Merge pull request #2282 from freqtrade/jupyter_nbconvert
add plotting documentation to jupyter notebook
This commit is contained in:
commit
8c5b299449
@ -61,34 +61,6 @@ except:
|
|||||||
print(Path.cwd())
|
print(Path.cwd())
|
||||||
```
|
```
|
||||||
|
|
||||||
## Load existing objects into a Jupyter notebook
|
|
||||||
|
|
||||||
These examples assume that you have already generated data using the cli. They will allow you to drill deeper into your results, and perform analysis which otherwise would make the output very difficult to digest due to information overload.
|
|
||||||
|
|
||||||
### Load backtest results into a pandas dataframe
|
|
||||||
|
|
||||||
```python
|
|
||||||
from freqtrade.data.btanalysis import load_backtest_data
|
|
||||||
|
|
||||||
# Load backtest results
|
|
||||||
df = load_backtest_data("user_data/backtest_results/backtest-result.json")
|
|
||||||
|
|
||||||
# Show value-counts per pair
|
|
||||||
df.groupby("pair")["sell_reason"].value_counts()
|
|
||||||
```
|
|
||||||
|
|
||||||
### Load live trading results into a pandas dataframe
|
|
||||||
|
|
||||||
``` python
|
|
||||||
from freqtrade.data.btanalysis import load_trades_from_db
|
|
||||||
|
|
||||||
# Fetch trades from database
|
|
||||||
df = load_trades_from_db("sqlite:///tradesv3.sqlite")
|
|
||||||
|
|
||||||
# Display results
|
|
||||||
df.groupby("pair")["sell_reason"].value_counts()
|
|
||||||
```
|
|
||||||
|
|
||||||
### Load multiple configuration files
|
### Load multiple configuration files
|
||||||
|
|
||||||
This option can be useful to inspect the results of passing in multiple configs.
|
This option can be useful to inspect the results of passing in multiple configs.
|
||||||
@ -114,99 +86,9 @@ Best avoid relative paths, since this starts at the storage location of the jupy
|
|||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
### Load exchange data to a pandas dataframe
|
### Further Data analysis documentation
|
||||||
|
|
||||||
This loads candle data to a dataframe
|
* [Strategy debugging](strategy_analysis_example.md) - also available as Jupyter notebook (`user_data/notebooks/strategy_analysis_example.ipynb`)
|
||||||
|
* [Plotting](plotting.md)
|
||||||
```python
|
|
||||||
from pathlib import Path
|
|
||||||
from freqtrade.data.history import load_pair_history
|
|
||||||
|
|
||||||
# Load data using values passed to function
|
|
||||||
ticker_interval = "5m"
|
|
||||||
data_location = Path('user_data', 'data', 'bitrex')
|
|
||||||
pair = "BTC_USDT"
|
|
||||||
candles = load_pair_history(datadir=data_location,
|
|
||||||
ticker_interval=ticker_interval,
|
|
||||||
pair=pair)
|
|
||||||
|
|
||||||
# Confirm success
|
|
||||||
print(f"Loaded len(candles) rows of data for {pair} from {data_location}")
|
|
||||||
candles.head()
|
|
||||||
```
|
|
||||||
|
|
||||||
## Strategy debugging example
|
|
||||||
|
|
||||||
Debugging a strategy can be time-consuming. FreqTrade offers helper functions to visualize raw data.
|
|
||||||
|
|
||||||
### Define variables used in analyses
|
|
||||||
|
|
||||||
You can override strategy settings as demonstrated below.
