Merge pull request #4478 from JoeSchr/docs/add-custom_info-examples

Documentation: Add examples how to use dataframe with "custom_info"
This commit is contained in:
Matthias 2021-03-05 07:24:50 +01:00 committed by GitHub
commit 8c371ace32
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 112 additions and 36 deletions

View File

@ -11,6 +11,64 @@ If you're just getting started, please be familiar with the methods described in
!!! Tip !!! Tip
You can get a strategy template containing all below methods by running `freqtrade new-strategy --strategy MyAwesomeStrategy --template advanced` You can get a strategy template containing all below methods by running `freqtrade new-strategy --strategy MyAwesomeStrategy --template advanced`
## Storing information
Storing information can be accomplished by creating a new dictionary within the strategy class.
The name of the variable can be chosen at will, but should be prefixed with `cust_` to avoid naming collisions with predefined strategy variables.
```python
class AwesomeStrategy(IStrategy):
# Create custom dictionary
custom_info = {}
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# Check if the entry already exists
if not metadata["pair"] in self.custom_info:
# Create empty entry for this pair
self.custom_info[metadata["pair"]] = {}
if "crosstime" in self.custom_info[metadata["pair"]]:
self.custom_info[metadata["pair"]]["crosstime"] += 1
else:
self.custom_info[metadata["pair"]]["crosstime"] = 1
```
!!! Warning
The data is not persisted after a bot-restart (or config-reload). Also, the amount of data should be kept smallish (no DataFrames and such), otherwise the bot will start to consume a lot of memory and eventually run out of memory and crash.
!!! Note
If the data is pair-specific, make sure to use pair as one of the keys in the dictionary.
***
### Storing custom information using DatetimeIndex from `dataframe`
Imagine you need to store an indicator like `ATR` or `RSI` into `custom_info`. To use this in a meaningful way, you will not only need the raw data of the indicator, but probably also need to keep the right timestamps.
```python
import talib.abstract as ta
class AwesomeStrategy(IStrategy):
# Create custom dictionary
custom_info = {}
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# using "ATR" here as example
dataframe['atr'] = ta.ATR(dataframe)
if self.dp.runmode.value in ('backtest', 'hyperopt'):
# add indicator mapped to correct DatetimeIndex to custom_info
self.custom_info[metadata['pair']] = dataframe[['date', 'atr']].copy().set_index('date')
return dataframe
```
!!! Warning
The data is not persisted after a bot-restart (or config-reload). Also, the amount of data should be kept smallish (no DataFrames and such), otherwise the bot will start to consume a lot of memory and eventually run out of memory and crash.
!!! Note
If the data is pair-specific, make sure to use pair as one of the keys in the dictionary.
See `custom_stoploss` examples below on how to access the saved dataframe columns
## Custom stoploss ## Custom stoploss
A stoploss can only ever move upwards - so if you set it to an absolute profit of 2%, you can never move it below this price. A stoploss can only ever move upwards - so if you set it to an absolute profit of 2%, you can never move it below this price.
@ -142,7 +200,7 @@ class AwesomeStrategy(IStrategy):
return -1 # return a value bigger than the inital stoploss to keep using the inital stoploss return -1 # return a value bigger than the inital stoploss to keep using the inital stoploss
# After reaching the desired offset, allow the stoploss to trail by half the profit # After reaching the desired offset, allow the stoploss to trail by half the profit
desired_stoploss = current_profit / 2 desired_stoploss = current_profit / 2
# Use a minimum of 2.5% and a maximum of 5% # Use a minimum of 2.5% and a maximum of 5%
return max(min(desired_stoploss, 0.05), 0.025) return max(min(desired_stoploss, 0.05), 0.025)
@ -179,6 +237,55 @@ class AwesomeStrategy(IStrategy):
return (-0.07 + current_profit) return (-0.07 + current_profit)
return 1 return 1
``` ```
#### Custom stoploss using an indicator from dataframe example
Imagine you want to use `custom_stoploss()` to use a trailing indicator like e.g. "ATR"
See: "Storing custom information using DatetimeIndex from `dataframe`" example above) on how to store the indicator into `custom_info`
!!! Warning
only use .iat[-1] in live mode, not in backtesting/hyperopt
otherwise you will look into the future
see [Common mistakes when developing strategies](strategy-customization.md#common-mistakes-when-developing-strategies) for more info.
``` python
from freqtrade.persistence import Trade
from freqtrade.state import RunMode
class AwesomeStrategy(IStrategy):
