Merge branch 'develop' into pr/yazeed/3055
This commit is contained in:
@@ -9,7 +9,8 @@ Note: Be careful with file-scoped imports in these subfiles.
|
||||
from freqtrade.commands.arguments import Arguments
|
||||
from freqtrade.commands.build_config_commands import start_new_config
|
||||
from freqtrade.commands.data_commands import (start_convert_data,
|
||||
start_download_data)
|
||||
start_download_data,
|
||||
start_list_data)
|
||||
from freqtrade.commands.deploy_commands import (start_create_userdir,
|
||||
start_new_hyperopt,
|
||||
start_new_strategy)
|
||||
|
@@ -15,7 +15,7 @@ ARGS_STRATEGY = ["strategy", "strategy_path"]
|
||||
|
||||
ARGS_TRADE = ["db_url", "sd_notify", "dry_run"]
|
||||
|
||||
ARGS_COMMON_OPTIMIZE = ["ticker_interval", "timerange",
|
||||
ARGS_COMMON_OPTIMIZE = ["timeframe", "timerange",
|
||||
"max_open_trades", "stake_amount", "fee"]
|
||||
|
||||
ARGS_BACKTEST = ARGS_COMMON_OPTIMIZE + ["position_stacking", "use_max_market_positions",
|
||||
@@ -54,15 +54,17 @@ ARGS_BUILD_HYPEROPT = ["user_data_dir", "hyperopt", "template"]
|
||||
ARGS_CONVERT_DATA = ["pairs", "format_from", "format_to", "erase"]
|
||||
ARGS_CONVERT_DATA_OHLCV = ARGS_CONVERT_DATA + ["timeframes"]
|
||||
|
||||
ARGS_LIST_DATA = ["exchange", "dataformat_ohlcv", "pairs"]
|
||||
|
||||
ARGS_DOWNLOAD_DATA = ["pairs", "pairs_file", "days", "download_trades", "exchange",
|
||||
"timeframes", "erase", "dataformat_ohlcv", "dataformat_trades"]
|
||||
|
||||
ARGS_PLOT_DATAFRAME = ["pairs", "indicators1", "indicators2", "plot_limit",
|
||||
"db_url", "trade_source", "export", "exportfilename",
|
||||
"timerange", "ticker_interval", "no_trades"]
|
||||
"timerange", "timeframe", "no_trades"]
|
||||
|
||||
ARGS_PLOT_PROFIT = ["pairs", "timerange", "export", "exportfilename", "db_url",
|
||||
"trade_source", "ticker_interval"]
|
||||
"trade_source", "timeframe"]
|
||||
|
||||
ARGS_SHOW_TRADES = ["db_url", "trade_ids", "print_json"]
|
||||
|
||||
@@ -71,6 +73,7 @@ ARGS_HYPEROPT_LIST = ["hyperopt_list_best", "hyperopt_list_profitable",
|
||||
"hyperopt_list_min_avg_time", "hyperopt_list_max_avg_time",
|
||||
"hyperopt_list_min_avg_profit", "hyperopt_list_max_avg_profit",
|
||||
"hyperopt_list_min_total_profit", "hyperopt_list_max_total_profit",
|
||||
"hyperopt_list_min_objective", "hyperopt_list_max_objective",
|
||||
"print_colorized", "print_json", "hyperopt_list_no_details",
|
||||
"export_csv"]
|
||||
|
||||
@@ -78,7 +81,7 @@ ARGS_HYPEROPT_SHOW = ["hyperopt_list_best", "hyperopt_list_profitable", "hyperop
|
||||
"print_json", "hyperopt_show_no_header"]
|
||||
|
||||
NO_CONF_REQURIED = ["convert-data", "convert-trade-data", "download-data", "list-timeframes",
|
||||
"list-markets", "list-pairs", "list-strategies",
|
||||
"list-markets", "list-pairs", "list-strategies", "list-data",
|
||||
"list-hyperopts", "hyperopt-list", "hyperopt-show",
|
||||
"plot-dataframe", "plot-profit", "show-trades"]
|
||||
|
||||
@@ -159,7 +162,7 @@ class Arguments:
|
||||
self._build_args(optionlist=['version'], parser=self.parser)
|
||||
|
||||
from freqtrade.commands import (start_create_userdir, start_convert_data,
|
||||
start_download_data,
|
||||
start_download_data, start_list_data,
|
||||
start_hyperopt_list, start_hyperopt_show,
|
||||
start_list_exchanges, start_list_hyperopts,
|
||||
start_list_markets, start_list_strategies,
|
||||
@@ -181,25 +184,6 @@ class Arguments:
|
||||
trade_cmd.set_defaults(func=start_trading)
|
||||
self._build_args(optionlist=ARGS_TRADE, parser=trade_cmd)
|
||||
|
||||
# Add backtesting subcommand
|
||||
backtesting_cmd = subparsers.add_parser('backtesting', help='Backtesting module.',
|
||||
parents=[_common_parser, _strategy_parser])
|
||||
backtesting_cmd.set_defaults(func=start_backtesting)
|
||||
self._build_args(optionlist=ARGS_BACKTEST, parser=backtesting_cmd)
|
||||
|
||||
# Add edge subcommand
|
||||
edge_cmd = subparsers.add_parser('edge', help='Edge module.',
|
||||
parents=[_common_parser, _strategy_parser])
|
||||
edge_cmd.set_defaults(func=start_edge)
|
||||
self._build_args(optionlist=ARGS_EDGE, parser=edge_cmd)
|
||||
|
||||
# Add hyperopt subcommand
|
||||
hyperopt_cmd = subparsers.add_parser('hyperopt', help='Hyperopt module.',
|
||||
parents=[_common_parser, _strategy_parser],
|
||||
)
|
||||
hyperopt_cmd.set_defaults(func=start_hyperopt)
|
||||
self._build_args(optionlist=ARGS_HYPEROPT, parser=hyperopt_cmd)
|
||||
|
||||
# add create-userdir subcommand
|
||||
create_userdir_cmd = subparsers.add_parser('create-userdir',
|
||||
help="Create user-data directory.",
|
||||
@@ -213,79 +197,17 @@ class Arguments:
|
||||
build_config_cmd.set_defaults(func=start_new_config)
|
||||
self._build_args(optionlist=ARGS_BUILD_CONFIG, parser=build_config_cmd)
|
||||
|
||||
# add new-strategy subcommand
|
||||
build_strategy_cmd = subparsers.add_parser('new-strategy',
|
||||
help="Create new strategy")
|
||||
build_strategy_cmd.set_defaults(func=start_new_strategy)
|
||||
self._build_args(optionlist=ARGS_BUILD_STRATEGY, parser=build_strategy_cmd)
|
||||
|
||||
# add new-hyperopt subcommand
|
||||
build_hyperopt_cmd = subparsers.add_parser('new-hyperopt',
|
||||
help="Create new hyperopt")
|
||||
build_hyperopt_cmd.set_defaults(func=start_new_hyperopt)
|
||||
self._build_args(optionlist=ARGS_BUILD_HYPEROPT, parser=build_hyperopt_cmd)
|
||||
|
||||
# Add list-strategies subcommand
|
||||
list_strategies_cmd = subparsers.add_parser(
|
||||
'list-strategies',
|
||||
help='Print available strategies.',
|
||||
parents=[_common_parser],
|
||||
)
|
||||
list_strategies_cmd.set_defaults(func=start_list_strategies)
|
||||
self._build_args(optionlist=ARGS_LIST_STRATEGIES, parser=list_strategies_cmd)
|
||||
|
||||
# Add list-hyperopts subcommand
|
||||
list_hyperopts_cmd = subparsers.add_parser(
|
||||
'list-hyperopts',
|
||||
help='Print available hyperopt classes.',
|
||||
parents=[_common_parser],
|
||||
)
|
||||
list_hyperopts_cmd.set_defaults(func=start_list_hyperopts)
|
||||
self._build_args(optionlist=ARGS_LIST_HYPEROPTS, parser=list_hyperopts_cmd)
|
||||
|
||||
# Add list-exchanges subcommand
|
||||
list_exchanges_cmd = subparsers.add_parser(
|
||||
'list-exchanges',
|
||||
help='Print available exchanges.',
|
||||
parents=[_common_parser],
|
||||
)
|
||||
list_exchanges_cmd.set_defaults(func=start_list_exchanges)
|
||||
self._build_args(optionlist=ARGS_LIST_EXCHANGES, parser=list_exchanges_cmd)
|
||||
|
||||
# Add list-timeframes subcommand
|
||||
list_timeframes_cmd = subparsers.add_parser(
|
||||
'list-timeframes',
|
||||
help='Print available ticker intervals (timeframes) for the exchange.',
|
||||
parents=[_common_parser],
|
||||
)
|
||||
list_timeframes_cmd.set_defaults(func=start_list_timeframes)
|
||||
self._build_args(optionlist=ARGS_LIST_TIMEFRAMES, parser=list_timeframes_cmd)
|
||||
|
||||
# Add list-markets subcommand
|
||||
list_markets_cmd = subparsers.add_parser(
|
||||
'list-markets',
|
||||
help='Print markets on exchange.',
|
||||
parents=[_common_parser],
|
||||
)
|
||||
list_markets_cmd.set_defaults(func=partial(start_list_markets, pairs_only=False))
|
||||
self._build_args(optionlist=ARGS_LIST_PAIRS, parser=list_markets_cmd)
|
||||
|
||||
# Add list-pairs subcommand
|
||||
list_pairs_cmd = subparsers.add_parser(
|
||||
'list-pairs',
|
||||
help='Print pairs on exchange.',
|
||||
parents=[_common_parser],
|
||||
)
|
||||
list_pairs_cmd.set_defaults(func=partial(start_list_markets, pairs_only=True))
|
||||
self._build_args(optionlist=ARGS_LIST_PAIRS, parser=list_pairs_cmd)
|
||||
|
||||
# Add test-pairlist subcommand
|
||||
test_pairlist_cmd = subparsers.add_parser(
|
||||
'test-pairlist',
|
||||
help='Test your pairlist configuration.',
|
||||
)
|
||||
test_pairlist_cmd.set_defaults(func=start_test_pairlist)
|
||||
self._build_args(optionlist=ARGS_TEST_PAIRLIST, parser=test_pairlist_cmd)
|
||||
# add new-strategy subcommand
|
||||
build_strategy_cmd = subparsers.add_parser('new-strategy',
|
||||
help="Create new strategy")
|
||||
build_strategy_cmd.set_defaults(func=start_new_strategy)
|
||||
self._build_args(optionlist=ARGS_BUILD_STRATEGY, parser=build_strategy_cmd)
|
||||
|
||||
# Add download-data subcommand
|
||||
download_data_cmd = subparsers.add_parser(
|
||||
@@ -314,32 +236,33 @@ class Arguments:
|
||||
convert_trade_data_cmd.set_defaults(func=partial(start_convert_data, ohlcv=False))
|
||||
self._build_args(optionlist=ARGS_CONVERT_DATA, parser=convert_trade_data_cmd)
|
||||
|
||||
# Add Plotting subcommand
|
||||
plot_dataframe_cmd = subparsers.add_parser(
|
||||
'plot-dataframe',
|
||||
help='Plot candles with indicators.',
|
||||
parents=[_common_parser, _strategy_parser],
|
||||
)
|
||||
plot_dataframe_cmd.set_defaults(func=start_plot_dataframe)
|
||||
self._build_args(optionlist=ARGS_PLOT_DATAFRAME, parser=plot_dataframe_cmd)
|
||||
|
||||
# Plot profit
|
||||
plot_profit_cmd = subparsers.add_parser(
|
||||
'plot-profit',
|
||||
help='Generate plot showing profits.',
|
||||
# Add list-data subcommand
|
||||
list_data_cmd = subparsers.add_parser(
|
||||
'list-data',
|
||||
help='List downloaded data.',
|
||||
parents=[_common_parser],
|
||||
)
|
||||
plot_profit_cmd.set_defaults(func=start_plot_profit)
|
||||
self._build_args(optionlist=ARGS_PLOT_PROFIT, parser=plot_profit_cmd)
|
||||
list_data_cmd.set_defaults(func=start_list_data)
|
||||
self._build_args(optionlist=ARGS_LIST_DATA, parser=list_data_cmd)
|
||||
|
||||
# Add show-trades subcommand
|
||||
show_trades = subparsers.add_parser(
|
||||
'show-trades',
|
||||
help='Show trades.',
|
||||
parents=[_common_parser],
|
||||
)
|
||||
show_trades.set_defaults(func=start_show_trades)
|
||||
self._build_args(optionlist=ARGS_SHOW_TRADES, parser=show_trades)
|
||||
# Add backtesting subcommand
|
||||
backtesting_cmd = subparsers.add_parser('backtesting', help='Backtesting module.',
|
||||
parents=[_common_parser, _strategy_parser])
|
||||
backtesting_cmd.set_defaults(func=start_backtesting)
|
||||
self._build_args(optionlist=ARGS_BACKTEST, parser=backtesting_cmd)
|
||||
|
||||
# Add edge subcommand
|
||||
edge_cmd = subparsers.add_parser('edge', help='Edge module.',
|
||||
parents=[_common_parser, _strategy_parser])
|
||||
edge_cmd.set_defaults(func=start_edge)
|
||||
self._build_args(optionlist=ARGS_EDGE, parser=edge_cmd)
|
||||
|
||||
# Add hyperopt subcommand
|
||||
hyperopt_cmd = subparsers.add_parser('hyperopt', help='Hyperopt module.',
|
||||
parents=[_common_parser, _strategy_parser],
|
||||
)
|
||||
hyperopt_cmd.set_defaults(func=start_hyperopt)
|
||||
self._build_args(optionlist=ARGS_HYPEROPT, parser=hyperopt_cmd)
|
||||
|
||||
# Add hyperopt-list subcommand
|
||||
hyperopt_list_cmd = subparsers.add_parser(
|
||||
@@ -358,3 +281,92 @@ class Arguments:
|
||||
)
|
||||
hyperopt_show_cmd.set_defaults(func=start_hyperopt_show)
|
||||
self._build_args(optionlist=ARGS_HYPEROPT_SHOW, parser=hyperopt_show_cmd)
|
||||
|
||||
# Add list-exchanges subcommand
|
||||
list_exchanges_cmd = subparsers.add_parser(
|
||||
'list-exchanges',
|
||||
help='Print available exchanges.',
|
||||
parents=[_common_parser],
|
||||
)
|
||||
list_exchanges_cmd.set_defaults(func=start_list_exchanges)
|
||||
self._build_args(optionlist=ARGS_LIST_EXCHANGES, parser=list_exchanges_cmd)
|
||||
|
||||
# Add list-hyperopts subcommand
|
||||
list_hyperopts_cmd = subparsers.add_parser(
|
||||
'list-hyperopts',
|
||||
help='Print available hyperopt classes.',
|
||||
parents=[_common_parser],
|
||||
)
|
||||
list_hyperopts_cmd.set_defaults(func=start_list_hyperopts)
|
||||
self._build_args(optionlist=ARGS_LIST_HYPEROPTS, parser=list_hyperopts_cmd)
|
||||
|
||||
# Add list-markets subcommand
|
||||
list_markets_cmd = subparsers.add_parser(
|
||||
'list-markets',
|
||||
help='Print markets on exchange.',
|
||||
parents=[_common_parser],
|
||||
)
|
||||
list_markets_cmd.set_defaults(func=partial(start_list_markets, pairs_only=False))
|
||||
self._build_args(optionlist=ARGS_LIST_PAIRS, parser=list_markets_cmd)
|
||||
|
||||
# Add list-pairs subcommand
|
||||
list_pairs_cmd = subparsers.add_parser(
|
||||
'list-pairs',
|
||||
help='Print pairs on exchange.',
|
||||
parents=[_common_parser],
|
||||
)
|
||||
list_pairs_cmd.set_defaults(func=partial(start_list_markets, pairs_only=True))
|
||||
self._build_args(optionlist=ARGS_LIST_PAIRS, parser=list_pairs_cmd)
|
||||
|
||||
# Add list-strategies subcommand
|
||||
list_strategies_cmd = subparsers.add_parser(
|
||||
'list-strategies',
|
||||
help='Print available strategies.',
|
||||
parents=[_common_parser],
|
||||
)
|
||||
list_strategies_cmd.set_defaults(func=start_list_strategies)
|
||||
self._build_args(optionlist=ARGS_LIST_STRATEGIES, parser=list_strategies_cmd)
|
||||
|
||||
# Add list-timeframes subcommand
|
||||
list_timeframes_cmd = subparsers.add_parser(
|
||||
'list-timeframes',
|
||||
help='Print available timeframes for the exchange.',
|
||||
parents=[_common_parser],
|
||||
)
|
||||
list_timeframes_cmd.set_defaults(func=start_list_timeframes)
|
||||
self._build_args(optionlist=ARGS_LIST_TIMEFRAMES, parser=list_timeframes_cmd)
|
||||
|
||||
# Add show-trades subcommand
|
||||
show_trades = subparsers.add_parser(
|
||||
'show-trades',
|
||||
help='Show trades.',
|
||||
parents=[_common_parser],
|
||||
)
|
||||
show_trades.set_defaults(func=start_show_trades)
|
||||
self._build_args(optionlist=ARGS_SHOW_TRADES, parser=show_trades)
|
||||
|
||||
# Add test-pairlist subcommand
|
||||
test_pairlist_cmd = subparsers.add_parser(
|
||||
'test-pairlist',
|
||||
help='Test your pairlist configuration.',
|
||||
)
|
||||
test_pairlist_cmd.set_defaults(func=start_test_pairlist)
|
||||
self._build_args(optionlist=ARGS_TEST_PAIRLIST, parser=test_pairlist_cmd)
|
||||
|
||||
# Add Plotting subcommand
|
||||
plot_dataframe_cmd = subparsers.add_parser(
|
||||
'plot-dataframe',
|
||||
help='Plot candles with indicators.',
|
||||
parents=[_common_parser, _strategy_parser],
|
||||
)
|
||||
plot_dataframe_cmd.set_defaults(func=start_plot_dataframe)
|
||||
self._build_args(optionlist=ARGS_PLOT_DATAFRAME, parser=plot_dataframe_cmd)
|
||||
|
||||
# Plot profit
|
||||
plot_profit_cmd = subparsers.add_parser(
|
||||
'plot-profit',
|
||||
help='Generate plot showing profits.',
|
||||
parents=[_common_parser, _strategy_parser],
|
||||
)
|
||||
plot_profit_cmd.set_defaults(func=start_plot_profit)
|
||||
self._build_args(optionlist=ARGS_PLOT_PROFIT, parser=plot_profit_cmd)
|
||||
|
@@ -75,8 +75,8 @@ def ask_user_config() -> Dict[str, Any]:
|
||||
},
|
||||
{
|
||||
"type": "text",
|
||||
"name": "ticker_interval",
|
||||
"message": "Please insert your timeframe (ticker interval):",
|
||||
"name": "timeframe",
|
||||
"message": "Please insert your desired timeframe (e.g. 5m):",
|
||||
"default": "5m",
|
||||
},
|
||||
{
|
||||
|
@@ -110,8 +110,8 @@ AVAILABLE_CLI_OPTIONS = {
|
||||
action='store_true',
|
||||
),
|
||||
# Optimize common
|
||||
"ticker_interval": Arg(
|
||||
'-i', '--ticker-interval',
|
||||
"timeframe": Arg(
|
||||
'-i', '--timeframe', '--ticker-interval',
|
||||
help='Specify ticker interval (`1m`, `5m`, `30m`, `1h`, `1d`).',
|
||||
),
|
||||
"timerange": Arg(
|
||||
@@ -455,37 +455,49 @@ AVAILABLE_CLI_OPTIONS = {
|
||||
),
|
||||
"hyperopt_list_min_avg_time": Arg(
|
||||
'--min-avg-time',
|
||||
help='Select epochs on above average time.',
|
||||
help='Select epochs above average time.',
|
||||
type=float,
|
||||
metavar='FLOAT',
|
||||
),
|
||||
"hyperopt_list_max_avg_time": Arg(
|
||||
'--max-avg-time',
|
||||
help='Select epochs on under average time.',
|
||||
help='Select epochs below average time.',
|
||||
type=float,
|
||||
metavar='FLOAT',
|
||||
),
|
||||
"hyperopt_list_min_avg_profit": Arg(
|
||||
'--min-avg-profit',
|
||||
help='Select epochs on above average profit.',
|
||||
help='Select epochs above average profit.',
|
||||
type=float,
|
||||
metavar='FLOAT',
|
||||
),
|
||||
"hyperopt_list_max_avg_profit": Arg(
|
||||
'--max-avg-profit',
|
||||
help='Select epochs on below average profit.',
|
||||
help='Select epochs below average profit.',
|
||||
type=float,
|
||||
metavar='FLOAT',
|
||||
),
|
||||
"hyperopt_list_min_total_profit": Arg(
|
||||
'--min-total-profit',
|
||||
help='Select epochs on above total profit.',
|
||||
help='Select epochs above total profit.',
|
||||
type=float,
|
||||
metavar='FLOAT',
|
||||
),
|
||||
"hyperopt_list_max_total_profit": Arg(
|
||||
'--max-total-profit',
|
||||
help='Select epochs on below total profit.',
|
||||
help='Select epochs below total profit.',
|
||||
type=float,
|
||||
metavar='FLOAT',
|
||||
),
|
||||
"hyperopt_list_min_objective": Arg(
|
||||
'--min-objective',
|
||||
help='Select epochs above objective.',
|
||||
type=float,
|
||||
metavar='FLOAT',
|
||||
),
|
||||
"hyperopt_list_max_objective": Arg(
|
||||
'--max-objective',
|
||||
help='Select epochs below objective.',
|
||||
type=float,
|
||||
metavar='FLOAT',
|
||||
),
|
||||
|
@@ -1,5 +1,6 @@
|
||||
import logging
|
||||
import sys
|
||||
from collections import defaultdict
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import arrow
|
||||
@@ -11,6 +12,7 @@ from freqtrade.data.history import (convert_trades_to_ohlcv,
|
||||
refresh_backtest_ohlcv_data,
|
||||
refresh_backtest_trades_data)
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import timeframe_to_minutes
|
||||
from freqtrade.resolvers import ExchangeResolver
|
||||
from freqtrade.state import RunMode
|
||||
|
||||
@@ -88,3 +90,30 @@ def start_convert_data(args: Dict[str, Any], ohlcv: bool = True) -> None:
|
||||
convert_trades_format(config,
|
||||
convert_from=args['format_from'], convert_to=args['format_to'],
|
||||
erase=args['erase'])
|
||||
|
||||
|
||||
def start_list_data(args: Dict[str, Any]) -> None:
|
||||
"""
|
||||
List available backtest data
|
||||
"""
|
||||
|
||||
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
|
||||
|
||||
from freqtrade.data.history.idatahandler import get_datahandler
|
||||
from tabulate import tabulate
|
||||
dhc = get_datahandler(config['datadir'], config['dataformat_ohlcv'])
|
||||
|
||||
paircombs = dhc.ohlcv_get_available_data(config['datadir'])
|
||||
|
||||
if args['pairs']:
|
||||
paircombs = [comb for comb in paircombs if comb[0] in args['pairs']]
|
||||
|
||||
print(f"Found {len(paircombs)} pair / timeframe combinations.")
|
||||
groupedpair = defaultdict(list)
|
||||
for pair, timeframe in sorted(paircombs, key=lambda x: (x[0], timeframe_to_minutes(x[1]))):
|
||||
groupedpair[pair].append(timeframe)
|
||||
|
||||
if groupedpair:
|
||||
print(tabulate([(pair, ', '.join(timeframes)) for pair, timeframes in groupedpair.items()],
|
||||
headers=("Pair", "Timeframe"),
|
||||
tablefmt='psql', stralign='right'))
|
||||
|
@@ -35,7 +35,9 @@ def start_hyperopt_list(args: Dict[str, Any]) -> None:
|
||||
'filter_min_avg_profit': config.get('hyperopt_list_min_avg_profit', None),
|
||||
'filter_max_avg_profit': config.get('hyperopt_list_max_avg_profit', None),
|
||||
'filter_min_total_profit': config.get('hyperopt_list_min_total_profit', None),
|
||||
'filter_max_total_profit': config.get('hyperopt_list_max_total_profit', None)
|
||||
'filter_max_total_profit': config.get('hyperopt_list_max_total_profit', None),
|
||||
'filter_min_objective': config.get('hyperopt_list_min_objective', None),
|
||||
'filter_max_objective': config.get('hyperopt_list_max_objective', None),
|
||||
}
|
||||
|
||||
results_file = (config['user_data_dir'] /
|
||||
@@ -45,7 +47,7 @@ def start_hyperopt_list(args: Dict[str, Any]) -> None:
|
||||
epochs = Hyperopt.load_previous_results(results_file)
|
||||
total_epochs = len(epochs)
|
||||
|
||||
epochs = _hyperopt_filter_epochs(epochs, filteroptions)
|
||||
epochs = hyperopt_filter_epochs(epochs, filteroptions)
|
||||
|
||||
if print_colorized:
|
||||
colorama_init(autoreset=True)
|
||||
@@ -92,14 +94,16 @@ def start_hyperopt_show(args: Dict[str, Any]) -> None:
|
||||
'filter_min_avg_profit': config.get('hyperopt_list_min_avg_profit', None),
|
||||
'filter_max_avg_profit': config.get('hyperopt_list_max_avg_profit', None),
|
||||
'filter_min_total_profit': config.get('hyperopt_list_min_total_profit', None),
|
||||
'filter_max_total_profit': config.get('hyperopt_list_max_total_profit', None)
|
||||
'filter_max_total_profit': config.get('hyperopt_list_max_total_profit', None),
|
||||
'filter_min_objective': config.get('hyperopt_list_min_objective', None),
|
||||
'filter_max_objective': config.get('hyperopt_list_max_objective', None)
|
||||
}
|
||||
|
||||
# Previous evaluations
|
||||
epochs = Hyperopt.load_previous_results(results_file)
|
||||
total_epochs = len(epochs)
|
||||
|
||||
epochs = _hyperopt_filter_epochs(epochs, filteroptions)
|
||||
epochs = hyperopt_filter_epochs(epochs, filteroptions)
|
||||
filtered_epochs = len(epochs)
|
||||
|
||||
if n > filtered_epochs:
|
||||
@@ -119,7 +123,7 @@ def start_hyperopt_show(args: Dict[str, Any]) -> None:
|
||||
header_str="Epoch details")
|
||||
|
||||
|
||||
def _hyperopt_filter_epochs(epochs: List, filteroptions: dict) -> List:
|
||||
def hyperopt_filter_epochs(epochs: List, filteroptions: dict) -> List:
|
||||
"""
|
||||
Filter our items from the list of hyperopt results
|
||||
"""
|
||||
@@ -127,6 +131,24 @@ def _hyperopt_filter_epochs(epochs: List, filteroptions: dict) -> List:
|
||||
epochs = [x for x in epochs if x['is_best']]
|
||||
if filteroptions['only_profitable']:
|
||||
epochs = [x for x in epochs if x['results_metrics']['profit'] > 0]
|
||||
|
||||
epochs = _hyperopt_filter_epochs_trade_count(epochs, filteroptions)
|
||||
|
||||
epochs = _hyperopt_filter_epochs_duration(epochs, filteroptions)
|
||||
|
||||
epochs = _hyperopt_filter_epochs_profit(epochs, filteroptions)
|
||||
|
||||
epochs = _hyperopt_filter_epochs_objective(epochs, filteroptions)
|
||||
|
||||
logger.info(f"{len(epochs)} " +
|
||||
("best " if filteroptions['only_best'] else "") +
|
||||
("profitable " if filteroptions['only_profitable'] else "") +
|
||||
"epochs found.")
|
||||
return epochs
|
||||
|
||||
|
||||
def _hyperopt_filter_epochs_trade_count(epochs: List, filteroptions: dict) -> List:
|
||||
|
||||
if filteroptions['filter_min_trades'] > 0:
|
||||
epochs = [
|
||||
x for x in epochs
|
||||
@@ -137,6 +159,11 @@ def _hyperopt_filter_epochs(epochs: List, filteroptions: dict) -> List:
|
||||
x for x in epochs
|
||||
if x['results_metrics']['trade_count'] < filteroptions['filter_max_trades']
|
||||
]
|
||||
return epochs
|
||||
|
||||
|
||||
def _hyperopt_filter_epochs_duration(epochs: List, filteroptions: dict) -> List:
|
||||
|
||||
if filteroptions['filter_min_avg_time'] is not None:
|
||||
epochs = [x for x in epochs if x['results_metrics']['trade_count'] > 0]
|
||||
epochs = [
|
||||
@@ -149,6 +176,12 @@ def _hyperopt_filter_epochs(epochs: List, filteroptions: dict) -> List:
|
||||
x for x in epochs
|
||||
if x['results_metrics']['duration'] < filteroptions['filter_max_avg_time']
|
||||
]
|
||||
|
||||
return epochs
|
||||
|
||||
|
||||
def _hyperopt_filter_epochs_profit(epochs: List, filteroptions: dict) -> List:
|
||||
|
||||
if filteroptions['filter_min_avg_profit'] is not None:
|
||||
epochs = [x for x in epochs if x['results_metrics']['trade_count'] > 0]
|
||||
epochs = [
|
||||
@@ -173,10 +206,18 @@ def _hyperopt_filter_epochs(epochs: List, filteroptions: dict) -> List:
|
||||
x for x in epochs
|
||||
if x['results_metrics']['profit'] < filteroptions['filter_max_total_profit']
|
||||
]
|
||||
return epochs
|
||||
|
||||
logger.info(f"{len(epochs)} " +
|
||||
("best " if filteroptions['only_best'] else "") +
|
||||
("profitable " if filteroptions['only_profitable'] else "") +
|
||||
"epochs found.")