|
|
||||||
|
|
||||||
```python
|
|
||||||
# Customize these according to your needs.
|
|
||||||
|
|
||||||
# Define some constants
|
|
||||||
ticker_interval = "5m"
|
|
||||||
# Name of the strategy class
|
|
||||||
strategy_name = 'SampleStrategy'
|
|
||||||
# Path to user data
|
|
||||||
user_data_dir = 'user_data'
|
|
||||||
# Location of the strategy
|
|
||||||
strategy_location = Path(user_data_dir, 'strategies')
|
|
||||||
# Location of the data
|
|
||||||
data_location = Path(user_data_dir, 'data', 'binance')
|
|
||||||
# Pair to analyze - Only use one pair here
|
|
||||||
pair = "BTC_USDT"
|
|
||||||
```
|
|
||||||
|
|
||||||
### Load exchange data
|
|
||||||
|
|
||||||
```python
|
|
||||||
from pathlib import Path
|
|
||||||
from freqtrade.data.history import load_pair_history
|
|
||||||
|
|
||||||
# Load data using values set above
|
|
||||||
candles = load_pair_history(datadir=data_location,
|
|
||||||
ticker_interval=ticker_interval,
|
|
||||||
pair=pair)
|
|
||||||
|
|
||||||
# Confirm success
|
|
||||||
print(f"Loaded {len(candles)} rows of data for {pair} from {data_location}")
|
|
||||||
candles.head()
|
|
||||||
```
|
|
||||||
|
|
||||||
### Load and run strategy
|
|
||||||
|
|
||||||
* Rerun each time the strategy file is changed
|
|
||||||
|
|
||||||
```python
|
|
||||||
from freqtrade.resolvers import StrategyResolver
|
|
||||||
|
|
||||||
# Load strategy using values set above
|
|
||||||
strategy = StrategyResolver({'strategy': strategy_name,
|
|
||||||
'user_data_dir': user_data_dir,
|
|
||||||
'strategy_path': strategy_location}).strategy
|
|
||||||
|
|
||||||
# Generate buy/sell signals using strategy
|
|
||||||
df = strategy.analyze_ticker(candles, {'pair': pair})
|
|
||||||
```
|
|
||||||
|
|
||||||
### Display the trade details
|
|
||||||
|
|
||||||
* Note that using `data.tail()` is preferable to `data.head()` as most indicators have some "startup" data at the top of the dataframe.
|
|
||||||
* Some possible problems
|
|
||||||
* Columns with NaN values at the end of the dataframe
|
|
||||||
* Columns used in `crossed*()` functions with completely different units
|
|
||||||
* Comparison with full backtest
|
|
||||||
* having 200 buy signals as output for one pair from `analyze_ticker()` does not necessarily mean that 200 trades will be made during backtesting.
|
|
||||||
* Assuming you use only one condition such as, `df['rsi'] < 30` as buy condition, this will generate multiple "buy" signals for each pair in sequence (until rsi returns > 29). The bot will only buy on the first of these signals (and also only if a trade-slot ("max_open_trades") is still available), or on one of the middle signals, as soon as a "slot" becomes available.
|
|
||||||
|
|
||||||
```python
|
|
||||||
# Report results
|
|
||||||
print(f"Generated {df['buy'].sum()} buy signals")
|
|
||||||
data = df.set_index('date', drop=True)
|
|
||||||
data.tail()
|
|
||||||
```
|
|
||||||
|
|
||||||
Feel free to submit an issue or Pull Request enhancing this document if you would like to share ideas on how to best analyze the data.
|
Feel free to submit an issue or Pull Request enhancing this document if you would like to share ideas on how to best analyze the data.
|
||||||
|
@ -149,6 +149,15 @@ print(datetime.utcnow())
|
|||||||
The output will show the last entry from the Exchange as well as the current UTC date.
|
The output will show the last entry from the Exchange as well as the current UTC date.
|
||||||
If the day shows the same day, then the last candle can be assumed as incomplete and should be dropped (leave the setting `"ohlcv_partial_candle"` from the exchange-class untouched / True). Otherwise, set `"ohlcv_partial_candle"` to `False` to not drop Candles (shown in the example above).
|
If the day shows the same day, then the last candle can be assumed as incomplete and should be dropped (leave the setting `"ohlcv_partial_candle"` from the exchange-class untouched / True). Otherwise, set `"ohlcv_partial_candle"` to `False` to not drop Candles (shown in the example above).
|
||||||
|
|
||||||
|
## Updating example notebooks
|
||||||
|
|
||||||
|
To keep the jupyter notebooks aligned with the documentation, the following should be ran after updating a example notebook.
