New Hyperopt mode!
'results_metrics': {'total_trades': 117, 'wins': 67, 'draws': 0, 'losses': 50, 'profit_mean': -0.012698609145299145, 'profit_median': -0.012222, 'profit_total': -0.07436117, 'profit_total_abs': -148.573727, 'holding_avg': timedelta(minutes=4282.5641025641025)}, # noqa: E501
'results_metrics': {'total_trades': 117, 'wins': 67, 'draws': 0, 'losses': 50, 'profit_mean': -0.012698609145299145, 'profit_median': -0.012222, 'profit_total': -0.07436117, 'profit_total_abs': -148.573727, 'max_drawdown': 0.52, 'max_drawdown_abs': -224.955321, 'holding_avg': timedelta(minutes=4282.5641025641025)}, # noqa: E501
'results_explanation': ' 117 trades. Avg profit -1.27%. Total profit -0.07436117 BTC (-148.57Σ%). Avg duration 4282.6 min.', # noqa: E501
'total_profit': -0.07436117,
'current_epoch': 11,
@ -2136,7 +2136,7 @@ def saved_hyperopt_results():
'loss': 100000,
'params_dict': {'mfi-value': 10, 'fastd-value': 36, 'adx-value': 31, 'rsi-value': 22, 'mfi-enabled': True, 'fastd-enabled': True, 'adx-enabled': True, 'rsi-enabled': False, 'trigger': 'sar_reversal', 'sell-mfi-value': 80, 'sell-fastd-value': 71, 'sell-adx-value': 60, 'sell-rsi-value': 85, 'sell-mfi-enabled': False, 'sell-fastd-enabled': False, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-bb_upper', 'roi_t1': 1156, 'roi_t2': 581, 'roi_t3': 408, 'roi_p1': 0.06860454019988212, 'roi_p2': 0.12473718444931989, 'roi_p3': 0.2896360635226823, 'stoploss': -0.30889015124682806}, # noqa: E501
'params_details': {'buy': {'mfi-value': 10, 'fastd-value': 36, 'adx-value': 31, 'rsi-value': 22, 'mfi-enabled': True, 'fastd-enabled': True, 'adx-enabled': True, 'rsi-enabled': False, 'trigger': 'sar_reversal'}, 'sell': {'sell-mfi-value': 80, 'sell-fastd-value': 71, 'sell-adx-value': 60, 'sell-rsi-value': 85, 'sell-mfi-enabled': False, 'sell-fastd-enabled': False, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-bb_upper'}, 'roi': {0: 0.4829777881718843, 408: 0.19334172464920202, 989: 0.06860454019988212, 2145: 0}, 'stoploss': {'stoploss': -0.30889015124682806}}, # noqa: E501
'results_metrics': {'total_trades': 0, 'wins': 0, 'draws': 0, 'losses': 0, 'profit_mean': None, 'profit_median': None, 'profit_total': 0, 'profit_total_abs': 0.0, 'holding_avg': timedelta()}, # noqa: E501
'results_metrics': {'total_trades': 0, 'wins': 0, 'draws': 0, 'losses': 0, 'profit_mean': None, 'profit_median': None, 'profit_total': 0, 'profit_total_abs': 0.0, 'max_drawdown': 0.0, 'max_drawdown_abs': 0.0, 'holding_avg': timedelta()}, # noqa: E501
'results_explanation': ' 0 trades. Avg profit nan%. Total profit 0.00000000 BTC ( 0.00Σ%). Avg duration nan min.', # noqa: E501
'total_profit': 0,
'current_epoch': 12,

View File

@ -8,14 +8,14 @@ from pandas import DataFrame, DateOffset, Timestamp, to_datetime
from freqtrade.configuration import TimeRange
from freqtrade.constants import LAST_BT_RESULT_FN
from freqtrade.data.btanalysis import (BT_DATA_COLUMNS, BT_DATA_COLUMNS_MID, BT_DATA_COLUMNS_OLD,
analyze_trade_parallelism, calculate_csum,
from freqtrade.data.btanalysis import (BT_DATA_COLUMNS, analyze_trade_parallelism, calculate_csum,
calculate_market_change, calculate_max_drawdown,
calculate_underwater, combine_dataframes_with_mean,
create_cum_profit, extract_trades_of_period,
get_latest_backtest_filename, get_latest_hyperopt_file,
load_backtest_data, load_trades, load_trades_from_db)
from freqtrade.data.history import load_data, load_pair_history