|
||||
|
||||
def _hyperopt_filter_epochs_objective(epochs: List, filteroptions: dict) -> List:
|
||||
|
||||
if filteroptions['filter_min_objective'] is not None:
|
||||
epochs = [x for x in epochs if x['results_metrics']['trade_count'] > 0]
|
||||
|
||||
epochs = [x for x in epochs if x['loss'] < filteroptions['filter_min_objective']]
|
||||
if filteroptions['filter_max_objective'] is not None:
|
||||
epochs = [x for x in epochs if x['results_metrics']['trade_count'] > 0]
|
||||
|
||||
epochs = [x for x in epochs if x['loss'] > filteroptions['filter_max_objective']]
|
||||
|
||||
return epochs
|
||||
|
@@ -14,7 +14,7 @@ from freqtrade.configuration import setup_utils_configuration
|
||||
from freqtrade.constants import USERPATH_HYPEROPTS, USERPATH_STRATEGIES
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import (available_exchanges, ccxt_exchanges,
|
||||
market_is_active, symbol_is_pair)
|
||||
market_is_active)
|
||||
from freqtrade.misc import plural
|
||||
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
|
||||
from freqtrade.state import RunMode
|
||||
@@ -102,8 +102,8 @@ def start_list_timeframes(args: Dict[str, Any]) -> None:
|
||||
Print ticker intervals (timeframes) available on Exchange
|
||||
"""
|
||||
config = setup_utils_configuration(args, RunMode.UTIL_EXCHANGE)
|
||||
# Do not use ticker_interval set in the config
|
||||
config['ticker_interval'] = None
|
||||
# Do not use timeframe set in the config
|
||||
config['timeframe'] = None
|
||||
|
||||
# Init exchange
|
||||
exchange = ExchangeResolver.load_exchange(config['exchange']['name'], config, validate=False)
|
||||
@@ -163,7 +163,7 @@ def start_list_markets(args: Dict[str, Any], pairs_only: bool = False) -> None:
|
||||
tabular_data.append({'Id': v['id'], 'Symbol': v['symbol'],
|
||||
'Base': v['base'], 'Quote': v['quote'],
|
||||
'Active': market_is_active(v),
|
||||
**({'Is pair': symbol_is_pair(v['symbol'])}
|
||||
**({'Is pair': exchange.market_is_tradable(v)}
|
||||
if not pairs_only else {})})
|
||||
|
||||
if (args.get('print_one_column', False) or
|
||||
|
@@ -25,7 +25,6 @@ def start_test_pairlist(args: Dict[str, Any]) -> None:
|
||||
results = {}
|
||||
for curr in quote_currencies:
|
||||
config['stake_currency'] = curr
|
||||
# Do not use ticker_interval set in the config
|
||||
pairlists = PairListManager(exchange, config)
|
||||
pairlists.refresh_pairlist()
|
||||
results[curr] = pairlists.whitelist
|
||||
|
@@ -199,14 +199,14 @@ class Configuration:
|
||||
config['exportfilename'] = Path(config['exportfilename'])
|
||||
else:
|
||||
config['exportfilename'] = (config['user_data_dir']
|
||||
/ 'backtest_results/backtest-result.json')
|
||||
/ 'backtest_results')
|
||||
|
||||
def _process_optimize_options(self, config: Dict[str, Any]) -> None:
|
||||
|
||||
# This will override the strategy configuration
|
||||
self._args_to_config(config, argname='ticker_interval',
|
||||
logstring='Parameter -i/--ticker-interval detected ... '
|
||||
'Using ticker_interval: {} ...')
|
||||
self._args_to_config(config, argname='timeframe',
|
||||
logstring='Parameter -i/--timeframe detected ... '
|
||||
'Using timeframe: {} ...')
|
||||
|
||||
self._args_to_config(config, argname='position_stacking',
|
||||
logstring='Parameter --enable-position-stacking detected ...')
|
||||
@@ -242,8 +242,8 @@ class Configuration:
|
||||
self._args_to_config(config, argname='strategy_list',
|
||||
logstring='Using strategy list of {} strategies', logfun=len)
|
||||
|
||||
self._args_to_config(config, argname='ticker_interval',
|
||||
logstring='Overriding ticker interval with Command line argument')
|
||||
self._args_to_config(config, argname='timeframe',
|
||||
logstring='Overriding timeframe with Command line argument')
|
||||
|
||||
self._args_to_config(config, argname='export',
|
||||
logstring='Parameter --export detected: {} ...')
|
||||
@@ -334,6 +334,12 @@ class Configuration:
|
||||
self._args_to_config(config, argname='hyperopt_list_max_total_profit',
|
||||
logstring='Parameter --max-total-profit detected: {}')
|
||||
|
||||
self._args_to_config(config, argname='hyperopt_list_min_objective',
|
||||
logstring='Parameter --min-objective detected: {}')
|
||||
|
||||
self._args_to_config(config, argname='hyperopt_list_max_objective',
|
||||
logstring='Parameter --max-objective detected: {}')
|
||||
|
||||
self._args_to_config(config, argname='hyperopt_list_no_details',
|
||||
logstring='Parameter --no-details detected: {}')
|
||||
|
||||
|
@@ -60,10 +60,21 @@ def process_temporary_deprecated_settings(config: Dict[str, Any]) -> None:
|
||||
|
||||
if (config.get('edge', {}).get('enabled', False)
|
||||
and 'capital_available_percentage' in config.get('edge', {})):
|
||||
logger.warning(
|
||||
raise OperationalException(
|
||||
"DEPRECATED: "
|
||||
"Using 'edge.capital_available_percentage' has been deprecated in favor of "
|
||||
"'tradable_balance_ratio'. Please migrate your configuration to "
|
||||
"'tradable_balance_ratio' and remove 'capital_available_percentage' "
|
||||
"from the edge configuration."
|
||||
)
|
||||
if 'ticker_interval' in config:
|
||||
logger.warning(
|
||||
"DEPRECATED: "
|
||||
"Please use 'timeframe' instead of 'ticker_interval."
|
||||
)
|
||||
if 'timeframe' in config:
|
||||
raise OperationalException(
|
||||
"Both 'timeframe' and 'ticker_interval' detected."
|
||||
"Please remove 'ticker_interval' from your configuration to continue operating."
|
||||
)
|
||||
config['timeframe'] = config['ticker_interval']
|
||||
|
@@ -3,6 +3,9 @@
|
||||
"""
|
||||
bot constants
|
||||
"""
|
||||
from typing import List, Tuple
|
||||
|
||||
|
||||
DEFAULT_CONFIG = 'config.json'
|
||||
DEFAULT_EXCHANGE = 'bittrex'
|
||||
PROCESS_THROTTLE_SECS = 5 # sec
|
||||
@@ -19,15 +22,19 @@ ORDERBOOK_SIDES = ['ask', 'bid']
|
||||
ORDERTYPE_POSSIBILITIES = ['limit', 'market']
|
||||
ORDERTIF_POSSIBILITIES = ['gtc', 'fok', 'ioc']
|
||||
AVAILABLE_PAIRLISTS = ['StaticPairList', 'VolumePairList',
|
||||
'PrecisionFilter', 'PriceFilter', 'ShuffleFilter', 'SpreadFilter']
|
||||
'AgeFilter', 'PrecisionFilter', 'PriceFilter',
|
||||
'ShuffleFilter', 'SpreadFilter']
|
||||
AVAILABLE_DATAHANDLERS = ['json', 'jsongz']
|
||||
DRY_RUN_WALLET = 1000
|
||||
DATETIME_PRINT_FORMAT = '%Y-%m-%d %H:%M:%S'
|
||||
MATH_CLOSE_PREC = 1e-14 # Precision used for float comparisons
|
||||
DEFAULT_DATAFRAME_COLUMNS = ['date', 'open', 'high', 'low', 'close', 'volume']
|
||||
# Don't modify sequence of DEFAULT_TRADES_COLUMNS
|
||||
# it has wide consequences for stored trades files
|
||||
DEFAULT_TRADES_COLUMNS = ['timestamp', 'id', 'type', 'side', 'price', 'amount', 'cost']
|
||||
|
||||
LAST_BT_RESULT_FN = '.last_result.json'
|
||||
|
||||
USERPATH_HYPEROPTS = 'hyperopts'
|
||||
USERPATH_STRATEGIES = 'strategies'
|
||||
USERPATH_NOTEBOOKS = 'notebooks'
|
||||
@@ -68,7 +75,7 @@ CONF_SCHEMA = {
|
||||
'type': 'object',
|
||||
'properties': {
|
||||
'max_open_trades': {'type': ['integer', 'number'], 'minimum': -1},
|
||||
'ticker_interval': {'type': 'string'},
|
||||
'timeframe': {'type': 'string'},
|
||||
'stake_currency': {'type': 'string'},
|
||||
'stake_amount': {
|
||||
'type': ['number', 'string'],
|
||||
@@ -152,7 +159,9 @@ CONF_SCHEMA = {
|
||||
'emergencysell': {'type': 'string', 'enum': ORDERTYPE_POSSIBILITIES},
|
||||
'stoploss': {'type': 'string', 'enum': ORDERTYPE_POSSIBILITIES},
|
||||
'stoploss_on_exchange': {'type': 'boolean'},
|
||||
'stoploss_on_exchange_interval': {'type': 'number'}
|
||||
'stoploss_on_exchange_interval': {'type': 'number'},
|
||||
'stoploss_on_exchange_limit_ratio': {'type': 'number', 'minimum': 0.0,
|
||||
'maximum': 1.0}
|
||||
},
|
||||
'required': ['buy', 'sell', 'stoploss', 'stoploss_on_exchange']
|
||||
},
|
||||
@@ -218,12 +227,16 @@ CONF_SCHEMA = {
|
||||
},
|
||||
'username': {'type': 'string'},
|
||||
'password': {'type': 'string'},
|
||||
'jwt_secret_key': {'type': 'string'},
|
||||
'CORS_origins': {'type': 'array', 'items': {'type': 'string'}},
|
||||
'verbosity': {'type': 'string', 'enum': ['error', 'info']},
|
||||
},
|
||||
'required': ['enabled', 'listen_ip_address', 'listen_port', 'username', 'password']
|
||||
},
|
||||
'db_url': {'type': 'string'},
|
||||
'initial_state': {'type': 'string', 'enum': ['running', 'stopped']},
|
||||
'forcebuy_enable': {'type': 'boolean'},
|
||||
'disable_dataframe_checks': {'type': 'boolean'},
|
||||
'internals': {
|
||||
'type': 'object',
|
||||
'default': {},
|
||||
@@ -282,7 +295,6 @@ CONF_SCHEMA = {
|
||||
'process_throttle_secs': {'type': 'integer', 'minimum': 600},
|
||||
'calculate_since_number_of_days': {'type': 'integer'},
|
||||
'allowed_risk': {'type': 'number'},
|
||||
'capital_available_percentage': {'type': 'number'},
|
||||
'stoploss_range_min': {'type': 'number'},
|
||||
'stoploss_range_max': {'type': 'number'},
|
||||
'stoploss_range_step': {'type': 'number'},
|
||||
@@ -299,6 +311,7 @@ CONF_SCHEMA = {
|
||||
|
||||
SCHEMA_TRADE_REQUIRED = [
|
||||
'exchange',
|
||||
'timeframe',
|
||||
'max_open_trades',
|
||||
'stake_currency',
|
||||
'stake_amount',
|
||||
@@ -329,3 +342,7 @@ CANCEL_REASON = {
|
||||
"ALL_CANCELLED": "cancelled (all unfilled and partially filled open orders cancelled)",
|
||||
"CANCELLED_ON_EXCHANGE": "cancelled on exchange",
|
||||
}
|
||||
|
||||
# List of pairs with their timeframes
|
||||
PairWithTimeframe = Tuple[str, str]
|
||||
ListPairsWithTimeframes = List[PairWithTimeframe]
|
||||
|
@@ -3,52 +3,123 @@ Helpers when analyzing backtest data
|
||||
"""
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Dict, Union, Tuple
|
||||
from typing import Dict, Union, Tuple, Any, Optional
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from datetime import timezone
|
||||
|
||||
from freqtrade import persistence
|
||||
from freqtrade.constants import LAST_BT_RESULT_FN
|
||||
from freqtrade.misc import json_load
|
||||
from freqtrade.persistence import Trade
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# must align with columns in backtest.py
|
||||
BT_DATA_COLUMNS = ["pair", "profitperc", "open_time", "close_time", "index", "duration",
|
||||
BT_DATA_COLUMNS = ["pair", "profit_percent", "open_date", "close_date", "index", "trade_duration",
|
||||
"open_rate", "close_rate", "open_at_end", "sell_reason"]
|
||||
|
||||
|
||||
def load_backtest_data(filename: Union[Path, str]) -> pd.DataFrame:
|
||||
def get_latest_backtest_filename(directory: Union[Path, str]) -> str:
|
||||
"""
|
||||
Load backtest data file.
|
||||
:param filename: pathlib.Path object, or string pointing to the file.
|
||||
:return: a dataframe with the analysis results
|
||||
Get latest backtest export based on '.last_result.json'.
|
||||
:param directory: Directory to search for last result
|
||||
:return: string containing the filename of the latest backtest result
|
||||
:raises: ValueError in the following cases:
|
||||
* Directory does not exist
|
||||
* `directory/.last_result.json` does not exist
|
||||
* `directory/.last_result.json` has the wrong content
|
||||
"""
|
||||
if isinstance(filename, str):
|
||||
filename = Path(filename)
|
||||
if isinstance(directory, str):
|
||||
directory = Path(directory)
|
||||
if not directory.is_dir():
|
||||
raise ValueError(f"Directory '{directory}' does not exist.")
|
||||
filename = directory / LAST_BT_RESULT_FN
|
||||
|
||||
if not filename.is_file():
|
||||
raise ValueError(f"File {filename} does not exist.")
|
||||
raise ValueError(
|
||||
f"Directory '{directory}' does not seem to contain backtest statistics yet.")
|
||||
|
||||
with filename.open() as file:
|
||||
data = json_load(file)
|
||||
|
||||
df = pd.DataFrame(data, columns=BT_DATA_COLUMNS)
|
||||
if 'latest_backtest' not in data:
|
||||
raise ValueError(f"Invalid '{LAST_BT_RESULT_FN}' format.")
|
||||
|
||||
df['open_time'] = pd.to_datetime(df['open_time'],
|
||||
unit='s',
|
||||
utc=True,
|
||||
infer_datetime_format=True
|
||||
)
|
||||
df['close_time'] = pd.to_datetime(df['close_time'],
|
||||
unit='s',
|
||||
utc=True,
|
||||
infer_datetime_format=True
|
||||
)
|
||||
df['profit'] = df['close_rate'] - df['open_rate']
|
||||
df = df.sort_values("open_time").reset_index(drop=True)
|
||||
return data['latest_backtest']
|
||||
|
||||
|
||||
def load_backtest_stats(filename: Union[Path, str]) -> Dict[str, Any]:
|
||||
"""
|
||||
Load backtest statistics file.
|
||||
:param filename: pathlib.Path object, or string pointing to the file.
|
||||
:return: a dictionary containing the resulting file.
|
||||
"""
|
||||
if isinstance(filename, str):
|
||||
filename = Path(filename)
|
||||
if filename.is_dir():
|
||||
filename = filename / get_latest_backtest_filename(filename)
|
||||
if not filename.is_file():
|
||||
raise ValueError(f"File {filename} does not exist.")
|
||||
logger.info(f"Loading backtest result from {filename}")
|
||||
with filename.open() as file:
|
||||
data = json_load(file)
|
||||
|
||||
return data
|
||||
|
||||
|
||||
def load_backtest_data(filename: Union[Path, str], strategy: Optional[str] = None) -> pd.DataFrame:
|
||||
"""
|
||||
Load backtest data file.
|
||||
:param filename: pathlib.Path object, or string pointing to a file or directory
|
||||
:param strategy: Strategy to load - mainly relevant for multi-strategy backtests
|
||||
Can also serve as protection to load the correct result.
|
||||
:return: a dataframe with the analysis results
|
||||
:raise: ValueError if loading goes wrong.
|
||||
"""
|
||||
data = load_backtest_stats(filename)
|
||||
if not isinstance(data, list):
|
||||
# new, nested format
|
||||
if 'strategy' not in data:
|
||||
raise ValueError("Unknown dataformat.")
|
||||
|
||||
if not strategy:
|
||||
if len(data['strategy']) == 1:
|
||||
strategy = list(data['strategy'].keys())[0]
|
||||
else:
|
||||
raise ValueError("Detected backtest result with more than one strategy. "
|
||||
"Please specify a strategy.")
|
||||
|
||||
if strategy not in data['strategy']:
|
||||
raise ValueError(f"Strategy {strategy} not available in the backtest result.")
|
||||
|
||||
data = data['strategy'][strategy]['trades']
|
||||
df = pd.DataFrame(data)
|
||||
df['open_date'] = pd.to_datetime(df['open_date'],
|
||||
utc=True,
|
||||
infer_datetime_format=True
|
||||
)
|
||||
df['close_date'] = pd.to_datetime(df['close_date'],
|
||||
utc=True,
|
||||
infer_datetime_format=True
|
||||
)
|
||||
else:
|
||||
# old format - only with lists.
|
||||
df = pd.DataFrame(data, columns=BT_DATA_COLUMNS)
|
||||
|
||||
df['open_date'] = pd.to_datetime(df['open_date'],
|
||||
unit='s',
|
||||
utc=True,
|
||||
infer_datetime_format=True
|
||||
)
|
||||
df['close_date'] = pd.to_datetime(df['close_date'],
|
||||
unit='s',
|
||||
utc=True,
|
||||
infer_datetime_format=True
|
||||
)
|
||||
df['profit_abs'] = df['close_rate'] - df['open_rate']
|
||||
df = df.sort_values("open_date").reset_index(drop=True)
|
||||
return df
|
||||
|
||||
|
||||
@@ -62,9 +133,9 @@ def analyze_trade_parallelism(results: pd.DataFrame, timeframe: str) -> pd.DataF
|
||||
"""
|
||||
from freqtrade.exchange import timeframe_to_minutes
|
||||
timeframe_min = timeframe_to_minutes(timeframe)
|
||||
dates = [pd.Series(pd.date_range(row[1].open_time, row[1].close_time,
|
||||
dates = [pd.Series(pd.date_range(row[1]['open_date'], row[1]['close_date'],
|
||||
freq=f"{timeframe_min}min"))
|
||||
for row in results[['open_time', 'close_time']].iterrows()]
|
||||
for row in results[['open_date', 'close_date']].iterrows()]
|
||||
deltas = [len(x) for x in dates]
|
||||
dates = pd.Series(pd.concat(dates).values, name='date')
|
||||
df2 = pd.DataFrame(np.repeat(results.values, deltas, axis=0), columns=results.columns)
|
||||
@@ -90,20 +161,25 @@ def evaluate_result_multi(results: pd.DataFrame, timeframe: str,
|
||||
return df_final[df_final['open_trades'] > max_open_trades]
|
||||
|
||||
|
||||
def load_trades_from_db(db_url: str) -> pd.DataFrame:
|
||||
def load_trades_from_db(db_url: str, strategy: Optional[str] = None) -> pd.DataFrame:
|
||||
"""
|
||||
Load trades from a DB (using dburl)
|
||||
:param db_url: Sqlite url (default format sqlite:///tradesv3.dry-run.sqlite)
|
||||
:param strategy: Strategy to load - mainly relevant for multi-strategy backtests
|
||||
Can also serve as protection to load the correct result.
|
||||
:return: Dataframe containing Trades
|
||||
"""
|
||||
trades: pd.DataFrame = pd.DataFrame([], columns=BT_DATA_COLUMNS)
|
||||
persistence.init(db_url, clean_open_orders=False)
|
||||
|
||||
columns = ["pair", "open_time", "close_time", "profit", "profitperc",
|
||||
"open_rate", "close_rate", "amount", "duration", "sell_reason",
|
||||
columns = ["pair", "open_date", "close_date", "profit", "profit_percent",
|
||||
"open_rate", "close_rate", "amount", "trade_duration", "sell_reason",
|
||||
"fee_open", "fee_close", "open_rate_requested", "close_rate_requested",
|
||||
"stake_amount", "max_rate", "min_rate", "id", "exchange",
|
||||
"stop_loss", "initial_stop_loss", "strategy", "ticker_interval"]
|
||||
"stop_loss", "initial_stop_loss", "strategy", "timeframe"]
|
||||
|
||||
filters = []
|
||||
if strategy:
|
||||
filters.append(Trade.strategy == strategy)
|
||||
|
||||
trades = pd.DataFrame([(t.pair,
|
||||
t.open_date.replace(tzinfo=timezone.utc),
|
||||
@@ -121,16 +197,16 @@ def load_trades_from_db(db_url: str) -> pd.DataFrame:
|
||||
t.min_rate,
|
||||
t.id, t.exchange,
|
||||
t.stop_loss, t.initial_stop_loss,
|
||||
t.strategy, t.ticker_interval
|
||||
t.strategy, t.timeframe
|
||||
)
|
||||
for t in Trade.get_trades().all()],
|
||||
for t in Trade.get_trades(filters).all()],
|
||||
columns=columns)
|
||||
|
||||
return trades
|
||||
|
||||
|
||||
def load_trades(source: str, db_url: str, exportfilename: Path,
|
||||
no_trades: bool = False) -> pd.DataFrame:
|
||||
no_trades: bool = False, strategy: Optional[str] = None) -> pd.DataFrame:
|
||||
"""
|
||||
Based on configuration option "trade_source":
|
||||
* loads data from DB (using `db_url`)
|
||||
@@ -148,7 +224,7 @@ def load_trades(source: str, db_url: str, exportfilename: Path,
|
||||
if source == "DB":
|
||||
return load_trades_from_db(db_url)
|
||||
elif source == "file":
|
||||
return load_backtest_data(exportfilename)
|
||||
return load_backtest_data(exportfilename, strategy)
|
||||
|
||||
|
||||
def extract_trades_of_period(dataframe: pd.DataFrame, trades: pd.DataFrame,
|
||||
@@ -163,11 +239,31 @@ def extract_trades_of_period(dataframe: pd.DataFrame, trades: pd.DataFrame,
|
||||
else:
|
||||
trades_start = dataframe.iloc[0]['date']
|
||||
trades_stop = dataframe.iloc[-1]['date']
|
||||
trades = trades.loc[(trades['open_time'] >= trades_start) &
|
||||
(trades['close_time'] <= trades_stop)]
|
||||
trades = trades.loc[(trades['open_date'] >= trades_start) &
|
||||
(trades['close_date'] <= trades_stop)]
|
||||
return trades
|
||||
|
||||
|
||||
def calculate_market_change(data: Dict[str, pd.DataFrame], column: str = "close") -> float:
|
||||
"""
|
||||
Calculate market change based on "column".
|
||||
Calculation is done by taking the first non-null and the last non-null element of each column
|
||||
and calculating the pctchange as "(last - first) / first".
|
||||
Then the results per pair are combined as mean.
|
||||
|
||||
:param data: Dict of Dataframes, dict key should be pair.
|
||||
:param column: Column in the original dataframes to use
|
||||
:return:
|
||||
"""
|
||||
tmp_means = []
|
||||
for pair, df in data.items():
|
||||
start = df[column].dropna().iloc[0]
|
||||
end = df[column].dropna().iloc[-1]
|
||||
tmp_means.append((end - start) / start)
|
||||
|
||||
return np.mean(tmp_means)
|
||||
|
||||
|
||||
def combine_dataframes_with_mean(data: Dict[str, pd.DataFrame],
|
||||
column: str = "close") -> pd.DataFrame:
|
||||
"""
|
||||
@@ -190,15 +286,19 @@ def create_cum_profit(df: pd.DataFrame, trades: pd.DataFrame, col_name: str,
|
||||
"""
|
||||
Adds a column `col_name` with the cumulative profit for the given trades array.
|
||||
:param df: DataFrame with date index
|
||||
:param trades: DataFrame containing trades (requires columns close_time and profitperc)
|
||||
:param trades: DataFrame containing trades (requires columns close_date and profit_percent)
|
||||
:param col_name: Column name that will be assigned the results
|
||||
:param timeframe: Timeframe used during the operations
|
||||
:return: Returns df with one additional column, col_name, containing the cumulative profit.
|
||||
:raise: ValueError if trade-dataframe was found empty.
|
||||
"""
|
||||
if len(trades) == 0:
|
||||
raise ValueError("Trade dataframe empty.")
|
||||
from freqtrade.exchange import timeframe_to_minutes
|
||||
timeframe_minutes = timeframe_to_minutes(timeframe)
|
||||
# Resample to timeframe to make sure trades match candles
|
||||
_trades_sum = trades.resample(f'{timeframe_minutes}min', on='close_time')[['profitperc']].sum()
|
||||
_trades_sum = trades.resample(f'{timeframe_minutes}min', on='close_date'
|
||||
)[['profit_percent']].sum()
|
||||
df.loc[:, col_name] = _trades_sum.cumsum()
|
||||
# Set first value to 0
|
||||
df.loc[df.iloc[0].name, col_name] = 0
|
||||
@@ -207,14 +307,14 @@ def create_cum_profit(df: pd.DataFrame, trades: pd.DataFrame, col_name: str,
|
||||
return df
|
||||
|
||||
|
||||
def calculate_max_drawdown(trades: pd.DataFrame, *, date_col: str = 'close_time',
|
||||
value_col: str = 'profitperc'
|
||||
def calculate_max_drawdown(trades: pd.DataFrame, *, date_col: str = 'close_date',
|
||||
value_col: str = 'profit_percent'
|
||||
) -> Tuple[float, pd.Timestamp, pd.Timestamp]:
|
||||
"""
|
||||
Calculate max drawdown and the corresponding close dates
|
||||
:param trades: DataFrame containing trades (requires columns close_time and profitperc)
|
||||
:param date_col: Column in DataFrame to use for dates (defaults to 'close_time')
|
||||
:param value_col: Column in DataFrame to use for values (defaults to 'profitperc')
|
||||
:param trades: DataFrame containing trades (requires columns close_date and profit_percent)
|
||||
:param date_col: Column in DataFrame to use for dates (defaults to 'close_date')
|
||||
:param value_col: Column in DataFrame to use for values (defaults to 'profit_percent')
|
||||
:return: Tuple (float, highdate, lowdate) with absolute max drawdown, high and low time
|
||||
:raise: ValueError if trade-dataframe was found empty.
|
||||
"""
|
||||
|
@@ -197,7 +197,7 @@ def trades_to_ohlcv(trades: List, timeframe: str) -> DataFrame:
|
||||
df_new['date'] = df_new.index
|
||||
# Drop 0 volume rows
|
||||
df_new = df_new.dropna()
|
||||
return df_new[DEFAULT_DATAFRAME_COLUMNS]
|
||||
return df_new.loc[:, DEFAULT_DATAFRAME_COLUMNS]
|
||||
|
||||
|
||||
def convert_trades_format(config: Dict[str, Any], convert_from: str, convert_to: str, erase: bool):
|
||||
@@ -236,12 +236,12 @@ def convert_ohlcv_format(config: Dict[str, Any], convert_from: str, convert_to:
|
||||
from freqtrade.data.history.idatahandler import get_datahandler
|
||||
src = get_datahandler(config['datadir'], convert_from)
|
||||
trg = get_datahandler(config['datadir'], convert_to)
|
||||
timeframes = config.get('timeframes', [config.get('ticker_interval')])
|
||||
timeframes = config.get('timeframes', [config.get('timeframe')])
|
||||
logger.info(f"Converting candle (OHLCV) for timeframe {timeframes}")
|
||||
|
||||
if 'pairs' not in config:
|
||||
config['pairs'] = []
|
||||
# Check timeframes or fall back to ticker_interval.
|
||||
# Check timeframes or fall back to timeframe.
|
||||
for timeframe in timeframes:
|
||||
config['pairs'].extend(src.ohlcv_get_pairs(config['datadir'],
|
||||
timeframe))
|
||||
|
@@ -5,16 +5,17 @@ including ticker and orderbook data, live and historical candle (OHLCV) data
|
||||
Common Interface for bot and strategy to access data.
|
||||
"""
|
||||
import logging
|
||||
from typing import Any, Dict, List, Optional
|
||||
from datetime import datetime, timezone
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
from arrow import Arrow
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.constants import ListPairsWithTimeframes, PairWithTimeframe
|
||||
from freqtrade.data.history import load_pair_history
|
||||
from freqtrade.exceptions import DependencyException, OperationalException
|
||||
from freqtrade.exceptions import ExchangeError, OperationalException
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.state import RunMode
|
||||
from freqtrade.typing import ListPairsWithTimeframes
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -25,6 +26,18 @@ class DataProvider:
|
||||
self._config = config
|
||||
self._exchange = exchange
|
||||
self._pairlists = pairlists
|
||||
self.__cached_pairs: Dict[PairWithTimeframe, Tuple[DataFrame, datetime]] = {}
|
||||
|
||||
def _set_cached_df(self, pair: str, timeframe: str, dataframe: DataFrame) -> None:
|
||||
"""
|
||||
Store cached Dataframe.
|
||||
Using private method as this should never be used by a user
|
||||
(but the class is exposed via `self.dp` to the strategy)
|
||||
:param pair: pair to get the data for
|
||||
:param timeframe: Timeframe to get data for
|
||||
:param dataframe: analyzed dataframe
|
||||
"""
|
||||
self.__cached_pairs[(pair, timeframe)] = (dataframe, Arrow.utcnow().datetime)
|
||||
|
||||
def refresh(self,
|
||||
pairlist: ListPairsWithTimeframes,
|
||||
@@ -55,7 +68,7 @@ class DataProvider:
|
||||
Use False only for read-only operations (where the dataframe is not modified)
|
||||
"""
|
||||
if self.runmode in (RunMode.DRY_RUN, RunMode.LIVE):
|
||||
return self._exchange.klines((pair, timeframe or self._config['ticker_interval']),
|
||||
return self._exchange.klines((pair, timeframe or self._config['timeframe']),
|
||||
copy=copy)
|
||||
else:
|
||||
return DataFrame()
|
||||
@@ -67,7 +80,7 @@ class DataProvider:
|
||||
:param timeframe: timeframe to get data for
|
||||
"""
|
||||
return load_pair_history(pair=pair,
|
||||
timeframe=timeframe or self._config['ticker_interval'],
|
||||
timeframe=timeframe or self._config['timeframe'],
|
||||
datadir=self._config['datadir']
|
||||
)
|
||||
|
||||
@@ -89,6 +102,20 @@ class DataProvider:
|
||||
logger.warning(f"No data found for ({pair}, {timeframe}).")