|
||||||
|
|
||||||
|
``` bash
|
||||||
|
jupyter nbconvert --ClearOutputPreprocessor.enabled=True --inplace user_data/notebooks/strategy_analysis_example.ipynb
|
||||||
|
jupyter nbconvert --ClearOutputPreprocessor.enabled=True --to markdown user_data/notebooks/strategy_analysis_example.ipynb --stdout > docs/strategy_analysis_example.md
|
||||||
|
```
|
||||||
|
|
||||||
## Creating a release
|
## Creating a release
|
||||||
|
|
||||||
This part of the documentation is aimed at maintainers, and shows how to create a release.
|
This part of the documentation is aimed at maintainers, and shows how to create a release.
|
||||||
|
142
docs/strategy_analysis_example.md
Normal file
142
docs/strategy_analysis_example.md
Normal file
@ -0,0 +1,142 @@
|
|||||||
|
# Strategy analysis example
|
||||||
|
|
||||||
|
Debugging a strategy can be time-consuming. FreqTrade offers helper functions to visualize raw data.
|
||||||
|
|
||||||
|
## Setup
|
||||||
|
|
||||||
|
|
||||||
|
```python
|
||||||
|
from pathlib import Path
|
||||||
|
# Customize these according to your needs.
|
||||||
|
|
||||||
|
# Define some constants
|
||||||
|
ticker_interval = "5m"
|
||||||
|
# Name of the strategy class
|
||||||
|
strategy_name = 'SampleStrategy'
|
||||||
|
# Path to user data
|
||||||
|
user_data_dir = Path('user_data')
|
||||||
|
# Location of the strategy
|
||||||
|
strategy_location = user_data_dir / 'strategies'
|
||||||
|
# Location of the data
|
||||||
|
data_location = Path(user_data_dir, 'data', 'binance')
|
||||||
|
# Pair to analyze - Only use one pair here
|
||||||
|
pair = "BTC_USDT"
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Load data using values set above
|
||||||
|
from freqtrade.data.history import load_pair_history
|
||||||
|
|
||||||
|
candles = load_pair_history(datadir=data_location,
|
||||||
|
ticker_interval=ticker_interval,
|
||||||
|
pair=pair)
|
||||||
|
|
||||||
|
# Confirm success
|
||||||
|
print("Loaded " + str(len(candles)) + f" rows of data for {pair} from {data_location}")
|
||||||
|
candles.head()
|
||||||
|
```
|
||||||
|
|
||||||
|
## Load and run strategy
|
||||||
|
* Rerun each time the strategy file is changed
|
||||||
|
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Load strategy using values set above
|
||||||
|
from freqtrade.resolvers import StrategyResolver
|
||||||
|
strategy = StrategyResolver({'strategy': strategy_name,
|
||||||
|
'user_data_dir': user_data_dir,
|
||||||
|
'strategy_path': strategy_location}).strategy
|
||||||
|
|
||||||
|
# Generate buy/sell signals using strategy
|
||||||
|
df = strategy.analyze_ticker(candles, {'pair': pair})
|
||||||
|
df.tail()
|
||||||
|
```
|
||||||
|
|
||||||
|
### Display the trade details
|
||||||
|
|
||||||
|
* Note that using `data.head()` would also work, however most indicators have some "startup" data at the top of the dataframe.
|
||||||
|
* Some possible problems
|
||||||
|
* Columns with NaN values at the end of the dataframe
|
||||||
|
* Columns used in `crossed*()` functions with completely different units
|
||||||
|
* Comparison with full backtest
|
||||||
|
* having 200 buy signals as output for one pair from `analyze_ticker()` does not necessarily mean that 200 trades will be made during backtesting.