from freqtrade.exceptions import OperationalException
from tests.conftest import create_mock_trades
from tests.conftest_trades import MOCK_TRADE_COUNT
@ -51,20 +51,14 @@ def test_get_latest_hyperopt_file(testdatadir, mocker):
assert res == testdatadir.parent / "hyperopt_results.pickle"
def test_load_backtest_data_old_format(testdatadir):
def test_load_backtest_data_old_format(testdatadir, mocker):
filename = testdatadir / "backtest-result_test.json"
bt_data = load_backtest_data(filename)
assert isinstance(bt_data, DataFrame)
assert list(bt_data.columns) == BT_DATA_COLUMNS_OLD + ['profit_abs', 'profit_ratio']
assert len(bt_data) == 179
filename = testdatadir / "backtest-result_test222.json"
mocker.patch('freqtrade.data.btanalysis.load_backtest_stats', return_value=[])
# Test loading from string (must yield same result)
bt_data2 = load_backtest_data(str(filename))
assert bt_data.equals(bt_data2)
with pytest.raises(ValueError, match=r"File .* does not exist\."):
load_backtest_data(str("filename") + "nofile")
with pytest.raises(OperationalException,
match=r"Backtest-results with only trades data are no longer supported."):
load_backtest_data(filename)
def test_load_backtest_data_new_format(testdatadir):
@ -72,7 +66,7 @@ def test_load_backtest_data_new_format(testdatadir):
filename = testdatadir / "backtest-result_new.json"
bt_data = load_backtest_data(filename)
assert isinstance(bt_data, DataFrame)
assert set(bt_data.columns) == set(BT_DATA_COLUMNS_MID)
assert set(bt_data.columns) == set(BT_DATA_COLUMNS + ['close_timestamp', 'open_timestamp'])
assert len(bt_data) == 179
# Test loading from string (must yield same result)
@ -96,7 +90,7 @@ def test_load_backtest_data_multi(testdatadir):
for strategy in ('StrategyTestV2', 'TestStrategy'):
bt_data = load_backtest_data(filename, strategy=strategy)
assert isinstance(bt_data, DataFrame)
assert set(bt_data.columns) == set(BT_DATA_COLUMNS_MID)
assert set(bt_data.columns) == set(BT_DATA_COLUMNS + ['close_timestamp', 'open_timestamp'])
assert len(bt_data) == 179
# Test loading from string (must yield same result)
@ -167,8 +161,8 @@ def test_extract_trades_of_period(testdatadir):
assert trades1.iloc[-1].close_date == Arrow(2017, 11, 14, 15, 25, 0).datetime
def test_analyze_trade_parallelism(default_conf, mocker, testdatadir):
filename = testdatadir / "backtest-result_test.json"
def test_analyze_trade_parallelism(testdatadir):
filename = testdatadir / "backtest-result_new.json"
bt_data = load_backtest_data(filename)
res = analyze_trade_parallelism(bt_data, "5m")
@ -242,7 +236,7 @@ def test_combine_dataframes_with_mean_no_data(testdatadir):
def test_create_cum_profit(testdatadir):
filename = testdatadir / "backtest-result_test.json"
filename = testdatadir / "backtest-result_new.json"
bt_data = load_backtest_data(filename)
timerange = TimeRange.parse_timerange("20180110-20180112")
@ -258,7 +252,7 @@ def test_create_cum_profit(testdatadir):
def test_create_cum_profit1(testdatadir):
filename = testdatadir / "backtest-result_test.json"
filename = testdatadir / "backtest-result_new.json"
bt_data = load_backtest_data(filename)
# Move close-time to "off" the candle, to make sure the logic still works
bt_data.loc[:, 'close_date'] = bt_data.loc[:, 'close_date'] + DateOffset(seconds=20)
@ -280,30 +274,31 @@ def test_create_cum_profit1(testdatadir):
def test_calculate_max_drawdown(testdatadir):