|
||||
return data
|
||||
|
||||
def get_analyzed_dataframe(self, pair: str, timeframe: str) -> Tuple[DataFrame, datetime]:
|
||||
"""
|
||||
:param pair: pair to get the data for
|
||||
:param timeframe: timeframe to get data for
|
||||
:return: Tuple of (Analyzed Dataframe, lastrefreshed) for the requested pair / timeframe
|
||||
combination.
|
||||
Returns empty dataframe and Epoch 0 (1970-01-01) if no dataframe was cached.
|
||||
"""
|
||||
if (pair, timeframe) in self.__cached_pairs:
|
||||
return self.__cached_pairs[(pair, timeframe)]
|
||||
else:
|
||||
|
||||
return (DataFrame(), datetime.fromtimestamp(0, tz=timezone.utc))
|
||||
|
||||
def market(self, pair: str) -> Optional[Dict[str, Any]]:
|
||||
"""
|
||||
Return market data for the pair
|
||||
@@ -105,17 +132,18 @@ class DataProvider:
|
||||
"""
|
||||
try:
|
||||
return self._exchange.fetch_ticker(pair)
|
||||
except DependencyException:
|
||||
except ExchangeError:
|
||||
return {}
|
||||
|
||||
def orderbook(self, pair: str, maximum: int) -> Dict[str, List]:
|
||||
"""
|
||||
fetch latest orderbook data
|
||||
Fetch latest l2 orderbook data
|
||||
Warning: Does a network request - so use with common sense.
|
||||
:param pair: pair to get the data for
|
||||
:param maximum: Maximum number of orderbook entries to query
|
||||
:return: dict including bids/asks with a total of `maximum` entries.
|
||||
"""
|
||||
return self._exchange.get_order_book(pair, maximum)
|
||||
return self._exchange.fetch_l2_order_book(pair, maximum)
|
||||
|
||||
@property
|
||||
def runmode(self) -> RunMode:
|
||||
|
@@ -270,6 +270,11 @@ def _download_trades_history(exchange: Exchange,
|
||||
# DEFAULT_TRADES_COLUMNS: 0 -> timestamp
|
||||
# DEFAULT_TRADES_COLUMNS: 1 -> id
|
||||
|
||||
if trades and since < trades[0][0]:
|
||||
# since is before the first trade
|
||||
logger.info(f"Start earlier than available data. Redownloading trades for {pair}...")
|
||||
trades = []
|
||||
|
||||
from_id = trades[-1][1] if trades else None
|
||||
if trades and since < trades[-1][0]:
|
||||
# Reset since to the last available point
|
||||
|
@@ -13,6 +13,7 @@ from typing import List, Optional, Type
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import ListPairsWithTimeframes
|
||||
from freqtrade.data.converter import (clean_ohlcv_dataframe,
|
||||
trades_remove_duplicates, trim_dataframe)
|
||||
from freqtrade.exchange import timeframe_to_seconds
|
||||
@@ -28,6 +29,14 @@ class IDataHandler(ABC):
|
||||
def __init__(self, datadir: Path) -> None:
|
||||
self._datadir = datadir
|
||||
|
||||
@abstractclassmethod
|
||||
def ohlcv_get_available_data(cls, datadir: Path) -> ListPairsWithTimeframes:
|
||||
"""
|
||||
Returns a list of all pairs with ohlcv data available in this datadir
|
||||
:param datadir: Directory to search for ohlcv files
|
||||
:return: List of Tuples of (pair, timeframe)
|
||||
"""
|
||||
|
||||
@abstractclassmethod
|
||||
def ohlcv_get_pairs(cls, datadir: Path, timeframe: str) -> List[str]:
|
||||
"""
|
||||
|
@@ -8,7 +8,8 @@ from pandas import DataFrame, read_json, to_datetime
|
||||
|
||||
from freqtrade import misc
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS
|
||||
from freqtrade.constants import (DEFAULT_DATAFRAME_COLUMNS,
|
||||
ListPairsWithTimeframes)
|
||||
from freqtrade.data.converter import trades_dict_to_list
|
||||
|
||||
from .idatahandler import IDataHandler, TradeList
|
||||
@@ -21,6 +22,18 @@ class JsonDataHandler(IDataHandler):
|
||||
_use_zip = False
|
||||
_columns = DEFAULT_DATAFRAME_COLUMNS
|
||||
|
||||
@classmethod
|
||||
def ohlcv_get_available_data(cls, datadir: Path) -> ListPairsWithTimeframes:
|
||||
"""
|
||||
Returns a list of all pairs with ohlcv data available in this datadir
|
||||
:param datadir: Directory to search for ohlcv files
|
||||
:return: List of Tuples of (pair, timeframe)
|
||||
"""
|
||||
_tmp = [re.search(r'^([a-zA-Z_]+)\-(\d+\S+)(?=.json)', p.name)
|
||||
for p in datadir.glob(f"*.{cls._get_file_extension()}")]
|
||||
return [(match[1].replace('_', '/'), match[2]) for match in _tmp
|
||||
if match and len(match.groups()) > 1]
|
||||
|
||||
@classmethod
|
||||
def ohlcv_get_pairs(cls, datadir: Path, timeframe: str) -> List[str]:
|
||||
"""
|
||||
|
@@ -9,7 +9,7 @@ import utils_find_1st as utf1st
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import UNLIMITED_STAKE_AMOUNT
|
||||
from freqtrade.constants import UNLIMITED_STAKE_AMOUNT, DATETIME_PRINT_FORMAT
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.data.history import get_timerange, load_data, refresh_data
|
||||
from freqtrade.strategy.interface import SellType
|
||||
@@ -57,9 +57,7 @@ class Edge:
|
||||
if self.config['stake_amount'] != UNLIMITED_STAKE_AMOUNT:
|
||||
raise OperationalException('Edge works only with unlimited stake amount')
|
||||
|
||||
# Deprecated capital_available_percentage. Will use tradable_balance_ratio in the future.
|
||||
self._capital_percentage: float = self.edge_config.get(
|
||||
'capital_available_percentage', self.config['tradable_balance_ratio'])
|
||||
self._capital_ratio: float = self.config['tradable_balance_ratio']
|
||||
self._allowed_risk: float = self.edge_config.get('allowed_risk')
|
||||
self._since_number_of_days: int = self.edge_config.get('calculate_since_number_of_days', 14)
|
||||
self._last_updated: int = 0 # Timestamp of pairs last updated time
|
||||
@@ -100,14 +98,14 @@ class Edge:
|
||||
datadir=self.config['datadir'],
|
||||
pairs=pairs,
|
||||
exchange=self.exchange,
|
||||
timeframe=self.strategy.ticker_interval,
|
||||
timeframe=self.strategy.timeframe,
|
||||
timerange=self._timerange,
|
||||
)
|
||||
|
||||
data = load_data(
|
||||
datadir=self.config['datadir'],
|
||||
pairs=pairs,
|
||||
timeframe=self.strategy.ticker_interval,
|
||||
timeframe=self.strategy.timeframe,
|
||||
timerange=self._timerange,
|
||||
startup_candles=self.strategy.startup_candle_count,
|
||||
data_format=self.config.get('dataformat_ohlcv', 'json'),
|
||||
@@ -123,12 +121,9 @@ class Edge:
|
||||
|
||||
# Print timeframe
|
||||
min_date, max_date = get_timerange(preprocessed)
|
||||
logger.info(
|
||||
'Measuring data from %s up to %s (%s days) ...',
|
||||
min_date.isoformat(),
|
||||
max_date.isoformat(),
|
||||
(max_date - min_date).days
|
||||
)
|
||||
logger.info(f'Measuring data from {min_date.strftime(DATETIME_PRINT_FORMAT)} '
|
||||
f'up to {max_date.strftime(DATETIME_PRINT_FORMAT)} '
|
||||
f'({(max_date - min_date).days} days)..')
|
||||
headers = ['date', 'buy', 'open', 'close', 'sell', 'high', 'low']
|
||||
|
||||
trades: list = []
|
||||
@@ -157,7 +152,7 @@ class Edge:
|
||||
def stake_amount(self, pair: str, free_capital: float,
|
||||
total_capital: float, capital_in_trade: float) -> float:
|
||||
stoploss = self.stoploss(pair)
|
||||
available_capital = (total_capital + capital_in_trade) * self._capital_percentage
|
||||
available_capital = (total_capital + capital_in_trade) * self._capital_ratio
|
||||
allowed_capital_at_risk = available_capital * self._allowed_risk
|
||||
max_position_size = abs(allowed_capital_at_risk / stoploss)
|
||||
position_size = min(max_position_size, free_capital)
|
||||
@@ -242,7 +237,7 @@ class Edge:
|
||||
# All returned values are relative, they are defined as ratios.
|
||||
stake = 0.015
|
||||
|
||||
result['trade_duration'] = result['close_time'] - result['open_time']
|
||||
result['trade_duration'] = result['close_date'] - result['open_date']
|
||||
|
||||
result['trade_duration'] = result['trade_duration'].map(
|
||||
lambda x: int(x.total_seconds() / 60))
|
||||
@@ -283,8 +278,8 @@ class Edge:
|
||||
#
|
||||
# Removing Pumps
|
||||
if self.edge_config.get('remove_pumps', False):
|
||||
results = results.groupby(['pair', 'stoploss']).apply(
|
||||
lambda x: x[x['profit_abs'] < 2 * x['profit_abs'].std() + x['profit_abs'].mean()])
|
||||
results = results[results['profit_abs'] < 2 * results['profit_abs'].std()
|
||||
+ results['profit_abs'].mean()]
|
||||
##########################################################################
|
||||
|
||||
# Removing trades having a duration more than X minutes (set in config)
|
||||
@@ -432,10 +427,8 @@ class Edge:
|
||||
'stoploss': stoploss,
|
||||
'profit_ratio': '',
|
||||
'profit_abs': '',
|
||||
'open_time': date_column[open_trade_index],
|
||||
'close_time': date_column[exit_index],
|
||||
'open_index': start_point + open_trade_index,
|
||||
'close_index': start_point + exit_index,
|
||||
'open_date': date_column[open_trade_index],
|
||||
'close_date': date_column[exit_index],
|
||||
'trade_duration': '',
|
||||
'open_rate': round(open_price, 15),
|
||||
'close_rate': round(exit_price, 15),
|
||||
|
@@ -21,7 +21,22 @@ class DependencyException(FreqtradeException):
|
||||
"""
|
||||
|
||||
|
||||
class InvalidOrderException(FreqtradeException):
|
||||
class PricingError(DependencyException):
|
||||
"""
|
||||
Subclass of DependencyException.
|
||||
Indicates that the price could not be determined.
|
||||
Implicitly a buy / sell operation.
|
||||
"""
|
||||
|
||||
|
||||
class ExchangeError(DependencyException):
|
||||
"""
|
||||
Error raised out of the exchange.
|
||||
Has multiple Errors to determine the appropriate error.
|
||||
"""
|
||||
|
||||
|
||||
class InvalidOrderException(ExchangeError):
|
||||
"""
|
||||
This is returned when the order is not valid. Example:
|
||||
If stoploss on exchange order is hit, then trying to cancel the order
|
||||
@@ -29,7 +44,14 @@ class InvalidOrderException(FreqtradeException):
|
||||
"""
|
||||
|
||||
|
||||
class TemporaryError(FreqtradeException):
|
||||
class RetryableOrderError(InvalidOrderException):
|
||||
"""
|
||||
This is returned when the order is not found.
|
||||
This Error will be repeated with increasing backof (in line with DDosError).
|
||||
"""
|
||||
|
||||
|
||||
class TemporaryError(ExchangeError):
|
||||
"""
|
||||
Temporary network or exchange related error.
|
||||
This could happen when an exchange is congested, unavailable, or the user
|
||||
@@ -37,6 +59,13 @@ class TemporaryError(FreqtradeException):
|
||||
"""
|
||||
|
||||
|
||||
class DDosProtection(TemporaryError):
|
||||
"""
|
||||
Temporary error caused by DDOS protection.
|
||||
Bot will wait for a second and then retry.
|
||||
"""
|
||||
|
||||
|
||||
class StrategyError(FreqtradeException):
|
||||
"""
|
||||
Errors with custom user-code deteced.
|
||||
|
@@ -12,8 +12,7 @@ from freqtrade.exchange.exchange import (timeframe_to_seconds,
|
||||
timeframe_to_msecs,
|
||||
timeframe_to_next_date,
|
||||
timeframe_to_prev_date)
|
||||
from freqtrade.exchange.exchange import (market_is_active,
|
||||
symbol_is_pair)
|
||||
from freqtrade.exchange.exchange import (market_is_active)
|
||||
from freqtrade.exchange.kraken import Kraken
|
||||
from freqtrade.exchange.binance import Binance
|
||||
from freqtrade.exchange.bibox import Bibox
|
||||
|
@@ -4,9 +4,11 @@ from typing import Dict
|
||||
|
||||
import ccxt
|
||||
|
||||
from freqtrade.exceptions import (DependencyException, InvalidOrderException,
|
||||
OperationalException, TemporaryError)
|
||||
from freqtrade.exceptions import (DDosProtection, ExchangeError,
|
||||
InvalidOrderException, OperationalException,
|
||||
TemporaryError)
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.exchange.common import retrier
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -20,7 +22,7 @@ class Binance(Exchange):
|
||||
"trades_pagination_arg": "fromId",
|
||||
}
|
||||
|
||||
def get_order_book(self, pair: str, limit: int = 100) -> dict:
|
||||
def fetch_l2_order_book(self, pair: str, limit: int = 100) -> dict:
|
||||
"""
|
||||
get order book level 2 from exchange
|
||||
|
||||
@@ -30,7 +32,7 @@ class Binance(Exchange):
|
||||
# get next-higher step in the limit_range list
|
||||
limit = min(list(filter(lambda x: limit <= x, limit_range)))
|
||||
|
||||
return super().get_order_book(pair, limit)
|
||||
return super().fetch_l2_order_book(pair, limit)
|
||||
|
||||
def stoploss_adjust(self, stop_loss: float, order: Dict) -> bool:
|
||||
"""
|
||||
@@ -39,6 +41,7 @@ class Binance(Exchange):
|
||||
"""
|
||||
return order['type'] == 'stop_loss_limit' and stop_loss > float(order['info']['stopPrice'])
|
||||
|
||||
@retrier(retries=0)
|
||||
def stoploss(self, pair: str, amount: float, stop_price: float, order_types: Dict) -> Dict:
|
||||
"""
|
||||
creates a stoploss limit order.
|
||||
@@ -77,8 +80,8 @@ class Binance(Exchange):
|
||||
'stop price: %s. limit: %s', pair, stop_price, rate)
|
||||
return order
|
||||
except ccxt.InsufficientFunds as e:
|
||||
raise DependencyException(
|
||||
f'Insufficient funds to create {ordertype} sell order on market {pair}.'
|
||||
raise ExchangeError(
|
||||
f'Insufficient funds to create {ordertype} sell order on market {pair}. '
|
||||
f'Tried to sell amount {amount} at rate {rate}. '
|
||||
f'Message: {e}') from e
|
||||
except ccxt.InvalidOrder as e:
|
||||
@@ -88,6 +91,8 @@ class Binance(Exchange):
|
||||
f'Could not create {ordertype} sell order on market {pair}. '
|
||||
f'Tried to sell amount {amount} at rate {rate}. '
|
||||
f'Message: {e}') from e
|
||||
except ccxt.DDoSProtection as e:
|
||||
raise DDosProtection(e) from e
|
||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(
|
||||
f'Could not place sell order due to {e.__class__.__name__}. Message: {e}') from e
|
||||
|
@@ -1,6 +1,10 @@
|
||||
import asyncio
|
||||
import logging
|
||||
import time
|
||||
from functools import wraps
|
||||
|
||||
from freqtrade.exceptions import TemporaryError
|
||||
from freqtrade.exceptions import (DDosProtection, RetryableOrderError,
|
||||
TemporaryError)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -88,6 +92,13 @@ MAP_EXCHANGE_CHILDCLASS = {
|
||||
}
|
||||
|
||||
|
||||
def calculate_backoff(retrycount, max_retries):
|
||||
"""
|
||||
Calculate backoff
|
||||
"""
|
||||
return (max_retries - retrycount) ** 2 + 1
|
||||
|
||||
|
||||
def retrier_async(f):
|
||||
async def wrapper(*args, **kwargs):
|
||||
count = kwargs.pop('count', API_RETRY_COUNT)
|
||||
@@ -96,9 +107,13 @@ def retrier_async(f):
|
||||
except TemporaryError as ex:
|
||||
logger.warning('%s() returned exception: "%s"', f.__name__, ex)
|
||||
if count > 0:
|
||||
logger.warning('retrying %s() still for %s times', f.__name__, count)
|
||||
count -= 1
|
||||
kwargs.update({'count': count})
|
||||
logger.warning('retrying %s() still for %s times', f.__name__, count)
|
||||
if isinstance(ex, DDosProtection):
|
||||
backoff_delay = calculate_backoff(count + 1, API_RETRY_COUNT)
|
||||
logger.info(f"Applying DDosProtection backoff delay: {backoff_delay}")
|
||||
await asyncio.sleep(backoff_delay)
|
||||
return await wrapper(*args, **kwargs)
|
||||
else:
|
||||
logger.warning('Giving up retrying: %s()', f.__name__)
|
||||
@@ -106,19 +121,31 @@ def retrier_async(f):
|
||||
return wrapper
|
||||
|
||||
|
||||
def retrier(f):
|
||||
def wrapper(*args, **kwargs):
|
||||
count = kwargs.pop('count', API_RETRY_COUNT)
|
||||
try:
|
||||
return f(*args, **kwargs)
|
||||
except TemporaryError as ex:
|
||||
logger.warning('%s() returned exception: "%s"', f.__name__, ex)
|
||||
if count > 0:
|
||||
count -= 1
|
||||
kwargs.update({'count': count})
|
||||
logger.warning('retrying %s() still for %s times', f.__name__, count)
|
||||
return wrapper(*args, **kwargs)
|
||||
else:
|
||||
logger.warning('Giving up retrying: %s()', f.__name__)
|
||||
raise ex
|
||||
return wrapper
|
||||
def retrier(_func=None, retries=API_RETRY_COUNT):
|
||||
def decorator(f):
|
||||
@wraps(f)
|
||||
def wrapper(*args, **kwargs):
|
||||
count = kwargs.pop('count', retries)
|
||||
try:
|
||||
return f(*args, **kwargs)
|
||||
except (TemporaryError, RetryableOrderError) as ex:
|
||||
logger.warning('%s() returned exception: "%s"', f.__name__, ex)
|
||||
if count > 0:
|
||||
logger.warning('retrying %s() still for %s times', f.__name__, count)
|
||||
count -= 1
|
||||
kwargs.update({'count': count})
|
||||
if isinstance(ex, DDosProtection) or isinstance(ex, RetryableOrderError):
|
||||
# increasing backoff
|
||||
backoff_delay = calculate_backoff(count + 1, retries)
|
||||
logger.info(f"Applying DDosProtection backoff delay: {backoff_delay}")
|
||||
time.sleep(backoff_delay)
|
||||
return wrapper(*args, **kwargs)
|
||||
else:
|
||||
logger.warning('Giving up retrying: %s()', f.__name__)
|
||||
raise ex
|
||||
return wrapper
|
||||
# Support both @retrier and @retrier(retries=2) syntax
|
||||
if _func is None:
|
||||
return decorator
|
||||
else:
|
||||
return decorator(_func)
|
||||
|
@@ -18,12 +18,13 @@ from ccxt.base.decimal_to_precision import (ROUND_DOWN, ROUND_UP, TICK_SIZE,
|
||||
TRUNCATE, decimal_to_precision)
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.constants import ListPairsWithTimeframes
|
||||
from freqtrade.data.converter import ohlcv_to_dataframe, trades_dict_to_list
|
||||
from freqtrade.exceptions import (DependencyException, InvalidOrderException,
|
||||
OperationalException, TemporaryError)
|
||||
from freqtrade.exceptions import (DDosProtection, ExchangeError,
|
||||
InvalidOrderException, OperationalException,
|
||||
RetryableOrderError, TemporaryError)
|
||||
from freqtrade.exchange.common import BAD_EXCHANGES, retrier, retrier_async
|
||||
from freqtrade.misc import deep_merge_dicts, safe_value_fallback
|
||||
from freqtrade.typing import ListPairsWithTimeframes
|
||||
from freqtrade.misc import deep_merge_dicts, safe_value_fallback2
|
||||
|
||||
CcxtModuleType = Any
|
||||
|
||||
@@ -79,7 +80,7 @@ class Exchange:
|
||||
|
||||
if config['dry_run']:
|
||||
logger.info('Instance is running with dry_run enabled')
|
||||
|
||||
logger.info(f"Using CCXT {ccxt.__version__}")
|
||||
exchange_config = config['exchange']
|
||||
|
||||
# Deep merge ft_has with default ft_has options
|
||||
@@ -98,12 +99,14 @@ class Exchange:
|
||||
|
||||
# Initialize ccxt objects
|
||||
ccxt_config = self._ccxt_config.copy()
|
||||
ccxt_config = deep_merge_dicts(exchange_config.get('ccxt_config', {}),
|
||||
ccxt_config)
|
||||
self._api = self._init_ccxt(
|
||||
exchange_config, ccxt_kwargs=ccxt_config)
|
||||
ccxt_config = deep_merge_dicts(exchange_config.get('ccxt_config', {}), ccxt_config)
|
||||
ccxt_config = deep_merge_dicts(exchange_config.get('ccxt_sync_config', {}), ccxt_config)
|
||||
|
||||
self._api = self._init_ccxt(exchange_config, ccxt_kwargs=ccxt_config)
|
||||
|
||||
ccxt_async_config = self._ccxt_config.copy()
|
||||
ccxt_async_config = deep_merge_dicts(exchange_config.get('ccxt_config', {}),
|
||||
ccxt_async_config)
|
||||
ccxt_async_config = deep_merge_dicts(exchange_config.get('ccxt_async_config', {}),
|
||||
ccxt_async_config)
|
||||
self._api_async = self._init_ccxt(
|
||||
@@ -113,7 +116,7 @@ class Exchange:
|
||||
|
||||
if validate:
|
||||
# Check if timeframe is available
|
||||
self.validate_timeframes(config.get('ticker_interval'))
|
||||
self.validate_timeframes(config.get('timeframe'))
|
||||
|
||||
# Initial markets load
|
||||
self._load_markets()
|
||||
@@ -184,11 +187,16 @@ class Exchange:
|
||||
def timeframes(self) -> List[str]:
|
||||
return list((self._api.timeframes or {}).keys())
|
||||
|
||||
@property
|
||||
def ohlcv_candle_limit(self) -> int:
|
||||
"""exchange ohlcv candle limit"""
|
||||
return int(self._ohlcv_candle_limit)
|
||||
|
||||
@property
|
||||
def markets(self) -> Dict:
|
||||
"""exchange ccxt markets"""
|
||||
if not self._api.markets:
|
||||
logger.warning("Markets were not loaded. Loading them now..")
|
||||
logger.info("Markets were not loaded. Loading them now..")
|
||||
self._load_markets()
|
||||
return self._api.markets
|
||||
|
||||
@@ -214,7 +222,7 @@ class Exchange:
|
||||
if quote_currencies:
|
||||
markets = {k: v for k, v in markets.items() if v['quote'] in quote_currencies}
|
||||
if pairs_only:
|
||||
markets = {k: v for k, v in markets.items() if symbol_is_pair(v['symbol'])}
|
||||
markets = {k: v for k, v in markets.items() if self.market_is_tradable(v)}
|
||||
if active_only:
|
||||
markets = {k: v for k, v in markets.items() if market_is_active(v)}
|
||||
return markets
|
||||
@@ -238,6 +246,19 @@ class Exchange:
|
||||
"""
|
||||
return self.markets.get(pair, {}).get('base', '')
|
||||
|
||||
def market_is_tradable(self, market: Dict[str, Any]) -> bool:
|
||||
"""
|
||||
Check if the market symbol is tradable by Freqtrade.
|
||||
By default, checks if it's splittable by `/` and both sides correspond to base / quote
|
||||
"""
|
||||
symbol_parts = market['symbol'].split('/')
|
||||
return (len(symbol_parts) == 2 and
|
||||
len(symbol_parts[0]) > 0 and
|
||||
len(symbol_parts[1]) > 0 and
|
||||
symbol_parts[0] == market.get('base') and
|
||||
symbol_parts[1] == market.get('quote')
|
||||
)
|
||||
|
||||
def klines(self, pair_interval: Tuple[str, str], copy: bool = True) -> DataFrame:
|
||||
if pair_interval in self._klines:
|
||||
return self._klines[pair_interval].copy() if copy else self._klines[pair_interval]
|
||||
@@ -250,8 +271,8 @@ class Exchange:
|
||||
api.urls['api'] = api.urls['test']
|
||||
logger.info("Enabled Sandbox API on %s", name)
|
||||
else:
|
||||
logger.warning(name, "No Sandbox URL in CCXT, exiting. "
|
||||
"Please check your config.json")
|
||||
logger.warning(
|
||||
f"No Sandbox URL in CCXT for {name}, exiting. Please check your config.json")
|
||||
raise OperationalException(f'Exchange {name} does not provide a sandbox api')
|
||||
|
||||
def _load_async_markets(self, reload: bool = False) -> None:
|
||||
@@ -273,8 +294,8 @@ class Exchange:
|
||||
except ccxt.BaseError as e:
|
||||
logger.warning('Unable to initialize markets. Reason: %s', e)
|
||||
|
||||
def _reload_markets(self) -> None:
|
||||
"""Reload markets both sync and async, if refresh interval has passed"""
|
||||
def reload_markets(self) -> None:
|
||||
"""Reload markets both sync and async if refresh interval has passed """
|
||||
# Check whether markets have to be reloaded
|
||||
if (self._last_markets_refresh > 0) and (
|
||||
self._last_markets_refresh + self.markets_refresh_interval
|
||||
@@ -283,6 +304,8 @@ class Exchange:
|
||||
logger.debug("Performing scheduled market reload..")
|
||||
try:
|
||||
self._api.load_markets(reload=True)
|
||||
# Also reload async markets to avoid issues with newly listed pairs
|
||||
self._load_async_markets(reload=True)
|
||||
self._last_markets_refresh = arrow.utcnow().timestamp
|
||||
except ccxt.BaseError:
|
||||
logger.exception("Could not reload markets.")
|
||||
@@ -347,7 +370,7 @@ class Exchange:
|
||||
for pair in [f"{curr_1}/{curr_2}", f"{curr_2}/{curr_1}"]:
|
||||
if pair in self.markets and self.markets[pair].get('active'):
|
||||
return pair
|
||||
raise DependencyException(f"Could not combine {curr_1} and {curr_2} to get a valid pair.")
|
||||
raise ExchangeError(f"Could not combine {curr_1} and {curr_2} to get a valid pair.")
|
||||
|
||||
def validate_timeframes(self, timeframe: Optional[str]) -> None:
|
||||
"""
|
||||
@@ -470,6 +493,7 @@ class Exchange:
|
||||
"id": order_id,
|
||||
'pair': pair,
|
||||
'price': rate,
|
||||
'average': rate,
|
||||
'amount': _amount,
|
||||
'cost': _amount * rate,
|
||||
'type': ordertype,
|
||||
@@ -514,15 +538,17 @@ class Exchange:
|
||||
amount, rate_for_order, params)
|
||||
|
||||
except ccxt.InsufficientFunds as e:
|
||||
raise DependencyException(
|
||||
f'Insufficient funds to create {ordertype} {side} order on market {pair}.'
|
||||
raise ExchangeError(
|
||||
f'Insufficient funds to create {ordertype} {side} order on market {pair}. '
|
||||
f'Tried to {side} amount {amount} at rate {rate}.'
|
||||
f'Message: {e}') from e
|
||||
except ccxt.InvalidOrder as e:
|
||||
raise DependencyException(
|
||||
f'Could not create {ordertype} {side} order on market {pair}.'
|
||||
f'Tried to {side} amount {amount} at rate {rate}.'
|
||||
raise ExchangeError(
|
||||
f'Could not create {ordertype} {side} order on market {pair}. '
|
||||
f'Tried to {side} amount {amount} at rate {rate}. '
|
||||
f'Message: {e}') from e
|
||||
except ccxt.DDoSProtection as e:
|
||||
raise DDosProtection(e) from e
|
||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(
|
||||
f'Could not place {side} order due to {e.__class__.__name__}. Message: {e}') from e
|
||||
@@ -602,6 +628,8 @@ class Exchange:
|
||||
balances.pop("used", None)
|
||||
|
||||
return balances
|
||||
except ccxt.DDoSProtection as e:
|
||||
raise DDosProtection(e) from e
|
||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(
|
||||
f'Could not get balance due to {e.__class__.__name__}. Message: {e}') from e
|
||||
@@ -616,6 +644,8 @@ class Exchange:
|
||||
raise OperationalException(
|
||||
f'Exchange {self._api.name} does not support fetching tickers in batch. '
|
||||
f'Message: {e}') from e
|
||||
except ccxt.DDoSProtection as e:
|
||||
raise DDosProtection(e) from e
|
||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(
|
||||
f'Could not load tickers due to {e.__class__.__name__}. Message: {e}') from e
|
||||
@@ -626,9 +656,11 @@ class Exchange:
|
||||
def fetch_ticker(self, pair: str) -> dict:
|
||||
try:
|
||||
if pair not in self._api.markets or not self._api.markets[pair].get('active'):
|
||||
raise DependencyException(f"Pair {pair} not available")
|
||||
raise ExchangeError(f"Pair {pair} not available")
|
||||
data = self._api.fetch_ticker(pair)
|
||||
return data
|
||||
except ccxt.DDoSProtection as e:
|
||||
raise DDosProtection(e) from e
|
||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(
|
||||
f'Could not load ticker due to {e.__class__.__name__}. Message: {e}') from e
|
||||
@@ -762,6 +794,8 @@ class Exchange:
|
||||
raise OperationalException(
|
||||
f'Exchange {self._api.name} does not support fetching historical '
|
||||
f'candle (OHLCV) data. Message: {e}') from e
|
||||
except ccxt.DDoSProtection as e:
|
||||
raise DDosProtection(e) from e
|
||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(f'Could not fetch historical candle (OHLCV) data '
|
||||
f'for pair {pair} due to {e.__class__.__name__}. '
|
||||
@@ -798,6 +832,8 @@ class Exchange:
|
||||
raise OperationalException(
|
||||
f'Exchange {self._api.name} does not support fetching historical trade data.'