|
||||||
|
* Assuming you use only one condition such as, `df['rsi'] < 30` as buy condition, this will generate multiple "buy" signals for each pair in sequence (until rsi returns > 29). The bot will only buy on the first of these signals (and also only if a trade-slot ("max_open_trades") is still available), or on one of the middle signals, as soon as a "slot" becomes available.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Report results
|
||||||
|
print(f"Generated {df['buy'].sum()} buy signals")
|
||||||
|
data = df.set_index('date', drop=False)
|
||||||
|
data.tail()
|
||||||
|
```
|
||||||
|
|
||||||
|
## Load existing objects into a Jupyter notebook
|
||||||
|
|
||||||
|
The following cells assume that you have already generated data using the cli.
|
||||||
|
They will allow you to drill deeper into your results, and perform analysis which otherwise would make the output very difficult to digest due to information overload.
|
||||||
|
|
||||||
|
### Load backtest results to pandas dataframe
|
||||||
|
|
||||||
|
Analyze a trades dataframe (also used below for plotting)
|
||||||
|
|
||||||
|
|
||||||
|
```python
|
||||||
|
from freqtrade.data.btanalysis import load_backtest_data
|
||||||
|
|
||||||
|
# Load backtest results
|
||||||
|
trades = load_backtest_data(user_data_dir / "backtest_results/backtest-result.json")
|
||||||
|
|
||||||
|
# Show value-counts per pair
|
||||||
|
trades.groupby("pair")["sell_reason"].value_counts()
|
||||||
|
```
|
||||||
|
|
||||||
|
### Load live trading results into a pandas dataframe
|
||||||
|
|
||||||
|
In case you did already some trading and want to analyze your performance
|
||||||
|
|
||||||
|
|
||||||
|
```python
|
||||||
|
from freqtrade.data.btanalysis import load_trades_from_db
|
||||||
|
|
||||||
|
# Fetch trades from database
|
||||||
|
trades = load_trades_from_db("sqlite:///tradesv3.sqlite")
|
||||||
|
|
||||||
|
# Display results
|
||||||
|
trades.groupby("pair")["sell_reason"].value_counts()
|
||||||
|
```
|
||||||
|
|
||||||
|
## Plot results
|
||||||
|
|
||||||
|
Freqtrade offers interactive plotting capabilities based on plotly.
|
||||||
|
|
||||||
|
|
||||||
|
```python
|
||||||
|
from freqtrade.plot.plotting import generate_candlestick_graph
|
||||||
|
# Limit graph period to keep plotly quick and reactive
|
||||||
|
|
||||||
|
data_red = data['2019-06-01':'2019-06-10']
|
||||||
|
# Generate candlestick graph
|
||||||
|
graph = generate_candlestick_graph(pair=pair,
|
||||||
|
data=data_red,
|
||||||
|
trades=trades,
|
||||||
|
indicators1=['sma20', 'ema50', 'ema55'],
|
||||||
|
indicators2=['rsi', 'macd', 'macdsignal', 'macdhist']
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Show graph inline
|
||||||
|
# graph.show()
|
||||||
|
|
||||||
|
# Render graph in a seperate window
|
||||||
|
graph.show(renderer="browser")
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
Feel free to submit an issue or Pull Request enhancing this document if you would like to share ideas on how to best analyze the data.