filename = testdatadir / "backtest-result_test.json"
filename = testdatadir / "backtest-result_new.json"
bt_data = load_backtest_data(filename)
drawdown, hdate, lowdate, hval, lval = calculate_max_drawdown(bt_data)
_, hdate, lowdate, hval, lval, drawdown = calculate_max_drawdown(
bt_data, value_col="profit_abs")
assert isinstance(drawdown, float)
assert pytest.approx(drawdown) == 0.21142322
assert pytest.approx(drawdown) == 0.12071099
assert isinstance(hdate, Timestamp)
assert isinstance(lowdate, Timestamp)
assert isinstance(hval, float)
assert isinstance(lval, float)
assert hdate == Timestamp('2018-01-24 14:25:00', tz='UTC')
assert lowdate == Timestamp('2018-01-30 04:45:00', tz='UTC')
assert hdate == Timestamp('2018-01-25 01:30:00', tz='UTC')
assert lowdate == Timestamp('2018-01-25 03:50:00', tz='UTC')
underwater = calculate_underwater(bt_data)
assert isinstance(underwater, DataFrame)
with pytest.raises(ValueError, match='Trade dataframe empty.'):
drawdown, hdate, lowdate, hval, lval = calculate_max_drawdown(DataFrame())
calculate_max_drawdown(DataFrame())
with pytest.raises(ValueError, match='Trade dataframe empty.'):
calculate_underwater(DataFrame())
def test_calculate_csum(testdatadir):
filename = testdatadir / "backtest-result_test.json"
filename = testdatadir / "backtest-result_new.json"
bt_data = load_backtest_data(filename)
csum_min, csum_max = calculate_csum(bt_data)
@ -331,12 +326,13 @@ def test_calculate_max_drawdown2():
# sort by profit and reset index
df = df.sort_values('profit').reset_index(drop=True)
df1 = df.copy()
drawdown, hdate, ldate, hval, lval = calculate_max_drawdown(
drawdown, hdate, ldate, hval, lval, drawdown_rel = calculate_max_drawdown(
df, date_col='open_date', value_col='profit')
# Ensure df has not been altered.
assert df.equals(df1)
assert isinstance(drawdown, float)
assert isinstance(drawdown_rel, float)
# High must be before low
assert hdate < ldate
# High value must be higher than low value

View File

@ -52,6 +52,12 @@ EXCHANGES = {
'hasQuoteVolume': True,
'timeframe': '5m',
},
'bitvavo': {
'pair': 'BTC/EUR',
'stake_currency': 'EUR',
'hasQuoteVolume': True,
'timeframe': '5m',
},
}
@ -68,6 +74,8 @@ def exchange_conf():
@pytest.fixture(params=EXCHANGES, scope="class")
def exchange(request, exchange_conf):
exchange_conf['exchange']['name'] = request.param
exchange_conf['stake_currency'] = EXCHANGES[request.param].get(
'stake_currency', exchange_conf['stake_currency'])
exchange = ExchangeResolver.load_exchange(request.param, exchange_conf, validate=True)
yield exchange, request.param

View File

@ -1,5 +1,5 @@
# pragma pylint: disable=missing-docstring,W0212,C0103
from datetime import datetime
from datetime import datetime, timedelta
from pathlib import Path
from unittest.mock import ANY, MagicMock
@ -22,6 +22,29 @@ from tests.conftest import (get_args, log_has, log_has_re, patch_exchange,
patched_configuration_load_config_file)
def generate_result_metrics():
return {
'trade_count': 1,
'total_trades': 1,
'avg_profit': 0.1,
'total_profit': 0.001,
'profit': 0.01,
'duration': 20.0,
'wins': 1,
'draws': 0,
'losses': 0,
'profit_mean': 0.01,
'profit_total_abs': 0.001,
'profit_total': 0.01,
'holding_avg': timedelta(minutes=20),
'max_drawdown': 0.001,
'max_drawdown_abs': 0.001,
'loss': 0.001,
'is_initial_point': 0.001,
'is_best': 1,
}
def test_setup_hyperopt_configuration_without_arguments(mocker, default_conf, caplog) -> None:
patched_configuration_load_config_file(mocker, default_conf)
@ -168,8 +191,8 @@ def test_start_no_hyperopt_allowed(mocker, hyperopt_conf, caplog) -> None:
start_hyperopt(pargs)
def test_start_no_data(mocker, hyperopt_conf) -> None:
hyperopt_conf['user_data_dir'] = Path("tests")
def test_start_no_data(mocker, hyperopt_conf, tmpdir) -> None:
hyperopt_conf['user_data_dir'] = Path(tmpdir)
patched_configuration_load_config_file(mocker, hyperopt_conf)
mocker.patch('freqtrade.data.history.load_pair_history', MagicMock(return_value=pd.DataFrame))
mocker.patch(
@ -178,7 +201,6 @@ def test_start_no_data(mocker, hyperopt_conf) -> None:
)
patch_exchange(mocker)
# TODO: migrate to strategy-based hyperopt
args = [
'hyperopt',
'--config', 'config.json',
@ -222,14 +244,7 @@ def test_log_results_if_loss_improves(hyperopt, capsys) -> None:
hyperopt.print_results(
{
'loss': 1,
'results_metrics':
{
'trade_count': 1,
'avg_profit': 0.1,
'total_profit': 0.001,
'profit': 1.0,
'duration': 20.0
},
'results_metrics': generate_result_metrics(),
'total_profit': 0,
'current_epoch': 2, # This starts from 1 (in a human-friendly manner)
'is_initial_point': False,
@ -238,7 +253,7 @@ def test_log_results_if_loss_improves(hyperopt, capsys) -> None:
)
out, err = capsys.readouterr()
assert all(x in out
for x in ["Best", "2/2", " 1", "0.10%", "0.00100000 BTC (1.00%)", "20.0 m"])
for x in ["Best", "2/2", " 1", "0.10%", "0.00100000 BTC (1.00%)", "00:20:00"])
def test_no_log_if_loss_does_not_improve(hyperopt, caplog) -> None:
@ -295,14 +310,7 @@ def test_start_calls_optimizer(mocker, hyperopt_conf, capsys) -> None:
MagicMock(return_value=[{
'loss': 1, 'results_explanation': 'foo result',
'params': {'buy': {}, 'sell': {}, 'roi': {}, 'stoploss': 0.0},
'results_metrics':
{
'trade_count': 1,
'avg_profit': 0.1,
'total_profit': 0.001,
'profit': 1.0,
'duration': 20.0
},
'results_metrics': generate_result_metrics(),
}])
)
patch_exchange(mocker)
@ -359,7 +367,7 @@ def test_hyperopt_format_results(hyperopt):
'backtest_start_time': 1619718665,
'backtest_end_time': 1619718665,
}
results_metrics = generate_strategy_stats({'XRP/BTC': None}, '', bt_result,
results_metrics = generate_strategy_stats(['XRP/BTC'], '', bt_result,
Arrow(2017, 11, 14, 19, 32, 00),
Arrow(2017, 12, 14, 19, 32, 00), market_change=0)
@ -528,14 +536,7 @@ def test_print_json_spaces_all(mocker, hyperopt_conf, capsys) -> None:
'roi': {}, 'stoploss': {'stoploss': None},
'trailing': {'trailing_stop': None}
},
'results_metrics':
{
'trade_count': 1,
'avg_profit': 0.1,
'total_profit': 0.001,
'profit': 1.0,
'duration': 20.0
}
'results_metrics': generate_result_metrics(),
}])
)
patch_exchange(mocker)
@ -584,14 +585,7 @@ def test_print_json_spaces_default(mocker, hyperopt_conf, capsys) -> None:
'sell': {'sell-mfi-value': None},
'roi': {}, 'stoploss': {'stoploss': None}
},
'results_metrics':
{
'trade_count': 1,
'avg_profit': 0.1,
'total_profit': 0.001,
'profit': 1.0,
'duration': 20.0
}
'results_metrics': generate_result_metrics(),
}])
)
patch_exchange(mocker)
@ -629,14 +623,7 @@ def test_print_json_spaces_roi_stoploss(mocker, hyperopt_conf, capsys) -> None:
MagicMock(return_value=[{
'loss': 1, 'results_explanation': 'foo result', 'params': {},
'params_details': {'roi': {}, 'stoploss': {'stoploss': None}},
'results_metrics':
{
'trade_count': 1,
'avg_profit': 0.1,
'total_profit': 0.001,
'profit': 1.0,
'duration': 20.0
}
'results_metrics': generate_result_metrics(),
}])
)