|
||||
f'Message: {e}') from e
|
||||
except ccxt.DDoSProtection as e:
|
||||
raise DDosProtection(e) from e
|
||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(f'Could not load trade history due to {e.__class__.__name__}. '
|
||||
f'Message: {e}') from e
|
||||
@@ -887,14 +923,19 @@ class Exchange:
|
||||
Async wrapper handling downloading trades using either time or id based methods.
|
||||
"""
|
||||
|
||||
logger.debug(f"_async_get_trade_history(), pair: {pair}, "
|
||||
f"since: {since}, until: {until}, from_id: {from_id}")
|
||||
|
||||
if until is None:
|
||||
until = ccxt.Exchange.milliseconds()
|
||||
logger.debug(f"Exchange milliseconds: {until}")
|
||||
|
||||
if self._trades_pagination == 'time':
|
||||
return await self._async_get_trade_history_time(
|
||||
pair=pair, since=since,
|
||||
until=until or ccxt.Exchange.milliseconds())
|
||||
pair=pair, since=since, until=until)
|
||||
elif self._trades_pagination == 'id':
|
||||
return await self._async_get_trade_history_id(
|
||||
pair=pair, since=since,
|
||||
until=until or ccxt.Exchange.milliseconds(), from_id=from_id
|
||||
pair=pair, since=since, until=until, from_id=from_id
|
||||
)
|
||||
else:
|
||||
raise OperationalException(f"Exchange {self.name} does use neither time, "
|
||||
@@ -924,7 +965,7 @@ class Exchange:
|
||||
def check_order_canceled_empty(self, order: Dict) -> bool:
|
||||
"""
|
||||
Verify if an order has been cancelled without being partially filled
|
||||
:param order: Order dict as returned from get_order()
|
||||
:param order: Order dict as returned from fetch_order()
|
||||
:return: True if order has been cancelled without being filled, False otherwise.
|
||||
"""
|
||||
return order.get('status') in ('closed', 'canceled') and order.get('filled') == 0.0
|
||||
@@ -939,12 +980,17 @@ class Exchange:
|
||||
except ccxt.InvalidOrder as e:
|
||||
raise InvalidOrderException(
|
||||
f'Could not cancel order. Message: {e}') from e
|
||||
except ccxt.DDoSProtection as e:
|
||||
raise DDosProtection(e) from e
|
||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(
|
||||
f'Could not cancel order due to {e.__class__.__name__}. Message: {e}') from e
|
||||
except ccxt.BaseError as e:
|
||||
raise OperationalException(e) from e
|
||||
|
||||
# Assign method to cancel_stoploss_order to allow easy overriding in other classes
|
||||
cancel_stoploss_order = cancel_order
|
||||
|
||||
def is_cancel_order_result_suitable(self, corder) -> bool:
|
||||
if not isinstance(corder, dict):
|
||||
return False
|
||||
@@ -956,7 +1002,7 @@ class Exchange:
|
||||
"""
|
||||
Cancel order returning a result.
|
||||
Creates a fake result if cancel order returns a non-usable result
|
||||
and get_order does not work (certain exchanges don't return cancelled orders)
|
||||
and fetch_order does not work (certain exchanges don't return cancelled orders)
|
||||
:param order_id: Orderid to cancel
|
||||
:param pair: Pair corresponding to order_id
|
||||
:param amount: Amount to use for fake response
|
||||
@@ -967,17 +1013,17 @@ class Exchange:
|
||||
if self.is_cancel_order_result_suitable(corder):
|
||||
return corder
|
||||
except InvalidOrderException:
|
||||
logger.warning(f"Could not cancel order {order_id}.")
|
||||
logger.warning(f"Could not cancel order {order_id} for {pair}.")
|
||||
try:
|
||||
order = self.get_order(order_id, pair)
|
||||
order = self.fetch_order(order_id, pair)
|
||||
except InvalidOrderException:
|
||||
logger.warning(f"Could not fetch cancelled order {order_id}.")
|
||||
order = {'fee': {}, 'status': 'canceled', 'amount': amount, 'info': {}}
|
||||
|
||||
return order
|
||||
|
||||
@retrier
|
||||
def get_order(self, order_id: str, pair: str) -> Dict:
|
||||
@retrier(retries=5)
|
||||
def fetch_order(self, order_id: str, pair: str) -> Dict:
|
||||
if self._config['dry_run']:
|
||||
try:
|
||||
order = self._dry_run_open_orders[order_id]
|
||||
@@ -988,22 +1034,30 @@ class Exchange:
|
||||
f'Tried to get an invalid dry-run-order (id: {order_id}). Message: {e}') from e
|
||||
try:
|
||||
return self._api.fetch_order(order_id, pair)
|
||||
except ccxt.OrderNotFound as e:
|
||||
raise RetryableOrderError(
|
||||
f'Order not found (pair: {pair} id: {order_id}). Message: {e}') from e
|
||||
except ccxt.InvalidOrder as e:
|
||||
raise InvalidOrderException(
|
||||
f'Tried to get an invalid order (id: {order_id}). Message: {e}') from e
|
||||
f'Tried to get an invalid order (pair: {pair} id: {order_id}). Message: {e}') from e
|
||||
except ccxt.DDoSProtection as e:
|
||||
raise DDosProtection(e) from e
|
||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(
|
||||
f'Could not get order due to {e.__class__.__name__}. Message: {e}') from e
|
||||
except ccxt.BaseError as e:
|
||||
raise OperationalException(e) from e
|
||||
|
||||
@retrier
|
||||
def get_order_book(self, pair: str, limit: int = 100) -> dict:
|
||||
"""
|
||||
get order book level 2 from exchange
|
||||
# Assign method to fetch_stoploss_order to allow easy overriding in other classes
|
||||
fetch_stoploss_order = fetch_order
|
||||
|
||||
Notes:
|
||||
20180619: bittrex doesnt support limits -.-
|
||||
@retrier
|
||||
def fetch_l2_order_book(self, pair: str, limit: int = 100) -> dict:
|
||||
"""
|
||||
Get L2 order book from exchange.
|
||||
Can be limited to a certain amount (if supported).
|
||||
Returns a dict in the format
|
||||
{'asks': [price, volume], 'bids': [price, volume]}
|
||||
"""
|
||||
try:
|
||||
|
||||
@@ -1012,6 +1066,8 @@ class Exchange:
|
||||
raise OperationalException(
|
||||
f'Exchange {self._api.name} does not support fetching order book.'
|
||||
f'Message: {e}') from e
|
||||
except ccxt.DDoSProtection as e:
|
||||
raise DDosProtection(e) from e
|
||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(
|
||||
f'Could not get order book due to {e.__class__.__name__}. Message: {e}') from e
|
||||
@@ -1048,7 +1104,8 @@ class Exchange:
|
||||
matched_trades = [trade for trade in my_trades if trade['order'] == order_id]
|
||||
|
||||
return matched_trades
|
||||
|
||||
except ccxt.DDoSProtection as e:
|
||||
raise DDosProtection(e) from e
|
||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(
|
||||
f'Could not get trades due to {e.__class__.__name__}. Message: {e}') from e
|
||||
@@ -1065,6 +1122,8 @@ class Exchange:
|
||||
|
||||
return self._api.calculate_fee(symbol=symbol, type=type, side=side, amount=amount,
|
||||
price=price, takerOrMaker=taker_or_maker)['rate']
|
||||
except ccxt.DDoSProtection as e:
|
||||
raise DDosProtection(e) from e
|
||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(
|
||||
f'Could not get fee info due to {e.__class__.__name__}. Message: {e}') from e
|
||||
@@ -1099,19 +1158,22 @@ class Exchange:
|
||||
if fee_curr in self.get_pair_base_currency(order['symbol']):
|
||||
# Base currency - divide by amount
|
||||
return round(
|
||||
order['fee']['cost'] / safe_value_fallback(order, order, 'filled', 'amount'), 8)
|
||||
order['fee']['cost'] / safe_value_fallback2(order, order, 'filled', 'amount'), 8)
|
||||
elif fee_curr in self.get_pair_quote_currency(order['symbol']):
|
||||
# Quote currency - divide by cost
|
||||
return round(order['fee']['cost'] / order['cost'], 8)
|
||||
return round(order['fee']['cost'] / order['cost'], 8) if order['cost'] else None
|
||||
else:
|
||||
# If Fee currency is a different currency
|
||||
if not order['cost']:
|
||||
# If cost is None or 0.0 -> falsy, return None
|
||||
return None
|
||||
try:
|
||||
comb = self.get_valid_pair_combination(fee_curr, self._config['stake_currency'])
|
||||
tick = self.fetch_ticker(comb)
|
||||
|
||||
fee_to_quote_rate = safe_value_fallback(tick, tick, 'last', 'ask')
|
||||
fee_to_quote_rate = safe_value_fallback2(tick, tick, 'last', 'ask')
|
||||
return round((order['fee']['cost'] * fee_to_quote_rate) / order['cost'], 8)
|
||||
except DependencyException:
|
||||
except ExchangeError:
|
||||
return None
|
||||
|
||||
def extract_cost_curr_rate(self, order: Dict) -> Tuple[float, str, Optional[float]]:
|
||||
@@ -1124,7 +1186,6 @@ class Exchange:
|
||||
return (order['fee']['cost'],
|
||||
order['fee']['currency'],
|
||||
self.calculate_fee_rate(order))
|
||||
# calculate rate ? (order['fee']['cost'] / (order['amount'] * order['price']))
|
||||
|
||||
|
||||
def is_exchange_bad(exchange_name: str) -> bool:
|
||||
@@ -1210,20 +1271,6 @@ def timeframe_to_next_date(timeframe: str, date: datetime = None) -> datetime:
|
||||
return datetime.fromtimestamp(new_timestamp, tz=timezone.utc)
|
||||
|
||||
|
||||
def symbol_is_pair(market_symbol: str, base_currency: str = None,
|
||||
quote_currency: str = None) -> bool:
|
||||
"""
|
||||
Check if the market symbol is a pair, i.e. that its symbol consists of the base currency and the
|
||||
quote currency separated by '/' character. If base_currency and/or quote_currency is passed,
|
||||
it also checks that the symbol contains appropriate base and/or quote currency part before
|
||||
and after the separating character correspondingly.
|
||||
"""
|
||||
symbol_parts = market_symbol.split('/')
|
||||
return (len(symbol_parts) == 2 and
|
||||
(symbol_parts[0] == base_currency if base_currency else len(symbol_parts[0]) > 0) and
|
||||
(symbol_parts[1] == quote_currency if quote_currency else len(symbol_parts[1]) > 0))
|
||||
|
||||
|
||||
def market_is_active(market: Dict) -> bool:
|
||||
"""
|
||||
Return True if the market is active.
|
||||
|
@@ -1,8 +1,14 @@
|
||||
""" FTX exchange subclass """
|
||||
import logging
|
||||
from typing import Dict
|
||||
from typing import Any, Dict
|
||||
|
||||
import ccxt
|
||||
|
||||
from freqtrade.exceptions import (DDosProtection, ExchangeError,
|
||||
InvalidOrderException, OperationalException,
|
||||
TemporaryError)
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.exchange.common import retrier
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -10,5 +16,121 @@ logger = logging.getLogger(__name__)
|
||||
class Ftx(Exchange):
|
||||
|
||||
_ft_has: Dict = {
|
||||
"stoploss_on_exchange": True,
|
||||
"ohlcv_candle_limit": 1500,
|
||||
}
|
||||
|
||||
def market_is_tradable(self, market: Dict[str, Any]) -> bool:
|
||||
"""
|
||||
Check if the market symbol is tradable by Freqtrade.
|
||||
Default checks + check if pair is spot pair (no futures trading yet).
|
||||
"""
|
||||
parent_check = super().market_is_tradable(market)
|
||||
|
||||
return (parent_check and
|
||||
market.get('spot', False) is True)
|
||||
|
||||
def stoploss_adjust(self, stop_loss: float, order: Dict) -> bool:
|
||||
"""
|
||||
Verify stop_loss against stoploss-order value (limit or price)
|
||||
Returns True if adjustment is necessary.
|
||||
"""
|
||||
return order['type'] == 'stop' and stop_loss > float(order['price'])
|
||||
|
||||
@retrier(retries=0)
|
||||
def stoploss(self, pair: str, amount: float, stop_price: float, order_types: Dict) -> Dict:
|
||||
"""
|
||||
Creates a stoploss order.
|
||||
depending on order_types.stoploss configuration, uses 'market' or limit order.
|
||||
|
||||
Limit orders are defined by having orderPrice set, otherwise a market order is used.
|
||||
"""
|
||||
limit_price_pct = order_types.get('stoploss_on_exchange_limit_ratio', 0.99)
|
||||
limit_rate = stop_price * limit_price_pct
|
||||
|
||||
ordertype = "stop"
|
||||
|
||||
stop_price = self.price_to_precision(pair, stop_price)
|
||||
|
||||
if self._config['dry_run']:
|
||||
dry_order = self.dry_run_order(
|
||||
pair, ordertype, "sell", amount, stop_price)
|
||||
return dry_order
|
||||
|
||||
try:
|
||||
params = self._params.copy()
|
||||
if order_types.get('stoploss', 'market') == 'limit':
|
||||
# set orderPrice to place limit order, otherwise it's a market order
|
||||
params['orderPrice'] = limit_rate
|
||||
|
||||
amount = self.amount_to_precision(pair, amount)
|
||||
|
||||
order = self._api.create_order(symbol=pair, type=ordertype, side='sell',
|
||||
amount=amount, price=stop_price, params=params)
|
||||
logger.info('stoploss order added for %s. '
|
||||
'stop price: %s.', pair, stop_price)
|
||||
return order
|
||||
except ccxt.InsufficientFunds as e:
|
||||
raise ExchangeError(
|
||||
f'Insufficient funds to create {ordertype} sell order on market {pair}. '
|
||||
f'Tried to create stoploss with amount {amount} at stoploss {stop_price}. '
|
||||
f'Message: {e}') from e
|
||||
except ccxt.InvalidOrder as e:
|
||||
raise InvalidOrderException(
|
||||
f'Could not create {ordertype} sell order on market {pair}. '
|
||||
f'Tried to create stoploss with amount {amount} at stoploss {stop_price}. '
|
||||
f'Message: {e}') from e
|
||||
except ccxt.DDoSProtection as e:
|
||||
raise DDosProtection(e) from e
|
||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(
|
||||
f'Could not place sell order due to {e.__class__.__name__}. Message: {e}') from e
|
||||
except ccxt.BaseError as e:
|
||||
raise OperationalException(e) from e
|
||||
|
||||
@retrier(retries=5)
|
||||
def fetch_stoploss_order(self, order_id: str, pair: str) -> Dict:
|
||||
if self._config['dry_run']:
|
||||
try:
|
||||
order = self._dry_run_open_orders[order_id]
|
||||
return order
|
||||
except KeyError as e:
|
||||
# Gracefully handle errors with dry-run orders.
|
||||
raise InvalidOrderException(
|
||||
f'Tried to get an invalid dry-run-order (id: {order_id}). Message: {e}') from e
|
||||
try:
|
||||
orders = self._api.fetch_orders(pair, None, params={'type': 'stop'})
|
||||
|
||||
order = [order for order in orders if order['id'] == order_id]
|
||||
if len(order) == 1:
|
||||
return order[0]
|
||||
else:
|
||||
raise InvalidOrderException(f"Could not get stoploss order for id {order_id}")
|
||||
|
||||
except ccxt.InvalidOrder as e:
|
||||
raise InvalidOrderException(
|
||||
f'Tried to get an invalid order (id: {order_id}). Message: {e}') from e
|
||||
except ccxt.DDoSProtection as e:
|
||||
raise DDosProtection(e) from e
|
||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(
|
||||
f'Could not get order due to {e.__class__.__name__}. Message: {e}') from e
|
||||
except ccxt.BaseError as e:
|
||||
raise OperationalException(e) from e
|
||||
|
||||
@retrier
|
||||
def cancel_stoploss_order(self, order_id: str, pair: str) -> Dict:
|
||||
if self._config['dry_run']:
|
||||
return {}
|
||||
try:
|
||||
return self._api.cancel_order(order_id, pair, params={'type': 'stop'})
|
||||
except ccxt.InvalidOrder as e:
|
||||
raise InvalidOrderException(
|
||||
f'Could not cancel order. Message: {e}') from e
|
||||
except ccxt.DDoSProtection as e:
|
||||
raise DDosProtection(e) from e
|
||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(
|
||||
f'Could not cancel order due to {e.__class__.__name__}. Message: {e}') from e
|
||||
except ccxt.BaseError as e:
|
||||
raise OperationalException(e) from e
|
||||
|
@@ -1,11 +1,12 @@
|
||||
""" Kraken exchange subclass """
|
||||
import logging
|
||||
from typing import Dict
|
||||
from typing import Any, Dict
|
||||
|
||||
import ccxt
|
||||
|
||||
from freqtrade.exceptions import (DependencyException, InvalidOrderException,
|
||||
OperationalException, TemporaryError)
|
||||
from freqtrade.exceptions import (DDosProtection, ExchangeError,
|
||||
InvalidOrderException, OperationalException,
|
||||
TemporaryError)
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.exchange.common import retrier
|
||||
|
||||
@@ -21,6 +22,16 @@ class Kraken(Exchange):
|
||||
"trades_pagination_arg": "since",
|
||||
}
|
||||
|
||||
def market_is_tradable(self, market: Dict[str, Any]) -> bool:
|
||||
"""
|
||||
Check if the market symbol is tradable by Freqtrade.
|
||||
Default checks + check if pair is darkpool pair.
|
||||
"""
|
||||
parent_check = super().market_is_tradable(market)
|
||||
|
||||
return (parent_check and
|
||||
market.get('darkpool', False) is False)
|
||||
|
||||
@retrier
|
||||
def get_balances(self) -> dict:
|
||||
if self._config['dry_run']:
|
||||
@@ -45,6 +56,8 @@ class Kraken(Exchange):
|
||||
balances[bal]['free'] = balances[bal]['total'] - balances[bal]['used']
|
||||
|
||||
return balances
|
||||
except ccxt.DDoSProtection as e:
|
||||
raise DDosProtection(e) from e
|
||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(
|
||||
f'Could not get balance due to {e.__class__.__name__}. Message: {e}') from e
|
||||
@@ -58,6 +71,7 @@ class Kraken(Exchange):
|
||||
"""
|
||||
return order['type'] == 'stop-loss' and stop_loss > float(order['price'])
|
||||
|
||||
@retrier(retries=0)
|
||||
def stoploss(self, pair: str, amount: float, stop_price: float, order_types: Dict) -> Dict:
|
||||
"""
|
||||
Creates a stoploss market order.
|
||||
@@ -84,8 +98,8 @@ class Kraken(Exchange):
|
||||
'stop price: %s.', pair, stop_price)
|
||||
return order
|
||||
except ccxt.InsufficientFunds as e:
|
||||
raise DependencyException(
|
||||
f'Insufficient funds to create {ordertype} sell order on market {pair}.'
|
||||
raise ExchangeError(
|
||||
f'Insufficient funds to create {ordertype} sell order on market {pair}. '
|
||||
f'Tried to create stoploss with amount {amount} at stoploss {stop_price}. '
|
||||
f'Message: {e}') from e
|
||||
except ccxt.InvalidOrder as e:
|
||||
@@ -93,6 +107,8 @@ class Kraken(Exchange):
|
||||
f'Could not create {ordertype} sell order on market {pair}. '
|
||||
f'Tried to create stoploss with amount {amount} at stoploss {stop_price}. '
|
||||
f'Message: {e}') from e
|
||||
except ccxt.DDoSProtection as e:
|
||||
raise DDosProtection(e) from e
|
||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(
|
||||
f'Could not place sell order due to {e.__class__.__name__}. Message: {e}') from e
|
||||
|
@@ -11,16 +11,16 @@ from typing import Any, Dict, List, Optional
|
||||
|
||||
import arrow
|
||||
from cachetools import TTLCache
|
||||
from requests.exceptions import RequestException
|
||||
|
||||
from freqtrade import __version__, constants, persistence
|
||||
from freqtrade.configuration import validate_config_consistency
|
||||
from freqtrade.data.converter import order_book_to_dataframe
|
||||
from freqtrade.data.dataprovider import DataProvider
|
||||
from freqtrade.edge import Edge
|
||||
from freqtrade.exceptions import DependencyException, InvalidOrderException
|
||||
from freqtrade.exceptions import (DependencyException, ExchangeError,
|
||||
InvalidOrderException, PricingError)
|
||||
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_next_date
|
||||
from freqtrade.misc import safe_value_fallback
|
||||
from freqtrade.misc import safe_value_fallback, safe_value_fallback2
|
||||
from freqtrade.pairlist.pairlistmanager import PairListManager
|
||||
from freqtrade.persistence import Trade
|
||||
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
|
||||
@@ -119,6 +119,8 @@ class FreqtradeBot:
|
||||
if self.config['cancel_open_orders_on_exit']:
|
||||
self.cancel_all_open_orders()
|
||||
|
||||
self.check_for_open_trades()
|
||||
|
||||
self.rpc.cleanup()
|
||||
persistence.cleanup()
|
||||
|
||||
@@ -139,8 +141,8 @@ class FreqtradeBot:
|
||||
:return: True if one or more trades has been created or closed, False otherwise
|
||||
"""
|
||||
|
||||
# Check whether markets have to be reloaded
|
||||
self.exchange._reload_markets()
|
||||
# Check whether markets have to be reloaded and reload them when it's needed
|
||||
self.exchange.reload_markets()
|
||||
|
||||
# Query trades from persistence layer
|
||||
trades = Trade.get_open_trades()
|
||||
@@ -151,6 +153,10 @@ class FreqtradeBot:
|
||||
self.dataprovider.refresh(self.pairlists.create_pair_list(self.active_pair_whitelist),
|
||||
self.strategy.informative_pairs())
|
||||
|
||||
strategy_safe_wrapper(self.strategy.bot_loop_start, supress_error=True)()
|
||||
|
||||
self.strategy.analyze(self.active_pair_whitelist)
|
||||
|
||||
with self._sell_lock:
|
||||
# Check and handle any timed out open orders
|
||||
self.check_handle_timedout()
|
||||
@@ -175,6 +181,24 @@ class FreqtradeBot:
|
||||
if self.config['cancel_open_orders_on_exit']:
|
||||
self.cancel_all_open_orders()
|
||||
|
||||
def check_for_open_trades(self):
|
||||
"""
|
||||
Notify the user when the bot is stopped
|
||||
and there are still open trades active.
|
||||
"""
|
||||
open_trades = Trade.get_trades([Trade.is_open == 1]).all()
|
||||
|
||||
if len(open_trades) != 0:
|
||||
msg = {
|
||||
'type': RPCMessageType.WARNING_NOTIFICATION,
|
||||
'status': f"{len(open_trades)} open trades active.\n\n"
|
||||
f"Handle these trades manually on {self.exchange.name}, "
|
||||
f"or '/start' the bot again and use '/stopbuy' "
|
||||
f"to handle open trades gracefully. \n"
|
||||
f"{'Trades are simulated.' if self.config['dry_run'] else ''}",
|
||||
}
|
||||
self.rpc.send_msg(msg)
|
||||
|
||||
def _refresh_active_whitelist(self, trades: List[Trade] = []) -> List[str]:
|
||||
"""
|
||||
Refresh active whitelist from pairlist or edge and extend it with
|
||||
@@ -251,7 +275,7 @@ class FreqtradeBot:
|
||||
rate = self._buy_rate_cache.get(pair)
|
||||
# Check if cache has been invalidated
|
||||
if rate:
|
||||
logger.info(f"Using cached buy rate for {pair}.")
|
||||
logger.debug(f"Using cached buy rate for {pair}.")
|
||||
return rate
|
||||
|
||||
bid_strategy = self.config.get('bid_strategy', {})
|
||||
@@ -260,12 +284,19 @@ class FreqtradeBot:
|
||||
f"Getting price from order book {bid_strategy['price_side'].capitalize()} side."
|
||||
)
|
||||
order_book_top = bid_strategy.get('order_book_top', 1)
|
||||
order_book = self.exchange.get_order_book(pair, order_book_top)
|
||||
order_book = self.exchange.fetch_l2_order_book(pair, order_book_top)
|
||||
logger.debug('order_book %s', order_book)
|
||||
# top 1 = index 0
|
||||
order_book_rate = order_book[f"{bid_strategy['price_side']}s"][order_book_top - 1][0]
|
||||
logger.info(f'...top {order_book_top} order book buy rate {order_book_rate:.8f}')
|
||||
used_rate = order_book_rate
|
||||
try:
|
||||
rate_from_l2 = order_book[f"{bid_strategy['price_side']}s"][order_book_top - 1][0]
|
||||
except (IndexError, KeyError) as e:
|
||||
logger.warning(
|
||||
"Buy Price from orderbook could not be determined."
|
||||
f"Orderbook: {order_book}"
|
||||
)
|
||||
raise PricingError from e
|
||||
logger.info(f'...top {order_book_top} order book buy rate {rate_from_l2:.8f}')
|
||||
used_rate = rate_from_l2
|
||||
else:
|
||||
logger.info(f"Using Last {bid_strategy['price_side'].capitalize()} / Last Price")
|
||||
ticker = self.exchange.fetch_ticker(pair)
|
||||
@@ -413,8 +444,8 @@ class FreqtradeBot:
|
||||
return False
|
||||
|
||||
# running get_signal on historical data fetched
|
||||
dataframe = self.dataprovider.ohlcv(pair, self.strategy.ticker_interval)
|
||||
(buy, sell) = self.strategy.get_signal(pair, self.strategy.ticker_interval, dataframe)
|
||||
analyzed_df, _ = self.dataprovider.get_analyzed_dataframe(pair, self.strategy.timeframe)
|
||||
(buy, sell) = self.strategy.get_signal(pair, self.strategy.timeframe, analyzed_df)
|
||||
|
||||
if buy and not sell:
|
||||
stake_amount = self.get_trade_stake_amount(pair)
|
||||
@@ -445,7 +476,7 @@ class FreqtradeBot:
|
||||
"""
|
||||
conf_bids_to_ask_delta = conf.get('bids_to_ask_delta', 0)
|
||||
logger.info(f"Checking depth of market for {pair} ...")
|
||||
order_book = self.exchange.get_order_book(pair, 1000)
|
||||
order_book = self.exchange.fetch_l2_order_book(pair, 1000)
|
||||
order_book_data_frame = order_book_to_dataframe(order_book['bids'], order_book['asks'])
|
||||
order_book_bids = order_book_data_frame['b_size'].sum()
|
||||
order_book_asks = order_book_data_frame['a_size'].sum()
|
||||
@@ -487,6 +518,12 @@ class FreqtradeBot:
|
||||
|
||||
amount = stake_amount / buy_limit_requested
|
||||
order_type = self.strategy.order_types['buy']
|
||||
if not strategy_safe_wrapper(self.strategy.confirm_trade_entry, default_retval=True)(
|
||||
pair=pair, order_type=order_type, amount=amount, rate=buy_limit_requested,
|
||||
time_in_force=time_in_force):
|
||||
logger.info(f"User requested abortion of buying {pair}")
|
||||
return False
|
||||
amount = self.exchange.amount_to_precision(pair, amount)
|
||||
order = self.exchange.buy(pair=pair, ordertype=order_type,
|
||||
amount=amount, rate=buy_limit_requested,
|
||||
time_in_force=time_in_force)
|
||||
@@ -495,6 +532,7 @@ class FreqtradeBot:
|
||||
|
||||
# we assume the order is executed at the price requested
|
||||
buy_limit_filled_price = buy_limit_requested
|
||||
amount_requested = amount
|
||||
|
||||
if order_status == 'expired' or order_status == 'rejected':
|
||||
order_tif = self.strategy.order_time_in_force['buy']
|
||||
@@ -515,15 +553,15 @@ class FreqtradeBot:
|
||||
order['filled'], order['amount'], order['remaining']
|
||||
)
|
||||
stake_amount = order['cost']
|
||||
amount = order['amount']
|
||||
buy_limit_filled_price = order['price']
|
||||
amount = safe_value_fallback(order, 'filled', 'amount')
|
||||
buy_limit_filled_price = safe_value_fallback(order, 'average', 'price')
|
||||
order_id = None
|
||||
|
||||
# in case of FOK the order may be filled immediately and fully
|
||||
elif order_status == 'closed':
|
||||
stake_amount = order['cost']
|
||||
amount = order['amount']
|
||||
buy_limit_filled_price = order['price']
|
||||
amount = safe_value_fallback(order, 'filled', 'amount')
|
||||
buy_limit_filled_price = safe_value_fallback(order, 'average', 'price')
|
||||
|
||||
# Fee is applied twice because we make a LIMIT_BUY and LIMIT_SELL
|
||||
fee = self.exchange.get_fee(symbol=pair, taker_or_maker='maker')
|
||||
@@ -531,6 +569,7 @@ class FreqtradeBot:
|
||||
pair=pair,
|
||||
stake_amount=stake_amount,
|
||||
amount=amount,
|
||||
amount_requested=amount_requested,
|
||||
fee_open=fee,
|
||||
fee_close=fee,
|
||||
open_rate=buy_limit_filled_price,
|
||||
@@ -539,7 +578,7 @@ class FreqtradeBot:
|
||||
exchange=self.exchange.id,
|
||||
open_order_id=order_id,
|
||||
strategy=self.strategy.get_strategy_name(),
|
||||
ticker_interval=timeframe_to_minutes(self.config['ticker_interval'])
|
||||
timeframe=timeframe_to_minutes(self.config['timeframe'])
|
||||
)
|
||||
|
||||
# Update fees if order is closed
|
||||
@@ -561,6 +600,7 @@ class FreqtradeBot:
|
||||
Sends rpc notification when a buy occured.