|
@ -16,8 +16,10 @@ nav:
|
|||||||
- Hyperopt: hyperopt.md
|
- Hyperopt: hyperopt.md
|
||||||
- Edge positioning: edge.md
|
- Edge positioning: edge.md
|
||||||
- FAQ: faq.md
|
- FAQ: faq.md
|
||||||
- Data Analysis: data-analysis.md
|
- Data Analysis:
|
||||||
- Plotting: plotting.md
|
- Jupyter Notebooks: data-analysis.md
|
||||||
|
- Strategy analysis: strategy_analysis_example.md
|
||||||
|
- Plotting: plotting.md
|
||||||
- SQL Cheatsheet: sql_cheatsheet.md
|
- SQL Cheatsheet: sql_cheatsheet.md
|
||||||
- Sandbox testing: sandbox-testing.md
|
- Sandbox testing: sandbox-testing.md
|
||||||
- Deprecated features: deprecated.md
|
- Deprecated features: deprecated.md
|
||||||
|
@ -13,3 +13,6 @@ pytest-asyncio==0.10.0
|
|||||||
pytest-cov==2.7.1
|
pytest-cov==2.7.1
|
||||||
pytest-mock==1.11.0
|
pytest-mock==1.11.0
|
||||||
pytest-random-order==1.0.4
|
pytest-random-order==1.0.4
|
||||||
|
|
||||||
|
# Convert jupyter notebooks to markdown documents
|
||||||
|
nbconvert==5.6.0
|
||||||
|
1
setup.py
1
setup.py
@ -43,6 +43,7 @@ jupyter = [
|
|||||||
'jupyter',
|
'jupyter',
|
||||||
'nbstripout',
|
'nbstripout',
|
||||||
'ipykernel',
|
'ipykernel',
|
||||||
|
'nbconvert',
|
||||||
]
|
]
|
||||||
|
|
||||||
all_extra = api + plot + develop + jupyter + hyperopt
|
all_extra = api + plot + develop + jupyter + hyperopt
|
||||||
|
@ -4,7 +4,7 @@
|
|||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
"## Strategy debugging example\n",
|
"# Strategy analysis example\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Debugging a strategy can be time-consuming. FreqTrade offers helper functions to visualize raw data."
|
"Debugging a strategy can be time-consuming. FreqTrade offers helper functions to visualize raw data."
|
||||||
]
|
]
|
||||||
@ -22,31 +22,7 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"# Change directory\n",
|
|
||||||
"# Modify this cell to insure that the output shows the correct path.\n",
|
|
||||||
"import os\n",
|
|
||||||
"from pathlib import Path\n",
|
"from pathlib import Path\n",
|
||||||
"\n",
|
|
||||||
"# Define all paths relative to the project root shown in the cell output\n",
|
|
||||||
"project_root = \"somedir/freqtrade\"\n",
|
|
||||||
"i=0\n",
|
|
||||||
"try:\n",
|
|
||||||
" os.chdirdir(project_root)\n",
|
|
||||||
" assert Path('LICENSE').is_file()\n",
|
|
||||||
"except:\n",
|
|
||||||
" while i<4 and (not Path('LICENSE').is_file()):\n",
|
|
||||||
" os.chdir(Path(Path.cwd(), '../'))\n",
|
|
||||||
" i+=1\n",
|
|
||||||
" project_root = Path.cwd()\n",
|
|
||||||
"print(Path.cwd())"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"# Customize these according to your needs.\n",
|
"# Customize these according to your needs.\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# Define some constants\n",
|
"# Define some constants\n",
|
||||||
@ -54,9 +30,9 @@
|
|||||||
"# Name of the strategy class\n",
|
"# Name of the strategy class\n",
|
||||||
"strategy_name = 'SampleStrategy'\n",
|
"strategy_name = 'SampleStrategy'\n",
|
||||||
"# Path to user data\n",
|
"# Path to user data\n",
|
||||||
"user_data_dir = 'user_data'\n",
|
"user_data_dir = Path('user_data')\n",
|
||||||
"# Location of the strategy\n",
|
"# Location of the strategy\n",
|
||||||
"strategy_location = Path(user_data_dir, 'strategies')\n",
|
"strategy_location = user_data_dir / 'strategies'\n",
|
||||||
"# Location of the data\n",
|
"# Location of the data\n",
|
||||||
"data_location = Path(user_data_dir, 'data', 'binance')\n",
|
"data_location = Path(user_data_dir, 'data', 'binance')\n",
|
||||||
"# Pair to analyze - Only use one pair here\n",
|
"# Pair to analyze - Only use one pair here\n",
|
||||||
@ -70,7 +46,6 @@
|
|||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"# Load data using values set above\n",
|
"# Load data using values set above\n",
|
||||||
"from pathlib import Path\n",
|
|
||||||