patch_exchange(mocker)
@ -676,14 +663,7 @@ def test_simplified_interface_roi_stoploss(mocker, hyperopt_conf, capsys) -> Non
'freqtrade.optimize.hyperopt.Hyperopt.run_optimizer_parallel',
MagicMock(return_value=[{
'loss': 1, 'results_explanation': 'foo result', 'params': {'stoploss': 0.0},
'results_metrics':
{
'trade_count': 1,
'avg_profit': 0.1,
'total_profit': 0.001,
'profit': 1.0,
'duration': 20.0
}
'results_metrics': generate_result_metrics(),
}])
)
patch_exchange(mocker)
@ -756,14 +736,7 @@ def test_simplified_interface_buy(mocker, hyperopt_conf, capsys) -> None:
'freqtrade.optimize.hyperopt.Hyperopt.run_optimizer_parallel',
MagicMock(return_value=[{
'loss': 1, 'results_explanation': 'foo result', 'params': {},
'results_metrics':
{
'trade_count': 1,
'avg_profit': 0.1,
'total_profit': 0.001,
'profit': 1.0,
'duration': 20.0
}
'results_metrics': generate_result_metrics(),
}])
)
patch_exchange(mocker)
@ -805,14 +778,7 @@ def test_simplified_interface_sell(mocker, hyperopt_conf, capsys) -> None:
'freqtrade.optimize.hyperopt.Hyperopt.run_optimizer_parallel',
MagicMock(return_value=[{
'loss': 1, 'results_explanation': 'foo result', 'params': {},
'results_metrics':
{
'trade_count': 1,
'avg_profit': 0.1,
'total_profit': 0.001,
'profit': 1.0,
'duration': 20.0
}
'results_metrics': generate_result_metrics(),
}])
)
patch_exchange(mocker)

View File

@ -1,4 +1,3 @@
import datetime
import re
from datetime import timedelta
from pathlib import Path
@ -49,7 +48,7 @@ def test_text_table_bt_results():
' 0:20:00 | 2 0 1 66.7 |'
)
pair_results = generate_pair_metrics(data={'ETH/BTC': {}}, stake_currency='BTC',
pair_results = generate_pair_metrics(['ETH/BTC'], stake_currency='BTC',
starting_balance=4, results=results)
assert text_table_bt_results(pair_results, stake_currency='BTC') == result_str
@ -103,7 +102,7 @@ def test_generate_backtest_stats(default_conf, testdatadir, tmpdir):
assert strat_stats['backtest_end'] == max_date.strftime(DATETIME_PRINT_FORMAT)
assert strat_stats['total_trades'] == len(results['DefStrat']['results'])
# Above sample had no loosing trade
assert strat_stats['max_drawdown'] == 0.0
assert strat_stats['max_drawdown_account'] == 0.0
# Retry with losing trade
results = {'DefStrat': {
@ -143,7 +142,7 @@ def test_generate_backtest_stats(default_conf, testdatadir, tmpdir):
assert 'strategy_comparison' in stats
strat_stats = stats['strategy']['DefStrat']
assert strat_stats['max_drawdown'] == 0.013803
assert pytest.approx(strat_stats['max_drawdown_account']) == 1.399999e-08
assert strat_stats['drawdown_start'] == '2017-11-14 22:10:00'
assert strat_stats['drawdown_end'] == '2017-11-14 22:43:00'
assert strat_stats['drawdown_end_ts'] == 1510699380000
@ -165,7 +164,7 @@ def test_generate_backtest_stats(default_conf, testdatadir, tmpdir):
filename1 = Path(tmpdir / last_fn)
assert filename1.is_file()
content = filename1.read_text()
assert 'max_drawdown' in content
assert 'max_drawdown_account' in content
assert 'strategy' in content
assert 'pairlist' in content
@ -208,7 +207,7 @@ def test_generate_pair_metrics():
}
)
pair_results = generate_pair_metrics(data={'ETH/BTC': {}}, stake_currency='BTC',
pair_results = generate_pair_metrics(['ETH/BTC'], stake_currency='BTC',
starting_balance=2, results=results)
assert isinstance(pair_results, list)
assert len(pair_results) == 2
@ -227,9 +226,9 @@ def test_generate_daily_stats(testdatadir):
assert isinstance(res, dict)