|
||||
"""
|
||||
msg = {
|
||||
'trade_id': trade.id,
|
||||
'type': RPCMessageType.BUY_NOTIFICATION,
|
||||
'exchange': self.exchange.name.capitalize(),
|
||||
'pair': trade.pair,
|
||||
@@ -584,6 +624,7 @@ class FreqtradeBot:
|
||||
current_rate = self.get_buy_rate(trade.pair, False)
|
||||
|
||||
msg = {
|
||||
'trade_id': trade.id,
|
||||
'type': RPCMessageType.BUY_CANCEL_NOTIFICATION,
|
||||
'exchange': self.exchange.name.capitalize(),
|
||||
'pair': trade.pair,
|
||||
@@ -621,7 +662,7 @@ class FreqtradeBot:
|
||||
trades_closed += 1
|
||||
|
||||
except DependencyException as exception:
|
||||
logger.warning('Unable to sell trade: %s', exception)
|
||||
logger.warning('Unable to sell trade %s: %s', trade.pair, exception)
|
||||
|
||||
# Updating wallets if any trade occured
|
||||
if trades_closed:
|
||||
@@ -634,7 +675,7 @@ class FreqtradeBot:
|
||||
"""
|
||||
Helper generator to query orderbook in loop (used for early sell-order placing)
|
||||
"""
|
||||
order_book = self.exchange.get_order_book(pair, order_book_max)
|
||||
order_book = self.exchange.fetch_l2_order_book(pair, order_book_max)
|
||||
for i in range(order_book_min, order_book_max + 1):
|
||||
yield order_book[side][i - 1][0]
|
||||
|
||||
@@ -652,7 +693,7 @@ class FreqtradeBot:
|
||||
rate = self._sell_rate_cache.get(pair)
|
||||
# Check if cache has been invalidated
|
||||
if rate:
|
||||
logger.info(f"Using cached sell rate for {pair}.")
|
||||
logger.debug(f"Using cached sell rate for {pair}.")
|
||||
return rate
|
||||
|
||||
ask_strategy = self.config.get('ask_strategy', {})
|
||||
@@ -661,10 +702,15 @@ class FreqtradeBot:
|
||||
logger.info(
|
||||
f"Getting price from order book {ask_strategy['price_side'].capitalize()} side."
|
||||
)
|
||||
rate = next(self._order_book_gen(pair, f"{ask_strategy['price_side']}s"))
|
||||
|
||||
try:
|
||||
rate = next(self._order_book_gen(pair, f"{ask_strategy['price_side']}s"))
|
||||
except (IndexError, KeyError) as e:
|
||||
logger.warning("Sell Price at location from orderbook could not be determined.")
|
||||
raise PricingError from e
|
||||
else:
|
||||
rate = self.exchange.fetch_ticker(pair)[ask_strategy['price_side']]
|
||||
if rate is None:
|
||||
raise PricingError(f"Sell-Rate for {pair} was empty.")
|
||||
self._sell_rate_cache[pair] = rate
|
||||
return rate
|
||||
|
||||
@@ -684,23 +730,33 @@ class FreqtradeBot:
|
||||
|
||||
if (config_ask_strategy.get('use_sell_signal', True) or
|
||||
config_ask_strategy.get('ignore_roi_if_buy_signal', False)):
|
||||
(buy, sell) = self.strategy.get_signal(
|
||||
trade.pair, self.strategy.ticker_interval,
|
||||
self.dataprovider.ohlcv(trade.pair, self.strategy.ticker_interval))
|
||||
analyzed_df, _ = self.dataprovider.get_analyzed_dataframe(trade.pair,
|
||||
self.strategy.timeframe)
|
||||
|
||||
(buy, sell) = self.strategy.get_signal(trade.pair, self.strategy.timeframe, analyzed_df)
|
||||
|
||||
if config_ask_strategy.get('use_order_book', False):
|
||||
logger.debug(f'Using order book for selling {trade.pair}...')
|
||||
# logger.debug('Order book %s',orderBook)
|
||||
order_book_min = config_ask_strategy.get('order_book_min', 1)
|
||||
order_book_max = config_ask_strategy.get('order_book_max', 1)
|
||||
logger.debug(f'Using order book between {order_book_min} and {order_book_max} '
|
||||
f'for selling {trade.pair}...')
|
||||
|
||||
order_book = self._order_book_gen(trade.pair, f"{config_ask_strategy['price_side']}s",
|
||||
order_book_min=order_book_min,
|
||||
order_book_max=order_book_max)
|
||||
for i in range(order_book_min, order_book_max + 1):
|
||||
sell_rate = next(order_book)
|
||||
try:
|
||||
sell_rate = next(order_book)
|
||||
except (IndexError, KeyError) as e:
|
||||
logger.warning(
|
||||
f"Sell Price at location {i} from orderbook could not be determined."
|
||||
)
|
||||
raise PricingError from e
|
||||
logger.debug(f" order book {config_ask_strategy['price_side']} top {i}: "
|
||||
f"{sell_rate:0.8f}")
|
||||
# Assign sell-rate to cache - otherwise sell-rate is never updated in the cache,
|
||||
# resulting in outdated RPC messages
|
||||
self._sell_rate_cache[trade.pair] = sell_rate
|
||||
|
||||
if self._check_and_execute_sell(trade, sell_rate, buy, sell):
|
||||
return True
|
||||
@@ -714,7 +770,7 @@ class FreqtradeBot:
|
||||
logger.debug('Found no sell signal for %s.', trade)
|
||||
return False
|
||||
|
||||
def create_stoploss_order(self, trade: Trade, stop_price: float, rate: float) -> bool:
|
||||
def create_stoploss_order(self, trade: Trade, stop_price: float) -> bool:
|
||||
"""
|
||||
Abstracts creating stoploss orders from the logic.
|
||||
Handles errors and updates the trade database object.
|
||||
@@ -733,7 +789,7 @@ class FreqtradeBot:
|
||||
logger.warning('Selling the trade forcefully')
|
||||
self.execute_sell(trade, trade.stop_loss, sell_reason=SellType.EMERGENCY_SELL)
|
||||
|
||||
except DependencyException:
|
||||
except ExchangeError:
|
||||
trade.stoploss_order_id = None
|
||||
logger.exception('Unable to place a stoploss order on exchange.')
|
||||
return False
|
||||
@@ -751,18 +807,18 @@ class FreqtradeBot:
|
||||
|
||||
try:
|
||||
# First we check if there is already a stoploss on exchange
|
||||
stoploss_order = self.exchange.get_order(trade.stoploss_order_id, trade.pair) \
|
||||
if trade.stoploss_order_id else None
|
||||
stoploss_order = self.exchange.fetch_stoploss_order(
|
||||
trade.stoploss_order_id, trade.pair) if trade.stoploss_order_id else None
|
||||
except InvalidOrderException as exception:
|
||||
logger.warning('Unable to fetch stoploss order: %s', exception)
|
||||
|
||||
# We check if stoploss order is fulfilled
|
||||
if stoploss_order and stoploss_order['status'] == 'closed':
|
||||
if stoploss_order and stoploss_order['status'] in ('closed', 'triggered'):
|
||||
trade.sell_reason = SellType.STOPLOSS_ON_EXCHANGE.value
|
||||
self.update_trade_state(trade, stoploss_order, sl_order=True)
|
||||
# Lock pair for one candle to prevent immediate rebuys
|
||||
self.strategy.lock_pair(trade.pair,
|
||||
timeframe_to_next_date(self.config['ticker_interval']))
|
||||
timeframe_to_next_date(self.config['timeframe']))
|
||||
self._notify_sell(trade, "stoploss")
|
||||
return True
|
||||
|
||||
@@ -773,20 +829,17 @@ class FreqtradeBot:
|
||||
return False
|
||||
|
||||
# If buy order is fulfilled but there is no stoploss, we add a stoploss on exchange
|
||||
if (not stoploss_order):
|
||||
|
||||
if not stoploss_order:
|
||||
stoploss = self.edge.stoploss(pair=trade.pair) if self.edge else self.strategy.stoploss
|
||||
|
||||
stop_price = trade.open_rate * (1 + stoploss)
|
||||
|
||||
if self.create_stoploss_order(trade=trade, stop_price=stop_price, rate=stop_price):
|
||||
if self.create_stoploss_order(trade=trade, stop_price=stop_price):
|
||||
trade.stoploss_last_update = datetime.now()
|
||||
return False
|
||||
|
||||
# If stoploss order is canceled for some reason we add it
|
||||
if stoploss_order and stoploss_order['status'] == 'canceled':
|
||||
if self.create_stoploss_order(trade=trade, stop_price=trade.stop_loss,
|
||||
rate=trade.stop_loss):
|
||||
if stoploss_order and stoploss_order['status'] in ('canceled', 'cancelled'):
|
||||
if self.create_stoploss_order(trade=trade, stop_price=trade.stop_loss):
|
||||
return False
|
||||
else:
|
||||
trade.stoploss_order_id = None
|
||||
@@ -817,14 +870,13 @@ class FreqtradeBot:
|
||||
logger.info('Trailing stoploss: cancelling current stoploss on exchange (id:{%s}) '
|
||||
'in order to add another one ...', order['id'])
|
||||
try:
|
||||
self.exchange.cancel_order(order['id'], trade.pair)
|
||||
self.exchange.cancel_stoploss_order(order['id'], trade.pair)
|
||||
except InvalidOrderException:
|
||||
logger.exception(f"Could not cancel stoploss order {order['id']} "
|
||||
f"for pair {trade.pair}")
|
||||
|
||||
# Create new stoploss order
|
||||
if not self.create_stoploss_order(trade=trade, stop_price=trade.stop_loss,
|
||||
rate=trade.stop_loss):
|
||||
if not self.create_stoploss_order(trade=trade, stop_price=trade.stop_loss):
|
||||
logger.warning(f"Could not create trailing stoploss order "
|
||||
f"for pair {trade.pair}.")
|
||||
|
||||
@@ -868,8 +920,8 @@ class FreqtradeBot:
|
||||
try:
|
||||
if not trade.open_order_id:
|
||||
continue
|
||||
order = self.exchange.get_order(trade.open_order_id, trade.pair)
|
||||
except (RequestException, DependencyException, InvalidOrderException):
|
||||
order = self.exchange.fetch_order(trade.open_order_id, trade.pair)
|
||||
except (ExchangeError):
|
||||
logger.info('Cannot query order for %s due to %s', trade, traceback.format_exc())
|
||||
continue
|
||||
|
||||
@@ -901,8 +953,8 @@ class FreqtradeBot:
|
||||
|
||||
for trade in Trade.get_open_order_trades():
|
||||
try:
|
||||
order = self.exchange.get_order(trade.open_order_id, trade.pair)
|
||||
except (DependencyException, InvalidOrderException):
|
||||
order = self.exchange.fetch_order(trade.open_order_id, trade.pair)
|
||||
except (ExchangeError):
|
||||
logger.info('Cannot query order for %s due to %s', trade, traceback.format_exc())
|
||||
continue
|
||||
|
||||
@@ -924,6 +976,12 @@ class FreqtradeBot:
|
||||
reason = constants.CANCEL_REASON['TIMEOUT']
|
||||
corder = self.exchange.cancel_order_with_result(trade.open_order_id, trade.pair,
|
||||
trade.amount)
|
||||
# Avoid race condition where the order could not be cancelled coz its already filled.
|
||||
# Simply bailing here is the only safe way - as this order will then be
|
||||
# handled in the next iteration.
|
||||
if corder.get('status') not in ('canceled', 'closed'):
|
||||
logger.warning(f"Order {trade.open_order_id} for {trade.pair} not cancelled.")
|
||||
return False
|
||||
else:
|
||||
# Order was cancelled already, so we can reuse the existing dict
|
||||
corder = order
|
||||
@@ -932,7 +990,7 @@ class FreqtradeBot:
|
||||
logger.info('Buy order %s for %s.', reason, trade)
|
||||
|
||||
# Using filled to determine the filled amount
|
||||
filled_amount = safe_value_fallback(corder, order, 'filled', 'filled')
|
||||
filled_amount = safe_value_fallback2(corder, order, 'filled', 'filled')
|
||||
|
||||
if isclose(filled_amount, 0.0, abs_tol=constants.MATH_CLOSE_PREC):
|
||||
logger.info('Buy order fully cancelled. Removing %s from database.', trade)
|
||||
@@ -1045,7 +1103,7 @@ class FreqtradeBot:
|
||||
# First cancelling stoploss on exchange ...
|
||||
if self.strategy.order_types.get('stoploss_on_exchange') and trade.stoploss_order_id:
|
||||
try:
|
||||
self.exchange.cancel_order(trade.stoploss_order_id, trade.pair)
|
||||
self.exchange.cancel_stoploss_order(trade.stoploss_order_id, trade.pair)
|
||||
except InvalidOrderException:
|
||||
logger.exception(f"Could not cancel stoploss order {trade.stoploss_order_id}")
|
||||
|
||||
@@ -1055,12 +1113,20 @@ class FreqtradeBot:
|
||||
order_type = self.strategy.order_types.get("emergencysell", "market")
|
||||
|
||||
amount = self._safe_sell_amount(trade.pair, trade.amount)
|
||||
time_in_force = self.strategy.order_time_in_force['sell']
|
||||
|
||||
if not strategy_safe_wrapper(self.strategy.confirm_trade_exit, default_retval=True)(
|
||||
pair=trade.pair, trade=trade, order_type=order_type, amount=amount, rate=limit,
|
||||
time_in_force=time_in_force,
|
||||
sell_reason=sell_reason.value):
|
||||
logger.info(f"User requested abortion of selling {trade.pair}")
|
||||
return False
|
||||
|
||||
# Execute sell and update trade record
|
||||
order = self.exchange.sell(pair=str(trade.pair),
|
||||
ordertype=order_type,
|
||||
amount=amount, rate=limit,
|
||||
time_in_force=self.strategy.order_time_in_force['sell']
|
||||
time_in_force=time_in_force
|
||||
)
|
||||
|
||||
trade.open_order_id = order['id']
|
||||
@@ -1072,7 +1138,7 @@ class FreqtradeBot:
|
||||
Trade.session.flush()
|
||||
|
||||
# Lock pair for one candle to prevent immediate rebuys
|
||||
self.strategy.lock_pair(trade.pair, timeframe_to_next_date(self.config['ticker_interval']))
|
||||
self.strategy.lock_pair(trade.pair, timeframe_to_next_date(self.config['timeframe']))
|
||||
|
||||
self._notify_sell(trade, order_type)
|
||||
|
||||
@@ -1091,6 +1157,7 @@ class FreqtradeBot:
|
||||
|
||||
msg = {
|
||||
'type': RPCMessageType.SELL_NOTIFICATION,
|
||||
'trade_id': trade.id,
|
||||
'exchange': trade.exchange.capitalize(),
|
||||
'pair': trade.pair,
|
||||
'gain': gain,
|
||||
@@ -1133,6 +1200,7 @@ class FreqtradeBot:
|
||||
|
||||
msg = {
|
||||
'type': RPCMessageType.SELL_CANCEL_NOTIFICATION,
|
||||
'trade_id': trade.id,
|
||||
'exchange': trade.exchange.capitalize(),
|
||||
'pair': trade.pair,
|
||||
'gain': gain,
|
||||
@@ -1180,14 +1248,15 @@ class FreqtradeBot:
|
||||
# Update trade with order values
|
||||
logger.info('Found open order for %s', trade)
|
||||
try:
|
||||
order = action_order or self.exchange.get_order(order_id, trade.pair)
|
||||
order = action_order or self.exchange.fetch_order(order_id, trade.pair)
|
||||
except InvalidOrderException as exception:
|
||||
logger.warning('Unable to fetch order %s: %s', order_id, exception)
|
||||
return False
|
||||
# Try update amount (binance-fix)
|
||||
try:
|
||||
new_amount = self.get_real_amount(trade, order, order_amount)
|
||||
if not isclose(order['amount'], new_amount, abs_tol=constants.MATH_CLOSE_PREC):
|
||||
if not isclose(safe_value_fallback(order, 'filled', 'amount'), new_amount,
|
||||
abs_tol=constants.MATH_CLOSE_PREC):
|
||||
order['amount'] = new_amount
|
||||
order.pop('filled', None)
|
||||
trade.recalc_open_trade_price()
|
||||
@@ -1233,7 +1302,7 @@ class FreqtradeBot:
|
||||
"""
|
||||
# Init variables
|
||||
if order_amount is None:
|
||||
order_amount = order['amount']
|
||||
order_amount = safe_value_fallback(order, 'filled', 'amount')
|
||||
# Only run for closed orders
|
||||
if trade.fee_updated(order.get('side', '')) or order['status'] == 'open':
|
||||
return order_amount
|
||||
|
@@ -11,7 +11,7 @@ from freqtrade.exceptions import OperationalException
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _set_loggers(verbosity: int = 0) -> None:
|
||||
def _set_loggers(verbosity: int = 0, api_verbosity: str = 'info') -> None:
|
||||
"""
|
||||
Set the logging level for third party libraries
|
||||
:return: None
|
||||
@@ -28,6 +28,10 @@ def _set_loggers(verbosity: int = 0) -> None:
|
||||
)
|
||||
logging.getLogger('telegram').setLevel(logging.INFO)
|
||||
|
||||
logging.getLogger('werkzeug').setLevel(
|
||||
logging.ERROR if api_verbosity == 'error' else logging.INFO
|
||||
)
|
||||
|
||||
|
||||
def setup_logging(config: Dict[str, Any]) -> None:
|
||||
"""
|
||||
@@ -77,5 +81,5 @@ def setup_logging(config: Dict[str, Any]) -> None:
|
||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
||||
handlers=log_handlers
|
||||
)
|
||||
_set_loggers(verbosity)
|
||||
_set_loggers(verbosity, config.get('api_server', {}).get('verbosity', 'info'))
|
||||
logger.info('Verbosity set to %s', verbosity)
|
||||
|
@@ -134,7 +134,21 @@ def round_dict(d, n):
|
||||
return {k: (round(v, n) if isinstance(v, float) else v) for k, v in d.items()}
|
||||
|
||||
|
||||
def safe_value_fallback(dict1: dict, dict2: dict, key1: str, key2: str, default_value=None):
|
||||
def safe_value_fallback(obj: dict, key1: str, key2: str, default_value=None):
|
||||
"""
|
||||
Search a value in obj, return this if it's not None.
|
||||
Then search key2 in obj - return that if it's not none - then use default_value.
|
||||
Else falls back to None.
|
||||
"""
|
||||
if key1 in obj and obj[key1] is not None:
|
||||
return obj[key1]
|
||||
else:
|
||||
if key2 in obj and obj[key2] is not None:
|
||||
return obj[key2]
|
||||
return default_value
|
||||
|
||||
|
||||
def safe_value_fallback2(dict1: dict, dict2: dict, key1: str, key2: str, default_value=None):
|
||||
"""
|
||||
Search a value in dict1, return this if it's not None.
|
||||
Fall back to dict2 - return key2 from dict2 if it's not None.
|
||||
|
@@ -13,17 +13,18 @@ from pandas import DataFrame
|
||||
|
||||
from freqtrade.configuration import (TimeRange, remove_credentials,
|
||||
validate_config_consistency)
|
||||
from freqtrade.constants import DATETIME_PRINT_FORMAT
|
||||
from freqtrade.data import history
|
||||
from freqtrade.data.converter import trim_dataframe
|
||||
from freqtrade.data.dataprovider import DataProvider
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_seconds
|
||||
from freqtrade.optimize.optimize_reports import (show_backtest_results,
|
||||
store_backtest_result)
|
||||
from freqtrade.optimize.optimize_reports import (generate_backtest_stats,
|
||||
show_backtest_results,
|
||||
store_backtest_stats)
|
||||
from freqtrade.pairlist.pairlistmanager import PairListManager
|
||||
from freqtrade.persistence import Trade
|
||||
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
|
||||
from freqtrade.state import RunMode
|
||||
from freqtrade.strategy.interface import IStrategy, SellCheckTuple, SellType
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -36,14 +37,15 @@ class BacktestResult(NamedTuple):
|
||||
pair: str
|
||||
profit_percent: float
|
||||
profit_abs: float
|
||||
open_time: datetime
|
||||
close_time: datetime
|
||||
open_index: int
|
||||
close_index: int
|
||||
open_date: datetime
|
||||
open_rate: float
|
||||
open_fee: float
|
||||
close_date: datetime
|
||||
close_rate: float
|
||||
close_fee: float
|
||||
amount: float
|
||||
trade_duration: float
|
||||
open_at_end: bool
|
||||
open_rate: float
|
||||
close_rate: float
|
||||
sell_reason: SellType
|
||||
|
||||
|
||||
@@ -64,23 +66,8 @@ class Backtesting:
|
||||
self.strategylist: List[IStrategy] = []
|
||||
self.exchange = ExchangeResolver.load_exchange(self.config['exchange']['name'], self.config)
|
||||
|
||||
self.pairlists = PairListManager(self.exchange, self.config)
|
||||
if 'VolumePairList' in self.pairlists.name_list:
|
||||
raise OperationalException("VolumePairList not allowed for backtesting.")
|
||||
|
||||
self.pairlists.refresh_pairlist()
|
||||
|
||||
if len(self.pairlists.whitelist) == 0:
|
||||
raise OperationalException("No pair in whitelist.")
|
||||
|
||||
if config.get('fee'):
|
||||
self.fee = config['fee']
|
||||
else:
|
||||
self.fee = self.exchange.get_fee(symbol=self.pairlists.whitelist[0])
|
||||
|
||||
if self.config.get('runmode') != RunMode.HYPEROPT:
|
||||
self.dataprovider = DataProvider(self.config, self.exchange)
|
||||
IStrategy.dp = self.dataprovider
|
||||
dataprovider = DataProvider(self.config, self.exchange)
|
||||
IStrategy.dp = dataprovider
|
||||
|
||||
if self.config.get('strategy_list', None):
|
||||
for strat in list(self.config['strategy_list']):
|
||||
@@ -94,12 +81,31 @@ class Backtesting:
|
||||
self.strategylist.append(StrategyResolver.load_strategy(self.config))
|
||||
validate_config_consistency(self.config)
|
||||
|
||||
if "ticker_interval" not in self.config:
|
||||
if "timeframe" not in self.config:
|
||||
raise OperationalException("Timeframe (ticker interval) needs to be set in either "
|
||||
"configuration or as cli argument `--ticker-interval 5m`")
|
||||
self.timeframe = str(self.config.get('ticker_interval'))
|
||||
"configuration or as cli argument `--timeframe 5m`")
|
||||
self.timeframe = str(self.config.get('timeframe'))
|
||||
self.timeframe_min = timeframe_to_minutes(self.timeframe)
|
||||
|
||||
self.pairlists = PairListManager(self.exchange, self.config)
|
||||
if 'VolumePairList' in self.pairlists.name_list:
|
||||
raise OperationalException("VolumePairList not allowed for backtesting.")
|
||||
|
||||
if len(self.strategylist) > 1 and 'PrecisionFilter' in self.pairlists.name_list:
|
||||
raise OperationalException(
|
||||
"PrecisionFilter not allowed for backtesting multiple strategies."
|
||||
)
|
||||
|
||||
self.pairlists.refresh_pairlist()
|
||||
|
||||
if len(self.pairlists.whitelist) == 0:
|
||||
raise OperationalException("No pair in whitelist.")
|
||||
|
||||
if config.get('fee', None) is not None:
|
||||
self.fee = config['fee']
|
||||
else:
|
||||
self.fee = self.exchange.get_fee(symbol=self.pairlists.whitelist[0])
|
||||
|
||||
# Get maximum required startup period
|
||||
self.required_startup = max([strat.startup_candle_count for strat in self.strategylist])
|
||||
# Load one (first) strategy
|
||||
@@ -131,10 +137,10 @@ class Backtesting:
|
||||
|
||||
min_date, max_date = history.get_timerange(data)
|
||||
|
||||
logger.info(
|
||||
'Loading data from %s up to %s (%s days)..',
|
||||
min_date.isoformat(), max_date.isoformat(), (max_date - min_date).days
|
||||
)
|
||||
logger.info(f'Loading data from {min_date.strftime(DATETIME_PRINT_FORMAT)} '
|
||||
f'up to {max_date.strftime(DATETIME_PRINT_FORMAT)} '
|
||||
f'({(max_date - min_date).days} days)..')
|
||||
|
||||
# Adjust startts forward if not enough data is available
|
||||
timerange.adjust_start_if_necessary(timeframe_to_seconds(self.timeframe),
|
||||
self.required_startup, min_date)
|
||||
@@ -219,7 +225,7 @@ class Backtesting:
|
||||
open_rate=buy_row.open,
|
||||
open_date=buy_row.date,
|
||||
stake_amount=stake_amount,
|
||||
amount=stake_amount / buy_row.open,
|
||||
amount=round(stake_amount / buy_row.open, 8),
|
||||
fee_open=self.fee,
|
||||
fee_close=self.fee,
|
||||
is_open=True,
|
||||
@@ -240,14 +246,15 @@ class Backtesting:
|
||||
return BacktestResult(pair=pair,
|
||||
profit_percent=trade.calc_profit_ratio(rate=closerate),
|
||||
profit_abs=trade.calc_profit(rate=closerate),
|
||||
open_time=buy_row.date,
|
||||
close_time=sell_row.date,
|
||||
trade_duration=trade_dur,
|
||||
open_index=buy_row.Index,
|
||||
close_index=sell_row.Index,
|
||||
open_at_end=False,
|
||||
open_date=buy_row.date,
|
||||
open_rate=buy_row.open,
|
||||
open_fee=self.fee,
|
||||
close_date=sell_row.date,
|
||||
close_rate=closerate,
|
||||
close_fee=self.fee,
|
||||
amount=trade.amount,
|
||||
trade_duration=trade_dur,
|
||||
open_at_end=False,
|
||||
sell_reason=sell.sell_type
|
||||
)
|
||||
if partial_ohlcv:
|
||||
@@ -256,15 +263,16 @@ class Backtesting:
|
||||
bt_res = BacktestResult(pair=pair,
|
||||
profit_percent=trade.calc_profit_ratio(rate=sell_row.open),
|
||||
profit_abs=trade.calc_profit(rate=sell_row.open),
|
||||
open_time=buy_row.date,
|
||||
close_time=sell_row.date,
|
||||
open_date=buy_row.date,
|
||||
open_rate=buy_row.open,
|
||||
open_fee=self.fee,
|
||||
close_date=sell_row.date,
|
||||
close_rate=sell_row.open,
|
||||
close_fee=self.fee,
|
||||
amount=trade.amount,
|
||||
trade_duration=int((
|
||||
sell_row.date - buy_row.date).total_seconds() // 60),
|
||||
open_index=buy_row.Index,
|
||||
close_index=sell_row.Index,
|
||||
open_at_end=True,
|
||||
open_rate=buy_row.open,
|
||||
close_rate=sell_row.open,
|
||||
sell_reason=SellType.FORCE_SELL
|
||||
)
|
||||
logger.debug(f"{pair} - Force selling still open trade, "
|
||||
@@ -350,8 +358,8 @@ class Backtesting:
|
||||
|
||||
if trade_entry:
|
||||
logger.debug(f"{pair} - Locking pair till "
|
||||
f"close_time={trade_entry.close_time}")
|
||||
lock_pair_until[pair] = trade_entry.close_time
|
||||
f"close_date={trade_entry.close_date}")
|
||||
lock_pair_until[pair] = trade_entry.close_date
|
||||
trades.append(trade_entry)
|
||||
else:
|
||||
# Set lock_pair_until to end of testing period if trade could not be closed
|
||||
@@ -394,10 +402,9 @@ class Backtesting:
|
||||
preprocessed[pair] = trim_dataframe(df, timerange)
|
||||
min_date, max_date = history.get_timerange(preprocessed)
|
||||
|
||||
logger.info(
|
||||
'Backtesting with data from %s up to %s (%s days)..',
|
||||
min_date.isoformat(), max_date.isoformat(), (max_date - min_date).days
|
||||
)
|
||||
logger.info(f'Backtesting with data from {min_date.strftime(DATETIME_PRINT_FORMAT)} '
|
||||
f'up to {max_date.strftime(DATETIME_PRINT_FORMAT)} '
|
||||
f'({(max_date - min_date).days} days)..')
|
||||
# Execute backtest and print results
|
||||
all_results[self.strategy.get_strategy_name()] = self.backtest(
|
||||
processed=preprocessed,
|
||||
@@ -408,7 +415,10 @@ class Backtesting:
|
||||
position_stacking=position_stacking,
|
||||
)
|
||||
|
||||
stats = generate_backtest_stats(self.config, data, all_results,
|
||||
min_date=min_date, max_date=max_date)
|
||||
if self.config.get('export', False):
|
||||
store_backtest_result(self.config['exportfilename'], all_results)
|
||||
store_backtest_stats(self.config['exportfilename'], stats)
|
||||
|
||||
# Show backtest results
|
||||
show_backtest_results(self.config, data, all_results)
|
||||
show_backtest_results(self.config, stats)
|
||||
|
@@ -1,202 +0,0 @@
|
||||
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
|
||||
|
||||
from functools import reduce
|
||||
from typing import Any, Callable, Dict, List
|
||||
|
||||
import talib.abstract as ta
|
||||
from pandas import DataFrame
|
||||
from skopt.space import Categorical, Dimension, Integer
|
||||
|
||||
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||||
from freqtrade.optimize.hyperopt_interface import IHyperOpt
|
||||
|
||||
|
||||
class DefaultHyperOpt(IHyperOpt):
|
||||
"""
|
||||
Default hyperopt provided by the Freqtrade bot.
|
||||
You can override it with your own Hyperopt
|
||||
"""
|
||||
@staticmethod
|
||||
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Add several indicators needed for buy and sell strategies defined below.