"from freqtrade.data.history import load_pair_history\n",
|
"from freqtrade.data.history import load_pair_history\n",
|
||||||
"\n",
|
"\n",
|
||||||
"candles = load_pair_history(datadir=data_location,\n",
|
"candles = load_pair_history(datadir=data_location,\n",
|
||||||
@ -132,10 +107,111 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"# Report results\n",
|
"# Report results\n",
|
||||||
"print(f\"Generated {df['buy'].sum()} buy signals\")\n",
|
"print(f\"Generated {df['buy'].sum()} buy signals\")\n",
|
||||||
"data = df.set_index('date', drop=True)\n",
|
"data = df.set_index('date', drop=False)\n",
|
||||||
"data.tail()"
|
"data.tail()"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Load existing objects into a Jupyter notebook\n",
|
||||||
|
"\n",
|
||||||
|
"The following cells assume that you have already generated data using the cli. \n",
|
||||||
|
"They will allow you to drill deeper into your results, and perform analysis which otherwise would make the output very difficult to digest due to information overload."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Load backtest results to pandas dataframe\n",
|
||||||
|
"\n",
|
||||||
|
"Analyze a trades dataframe (also used below for plotting)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from freqtrade.data.btanalysis import load_backtest_data\n",
|
||||||
|
"\n",
|
||||||
|
"# Load backtest results\n",
|
||||||
|
"trades = load_backtest_data(user_data_dir / \"backtest_results/backtest-result.json\")\n",
|
||||||
|
"\n",
|
||||||
|
"# Show value-counts per pair\n",
|
||||||
|
"trades.groupby(\"pair\")[\"sell_reason\"].value_counts()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Load live trading results into a pandas dataframe\n",
|
||||||
|
"\n",
|
||||||
|
"In case you did already some trading and want to analyze your performance"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from freqtrade.data.btanalysis import load_trades_from_db\n",
|
||||||
|
"\n",
|
||||||
|
"# Fetch trades from database\n",
|
||||||
|
"trades = load_trades_from_db(\"sqlite:///tradesv3.sqlite\")\n",
|
||||||
|
"\n",
|
||||||
|
"# Display results\n",
|
||||||
|
"trades.groupby(\"pair\")[\"sell_reason\"].value_counts()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Plot results\n",
|
||||||
|
"\n",
|
||||||
|
"Freqtrade offers interactive plotting capabilities based on plotly."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from freqtrade.plot.plotting import generate_candlestick_graph\n",
|
||||||
|
"# Limit graph period to keep plotly quick and reactive\n",
|
||||||
|
"\n",
|
||||||
|
"data_red = data['2019-06-01':'2019-06-10']\n",
|
||||||
|
"# Generate candlestick graph\n",
|
||||||
|
"graph = generate_candlestick_graph(pair=pair,\n",
|
||||||
|
" data=data_red,\n",
|
||||||
|
" trades=trades,\n",
|
||||||
|
" indicators1=['sma20', 'ema50', 'ema55'],\n",
|
||||||
|
" indicators2=['rsi', 'macd', 'macdsignal', 'macdhist']\n",
|
||||||
|
" )\n",
|
||||||
|
"\n",
|
||||||
|
"\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# Show graph inline\n",
|
||||||
|
"# graph.show()\n",
|
||||||
|
"\n",
|
||||||
|
"# Render graph in a seperate window\n",
|
||||||
|
"graph.show(renderer=\"browser\")\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -161,7 +237,7 @@
|
|||||||
"name": "python",
|
"name": "python",
|
||||||
"nbconvert_exporter": "python",
|
"nbconvert_exporter": "python",
|
||||||
"pygments_lexer": "ipython3",
|
"pygments_lexer": "ipython3",
|
||||||
"version": "3.7.3"
|
"version": "3.7.4"
|
||||||
},
|
},
|
||||||
"mimetype": "text/x-python",
|
"mimetype": "text/x-python",
|
||||||
"name": "python",
|
"name": "python",
|
||||||
@ -212,5 +288,5 @@
|
|||||||
"version": 3
|
"version": 3
|
||||||
},
|
},
|
||||||
"nbformat": 4,
|
"nbformat": 4,
|
||||||
"nbformat_minor": 2
|
"nbformat_minor": 4
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user