assert round(res['backtest_best_day'], 4) == 0.1796
assert round(res['backtest_worst_day'], 4) == -0.1468
assert res['winning_days'] == 14
assert res['draw_days'] == 4
assert res['losing_days'] == 3
assert res['winning_days'] == 19
assert res['draw_days'] == 0
assert res['losing_days'] == 2
# Select empty dataframe!
res = generate_daily_stats(bt_data.loc[bt_data['open_date'] == '2000-01-01', :])
@ -324,51 +323,25 @@ def test_generate_sell_reason_stats():
assert stop_result['profit_mean_pct'] == round(stop_result['profit_mean'] * 100, 2)
def test_text_table_strategy(default_conf):
default_conf['max_open_trades'] = 2
default_conf['dry_run_wallet'] = 3
results = {}
date = datetime.datetime(year=2020, month=1, day=1, hour=12, minute=30)
delta = datetime.timedelta(days=1)
results['TestStrategy1'] = {'results': pd.DataFrame(
{
'pair': ['ETH/BTC', 'ETH/BTC', 'ETH/BTC'],
'close_date': [date, date + delta, date + delta * 2],
'profit_ratio': [0.1, 0.2, 0.3],
'profit_abs': [0.2, 0.4, 0.5],
'trade_duration': [10, 30, 10],
'wins': [2, 0, 0],
'draws': [0, 0, 0],
'losses': [0, 0, 1],
'sell_reason': [SellType.ROI, SellType.ROI, SellType.STOP_LOSS]
}
), 'config': default_conf}
results['TestStrategy2'] = {'results': pd.DataFrame(
{
'pair': ['LTC/BTC', 'LTC/BTC', 'LTC/BTC'],
'close_date': [date, date + delta, date + delta * 2],
'profit_ratio': [0.4, 0.2, 0.3],
'profit_abs': [0.4, 0.4, 0.5],
'trade_duration': [15, 30, 15],
'wins': [4, 1, 0],
'draws': [0, 0, 0],
'losses': [0, 0, 1],
'sell_reason': [SellType.ROI, SellType.ROI, SellType.STOP_LOSS]
}
), 'config': default_conf}
def test_text_table_strategy(testdatadir):
filename = testdatadir / "backtest-result_multistrat.json"
bt_res_data = load_backtest_stats(filename)
bt_res_data_comparison = bt_res_data.pop('strategy_comparison')
result_str = (
'| Strategy | Buys | Avg Profit % | Cum Profit % | Tot Profit BTC |'
'| Strategy | Buys | Avg Profit % | Cum Profit % | Tot Profit BTC |'
' Tot Profit % | Avg Duration | Win Draw Loss Win% | Drawdown |\n'
'|---------------+--------+----------------+----------------+------------------+'
'|----------------+--------+----------------+----------------+------------------+'
'----------------+----------------+-------------------------+-----------------------|\n'
'| TestStrategy1 | 3 | 20.00 | 60.00 | 1.10000000 |'
' 36.67 | 0:17:00 | 3 0 0 100 | 0.00000000 BTC 0.00% |\n'
'| TestStrategy2 | 3 | 30.00 | 90.00 | 1.30000000 |'
' 43.33 | 0:20:00 | 3 0 0 100 | 0.00000000 BTC 0.00% |'
'| StrategyTestV2 | 179 | 0.08 | 14.39 | 0.02608550 |'
' 260.85 | 3:40:00 | 170 0 9 95.0 | 0.00308222 BTC 8.67% |\n'
'| TestStrategy | 179 | 0.08 | 14.39 | 0.02608550 |'
' 260.85 | 3:40:00 | 170 0 9 95.0 | 0.00308222 BTC 8.67% |'
)
strategy_results = generate_strategy_comparison(all_results=results)
strategy_results = generate_strategy_comparison(bt_stats=bt_res_data['strategy'])
assert strategy_results == bt_res_data_comparison
assert text_table_strategy(strategy_results, 'BTC') == result_str

View File

@ -565,36 +565,41 @@ def test_VolumePairList_whitelist_gen(mocker, whitelist_conf, shitcoinmarkets, t
assert log_has_re(r'^Removed .* from whitelist, because volatility.*$', caplog)