|
||||
"""
|
||||
# ADX
|
||||
dataframe['adx'] = ta.ADX(dataframe)
|
||||
# MACD
|
||||
macd = ta.MACD(dataframe)
|
||||
dataframe['macd'] = macd['macd']
|
||||
dataframe['macdsignal'] = macd['macdsignal']
|
||||
# MFI
|
||||
dataframe['mfi'] = ta.MFI(dataframe)
|
||||
# RSI
|
||||
dataframe['rsi'] = ta.RSI(dataframe)
|
||||
# Stochastic Fast
|
||||
stoch_fast = ta.STOCHF(dataframe)
|
||||
dataframe['fastd'] = stoch_fast['fastd']
|
||||
# Minus-DI
|
||||
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
||||
# Bollinger bands
|
||||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
||||
dataframe['bb_lowerband'] = bollinger['lower']
|
||||
dataframe['bb_upperband'] = bollinger['upper']
|
||||
# SAR
|
||||
dataframe['sar'] = ta.SAR(dataframe)
|
||||
|
||||
return dataframe
|
||||
|
||||
@staticmethod
|
||||
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
|
||||
"""
|
||||
Define the buy strategy parameters to be used by Hyperopt.
|
||||
"""
|
||||
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Buy strategy Hyperopt will build and use.
|
||||
"""
|
||||
conditions = []
|
||||
|
||||
# GUARDS AND TRENDS
|
||||
if 'mfi-enabled' in params and params['mfi-enabled']:
|
||||
conditions.append(dataframe['mfi'] < params['mfi-value'])
|
||||
if 'fastd-enabled' in params and params['fastd-enabled']:
|
||||
conditions.append(dataframe['fastd'] < params['fastd-value'])
|
||||
if 'adx-enabled' in params and params['adx-enabled']:
|
||||
conditions.append(dataframe['adx'] > params['adx-value'])
|
||||
if 'rsi-enabled' in params and params['rsi-enabled']:
|
||||
conditions.append(dataframe['rsi'] < params['rsi-value'])
|
||||
|
||||
# TRIGGERS
|
||||
if 'trigger' in params:
|
||||
if params['trigger'] == 'bb_lower':
|
||||
conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
|
||||
if params['trigger'] == 'macd_cross_signal':
|
||||
conditions.append(qtpylib.crossed_above(
|
||||
dataframe['macd'], dataframe['macdsignal']
|
||||
))
|
||||
if params['trigger'] == 'sar_reversal':
|
||||
conditions.append(qtpylib.crossed_above(
|
||||
dataframe['close'], dataframe['sar']
|
||||
))
|
||||
|
||||
if conditions:
|
||||
dataframe.loc[
|
||||
reduce(lambda x, y: x & y, conditions),
|
||||
'buy'] = 1
|
||||
|
||||
return dataframe
|
||||
|
||||
return populate_buy_trend
|
||||
|
||||
@staticmethod
|
||||
def indicator_space() -> List[Dimension]:
|
||||
"""
|
||||
Define your Hyperopt space for searching buy strategy parameters.
|
||||
"""
|
||||
return [
|
||||
Integer(10, 25, name='mfi-value'),
|
||||
Integer(15, 45, name='fastd-value'),
|
||||
Integer(20, 50, name='adx-value'),
|
||||
Integer(20, 40, name='rsi-value'),
|
||||
Categorical([True, False], name='mfi-enabled'),
|
||||
Categorical([True, False], name='fastd-enabled'),
|
||||
Categorical([True, False], name='adx-enabled'),
|
||||
Categorical([True, False], name='rsi-enabled'),
|
||||
Categorical(['bb_lower', 'macd_cross_signal', 'sar_reversal'], name='trigger')
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
def sell_strategy_generator(params: Dict[str, Any]) -> Callable:
|
||||
"""
|
||||
Define the sell strategy parameters to be used by Hyperopt.
|
||||
"""
|
||||
def populate_sell_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Sell strategy Hyperopt will build and use.
|
||||
"""
|
||||
conditions = []
|
||||
|
||||
# GUARDS AND TRENDS
|
||||
if 'sell-mfi-enabled' in params and params['sell-mfi-enabled']:
|
||||
conditions.append(dataframe['mfi'] > params['sell-mfi-value'])
|
||||
if 'sell-fastd-enabled' in params and params['sell-fastd-enabled']:
|
||||
conditions.append(dataframe['fastd'] > params['sell-fastd-value'])
|
||||
if 'sell-adx-enabled' in params and params['sell-adx-enabled']:
|
||||
conditions.append(dataframe['adx'] < params['sell-adx-value'])
|
||||
if 'sell-rsi-enabled' in params and params['sell-rsi-enabled']:
|
||||
conditions.append(dataframe['rsi'] > params['sell-rsi-value'])
|
||||
|
||||
# TRIGGERS
|
||||
if 'sell-trigger' in params:
|
||||
if params['sell-trigger'] == 'sell-bb_upper':
|
||||
conditions.append(dataframe['close'] > dataframe['bb_upperband'])
|
||||
if params['sell-trigger'] == 'sell-macd_cross_signal':
|
||||
conditions.append(qtpylib.crossed_above(
|
||||
dataframe['macdsignal'], dataframe['macd']
|
||||
))
|
||||
if params['sell-trigger'] == 'sell-sar_reversal':
|
||||
conditions.append(qtpylib.crossed_above(
|
||||
dataframe['sar'], dataframe['close']
|
||||
))
|
||||
|
||||
if conditions:
|
||||
dataframe.loc[
|
||||
reduce(lambda x, y: x & y, conditions),
|
||||
'sell'] = 1
|
||||
|
||||
return dataframe
|
||||
|
||||
return populate_sell_trend
|
||||
|
||||
@staticmethod
|
||||
def sell_indicator_space() -> List[Dimension]:
|
||||
"""
|
||||
Define your Hyperopt space for searching sell strategy parameters.
|
||||
"""
|
||||
return [
|
||||
Integer(75, 100, name='sell-mfi-value'),
|
||||
Integer(50, 100, name='sell-fastd-value'),
|
||||
Integer(50, 100, name='sell-adx-value'),
|
||||
Integer(60, 100, name='sell-rsi-value'),
|
||||
Categorical([True, False], name='sell-mfi-enabled'),
|
||||
Categorical([True, False], name='sell-fastd-enabled'),
|
||||
Categorical([True, False], name='sell-adx-enabled'),
|
||||
Categorical([True, False], name='sell-rsi-enabled'),
|
||||
Categorical(['sell-bb_upper',
|
||||
'sell-macd_cross_signal',
|
||||
'sell-sar_reversal'], name='sell-trigger')
|
||||
]
|
||||
|
||||
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators. Should be a copy of same method from strategy.
|
||||
Must align to populate_indicators in this file.
|
||||
Only used when --spaces does not include buy space.
|
||||
"""
|
||||
dataframe.loc[
|
||||
(
|
||||
(dataframe['close'] < dataframe['bb_lowerband']) &
|
||||
(dataframe['mfi'] < 16) &
|
||||
(dataframe['adx'] > 25) &
|
||||
(dataframe['rsi'] < 21)
|
||||
),
|
||||
'buy'] = 1
|
||||
|
||||
return dataframe
|
||||
|
||||
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators. Should be a copy of same method from strategy.
|
||||
Must align to populate_indicators in this file.
|
||||
Only used when --spaces does not include sell space.
|
||||
"""
|
||||
dataframe.loc[
|
||||
(
|
||||
(qtpylib.crossed_above(
|
||||
dataframe['macdsignal'], dataframe['macd']
|
||||
)) &
|
||||
(dataframe['fastd'] > 54)
|
||||
),
|
||||
'sell'] = 1
|
||||
|
||||
return dataframe
|
@@ -42,8 +42,8 @@ class DefaultHyperOptLoss(IHyperOptLoss):
|
||||
* 0.25: Avoiding trade loss
|
||||
* 1.0 to total profit, compared to the expected value (`EXPECTED_MAX_PROFIT`) defined above
|
||||
"""
|
||||
total_profit = results.profit_percent.sum()
|
||||
trade_duration = results.trade_duration.mean()
|
||||
total_profit = results['profit_percent'].sum()
|
||||
trade_duration = results['trade_duration'].mean()
|
||||
|
||||
trade_loss = 1 - 0.25 * exp(-(trade_count - TARGET_TRADES) ** 2 / 10 ** 5.8)
|
||||
profit_loss = max(0, 1 - total_profit / EXPECTED_MAX_PROFIT)
|
||||
|
@@ -4,27 +4,28 @@
|
||||
This module contains the hyperopt logic
|
||||
"""
|
||||
|
||||
import io
|
||||
import locale
|
||||
import logging
|
||||
import random
|
||||
import warnings
|
||||
from math import ceil
|
||||
from collections import OrderedDict
|
||||
from math import ceil
|
||||
from operator import itemgetter
|
||||
from pathlib import Path
|
||||
from pprint import pprint
|
||||
from pprint import pformat
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
import progressbar
|
||||
import rapidjson
|
||||
import tabulate
|
||||
from colorama import Fore, Style
|
||||
from colorama import init as colorama_init
|
||||
from joblib import (Parallel, cpu_count, delayed, dump, load,
|
||||
wrap_non_picklable_objects)
|
||||
from pandas import DataFrame, json_normalize, isna
|
||||
import progressbar
|
||||
import tabulate
|
||||
from os import path
|
||||
import io
|
||||
from pandas import DataFrame, isna, json_normalize
|
||||
|
||||
from freqtrade.constants import DATETIME_PRINT_FORMAT
|
||||
from freqtrade.data.converter import trim_dataframe
|
||||
from freqtrade.data.history import get_timerange
|
||||
from freqtrade.exceptions import OperationalException
|
||||
@@ -32,9 +33,11 @@ from freqtrade.misc import plural, round_dict
|
||||
from freqtrade.optimize.backtesting import Backtesting
|
||||
# Import IHyperOpt and IHyperOptLoss to allow unpickling classes from these modules
|
||||
from freqtrade.optimize.hyperopt_interface import IHyperOpt # noqa: F401
|
||||
from freqtrade.optimize.hyperopt_loss_interface import IHyperOptLoss # noqa: F401
|
||||
from freqtrade.optimize.hyperopt_loss_interface import \
|
||||
IHyperOptLoss # noqa: F401
|
||||
from freqtrade.resolvers.hyperopt_resolver import (HyperOptLossResolver,
|
||||
HyperOptResolver)
|
||||
from freqtrade.strategy import IStrategy
|
||||
|
||||
# Suppress scikit-learn FutureWarnings from skopt
|
||||
with warnings.catch_warnings():
|
||||
@@ -230,6 +233,9 @@ class Hyperopt:
|
||||
if space in ['buy', 'sell']:
|
||||
result_dict.setdefault('params', {}).update(space_params)
|
||||
elif space == 'roi':
|
||||
# TODO: get rid of OrderedDict when support for python 3.6 will be
|
||||
# dropped (dicts keep the order as the language feature)
|
||||
|
||||
# Convert keys in min_roi dict to strings because
|
||||
# rapidjson cannot dump dicts with integer keys...
|
||||
# OrderedDict is used to keep the numeric order of the items
|
||||
@@ -244,11 +250,24 @@ class Hyperopt:
|
||||
def _params_pretty_print(params, space: str, header: str) -> None:
|
||||
if space in params:
|
||||
space_params = Hyperopt._space_params(params, space, 5)
|
||||
params_result = f"\n# {header}\n"
|
||||
if space == 'stoploss':
|
||||
print(header, space_params.get('stoploss'))
|
||||
params_result += f"stoploss = {space_params.get('stoploss')}"
|
||||
elif space == 'roi':
|
||||
# TODO: get rid of OrderedDict when support for python 3.6 will be
|
||||
# dropped (dicts keep the order as the language feature)
|
||||
minimal_roi_result = rapidjson.dumps(
|
||||
OrderedDict(
|
||||
(str(k), v) for k, v in space_params.items()
|
||||
),
|
||||
default=str, indent=4, number_mode=rapidjson.NM_NATIVE)
|
||||
params_result += f"minimal_roi = {minimal_roi_result}"
|
||||
else:
|
||||
print(header)
|
||||
pprint(space_params, indent=4)
|
||||
params_result += f"{space}_params = {pformat(space_params, indent=4)}"
|
||||
params_result = params_result.replace("}", "\n}").replace("{", "{\n ")
|
||||
|
||||
params_result = params_result.replace("\n", "\n ")
|
||||
print(params_result)
|
||||
|
||||
@staticmethod
|
||||
def _space_params(params, space: str, r: int = None) -> Dict:
|
||||
@@ -296,11 +315,16 @@ class Hyperopt:
|
||||
|
||||
trials = json_normalize(results, max_level=1)
|
||||
trials['Best'] = ''
|
||||
if 'results_metrics.winsdrawslosses' not in trials.columns:
|
||||
# Ensure compatibility with older versions of hyperopt results
|
||||
trials['results_metrics.winsdrawslosses'] = 'N/A'
|
||||
|
||||
trials = trials[['Best', 'current_epoch', 'results_metrics.trade_count',
|
||||
'results_metrics.winsdrawslosses',
|
||||
'results_metrics.avg_profit', 'results_metrics.total_profit',
|
||||
'results_metrics.profit', 'results_metrics.duration',
|
||||
'loss', 'is_initial_point', 'is_best']]
|
||||
trials.columns = ['Best', 'Epoch', 'Trades', 'Avg profit', 'Total profit',
|
||||
trials.columns = ['Best', 'Epoch', 'Trades', 'W/D/L', 'Avg profit', 'Total profit',
|
||||
'Profit', 'Avg duration', 'Objective', 'is_initial_point', 'is_best']
|
||||
trials['is_profit'] = False
|
||||
trials.loc[trials['is_initial_point'], 'Best'] = '* '
|
||||
@@ -374,7 +398,7 @@ class Hyperopt:
|
||||
return
|
||||
|
||||
# Verification for overwrite
|
||||
if path.isfile(csv_file):
|
||||
if Path(csv_file).is_file():
|
||||
logger.error(f"CSV file already exists: {csv_file}")
|
||||
return
|
||||
|
||||
@@ -542,9 +566,17 @@ class Hyperopt:
|
||||
}
|
||||
|
||||
def _calculate_results_metrics(self, backtesting_results: DataFrame) -> Dict:
|
||||
wins = len(backtesting_results[backtesting_results.profit_percent > 0])
|
||||
draws = len(backtesting_results[backtesting_results.profit_percent == 0])
|
||||
losses = len(backtesting_results[backtesting_results.profit_percent < 0])
|
||||
return {
|
||||
'trade_count': len(backtesting_results.index),
|
||||
'wins': wins,
|
||||
'draws': draws,
|
||||
'losses': losses,
|
||||
'winsdrawslosses': f"{wins}/{draws}/{losses}",
|
||||
'avg_profit': backtesting_results.profit_percent.mean() * 100.0,
|
||||
'median_profit': backtesting_results.profit_percent.median() * 100.0,
|
||||
'total_profit': backtesting_results.profit_abs.sum(),
|
||||
'profit': backtesting_results.profit_percent.sum() * 100.0,
|
||||
'duration': backtesting_results.trade_duration.mean(),
|
||||
@@ -556,7 +588,10 @@ class Hyperopt:
|
||||
"""
|
||||
stake_cur = self.config['stake_currency']
|
||||
return (f"{results_metrics['trade_count']:6d} trades. "
|
||||
f"{results_metrics['wins']}/{results_metrics['draws']}"
|
||||
f"/{results_metrics['losses']} Wins/Draws/Losses. "
|
||||
f"Avg profit {results_metrics['avg_profit']: 6.2f}%. "
|
||||
f"Median profit {results_metrics['median_profit']: 6.2f}%. "
|
||||
f"Total profit {results_metrics['total_profit']: 11.8f} {stake_cur} "
|
||||
f"({results_metrics['profit']: 7.2f}\N{GREEK CAPITAL LETTER SIGMA}%). "
|
||||
f"Avg duration {results_metrics['duration']:5.1f} min."
|
||||
@@ -609,15 +644,17 @@ class Hyperopt:
|
||||
preprocessed[pair] = trim_dataframe(df, timerange)
|
||||
min_date, max_date = get_timerange(data)
|
||||
|
||||
logger.info(
|
||||
'Hyperopting with data from %s up to %s (%s days)..',
|
||||
min_date.isoformat(), max_date.isoformat(), (max_date - min_date).days
|
||||
)
|
||||
logger.info(f'Hyperopting with data from {min_date.strftime(DATETIME_PRINT_FORMAT)} '
|
||||
f'up to {max_date.strftime(DATETIME_PRINT_FORMAT)} '
|
||||
f'({(max_date - min_date).days} days)..')
|
||||
|
||||
dump(preprocessed, self.data_pickle_file)
|
||||
|
||||
# We don't need exchange instance anymore while running hyperopt
|
||||
self.backtesting.exchange = None # type: ignore
|
||||
self.backtesting.pairlists = None # type: ignore
|
||||
self.backtesting.strategy.dp = None # type: ignore
|
||||
IStrategy.dp = None # type: ignore
|
||||
|
||||
self.epochs = self.load_previous_results(self.results_file)
|
||||
|
||||
@@ -628,6 +665,10 @@ class Hyperopt:
|
||||
|
||||
self.dimensions: List[Dimension] = self.hyperopt_space()
|
||||
self.opt = self.get_optimizer(self.dimensions, config_jobs)
|
||||
|
||||
if self.print_colorized:
|
||||
colorama_init(autoreset=True)
|
||||
|
||||
try:
|
||||
with Parallel(n_jobs=config_jobs) as parallel:
|
||||
jobs = parallel._effective_n_jobs()
|
||||
|
@@ -31,13 +31,15 @@ class IHyperOpt(ABC):
|
||||
Class attributes you can use:
|
||||
ticker_interval -> int: value of the ticker interval to use for the strategy
|
||||
"""
|
||||
ticker_interval: str
|
||||
ticker_interval: str # DEPRECATED
|
||||
timeframe: str
|
||||
|
||||
def __init__(self, config: dict) -> None:
|
||||
self.config = config
|
||||
|
||||
# Assign ticker_interval to be used in hyperopt
|
||||
IHyperOpt.ticker_interval = str(config['ticker_interval'])
|
||||
IHyperOpt.ticker_interval = str(config['timeframe']) # DEPRECATED
|
||||
IHyperOpt.timeframe = str(config['timeframe'])
|
||||
|
||||
@staticmethod
|
||||
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
|
||||
@@ -218,9 +220,10 @@ class IHyperOpt(ABC):
|
||||
# Why do I still need such shamanic mantras in modern python?
|
||||
def __getstate__(self):
|
||||
state = self.__dict__.copy()
|
||||
state['ticker_interval'] = self.ticker_interval
|
||||
state['timeframe'] = self.timeframe
|
||||
return state
|
||||
|
||||
def __setstate__(self, state):
|
||||
self.__dict__.update(state)
|
||||
IHyperOpt.ticker_interval = state['ticker_interval']
|
||||
IHyperOpt.ticker_interval = state['timeframe']
|
||||
IHyperOpt.timeframe = state['timeframe']
|
||||
|
@@ -14,7 +14,7 @@ class IHyperOptLoss(ABC):
|
||||
Interface for freqtrade hyperopt Loss functions.
|
||||
Defines the custom loss function (`hyperopt_loss_function()` which is evaluated every epoch.)
|
||||
"""
|
||||
ticker_interval: str
|
||||
timeframe: str
|
||||
|
||||
@staticmethod
|
||||
@abstractmethod
|
||||
|
@@ -34,5 +34,5 @@ class OnlyProfitHyperOptLoss(IHyperOptLoss):
|
||||
"""
|
||||
Objective function, returns smaller number for better results.
|
||||
"""
|
||||
total_profit = results.profit_percent.sum()
|
||||
total_profit = results['profit_percent'].sum()
|
||||
return 1 - total_profit / EXPECTED_MAX_PROFIT
|
||||
|
@@ -43,7 +43,7 @@ class SharpeHyperOptLossDaily(IHyperOptLoss):
|
||||
normalize=True)
|
||||
|
||||
sum_daily = (
|
||||
results.resample(resample_freq, on='close_time').agg(
|
||||
results.resample(resample_freq, on='close_date').agg(
|
||||
{"profit_percent_after_slippage": sum}).reindex(t_index).fillna(0)
|
||||
)
|
||||
|
||||
|
@@ -45,7 +45,7 @@ class SortinoHyperOptLossDaily(IHyperOptLoss):
|
||||
normalize=True)
|
||||
|
||||
sum_daily = (
|
||||
results.resample(resample_freq, on='close_time').agg(
|
||||
results.resample(resample_freq, on='close_date').agg(
|
||||
{"profit_percent_after_slippage": sum}).reindex(t_index).fillna(0)
|
||||
)
|
||||
|
||||
|
@@ -1,186 +1,166 @@
|
||||
import logging
|
||||
from datetime import timedelta
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from pathlib import Path
|
||||
from typing import Dict
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from arrow import Arrow
|
||||
from pandas import DataFrame
|
||||
from numpy import int64
|
||||
from tabulate import tabulate
|
||||
|
||||
from freqtrade.constants import DATETIME_PRINT_FORMAT, LAST_BT_RESULT_FN
|
||||
from freqtrade.data.btanalysis import calculate_max_drawdown, calculate_market_change
|
||||
from freqtrade.misc import file_dump_json
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def store_backtest_result(recordfilename: Path, all_results: Dict[str, DataFrame]) -> None:
|
||||
def store_backtest_stats(recordfilename: Path, stats: Dict[str, DataFrame]) -> None:
|
||||
"""
|
||||
Stores backtest results to file (one file per strategy)
|
||||
:param recordfilename: Destination filename
|
||||
:param all_results: Dict of Dataframes, one results dataframe per strategy
|
||||
Stores backtest results
|
||||
:param recordfilename: Path object, which can either be a filename or a directory.
|
||||
Filenames will be appended with a timestamp right before the suffix
|
||||
while for diectories, <directory>/backtest-result-<datetime>.json will be used as filename
|
||||
:param stats: Dataframe containing the backtesting statistics
|
||||
"""
|
||||
for strategy, results in all_results.items():
|
||||
records = [(t.pair, t.profit_percent, t.open_time.timestamp(),
|
||||
t.close_time.timestamp(), t.open_index - 1, t.trade_duration,
|
||||
t.open_rate, t.close_rate, t.open_at_end, t.sell_reason.value)
|
||||
for index, t in results.iterrows()]
|
||||
if recordfilename.is_dir():
|
||||
filename = (recordfilename /
|
||||
f'backtest-result-{datetime.now().strftime("%Y-%m-%d_%H-%M-%S")}.json')
|
||||
else:
|
||||
filename = Path.joinpath(
|
||||
recordfilename.parent,
|
||||
f'{recordfilename.stem}-{datetime.now().strftime("%Y-%m-%d_%H-%M-%S")}'
|
||||
).with_suffix(recordfilename.suffix)
|
||||
file_dump_json(filename, stats)
|
||||
|
||||
if records:
|
||||
filename = recordfilename
|
||||
if len(all_results) > 1:
|
||||
# Inject strategy to filename
|
||||
filename = Path.joinpath(
|
||||
recordfilename.parent,
|
||||
f'{recordfilename.stem}-{strategy}').with_suffix(recordfilename.suffix)
|
||||
logger.info(f'Dumping backtest results to {filename}')
|
||||
file_dump_json(filename, records)
|
||||
latest_filename = Path.joinpath(filename.parent, LAST_BT_RESULT_FN)
|
||||
file_dump_json(latest_filename, {'latest_backtest': str(filename.name)})
|
||||
|
||||
|
||||
def generate_text_table(data: Dict[str, Dict], stake_currency: str, max_open_trades: int,
|
||||
results: DataFrame, skip_nan: bool = False) -> str:
|
||||
def _get_line_floatfmt() -> List[str]:
|
||||
"""
|
||||
Generates and returns a text table for the given backtest data and the results dataframe
|
||||
Generate floatformat (goes in line with _generate_result_line())
|
||||
"""
|
||||
return ['s', 'd', '.2f', '.2f', '.8f', '.2f', 'd', 'd', 'd', 'd']
|
||||
|
||||
|
||||
def _get_line_header(first_column: str, stake_currency: str) -> List[str]:
|
||||
"""
|
||||
Generate header lines (goes in line with _generate_result_line())
|
||||
"""
|
||||
return [first_column, 'Buys', 'Avg Profit %', 'Cum Profit %',
|
||||
f'Tot Profit {stake_currency}', 'Tot Profit %', 'Avg Duration',
|
||||
'Wins', 'Draws', 'Losses']
|
||||
|
||||
|
||||
def _generate_result_line(result: DataFrame, max_open_trades: int, first_column: str) -> Dict:
|
||||
"""
|
||||
Generate one result dict, with "first_column" as key.
|
||||
"""
|
||||
return {
|
||||
'key': first_column,
|
||||
'trades': len(result),
|
||||
'profit_mean': result['profit_percent'].mean() if len(result) > 0 else 0.0,
|
||||
'profit_mean_pct': result['profit_percent'].mean() * 100.0 if len(result) > 0 else 0.0,
|
||||
'profit_sum': result['profit_percent'].sum(),
|
||||
'profit_sum_pct': result['profit_percent'].sum() * 100.0,
|
||||
'profit_total_abs': result['profit_abs'].sum(),
|
||||
'profit_total': result['profit_percent'].sum() / max_open_trades,
|
||||
'profit_total_pct': result['profit_percent'].sum() * 100.0 / max_open_trades,
|
||||
'duration_avg': str(timedelta(
|
||||
minutes=round(result['trade_duration'].mean()))
|
||||
) if not result.empty else '0:00',
|
||||
# 'duration_max': str(timedelta(
|
||||
# minutes=round(result['trade_duration'].max()))
|
||||
# ) if not result.empty else '0:00',
|
||||
# 'duration_min': str(timedelta(
|
||||
# minutes=round(result['trade_duration'].min()))
|
||||
# ) if not result.empty else '0:00',
|
||||
'wins': len(result[result['profit_abs'] > 0]),
|
||||
'draws': len(result[result['profit_abs'] == 0]),
|
||||
'losses': len(result[result['profit_abs'] < 0]),
|
||||
}
|
||||
|
||||
|
||||
def generate_pair_metrics(data: Dict[str, Dict], stake_currency: str, max_open_trades: int,
|
||||
results: DataFrame, skip_nan: bool = False) -> List[Dict]:
|
||||
"""
|
||||
Generates and returns a list for the given backtest data and the results dataframe
|
||||
:param data: Dict of <pair: dataframe> containing data that was used during backtesting.