# ... populate_* methods
use_custom_stoploss = True
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
current_rate: float, current_profit: float, **kwargs) -> float:
result = 1
if self.custom_info and pair in self.custom_info and trade:
# using current_time directly (like below) will only work in backtesting.
# so check "runmode" to make sure that it's only used in backtesting/hyperopt
if self.dp and self.dp.runmode.value in ('backtest', 'hyperopt'):
relative_sl = self.custom_info[pair].loc[current_time]['atr]
# in live / dry-run, it'll be really the current time
else:
# but we can just use the last entry from an already analyzed dataframe instead
dataframe, last_updated = self.dp.get_analyzed_dataframe(pair=pair,
timeframe=self.timeframe)
# WARNING
# only use .iat[-1] in live mode, not in backtesting/hyperopt
# otherwise you will look into the future
# see: https://www.freqtrade.io/en/latest/strategy-customization/#common-mistakes-when-developing-strategies
relative_sl = dataframe['atr'].iat[-1]
if (relative_sl is not None):
# new stoploss relative to current_rate
new_stoploss = (current_rate-relative_sl)/current_rate
# turn into relative negative offset required by `custom_stoploss` return implementation
result = new_stoploss - 1
return result
```
--- ---

View File

@ -300,38 +300,7 @@ The metadata-dict (available for `populate_buy_trend`, `populate_sell_trend`, `p
Currently this is `pair`, which can be accessed using `metadata['pair']` - and will return a pair in the format `XRP/BTC`. Currently this is `pair`, which can be accessed using `metadata['pair']` - and will return a pair in the format `XRP/BTC`.
The Metadata-dict should not be modified and does not persist information across multiple calls. The Metadata-dict should not be modified and does not persist information across multiple calls.
Instead, have a look at the section [Storing information](#Storing-information) Instead, have a look at the section [Storing information](strategy-advanced.md#Storing-information)
### Storing information
Storing information can be accomplished by creating a new dictionary within the strategy class.
The name of the variable can be chosen at will, but should be prefixed with `cust_` to avoid naming collisions with predefined strategy variables.
```python
class AwesomeStrategy(IStrategy):
# Create custom dictionary
cust_info = {}
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# Check if the entry already exists
if not metadata["pair"] in self.cust_info:
# Create empty entry for this pair
self.cust_info[metadata["pair"]] = {}
if "crosstime" in self.cust_info[metadata["pair"]]:
self.cust_info[metadata["pair"]]["crosstime"] += 1
else:
self.cust_info[metadata["pair"]]["crosstime"] = 1
```
!!! Warning
The data is not persisted after a bot-restart (or config-reload). Also, the amount of data should be kept smallish (no DataFrames and such), otherwise the bot will start to consume a lot of memory and eventually run out of memory and crash.
!!! Note
If the data is pair-specific, make sure to use pair as one of the keys in the dictionary.
***
## Additional data (informative_pairs) ## Additional data (informative_pairs)
@ -399,7 +368,7 @@ if self.dp:
### *current_whitelist()* ### *current_whitelist()*
Imagine you've developed a strategy that trades the `5m` timeframe using signals generated from a `1d` timeframe on the top 10 volume pairs by volume. Imagine you've developed a strategy that trades the `5m` timeframe using signals generated from a `1d` timeframe on the top 10 volume pairs by volume.
The strategy might look something like this: The strategy might look something like this:
@ -418,7 +387,7 @@ This is where calling `self.dp.current_whitelist()` comes in handy.
pairs = self.dp.current_whitelist() pairs = self.dp.current_whitelist()
# Assign tf to each pair so they can be downloaded and cached for strategy. # Assign tf to each pair so they can be downloaded and cached for strategy.
informative_pairs = [(pair, '1d') for pair in pairs] informative_pairs = [(pair, '1d') for pair in pairs]
return informative_pairs return informative_pairs
``` ```
### *get_pair_dataframe(pair, timeframe)* ### *get_pair_dataframe(pair, timeframe)*
@ -583,7 +552,7 @@ All columns of the informative dataframe will be available on the returning data
``` python ``` python
'date', 'open', 'high', 'low', 'close', 'rsi' # from the original dataframe 'date', 'open', 'high', 'low', 'close', 'rsi' # from the original dataframe
'date_1h', 'open_1h', 'high_1h', 'low_1h', 'close_1h', 'rsi_1h' # from the informative dataframe 'date_1h', 'open_1h', 'high_1h', 'low_1h', 'close_1h', 'rsi_1h' # from the informative dataframe
``` ```
??? Example "Custom implementation" ??? Example "Custom implementation"