@pytest.mark.parametrize("pairlists,base_currency,volumefilter_result", [
@pytest.mark.parametrize("pairlists,base_currency,exchange,volumefilter_result", [
# default refresh of 1800 to small for daily candle lookback
([{"method": "VolumePairList", "number_assets": 5, "sort_key": "quoteVolume",
"lookback_days": 1}],
"BTC", "default_refresh_too_short"), # OperationalException expected
"BTC", "binance", "default_refresh_too_short"), # OperationalException expected
# ambigous configuration with lookback days and period
([{"method": "VolumePairList", "number_assets": 5, "sort_key": "quoteVolume",
"lookback_days": 1, "lookback_period": 1}],
"BTC", "lookback_days_and_period"), # OperationalException expected
"BTC", "binance", "lookback_days_and_period"), # OperationalException expected
# negative lookback period
([{"method": "VolumePairList", "number_assets": 5, "sort_key": "quoteVolume",
"lookback_timeframe": "1d", "lookback_period": -1}],
"BTC", "lookback_period_negative"), # OperationalException expected
"BTC", "binance", "lookback_period_negative"), # OperationalException expected
# lookback range exceedes exchange limit
([{"method": "VolumePairList", "number_assets": 5, "sort_key": "quoteVolume",
"lookback_timeframe": "1m", "lookback_period": 2000, "refresh_period": 3600}],
"BTC", 'lookback_exceeds_exchange_request_size'), # OperationalException expected
"BTC", "binance", "lookback_exceeds_exchange_request_size"), # OperationalException expected
# expecing pairs as given
([{"method": "VolumePairList", "number_assets": 5, "sort_key": "quoteVolume",
"lookback_timeframe": "1d", "lookback_period": 1, "refresh_period": 86400}],
"BTC", ['HOT/BTC', 'LTC/BTC', 'ETH/BTC', 'TKN/BTC', 'XRP/BTC']),
"BTC", "binance", ['LTC/BTC', 'ETH/BTC', 'TKN/BTC', 'XRP/BTC', 'HOT/BTC']),
# expecting pairs from default tickers, because 1h candles are not available
([{"method": "VolumePairList", "number_assets": 5, "sort_key": "quoteVolume",
"lookback_timeframe": "1h", "lookback_period": 2, "refresh_period": 3600}],
"BTC", ['ETH/BTC', 'TKN/BTC', 'LTC/BTC', 'HOT/BTC', 'FUEL/BTC']),
"BTC", "binance", ['ETH/BTC', 'TKN/BTC', 'LTC/BTC', 'HOT/BTC', 'FUEL/BTC']),
# ftx data is already in Quote currency, therefore won't require conversion
([{"method": "VolumePairList", "number_assets": 5, "sort_key": "quoteVolume",
"lookback_timeframe": "1d", "lookback_period": 1, "refresh_period": 86400}],
"BTC", "ftx", ['HOT/BTC', 'LTC/BTC', 'ETH/BTC', 'TKN/BTC', 'XRP/BTC']),
])
def test_VolumePairList_range(mocker, whitelist_conf, shitcoinmarkets, tickers, ohlcv_history,
pairlists, base_currency, volumefilter_result, caplog) -> None:
pairlists, base_currency, exchange, volumefilter_result) -> None:
whitelist_conf['pairlists'] = pairlists
whitelist_conf['stake_currency'] = base_currency
whitelist_conf['exchange']['name'] = exchange
ohlcv_history_high_vola = ohlcv_history.copy()
ohlcv_history_high_vola.loc[ohlcv_history_high_vola.index == 1, 'close'] = 0.00090
@ -603,9 +608,14 @@ def test_VolumePairList_range(mocker, whitelist_conf, shitcoinmarkets, tickers,
ohlcv_history_medium_volume = ohlcv_history.copy()
ohlcv_history_medium_volume.loc[ohlcv_history_medium_volume.index == 2, 'volume'] = 5