|
||||
:param stake_currency: stake-currency - used to correctly name headers
|
||||
:param max_open_trades: Maximum allowed open trades
|
||||
:param results: Dataframe containing the backtest results
|
||||
:param skip_nan: Print "left open" open trades
|
||||
:return: pretty printed table with tabulate as string
|
||||
:return: List of Dicts containing the metrics per pair
|
||||
"""
|
||||
|
||||
floatfmt = ('s', 'd', '.2f', '.2f', '.8f', '.2f', 'd', '.1f', '.1f')
|
||||
tabular_data = []
|
||||
headers = [
|
||||
'Pair',
|
||||
'Buys',
|
||||
'Avg Profit %',
|
||||
'Cum Profit %',
|
||||
f'Tot Profit {stake_currency}',
|
||||
'Tot Profit %',
|
||||
'Avg Duration',
|
||||
'Wins',
|
||||
'Draws',
|
||||
'Losses'
|
||||
]
|
||||
|
||||
for pair in data:
|
||||
result = results[results.pair == pair]
|
||||
if skip_nan and result.profit_abs.isnull().all():
|
||||
result = results[results['pair'] == pair]
|
||||
if skip_nan and result['profit_abs'].isnull().all():
|
||||
continue
|
||||
|
||||
tabular_data.append([
|
||||
pair,
|
||||
len(result.index),
|
||||
result.profit_percent.mean() * 100.0,
|
||||
result.profit_percent.sum() * 100.0,
|
||||
result.profit_abs.sum(),
|
||||
result.profit_percent.sum() * 100.0 / max_open_trades,
|
||||
str(timedelta(
|
||||
minutes=round(result.trade_duration.mean()))) if not result.empty else '0:00',
|
||||
len(result[result.profit_abs > 0]),
|
||||
len(result[result.profit_abs == 0]),
|
||||
len(result[result.profit_abs < 0])
|
||||
])
|
||||
tabular_data.append(_generate_result_line(result, max_open_trades, pair))
|
||||
|
||||
# Append Total
|
||||
tabular_data.append([
|
||||
'TOTAL',
|
||||
len(results.index),
|
||||
results.profit_percent.mean() * 100.0,
|
||||
results.profit_percent.sum() * 100.0,
|
||||
results.profit_abs.sum(),
|
||||
results.profit_percent.sum() * 100.0 / max_open_trades,
|
||||
str(timedelta(
|
||||
minutes=round(results.trade_duration.mean()))) if not results.empty else '0:00',
|
||||
len(results[results.profit_abs > 0]),
|
||||
len(results[results.profit_abs == 0]),
|
||||
len(results[results.profit_abs < 0])
|
||||
])
|
||||
# Ignore type as floatfmt does allow tuples but mypy does not know that
|
||||
return tabulate(tabular_data, headers=headers,
|
||||
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right") # type: ignore
|
||||
tabular_data.append(_generate_result_line(results, max_open_trades, 'TOTAL'))
|
||||
return tabular_data
|
||||
|
||||
|
||||
def generate_text_table_sell_reason(stake_currency: str, max_open_trades: int,
|
||||
results: DataFrame) -> str:
|
||||
def generate_sell_reason_stats(max_open_trades: int, results: DataFrame) -> List[Dict]:
|
||||
"""
|
||||
Generate small table outlining Backtest results
|
||||
:param stake_currency: Stakecurrency used
|
||||
:param max_open_trades: Max_open_trades parameter
|
||||
:param results: Dataframe containing the backtest results
|
||||
:return: pretty printed table with tabulate as string
|
||||
:param results: Dataframe containing the backtest result for one strategy
|
||||
:return: List of Dicts containing the metrics per Sell reason
|
||||
"""
|
||||
tabular_data = []
|
||||
headers = [
|
||||
"Sell Reason",
|
||||
"Sells",
|
||||
"Wins",
|
||||
"Draws",
|
||||
"Losses",
|
||||
"Avg Profit %",
|
||||
"Cum Profit %",
|
||||
f"Tot Profit {stake_currency}",
|
||||
"Tot Profit %",
|
||||
]
|
||||
|
||||
for reason, count in results['sell_reason'].value_counts().iteritems():
|
||||
result = results.loc[results['sell_reason'] == reason]
|
||||
wins = len(result[result['profit_abs'] > 0])
|
||||
draws = len(result[result['profit_abs'] == 0])
|
||||
loss = len(result[result['profit_abs'] < 0])
|
||||
profit_mean = round(result['profit_percent'].mean() * 100.0, 2)
|
||||
profit_sum = round(result["profit_percent"].sum() * 100.0, 2)
|
||||
profit_tot = result['profit_abs'].sum()
|
||||
|
||||
profit_mean = result['profit_percent'].mean()
|
||||
profit_sum = result["profit_percent"].sum()
|
||||
profit_percent_tot = round(result['profit_percent'].sum() * 100.0 / max_open_trades, 2)
|
||||
|
||||
tabular_data.append(
|
||||
[
|
||||
reason.value,
|
||||
count,
|
||||
wins,
|
||||
draws,
|
||||
loss,
|
||||
profit_mean,
|
||||
profit_sum,
|
||||
profit_tot,
|
||||
profit_percent_tot,
|
||||
]
|
||||
{
|
||||
'sell_reason': reason.value,
|
||||
'trades': count,
|
||||
'wins': len(result[result['profit_abs'] > 0]),
|
||||
'draws': len(result[result['profit_abs'] == 0]),
|
||||
'losses': len(result[result['profit_abs'] < 0]),
|
||||
'profit_mean': profit_mean,
|
||||
'profit_mean_pct': round(profit_mean * 100, 2),
|
||||
'profit_sum': profit_sum,
|
||||
'profit_sum_pct': round(profit_sum * 100, 2),
|
||||
'profit_total_abs': result['profit_abs'].sum(),
|
||||
'profit_total_pct': profit_percent_tot,
|
||||
}
|
||||
)
|
||||
return tabulate(tabular_data, headers=headers, tablefmt="orgtbl", stralign="right")
|
||||
return tabular_data
|
||||
|
||||
|
||||
def generate_text_table_strategy(stake_currency: str, max_open_trades: str,
|
||||
all_results: Dict) -> str:
|
||||
def generate_strategy_metrics(stake_currency: str, max_open_trades: int,
|
||||
all_results: Dict) -> List[Dict]:
|
||||
"""
|
||||
Generate summary table per strategy
|
||||
Generate summary per strategy
|
||||
:param stake_currency: stake-currency - used to correctly name headers
|
||||
:param max_open_trades: Maximum allowed open trades used for backtest
|
||||
:param all_results: Dict of <Strategyname: BacktestResult> containing results for all strategies
|
||||
:return: pretty printed table with tabulate as string
|
||||
:return: List of Dicts containing the metrics per Strategy
|
||||
"""
|
||||
|
||||
floatfmt = ('s', 'd', '.2f', '.2f', '.8f', '.2f', 'd', '.1f', '.1f')
|
||||
tabular_data = []
|
||||
headers = ['Strategy', 'Buys', 'Avg Profit %', 'Cum Profit %',
|
||||
f'Tot Profit {stake_currency}', 'Tot Profit %', 'Avg Duration',
|
||||
'Wins', 'Draws', 'Losses']
|
||||
for strategy, results in all_results.items():
|
||||
tabular_data.append([
|
||||
strategy,
|
||||
len(results.index),
|
||||
results.profit_percent.mean() * 100.0,
|
||||
results.profit_percent.sum() * 100.0,
|
||||
results.profit_abs.sum(),
|
||||
results.profit_percent.sum() * 100.0 / max_open_trades,
|
||||
str(timedelta(
|
||||
minutes=round(results.trade_duration.mean()))) if not results.empty else '0:00',
|
||||
len(results[results.profit_abs > 0]),
|
||||
len(results[results.profit_abs == 0]),
|
||||
len(results[results.profit_abs < 0])
|
||||
])
|
||||
# Ignore type as floatfmt does allow tuples but mypy does not know that
|
||||
return tabulate(tabular_data, headers=headers,
|
||||
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right") # type: ignore
|
||||
tabular_data.append(_generate_result_line(results, max_open_trades, strategy))
|
||||
return tabular_data
|
||||
|
||||
|
||||
def generate_edge_table(results: dict) -> str:
|
||||
|
||||
floatfmt = ('s', '.10g', '.2f', '.2f', '.2f', '.2f', 'd', '.d')
|
||||
floatfmt = ('s', '.10g', '.2f', '.2f', '.2f', '.2f', 'd', 'd', 'd')
|
||||
tabular_data = []
|
||||
headers = ['Pair', 'Stoploss', 'Win Rate', 'Risk Reward Ratio',
|
||||
'Required Risk Reward', 'Expectancy', 'Total Number of Trades',
|
||||
@@ -204,40 +184,264 @@ def generate_edge_table(results: dict) -> str:
|
||||
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right") # type: ignore
|
||||
|
||||
|
||||
def show_backtest_results(config: Dict, btdata: Dict[str, DataFrame],
|
||||
all_results: Dict[str, DataFrame]):
|
||||
def generate_daily_stats(results: DataFrame) -> Dict[str, Any]:
|
||||
if len(results) == 0:
|
||||
return {
|
||||
'backtest_best_day': 0,
|
||||
'backtest_worst_day': 0,
|
||||
'winning_days': 0,
|
||||
'draw_days': 0,
|
||||
'losing_days': 0,
|
||||
'winner_holding_avg': timedelta(),
|
||||
'loser_holding_avg': timedelta(),
|
||||
}
|
||||
daily_profit = results.resample('1d', on='close_date')['profit_percent'].sum()
|
||||
worst = min(daily_profit)
|
||||
best = max(daily_profit)
|
||||
winning_days = sum(daily_profit > 0)
|
||||
draw_days = sum(daily_profit == 0)
|
||||
losing_days = sum(daily_profit < 0)
|
||||
|
||||
winning_trades = results.loc[results['profit_percent'] > 0]
|
||||
losing_trades = results.loc[results['profit_percent'] < 0]
|
||||
|
||||
return {
|
||||
'backtest_best_day': best,
|
||||
'backtest_worst_day': worst,
|
||||
'winning_days': winning_days,
|
||||
'draw_days': draw_days,
|
||||
'losing_days': losing_days,
|
||||
'winner_holding_avg': (timedelta(minutes=round(winning_trades['trade_duration'].mean()))
|
||||
if not winning_trades.empty else timedelta()),
|
||||
'loser_holding_avg': (timedelta(minutes=round(losing_trades['trade_duration'].mean()))
|
||||
if not losing_trades.empty else timedelta()),
|
||||
}
|
||||
|
||||
|
||||
def generate_backtest_stats(config: Dict, btdata: Dict[str, DataFrame],
|
||||
all_results: Dict[str, DataFrame],
|
||||
min_date: Arrow, max_date: Arrow
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
:param config: Configuration object used for backtest
|
||||
:param btdata: Backtest data
|
||||
:param all_results: backtest result - dictionary with { Strategy: results}.
|
||||
:param min_date: Backtest start date
|
||||
:param max_date: Backtest end date
|
||||
:return:
|
||||
Dictionary containing results per strategy and a stratgy summary.
|
||||
"""
|
||||
stake_currency = config['stake_currency']
|
||||
max_open_trades = config['max_open_trades']
|
||||
result: Dict[str, Any] = {'strategy': {}}
|
||||
market_change = calculate_market_change(btdata, 'close')
|
||||
|
||||
for strategy, results in all_results.items():
|
||||
|
||||
pair_results = generate_pair_metrics(btdata, stake_currency=stake_currency,
|
||||
max_open_trades=max_open_trades,
|
||||
results=results, skip_nan=False)
|
||||
sell_reason_stats = generate_sell_reason_stats(max_open_trades=max_open_trades,
|
||||
results=results)
|
||||
left_open_results = generate_pair_metrics(btdata, stake_currency=stake_currency,
|
||||
max_open_trades=max_open_trades,
|
||||
results=results.loc[results['open_at_end']],
|
||||
skip_nan=True)
|
||||
daily_stats = generate_daily_stats(results)
|
||||
|
||||
results['open_timestamp'] = results['open_date'].astype(int64) // 1e6
|
||||
results['close_timestamp'] = results['close_date'].astype(int64) // 1e6
|
||||
|
||||
backtest_days = (max_date - min_date).days
|
||||
strat_stats = {
|
||||
'trades': results.to_dict(orient='records'),
|
||||
'results_per_pair': pair_results,
|
||||
'sell_reason_summary': sell_reason_stats,
|
||||
'left_open_trades': left_open_results,
|
||||
'total_trades': len(results),
|
||||
'profit_mean': results['profit_percent'].mean() if len(results) > 0 else 0,
|
||||
'profit_total': results['profit_percent'].sum(),
|
||||
'profit_total_abs': results['profit_abs'].sum(),
|
||||
'backtest_start': min_date.datetime,
|
||||
'backtest_start_ts': min_date.timestamp * 1000,
|
||||
'backtest_end': max_date.datetime,
|
||||
'backtest_end_ts': max_date.timestamp * 1000,
|
||||
'backtest_days': backtest_days,
|
||||
|
||||
'trades_per_day': round(len(results) / backtest_days, 2) if backtest_days > 0 else 0,
|
||||
'market_change': market_change,
|
||||
'pairlist': list(btdata.keys()),
|
||||
'stake_amount': config['stake_amount'],
|
||||
'stake_currency': config['stake_currency'],
|
||||
'max_open_trades': (config['max_open_trades']
|
||||
if config['max_open_trades'] != float('inf') else -1),
|
||||
'timeframe': config['timeframe'],
|
||||
**daily_stats,
|
||||
}
|
||||
result['strategy'][strategy] = strat_stats
|
||||
|
||||
try:
|
||||
max_drawdown, drawdown_start, drawdown_end = calculate_max_drawdown(
|
||||
results, value_col='profit_percent')
|
||||
strat_stats.update({
|
||||
'max_drawdown': max_drawdown,
|
||||
'drawdown_start': drawdown_start,
|
||||
'drawdown_start_ts': drawdown_start.timestamp() * 1000,
|
||||
'drawdown_end': drawdown_end,
|
||||
'drawdown_end_ts': drawdown_end.timestamp() * 1000,
|
||||
})
|
||||
except ValueError:
|
||||
strat_stats.update({
|
||||
'max_drawdown': 0.0,
|
||||
'drawdown_start': datetime(1970, 1, 1, tzinfo=timezone.utc),
|
||||
'drawdown_start_ts': 0,
|
||||
'drawdown_end': datetime(1970, 1, 1, tzinfo=timezone.utc),
|
||||
'drawdown_end_ts': 0,
|
||||
})
|
||||
|
||||
strategy_results = generate_strategy_metrics(stake_currency=stake_currency,
|
||||
max_open_trades=max_open_trades,
|
||||
all_results=all_results)
|
||||
|
||||
result['strategy_comparison'] = strategy_results
|
||||
|
||||
return result
|
||||
|
||||
|
||||
###
|
||||
# Start output section
|
||||
###
|
||||
|
||||
def text_table_bt_results(pair_results: List[Dict[str, Any]], stake_currency: str) -> str:
|
||||
"""
|
||||
Generates and returns a text table for the given backtest data and the results dataframe
|
||||
:param pair_results: List of Dictionaries - one entry per pair + final TOTAL row
|
||||
:param stake_currency: stake-currency - used to correctly name headers
|
||||
:return: pretty printed table with tabulate as string
|
||||
"""
|
||||
|
||||
headers = _get_line_header('Pair', stake_currency)
|
||||
floatfmt = _get_line_floatfmt()
|
||||
output = [[
|
||||
t['key'], t['trades'], t['profit_mean_pct'], t['profit_sum_pct'], t['profit_total_abs'],
|
||||
t['profit_total_pct'], t['duration_avg'], t['wins'], t['draws'], t['losses']
|
||||
] for t in pair_results]
|
||||
# Ignore type as floatfmt does allow tuples but mypy does not know that
|
||||
return tabulate(output, headers=headers,
|
||||
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right")
|
||||
|
||||
|
||||
def text_table_sell_reason(sell_reason_stats: List[Dict[str, Any]], stake_currency: str) -> str:
|
||||
"""
|
||||
Generate small table outlining Backtest results
|
||||
:param sell_reason_stats: Sell reason metrics
|
||||
:param stake_currency: Stakecurrency used
|
||||
:return: pretty printed table with tabulate as string
|
||||
"""
|
||||
headers = [
|
||||
'Sell Reason',
|
||||
'Sells',
|
||||
'Wins',
|
||||
'Draws',
|
||||
'Losses',
|
||||
'Avg Profit %',
|
||||
'Cum Profit %',
|
||||
f'Tot Profit {stake_currency}',
|
||||
'Tot Profit %',
|
||||
]
|
||||
|
||||
output = [[
|
||||
t['sell_reason'], t['trades'], t['wins'], t['draws'], t['losses'],
|
||||
t['profit_mean_pct'], t['profit_sum_pct'], t['profit_total_abs'], t['profit_total_pct'],
|
||||
] for t in sell_reason_stats]
|
||||
return tabulate(output, headers=headers, tablefmt="orgtbl", stralign="right")
|
||||
|
||||
|
||||
def text_table_strategy(strategy_results, stake_currency: str) -> str:
|
||||
"""
|
||||
Generate summary table per strategy
|
||||
:param stake_currency: stake-currency - used to correctly name headers
|
||||
:param max_open_trades: Maximum allowed open trades used for backtest
|
||||
:param all_results: Dict of <Strategyname: BacktestResult> containing results for all strategies
|
||||
:return: pretty printed table with tabulate as string
|
||||
"""
|
||||
floatfmt = _get_line_floatfmt()
|
||||
headers = _get_line_header('Strategy', stake_currency)
|
||||
|
||||
output = [[
|
||||
t['key'], t['trades'], t['profit_mean_pct'], t['profit_sum_pct'], t['profit_total_abs'],
|
||||
t['profit_total_pct'], t['duration_avg'], t['wins'], t['draws'], t['losses']
|
||||
] for t in strategy_results]
|
||||
# Ignore type as floatfmt does allow tuples but mypy does not know that
|
||||
return tabulate(output, headers=headers,
|
||||
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right")
|
||||
|
||||
|
||||
def text_table_add_metrics(strat_results: Dict) -> str:
|
||||
if len(strat_results['trades']) > 0:
|
||||
min_trade = min(strat_results['trades'], key=lambda x: x['open_date'])
|
||||
metrics = [
|
||||
('Backtesting from', strat_results['backtest_start'].strftime(DATETIME_PRINT_FORMAT)),
|
||||
('Backtesting to', strat_results['backtest_end'].strftime(DATETIME_PRINT_FORMAT)),
|
||||
('Total trades', strat_results['total_trades']),
|
||||
('First trade', min_trade['open_date'].strftime(DATETIME_PRINT_FORMAT)),
|
||||
('First trade Pair', min_trade['pair']),
|
||||
('Total Profit %', f"{round(strat_results['profit_total'] * 100, 2)}%"),
|
||||
('Trades per day', strat_results['trades_per_day']),
|
||||
('Best day', f"{round(strat_results['backtest_best_day'] * 100, 2)}%"),
|
||||
('Worst day', f"{round(strat_results['backtest_worst_day'] * 100, 2)}%"),
|
||||
('Days win/draw/lose', f"{strat_results['winning_days']} / "
|
||||
f"{strat_results['draw_days']} / {strat_results['losing_days']}"),
|
||||
('Avg. Duration Winners', f"{strat_results['winner_holding_avg']}"),
|
||||
('Avg. Duration Loser', f"{strat_results['loser_holding_avg']}"),
|
||||
('', ''), # Empty line to improve readability
|
||||
('Max Drawdown', f"{round(strat_results['max_drawdown'] * 100, 2)}%"),
|
||||
('Drawdown Start', strat_results['drawdown_start'].strftime(DATETIME_PRINT_FORMAT)),
|
||||
('Drawdown End', strat_results['drawdown_end'].strftime(DATETIME_PRINT_FORMAT)),
|
||||
('Market change', f"{round(strat_results['market_change'] * 100, 2)}%"),
|
||||
]
|
||||
|
||||
return tabulate(metrics, headers=["Metric", "Value"], tablefmt="orgtbl")
|
||||
else:
|
||||
return ''
|
||||
|
||||
|
||||
def show_backtest_results(config: Dict, backtest_stats: Dict):
|
||||
stake_currency = config['stake_currency']
|
||||
|
||||
for strategy, results in backtest_stats['strategy'].items():
|
||||
|
||||
# Print results
|
||||
print(f"Result for strategy {strategy}")
|
||||
table = generate_text_table(btdata, stake_currency=config['stake_currency'],
|
||||
max_open_trades=config['max_open_trades'],
|
||||
results=results)
|
||||
table = text_table_bt_results(results['results_per_pair'], stake_currency=stake_currency)
|
||||
if isinstance(table, str):
|
||||
print(' BACKTESTING REPORT '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
|
||||
table = generate_text_table_sell_reason(stake_currency=config['stake_currency'],
|
||||
max_open_trades=config['max_open_trades'],
|
||||
results=results)
|
||||
if isinstance(table, str):
|
||||
table = text_table_sell_reason(sell_reason_stats=results['sell_reason_summary'],
|
||||
stake_currency=stake_currency)
|
||||
if isinstance(table, str) and len(table) > 0:
|
||||
print(' SELL REASON STATS '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
|
||||
table = generate_text_table(btdata,
|
||||
stake_currency=config['stake_currency'],
|
||||
max_open_trades=config['max_open_trades'],
|
||||
results=results.loc[results.open_at_end], skip_nan=True)
|
||||
if isinstance(table, str):
|
||||
table = text_table_bt_results(results['left_open_trades'], stake_currency=stake_currency)
|
||||
if isinstance(table, str) and len(table) > 0:
|
||||
print(' LEFT OPEN TRADES REPORT '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
if isinstance(table, str):
|
||||
|
||||
table = text_table_add_metrics(results)
|
||||
if isinstance(table, str) and len(table) > 0:
|
||||
print(' SUMMARY METRICS '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
|
||||
if isinstance(table, str) and len(table) > 0:
|
||||
print('=' * len(table.splitlines()[0]))
|
||||
print()
|
||||
if len(all_results) > 1:
|
||||
|
||||
if len(backtest_stats['strategy']) > 1:
|
||||
# Print Strategy summary table
|
||||
table = generate_text_table_strategy(config['stake_currency'],
|
||||
config['max_open_trades'],
|
||||
all_results=all_results)
|
||||
|
||||
table = text_table_strategy(backtest_stats['strategy_comparison'], stake_currency)
|
||||
print(' STRATEGY SUMMARY '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
print('=' * len(table.splitlines()[0]))
|
||||
|
83
freqtrade/pairlist/AgeFilter.py
Normal file
83
freqtrade/pairlist/AgeFilter.py
Normal file
@@ -0,0 +1,83 @@
|
||||
"""
|
||||
Minimum age (days listed) pair list filter
|
||||
"""
|
||||
import logging
|
||||
import arrow
|
||||
from typing import Any, Dict
|
||||
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.misc import plural
|
||||
from freqtrade.pairlist.IPairList import IPairList
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AgeFilter(IPairList):
|
||||
|
||||
# Checked symbols cache (dictionary of ticker symbol => timestamp)
|
||||
_symbolsChecked: Dict[str, int] = {}
|
||||
|
||||
def __init__(self, exchange, pairlistmanager,
|
||||
config: Dict[str, Any], pairlistconfig: Dict[str, Any],
|
||||
pairlist_pos: int) -> None:
|
||||
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
|
||||
|
||||
self._min_days_listed = pairlistconfig.get('min_days_listed', 10)
|
||||
|
||||
if self._min_days_listed < 1:
|
||||
raise OperationalException("AgeFilter requires min_days_listed to be >= 1")
|
||||
if self._min_days_listed > exchange.ohlcv_candle_limit:
|
||||
raise OperationalException("AgeFilter requires min_days_listed to not exceed "
|
||||
"exchange max request size "
|
||||
f"({exchange.ohlcv_candle_limit})")
|
||||
|
||||
@property
|
||||
def needstickers(self) -> bool:
|
||||
"""
|
||||
Boolean property defining if tickers are necessary.
|
||||
If no Pairlist requires tickers, an empty List is passed
|
||||
as tickers argument to filter_pairlist
|
||||
"""
|
||||
return True
|
||||
|
||||
def short_desc(self) -> str:
|
||||
"""
|
||||
Short whitelist method description - used for startup-messages
|
||||
"""
|
||||
return (f"{self.name} - Filtering pairs with age less than "
|
||||
f"{self._min_days_listed} {plural(self._min_days_listed, 'day')}.")
|
||||
|
||||
def _validate_pair(self, ticker: dict) -> bool:
|
||||
"""
|
||||
Validate age for the ticker
|
||||
:param ticker: ticker dict as returned from ccxt.load_markets()
|
||||
:return: True if the pair can stay, False if it should be removed
|
||||
"""
|
||||
|
||||
# Check symbol in cache
|
||||
if ticker['symbol'] in self._symbolsChecked:
|
||||
return True
|
||||
|
||||
since_ms = int(arrow.utcnow()
|
||||
.floor('day')
|
||||
.shift(days=-self._min_days_listed)
|
||||
.float_timestamp) * 1000
|
||||
|
||||
daily_candles = self._exchange.get_historic_ohlcv(pair=ticker['symbol'],
|
||||
timeframe='1d',
|
||||
since_ms=since_ms)
|
||||
|
||||
if daily_candles is not None:
|
||||
if len(daily_candles) > self._min_days_listed:
|
||||
# We have fetched at least the minimum required number of daily candles
|
||||
# Add to cache, store the time we last checked this symbol
|
||||
self._symbolsChecked[ticker['symbol']] = int(arrow.utcnow().float_timestamp) * 1000
|
||||
return True
|
||||
else:
|
||||
self.log_on_refresh(logger.info, f"Removed {ticker['symbol']} from whitelist, "
|
||||
f"because age {len(daily_candles)} is less than "
|
||||
f"{self._min_days_listed} "
|
||||
f"{plural(self._min_days_listed, 'day')}")
|
||||
return False
|
||||
return False
|
@@ -3,10 +3,12 @@ PairList Handler base class
|
||||
"""
|
||||
import logging
|
||||
from abc import ABC, abstractmethod, abstractproperty
|
||||
from copy import deepcopy
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from cachetools import TTLCache, cached
|
||||
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import market_is_active
|
||||
|
||||
|
||||
@@ -25,6 +27,8 @@ class IPairList(ABC):
|
||||
:param pairlistconfig: Configuration for this Pairlist Handler - can be empty.
|
||||
:param pairlist_pos: Position of the Pairlist Handler in the chain
|
||||
"""
|
||||
self._enabled = True
|
||||
|
||||
self._exchange = exchange
|
||||
self._pairlistmanager = pairlistmanager
|
||||
self._config = config
|
||||
@@ -64,7 +68,7 @@ class IPairList(ABC):
|
||||
def needstickers(self) -> bool:
|
||||
"""
|
||||
Boolean property defining if tickers are necessary.
|
||||
If no Pairlist requries tickers, an empty List is passed
|
||||
If no Pairlist requires tickers, an empty List is passed
|
||||
as tickers argument to filter_pairlist
|
||||
"""
|
||||
|
||||
@@ -75,16 +79,59 @@ class IPairList(ABC):
|
||||
-> Please overwrite in subclasses
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def _validate_pair(self, ticker) -> bool:
|
||||
"""
|
||||
Check one pair against Pairlist Handler's specific conditions.
|
||||
|
||||
Either implement it in the Pairlist Handler or override the generic
|
||||
filter_pairlist() method.
|
||||
|
||||
:param ticker: ticker dict as returned from ccxt.load_markets()
|
||||
:return: True if the pair can stay, false if it should be removed
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def gen_pairlist(self, cached_pairlist: List[str], tickers: Dict) -> List[str]:
|
||||
"""
|
||||
Generate the pairlist.
|
||||
|
||||
This method is called once by the pairlistmanager in the refresh_pairlist()
|
||||
method to supply the starting pairlist for the chain of the Pairlist Handlers.
|
||||
Pairlist Filters (those Pairlist Handlers that cannot be used at the first
|
||||
position in the chain) shall not override this base implementation --
|
||||
it will raise the exception if a Pairlist Handler is used at the first
|
||||
position in the chain.
|
||||
|
||||
:param cached_pairlist: Previously generated pairlist (cached)
|
||||
:param tickers: Tickers (from exchange.get_tickers()).
|
||||
:return: List of pairs
|
||||
"""
|
||||
raise OperationalException("This Pairlist Handler should not be used "
|
||||
"at the first position in the list of Pairlist Handlers.")
|
||||
|
||||
def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]:
|
||||
"""
|
||||
Filters and sorts pairlist and returns the whitelist again.
|
||||
|
||||
Called on each bot iteration - please use internal caching if necessary
|
||||
-> Please overwrite in subclasses
|
||||
This generic implementation calls self._validate_pair() for each pair
|
||||
in the pairlist.
|
||||
|
||||
Some Pairlist Handlers override this generic implementation and employ
|
||||
own filtration.
|
||||
|
||||
:param pairlist: pairlist to filter or sort
|
||||
:param tickers: Tickers (from exchange.get_tickers()). May be cached.
|
||||
:return: new whitelist
|
||||
"""
|
||||
if self._enabled:
|
||||
# Copy list since we're modifying this list
|
||||
for p in deepcopy(pairlist):
|
||||
# Filter out assets
|
||||
if not self._validate_pair(tickers[p]):
|
||||
pairlist.remove(p)
|
||||
|
||||
return pairlist
|
||||
|
||||
def verify_blacklist(self, pairlist: List[str], logmethod) -> List[str]:
|
||||
"""
|
||||
@@ -103,6 +150,9 @@ class IPairList(ABC):
|
||||
black_listed
|
||||
"""
|
||||
markets = self._exchange.markets
|
||||
if not markets:
|
||||
raise OperationalException(
|
||||
'Markets not loaded. Make sure that exchange is initialized correctly.')
|
||||
|
||||
sanitized_whitelist: List[str] = []
|
||||
for pair in pairlist:
|
||||
@@ -112,6 +162,11 @@ class IPairList(ABC):
|
||||
f"{self._exchange.name}. Removing it from whitelist..")
|
||||
continue
|
||||
|
||||
if not self._exchange.market_is_tradable(markets[pair]):
|
||||
logger.warning(f"Pair {pair} is not tradable with Freqtrade."
|
||||
"Removing it from whitelist..")
|
||||
continue
|
||||
|
||||
if self._exchange.get_pair_quote_currency(pair) != self._config['stake_currency']:
|
||||
logger.warning(f"Pair {pair} is not compatible with your stake currency "
|
||||
f"{self._config['stake_currency']}. Removing it from whitelist..")
|
||||
|
@@ -2,11 +2,10 @@
|
||||
Precision pair list filter
|
||||
"""
|
||||
import logging
|
||||
from copy import deepcopy
|
||||
from typing import Any, Dict, List
|
||||
from typing import Any, Dict
|
||||
|
||||
from freqtrade.pairlist.IPairList import IPairList
|
||||
|
||||
from freqtrade.exceptions import OperationalException
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -18,14 +17,21 @@ class PrecisionFilter(IPairList):
|
||||
pairlist_pos: int) -> None:
|
||||
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
|
||||
|
||||
if 'stoploss' not in self._config:
|
||||
raise OperationalException(
|
||||
'PrecisionFilter can only work with stoploss defined. Please add the '
|
||||
'stoploss key to your configuration (overwrites eventual strategy settings).')
|
||||
self._stoploss = self._config['stoploss']
|
||||
self._enabled = self._stoploss != 0
|
||||
|
||||
# Precalculate sanitized stoploss value to avoid recalculation for every pair
|
||||
self._stoploss = 1 - abs(self._config['stoploss'])
|
||||
self._stoploss = 1 - abs(self._stoploss)
|
||||
|
||||
@property
|
||||
def needstickers(self) -> bool:
|
||||
"""
|
||||
Boolean property defining if tickers are necessary.
|
||||
If no Pairlist requries tickers, an empty List is passed
|
||||
If no Pairlist requires tickers, an empty List is passed
|
||||
as tickers argument to filter_pairlist
|
||||
"""
|
||||
return True
|
||||
@@ -36,16 +42,14 @@ class PrecisionFilter(IPairList):
|
||||
"""
|
||||
return f"{self.name} - Filtering untradable pairs."
|
||||
|
||||
def _validate_precision_filter(self, ticker: dict, stoploss: float) -> bool:
|
||||
def _validate_pair(self, ticker: dict) -> bool:
|
||||
"""
|
||||
Check if pair has enough room to add a stoploss to avoid "unsellable" buys of very
|
||||
low value pairs.
|
||||
:param ticker: ticker dict as returned from ccxt.load_markets()
|
||||
:param stoploss: stoploss value as set in the configuration
|
||||
(already cleaned to be 1 - stoploss)
|
||||
:return: True if the pair can stay, False if it should be removed
|
||||
"""
|
||||
stop_price = ticker['ask'] * stoploss
|
||||
stop_price = ticker['ask'] * self._stoploss
|
||||
|
||||
# Adjust stop-prices to precision
|
||||
sp = self._exchange.price_to_precision(ticker["symbol"], stop_price)
|
||||
@@ -60,15 +64,3 @@ class PrecisionFilter(IPairList):
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]:
|
||||
"""
|
||||
Filters and sorts pairlists and assigns and returns them again.
|
||||
"""
|
||||
# Copy list since we're modifying this list
|
||||
for p in deepcopy(pairlist):
|
||||
# Filter out assets which would not allow setting a stoploss
|
||||
if not self._validate_precision_filter(tickers[p], self._stoploss):
|
||||
pairlist.remove(p)
|
||||
|
||||
return pairlist
|
||||
|
@@ -2,9 +2,9 @@
|
||||
Price pair list filter
|
||||
"""
|
||||
import logging
|
||||
from copy import deepcopy
|
||||
from typing import Any, Dict, List
|
||||
from typing import Any, Dict
|
||||
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.pairlist.IPairList import IPairList
|
||||
|
||||
|
||||
@@ -19,12 +19,23 @@ class PriceFilter(IPairList):
|
||||
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
|
||||
|
||||
self._low_price_ratio = pairlistconfig.get('low_price_ratio', 0)
|
||||
if self._low_price_ratio < 0:
|
||||
raise OperationalException("PriceFilter requires low_price_ratio to be >= 0")
|
||||
self._min_price = pairlistconfig.get('min_price', 0)
|
||||
if self._min_price < 0:
|
||||
raise OperationalException("PriceFilter requires min_price to be >= 0")
|
||||
self._max_price = pairlistconfig.get('max_price', 0)
|
||||
if self._max_price < 0:
|
||||
raise OperationalException("PriceFilter requires max_price to be >= 0")
|
||||
self._enabled = ((self._low_price_ratio > 0) or
|
||||
(self._min_price > 0) or
|
||||
(self._max_price > 0))
|
||||
|
||||
@property
|
||||
def needstickers(self) -> bool:
|
||||
"""
|
||||
Boolean property defining if tickers are necessary.