# create candles for high volume with all candles high volume
# create candles for high volume with all candles high volume, but very low price.
ohlcv_history_high_volume = ohlcv_history.copy()
ohlcv_history_high_volume.loc[:, 'volume'] = 10
ohlcv_history_high_volume.loc[:, 'low'] = ohlcv_history_high_volume.loc[:, 'low'] * 0.01
ohlcv_history_high_volume.loc[:, 'high'] = ohlcv_history_high_volume.loc[:, 'high'] * 0.01
ohlcv_history_high_volume.loc[:, 'close'] = ohlcv_history_high_volume.loc[:, 'close'] * 0.01
mocker.patch('freqtrade.exchange.ftx.Ftx.market_is_tradable', return_value=True)
ohlcv_data = {
('ETH/BTC', '1d'): ohlcv_history,

View File

@ -45,7 +45,7 @@ def test_init_plotscript(default_conf, mocker, testdatadir):
default_conf['trade_source'] = "file"
default_conf['timeframe'] = "5m"
default_conf["datadir"] = testdatadir
default_conf['exportfilename'] = testdatadir / "backtest-result_test.json"
default_conf['exportfilename'] = testdatadir / "backtest-result_new.json"
supported_markets = ["TRX/BTC", "ADA/BTC"]
ret = init_plotscript(default_conf, supported_markets)
assert "ohlcv" in ret
@ -157,7 +157,7 @@ def test_plot_trades(testdatadir, caplog):
assert fig == fig1
assert log_has("No trades found.", caplog)
pair = "ADA/BTC"
filename = testdatadir / "backtest-result_test.json"
filename = testdatadir / "backtest-result_new.json"
trades = load_backtest_data(filename)
trades = trades.loc[trades['pair'] == pair]
@ -294,7 +294,7 @@ def test_generate_plot_file(mocker, caplog):
def test_add_profit(testdatadir):
filename = testdatadir / "backtest-result_test.json"
filename = testdatadir / "backtest-result_new.json"
bt_data = load_backtest_data(filename)
timerange = TimeRange.parse_timerange("20180110-20180112")
@ -314,7 +314,7 @@ def test_add_profit(testdatadir):
def test_generate_profit_graph(testdatadir):
filename = testdatadir / "backtest-result_test.json"
filename = testdatadir / "backtest-result_new.json"
trades = load_backtest_data(filename)
timerange = TimeRange.parse_timerange("20180110-20180112")
pairs = ["TRX/BTC", "XLM/BTC"]
@ -343,7 +343,7 @@ def test_generate_profit_graph(testdatadir):
profit = find_trace_in_fig_data(figure.data, "Profit")
assert isinstance(profit, go.Scatter)
drawdown = find_trace_in_fig_data(figure.data, "Max drawdown 10.45%")
drawdown = find_trace_in_fig_data(figure.data, "Max drawdown 35.69%")
assert isinstance(drawdown, go.Scatter)
parallel = find_trace_in_fig_data(figure.data, "Parallel trades")
assert isinstance(parallel, go.Scatter)
@ -381,7 +381,7 @@ def test_load_and_plot_trades(default_conf, mocker, caplog, testdatadir):
default_conf['trade_source'] = 'file'
default_conf["datadir"] = testdatadir
default_conf['exportfilename'] = testdatadir / "backtest-result_test.json"
default_conf['exportfilename'] = testdatadir / "backtest-result_new.json"
default_conf['indicators1'] = ["sma5", "ema10"]
default_conf['indicators2'] = ["macd"]
default_conf['pairs'] = ["ETH/BTC", "LTC/BTC"]
@ -452,7 +452,7 @@ def test_plot_profit(default_conf, mocker, testdatadir):
match=r"No trades found, cannot generate Profit-plot.*"):
plot_profit(default_conf)
default_conf['exportfilename'] = testdatadir / "backtest-result_test.json"
default_conf['exportfilename'] = testdatadir / "backtest-result_new.json"
plot_profit(default_conf)

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long