|
||||
If no Pairlist requries tickers, an empty List is passed
|
||||
If no Pairlist requires tickers, an empty List is passed
|
||||
as tickers argument to filter_pairlist
|
||||
"""
|
||||
return True
|
||||
@@ -33,40 +44,52 @@ class PriceFilter(IPairList):
|
||||
"""
|
||||
Short whitelist method description - used for startup-messages
|
||||
"""
|
||||
return f"{self.name} - Filtering pairs priced below {self._low_price_ratio * 100}%."
|
||||
active_price_filters = []
|
||||
if self._low_price_ratio != 0:
|
||||
active_price_filters.append(f"below {self._low_price_ratio * 100}%")
|
||||
if self._min_price != 0:
|
||||
active_price_filters.append(f"below {self._min_price:.8f}")
|
||||
if self._max_price != 0:
|
||||
active_price_filters.append(f"above {self._max_price:.8f}")
|
||||
|
||||
def _validate_ticker_lowprice(self, ticker) -> bool:
|
||||
if len(active_price_filters):
|
||||
return f"{self.name} - Filtering pairs priced {' or '.join(active_price_filters)}."
|
||||
|
||||
return f"{self.name} - No price filters configured."
|
||||
|
||||
def _validate_pair(self, ticker) -> bool:
|
||||
"""
|
||||
Check if if one price-step (pip) is > than a certain barrier.
|
||||
:param ticker: ticker dict as returned from ccxt.load_markets()
|
||||
:return: True if the pair can stay, false if it should be removed
|
||||
"""
|
||||
if ticker['last'] is None:
|
||||
if ticker['last'] is None or ticker['last'] == 0:
|
||||
self.log_on_refresh(logger.info,
|
||||
f"Removed {ticker['symbol']} from whitelist, because "
|
||||
"ticker['last'] is empty (Usually no trade in the last 24h).")
|
||||
return False
|
||||
compare = self._exchange.price_get_one_pip(ticker['symbol'], ticker['last'])
|
||||
changeperc = compare / ticker['last']
|
||||
if changeperc > self._low_price_ratio:
|
||||
self.log_on_refresh(logger.info, f"Removed {ticker['symbol']} from whitelist, "
|
||||
f"because 1 unit is {changeperc * 100:.3f}%")
|
||||
return False
|
||||
|
||||
# Perform low_price_ratio check.
|
||||
if self._low_price_ratio != 0:
|
||||
compare = self._exchange.price_get_one_pip(ticker['symbol'], ticker['last'])
|
||||
changeperc = compare / ticker['last']
|
||||
if changeperc > self._low_price_ratio:
|
||||
self.log_on_refresh(logger.info, f"Removed {ticker['symbol']} from whitelist, "
|
||||
f"because 1 unit is {changeperc * 100:.3f}%")
|
||||
return False
|
||||
|
||||
# Perform min_price check.
|
||||
if self._min_price != 0:
|
||||
if ticker['last'] < self._min_price:
|
||||
self.log_on_refresh(logger.info, f"Removed {ticker['symbol']} from whitelist, "
|
||||
f"because last price < {self._min_price:.8f}")
|
||||
return False
|
||||
|
||||
# Perform max_price check.
|
||||
if self._max_price != 0:
|
||||
if ticker['last'] > self._max_price:
|
||||
self.log_on_refresh(logger.info, f"Removed {ticker['symbol']} from whitelist, "
|
||||
f"because last price > {self._max_price:.8f}")
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]:
|
||||
"""
|
||||
Filters and sorts pairlist and returns the whitelist again.
|
||||
Called on each bot iteration - please use internal caching if necessary
|
||||
:param pairlist: pairlist to filter or sort
|
||||
:param tickers: Tickers (from exchange.get_tickers()). May be cached.
|
||||
:return: new whitelist
|
||||
"""
|
||||
if self._low_price_ratio:
|
||||
# Copy list since we're modifying this list
|
||||
for p in deepcopy(pairlist):
|
||||
# Filter out assets which would not allow setting a stoploss
|
||||
if not self._validate_ticker_lowprice(tickers[p]):
|
||||
pairlist.remove(p)
|
||||
|
||||
return pairlist
|
||||
|
@@ -3,7 +3,7 @@ Shuffle pair list filter
|
||||
"""
|
||||
import logging
|
||||
import random
|
||||
from typing import Dict, List
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from freqtrade.pairlist.IPairList import IPairList
|
||||
|
||||
@@ -13,7 +13,8 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
class ShuffleFilter(IPairList):
|
||||
|
||||
def __init__(self, exchange, pairlistmanager, config, pairlistconfig: dict,
|
||||
def __init__(self, exchange, pairlistmanager,
|
||||
config: Dict[str, Any], pairlistconfig: Dict[str, Any],
|
||||
pairlist_pos: int) -> None:
|
||||
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
|
||||
|
||||
@@ -24,7 +25,7 @@ class ShuffleFilter(IPairList):
|
||||
def needstickers(self) -> bool:
|
||||
"""
|
||||
Boolean property defining if tickers are necessary.
|
||||
If no Pairlist requries tickers, an empty List is passed
|
||||
If no Pairlist requires tickers, an empty List is passed
|
||||
as tickers argument to filter_pairlist
|
||||
"""
|
||||
return False
|
||||
|
@@ -2,8 +2,7 @@
|
||||
Spread pair list filter
|
||||
"""
|
||||
import logging
|
||||
from copy import deepcopy
|
||||
from typing import Dict, List
|
||||
from typing import Any, Dict
|
||||
|
||||
from freqtrade.pairlist.IPairList import IPairList
|
||||
|
||||
@@ -13,17 +12,19 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
class SpreadFilter(IPairList):
|
||||
|
||||
def __init__(self, exchange, pairlistmanager, config, pairlistconfig: dict,
|
||||
def __init__(self, exchange, pairlistmanager,
|
||||
config: Dict[str, Any], pairlistconfig: Dict[str, Any],
|
||||
pairlist_pos: int) -> None:
|
||||
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
|
||||
|
||||
self._max_spread_ratio = pairlistconfig.get('max_spread_ratio', 0.005)
|
||||
self._enabled = self._max_spread_ratio != 0
|
||||
|
||||
@property
|
||||
def needstickers(self) -> bool:
|
||||
"""
|
||||
Boolean property defining if tickers are necessary.
|
||||
If no Pairlist requries tickers, an empty List is passed
|
||||
If no Pairlist requires tickers, an empty List is passed
|
||||
as tickers argument to filter_pairlist
|
||||
"""
|
||||
return True
|
||||
@@ -35,7 +36,7 @@ class SpreadFilter(IPairList):
|
||||
return (f"{self.name} - Filtering pairs with ask/bid diff above "
|
||||
f"{self._max_spread_ratio * 100}%.")
|
||||
|
||||
def _validate_spread(self, ticker: dict) -> bool:
|
||||
def _validate_pair(self, ticker: dict) -> bool:
|
||||
"""
|
||||
Validate spread for the ticker
|
||||
:param ticker: ticker dict as returned from ccxt.load_markets()
|
||||
@@ -51,20 +52,3 @@ class SpreadFilter(IPairList):
|
||||
else:
|
||||
return True
|
||||
return False
|
||||
|
||||
def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]:
|
||||
"""
|
||||
Filters and sorts pairlist and returns the whitelist again.
|
||||
Called on each bot iteration - please use internal caching if necessary
|
||||
:param pairlist: pairlist to filter or sort
|
||||
:param tickers: Tickers (from exchange.get_tickers()). May be cached.
|
||||
:return: new whitelist
|
||||
"""
|
||||
# Copy list since we're modifying this list
|
||||
for p in deepcopy(pairlist):
|
||||
ticker = tickers[p]
|
||||
# Filter out assets
|
||||
if not self._validate_spread(ticker):
|
||||
pairlist.remove(p)
|
||||
|
||||
return pairlist
|
||||
|
@@ -4,8 +4,9 @@ Static Pair List provider
|
||||
Provides pair white list as it configured in config
|
||||
"""
|
||||
import logging
|
||||
from typing import Dict, List
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.pairlist.IPairList import IPairList
|
||||
|
||||
|
||||
@@ -14,11 +15,20 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
class StaticPairList(IPairList):
|
||||
|
||||
def __init__(self, exchange, pairlistmanager,
|
||||
config: Dict[str, Any], pairlistconfig: Dict[str, Any],
|
||||
pairlist_pos: int) -> None:
|
||||
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
|
||||
|
||||
if self._pairlist_pos != 0:
|
||||
raise OperationalException(f"{self.name} can only be used in the first position "
|
||||
"in the list of Pairlist Handlers.")
|
||||
|
||||
@property
|
||||
def needstickers(self) -> bool:
|
||||
"""
|
||||
Boolean property defining if tickers are necessary.
|
||||
If no Pairlist requries tickers, an empty List is passed
|
||||
If no Pairlist requires tickers, an empty List is passed
|
||||
as tickers argument to filter_pairlist
|
||||
"""
|
||||
return False
|
||||
@@ -30,6 +40,15 @@ class StaticPairList(IPairList):
|
||||
"""
|
||||
return f"{self.name}"
|
||||
|
||||
def gen_pairlist(self, cached_pairlist: List[str], tickers: Dict) -> List[str]:
|
||||
"""
|
||||
Generate the pairlist
|
||||
:param cached_pairlist: Previously generated pairlist (cached)
|
||||
:param tickers: Tickers (from exchange.get_tickers()).
|
||||
:return: List of pairs
|
||||
"""
|
||||
return self._whitelist_for_active_markets(self._config['exchange']['pair_whitelist'])
|
||||
|
||||
def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]:
|
||||
"""
|
||||
Filters and sorts pairlist and returns the whitelist again.
|
||||
@@ -38,4 +57,4 @@ class StaticPairList(IPairList):
|
||||
:param tickers: Tickers (from exchange.get_tickers()). May be cached.
|
||||
:return: new whitelist
|
||||
"""
|
||||
return self._whitelist_for_active_markets(self._config['exchange']['pair_whitelist'])
|
||||
return pairlist
|
||||
|
@@ -19,7 +19,8 @@ SORT_VALUES = ['askVolume', 'bidVolume', 'quoteVolume']
|
||||
|
||||
class VolumePairList(IPairList):
|
||||
|
||||
def __init__(self, exchange, pairlistmanager, config: Dict[str, Any], pairlistconfig: dict,
|
||||
def __init__(self, exchange, pairlistmanager,
|
||||
config: Dict[str, Any], pairlistconfig: Dict[str, Any],
|
||||
pairlist_pos: int) -> None:
|
||||
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
|
||||
|
||||
@@ -36,8 +37,8 @@ class VolumePairList(IPairList):
|
||||
|
||||
if not self._exchange.exchange_has('fetchTickers'):
|
||||
raise OperationalException(
|
||||
'Exchange does not support dynamic whitelist.'
|
||||
'Please edit your config and restart the bot'
|
||||
'Exchange does not support dynamic whitelist. '
|
||||
'Please edit your config and restart the bot.'
|
||||
)
|
||||
|
||||
if not self._validate_keys(self._sort_key):
|
||||
@@ -53,7 +54,7 @@ class VolumePairList(IPairList):
|
||||
def needstickers(self) -> bool:
|
||||
"""
|
||||
Boolean property defining if tickers are necessary.
|
||||
If no Pairlist requries tickers, an empty List is passed
|
||||
If no Pairlist requires tickers, an empty List is passed
|
||||
as tickers argument to filter_pairlist
|
||||
"""
|
||||
return True
|
||||
@@ -67,6 +68,31 @@ class VolumePairList(IPairList):
|
||||
"""
|
||||
return f"{self.name} - top {self._pairlistconfig['number_assets']} volume pairs."
|
||||
|
||||
def gen_pairlist(self, cached_pairlist: List[str], tickers: Dict) -> List[str]:
|
||||
"""
|
||||
Generate the pairlist
|
||||
:param cached_pairlist: Previously generated pairlist (cached)
|
||||
:param tickers: Tickers (from exchange.get_tickers()).
|
||||
:return: List of pairs
|
||||
"""
|
||||
# Generate dynamic whitelist
|
||||
# Must always run if this pairlist is not the first in the list.
|
||||
if self._last_refresh + self.refresh_period < datetime.now().timestamp():
|
||||
self._last_refresh = int(datetime.now().timestamp())
|
||||
|
||||
# Use fresh pairlist
|
||||
# Check if pair quote currency equals to the stake currency.
|
||||
filtered_tickers = [
|
||||
v for k, v in tickers.items()
|
||||
if (self._exchange.get_pair_quote_currency(k) == self._stake_currency
|
||||
and v[self._sort_key] is not None)]
|
||||
pairlist = [s['symbol'] for s in filtered_tickers]
|
||||
else:
|
||||
# Use the cached pairlist if it's not time yet to refresh
|
||||
pairlist = cached_pairlist
|
||||
|
||||
return pairlist
|
||||
|
||||
def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]:
|
||||
"""
|
||||
Filters and sorts pairlist and returns the whitelist again.
|
||||
@@ -75,37 +101,8 @@ class VolumePairList(IPairList):
|
||||
:param tickers: Tickers (from exchange.get_tickers()). May be cached.
|
||||
:return: new whitelist
|
||||
"""
|
||||
# Generate dynamic whitelist
|
||||
# Must always run if this pairlist is not the first in the list.
|
||||
if (self._pairlist_pos != 0 or
|
||||
(self._last_refresh + self.refresh_period < datetime.now().timestamp())):
|
||||
|
||||
self._last_refresh = int(datetime.now().timestamp())
|
||||
pairs = self._gen_pair_whitelist(pairlist, tickers)
|
||||
else:
|
||||
pairs = pairlist
|
||||
|
||||
self.log_on_refresh(logger.info, f"Searching {self._number_pairs} pairs: {pairs}")
|
||||
|
||||
return pairs
|
||||
|
||||
def _gen_pair_whitelist(self, pairlist: List[str], tickers: Dict) -> List[str]:
|
||||
"""
|
||||
Updates the whitelist with with a dynamically generated list
|
||||
:param pairlist: pairlist to filter or sort
|
||||
:param tickers: Tickers (from exchange.get_tickers()).
|
||||
:return: List of pairs
|
||||
"""
|
||||
if self._pairlist_pos == 0:
|
||||
# If VolumePairList is the first in the list, use fresh pairlist
|
||||
# Check if pair quote currency equals to the stake currency.
|
||||
filtered_tickers = [
|
||||
v for k, v in tickers.items()
|
||||
if (self._exchange.get_pair_quote_currency(k) == self._stake_currency
|
||||
and v[self._sort_key] is not None)]
|
||||
else:
|
||||
# If other pairlist is in front, use the incoming pairlist.
|
||||
filtered_tickers = [v for k, v in tickers.items() if k in pairlist]
|
||||
# Use the incoming pairlist.
|
||||
filtered_tickers = [v for k, v in tickers.items() if k in pairlist]
|
||||
|
||||
if self._min_value > 0:
|
||||
filtered_tickers = [
|
||||
@@ -119,4 +116,6 @@ class VolumePairList(IPairList):
|
||||
# Limit pairlist to the requested number of pairs
|
||||
pairs = pairs[:self._number_pairs]
|
||||
|
||||
self.log_on_refresh(logger.info, f"Searching {self._number_pairs} pairs: {pairs}")
|
||||
|
||||
return pairs
|
||||
|
@@ -10,7 +10,7 @@ from cachetools import TTLCache, cached
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.pairlist.IPairList import IPairList
|
||||
from freqtrade.resolvers import PairListResolver
|
||||
from freqtrade.typing import ListPairsWithTimeframes
|
||||
from freqtrade.constants import ListPairsWithTimeframes
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -87,6 +87,9 @@ class PairListManager():
|
||||
# Adjust whitelist if filters are using tickers
|
||||
pairlist = self._prepare_whitelist(self._whitelist.copy(), tickers)
|
||||
|
||||
# Generate the pairlist with first Pairlist Handler in the chain
|
||||
pairlist = self._pairlist_handlers[0].gen_pairlist(self._whitelist, tickers)
|
||||
|
||||
# Process all Pairlist Handlers in the chain
|
||||
for pairlist_handler in self._pairlist_handlers:
|
||||
pairlist = pairlist_handler.filter_pairlist(pairlist, tickers)
|
||||
@@ -128,6 +131,6 @@ class PairListManager():
|
||||
|
||||
def create_pair_list(self, pairs: List[str], timeframe: str = None) -> ListPairsWithTimeframes:
|
||||
"""
|
||||
Create list of pair tuples with (pair, ticker_interval)
|
||||
Create list of pair tuples with (pair, timeframe)
|
||||
"""
|
||||
return [(pair, timeframe or self._config['ticker_interval']) for pair in pairs]
|
||||
return [(pair, timeframe or self._config['timeframe']) for pair in pairs]
|
||||
|
@@ -2,7 +2,7 @@
|
||||
This module contains the class to persist trades into SQLite
|
||||
"""
|
||||
import logging
|
||||
from datetime import datetime
|
||||
from datetime import datetime, timezone
|
||||
from decimal import Decimal
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
@@ -17,6 +17,7 @@ from sqlalchemy.orm.session import sessionmaker
|
||||
from sqlalchemy.pool import StaticPool
|
||||
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.misc import safe_value_fallback
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -86,7 +87,7 @@ def check_migrate(engine) -> None:
|
||||
logger.debug(f'trying {table_back_name}')
|
||||
|
||||
# Check for latest column
|
||||
if not has_column(cols, 'sell_order_status'):
|
||||
if not has_column(cols, 'amount_requested'):
|
||||
logger.info(f'Running database migration - backup available as {table_back_name}')
|
||||
|
||||
fee_open = get_column_def(cols, 'fee_open', 'fee')
|
||||
@@ -107,13 +108,19 @@ def check_migrate(engine) -> None:
|
||||
min_rate = get_column_def(cols, 'min_rate', 'null')
|
||||
sell_reason = get_column_def(cols, 'sell_reason', 'null')
|
||||
strategy = get_column_def(cols, 'strategy', 'null')
|
||||
ticker_interval = get_column_def(cols, 'ticker_interval', 'null')
|
||||
# If ticker-interval existed use that, else null.
|
||||
if has_column(cols, 'ticker_interval'):
|
||||
timeframe = get_column_def(cols, 'timeframe', 'ticker_interval')
|
||||
else:
|
||||
timeframe = get_column_def(cols, 'timeframe', 'null')
|
||||
|
||||
open_trade_price = get_column_def(cols, 'open_trade_price',
|
||||
f'amount * open_rate * (1 + {fee_open})')
|
||||
close_profit_abs = get_column_def(
|
||||
cols, 'close_profit_abs',
|
||||
f"(amount * close_rate * (1 - {fee_close})) - {open_trade_price}")
|
||||
sell_order_status = get_column_def(cols, 'sell_order_status', 'null')
|
||||
amount_requested = get_column_def(cols, 'amount_requested', 'amount')
|
||||
|
||||
# Schema migration necessary
|
||||
engine.execute(f"alter table trades rename to {table_back_name}")
|
||||
@@ -129,11 +136,11 @@ def check_migrate(engine) -> None:
|
||||
fee_open, fee_open_cost, fee_open_currency,
|
||||
fee_close, fee_close_cost, fee_open_currency, open_rate,
|
||||
open_rate_requested, close_rate, close_rate_requested, close_profit,
|
||||
stake_amount, amount, open_date, close_date, open_order_id,
|
||||
stake_amount, amount, amount_requested, open_date, close_date, open_order_id,
|
||||
stop_loss, stop_loss_pct, initial_stop_loss, initial_stop_loss_pct,
|
||||
stoploss_order_id, stoploss_last_update,
|
||||
max_rate, min_rate, sell_reason, sell_order_status, strategy,
|
||||
ticker_interval, open_trade_price, close_profit_abs
|
||||
timeframe, open_trade_price, close_profit_abs
|
||||
)
|
||||
select id, lower(exchange),
|
||||
case
|
||||
@@ -148,14 +155,14 @@ def check_migrate(engine) -> None:
|
||||
{fee_close_cost} fee_close_cost, {fee_close_currency} fee_close_currency,
|
||||
open_rate, {open_rate_requested} open_rate_requested, close_rate,
|
||||
{close_rate_requested} close_rate_requested, close_profit,
|
||||
stake_amount, amount, open_date, close_date, open_order_id,
|
||||
stake_amount, amount, {amount_requested}, open_date, close_date, open_order_id,
|
||||
{stop_loss} stop_loss, {stop_loss_pct} stop_loss_pct,
|
||||
{initial_stop_loss} initial_stop_loss,
|
||||
{initial_stop_loss_pct} initial_stop_loss_pct,
|
||||
{stoploss_order_id} stoploss_order_id, {stoploss_last_update} stoploss_last_update,
|
||||
{max_rate} max_rate, {min_rate} min_rate, {sell_reason} sell_reason,
|
||||
{sell_order_status} sell_order_status,
|
||||
{strategy} strategy, {ticker_interval} ticker_interval,
|
||||
{strategy} strategy, {timeframe} timeframe,
|
||||
{open_trade_price} open_trade_price, {close_profit_abs} close_profit_abs
|
||||
from {table_back_name}
|
||||
""")
|
||||
@@ -210,6 +217,7 @@ class Trade(_DECL_BASE):
|
||||
close_profit_abs = Column(Float)
|
||||
stake_amount = Column(Float, nullable=False)
|
||||
amount = Column(Float)
|
||||
amount_requested = Column(Float)
|
||||
open_date = Column(DateTime, nullable=False, default=datetime.utcnow)
|
||||
close_date = Column(DateTime)
|
||||
open_order_id = Column(String)
|
||||
@@ -232,7 +240,7 @@ class Trade(_DECL_BASE):
|
||||
sell_reason = Column(String, nullable=True)
|
||||
sell_order_status = Column(String, nullable=True)
|
||||
strategy = Column(String, nullable=True)
|
||||
ticker_interval = Column(Integer, nullable=True)
|
||||
timeframe = Column(Integer, nullable=True)
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
@@ -249,37 +257,59 @@ class Trade(_DECL_BASE):
|
||||
'trade_id': self.id,
|
||||
'pair': self.pair,
|
||||
'is_open': self.is_open,
|
||||
'exchange': self.exchange,
|
||||
'amount': round(self.amount, 8),
|
||||
'amount_requested': round(self.amount_requested, 8) if self.amount_requested else None,
|
||||
'stake_amount': round(self.stake_amount, 8),
|
||||
'strategy': self.strategy,
|
||||
'ticker_interval': self.timeframe, # DEPRECATED
|
||||
'timeframe': self.timeframe,
|
||||
|
||||
'fee_open': self.fee_open,
|
||||
'fee_open_cost': self.fee_open_cost,
|
||||
'fee_open_currency': self.fee_open_currency,
|
||||
'fee_close': self.fee_close,
|
||||
'fee_close_cost': self.fee_close_cost,
|
||||
'fee_close_currency': self.fee_close_currency,
|
||||
|
||||
'open_date_hum': arrow.get(self.open_date).humanize(),
|
||||
'open_date': self.open_date.strftime("%Y-%m-%d %H:%M:%S"),
|
||||
'open_timestamp': int(self.open_date.replace(tzinfo=timezone.utc).timestamp() * 1000),
|
||||
'open_rate': self.open_rate,
|
||||
'open_rate_requested': self.open_rate_requested,
|
||||
'open_trade_price': round(self.open_trade_price, 8),
|
||||
|
||||
'close_date_hum': (arrow.get(self.close_date).humanize()
|
||||
if self.close_date else None),
|
||||
'close_date': (self.close_date.strftime("%Y-%m-%d %H:%M:%S")
|
||||
if self.close_date else None),
|
||||
'open_rate': self.open_rate,
|
||||
'open_rate_requested': self.open_rate_requested,
|
||||
'open_trade_price': self.open_trade_price,
|
||||
'close_timestamp': int(self.close_date.replace(
|
||||
tzinfo=timezone.utc).timestamp() * 1000) if self.close_date else None,
|
||||
'close_rate': self.close_rate,
|
||||
'close_rate_requested': self.close_rate_requested,
|
||||
'amount': round(self.amount, 8),
|
||||
'stake_amount': round(self.stake_amount, 8),
|
||||
'close_profit': self.close_profit,
|
||||
'close_profit_abs': self.close_profit_abs,
|
||||
|
||||
'sell_reason': self.sell_reason,
|
||||
'sell_order_status': self.sell_order_status,
|
||||
'stop_loss': self.stop_loss,
|
||||
'stop_loss': self.stop_loss, # Deprecated - should not be used
|
||||
'stop_loss_abs': self.stop_loss,
|
||||
'stop_loss_ratio': self.stop_loss_pct if self.stop_loss_pct else None,
|
||||
'stop_loss_pct': (self.stop_loss_pct * 100) if self.stop_loss_pct else None,
|
||||
'initial_stop_loss': self.initial_stop_loss,
|
||||
'stoploss_order_id': self.stoploss_order_id,
|
||||
'stoploss_last_update': (self.stoploss_last_update.strftime("%Y-%m-%d %H:%M:%S")
|
||||
if self.stoploss_last_update else None),
|
||||
'stoploss_last_update_timestamp': int(self.stoploss_last_update.replace(
|
||||
tzinfo=timezone.utc).timestamp() * 1000) if self.stoploss_last_update else None,
|
||||
'initial_stop_loss': self.initial_stop_loss, # Deprecated - should not be used
|
||||
'initial_stop_loss_abs': self.initial_stop_loss,
|
||||
'initial_stop_loss_ratio': (self.initial_stop_loss_pct
|
||||
if self.initial_stop_loss_pct else None),
|
||||
'initial_stop_loss_pct': (self.initial_stop_loss_pct * 100
|
||||
if self.initial_stop_loss_pct else None),
|
||||
'min_rate': self.min_rate,
|
||||
'max_rate': self.max_rate,
|
||||
'strategy': self.strategy,
|
||||
'ticker_interval': self.ticker_interval,
|
||||
|
||||
'open_order_id': self.open_order_id,
|
||||
}
|
||||
|
||||
@@ -335,27 +365,27 @@ class Trade(_DECL_BASE):
|
||||
def update(self, order: Dict) -> None:
|
||||
"""
|
||||
Updates this entity with amount and actual open/close rates.
|
||||
:param order: order retrieved by exchange.get_order()
|
||||
:param order: order retrieved by exchange.fetch_order()
|
||||
:return: None
|
||||
"""
|
||||
order_type = order['type']
|
||||
# Ignore open and cancelled orders
|
||||
if order['status'] == 'open' or order['price'] is None:
|
||||
if order['status'] == 'open' or safe_value_fallback(order, 'average', 'price') is None:
|
||||
return
|
||||
|
||||
logger.info('Updating trade (id=%s) ...', self.id)
|
||||
|
||||
if order_type in ('market', 'limit') and order['side'] == 'buy':
|
||||
# Update open rate and actual amount
|
||||
self.open_rate = Decimal(order['price'])
|
||||
self.amount = Decimal(order.get('filled', order['amount']))
|
||||
self.open_rate = Decimal(safe_value_fallback(order, 'average', 'price'))
|
||||
self.amount = Decimal(safe_value_fallback(order, 'filled', 'amount'))
|
||||
self.recalc_open_trade_price()
|
||||
logger.info('%s_BUY has been fulfilled for %s.', order_type.upper(), self)
|
||||
self.open_order_id = None
|
||||
elif order_type in ('market', 'limit') and order['side'] == 'sell':
|
||||
self.close(order['price'])
|
||||
self.close(safe_value_fallback(order, 'average', 'price'))
|
||||
logger.info('%s_SELL has been fulfilled for %s.', order_type.upper(), self)
|
||||
elif order_type in ('stop_loss_limit', 'stop-loss'):
|
||||
elif order_type in ('stop_loss_limit', 'stop-loss', 'stop'):
|
||||
self.stoploss_order_id = None
|
||||
self.close_rate_requested = self.stop_loss
|
||||
logger.info('%s is hit for %s.', order_type.upper(), self)
|
||||
@@ -544,6 +574,7 @@ class Trade(_DECL_BASE):
|
||||
def get_best_pair():
|
||||
"""
|
||||
Get best pair with closed trade.
|
||||
:returns: Tuple containing (pair, profit_sum)
|
||||
"""
|
||||
best_pair = Trade.session.query(
|
||||
Trade.pair, func.sum(Trade.close_profit).label('profit_sum')
|
||||
|
@@ -8,12 +8,16 @@ from freqtrade.configuration import TimeRange
|
||||
from freqtrade.data.btanalysis import (calculate_max_drawdown,
|
||||
combine_dataframes_with_mean,
|
||||
create_cum_profit,
|
||||
extract_trades_of_period, load_trades)
|
||||
extract_trades_of_period,
|
||||
load_trades)
|
||||
from freqtrade.data.converter import trim_dataframe
|
||||
from freqtrade.exchange import timeframe_to_prev_date
|
||||
from freqtrade.data.dataprovider import DataProvider
|
||||
from freqtrade.data.history import load_data
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import timeframe_to_prev_date
|
||||
from freqtrade.misc import pair_to_filename
|
||||
from freqtrade.resolvers import StrategyResolver
|
||||
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
|
||||
from freqtrade.strategy import IStrategy
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -44,25 +48,28 @@ def init_plotscript(config):
|
||||
data = load_data(
|
||||
datadir=config.get("datadir"),
|
||||
pairs=pairs,
|
||||
timeframe=config.get('ticker_interval', '5m'),
|
||||
timeframe=config.get('timeframe', '5m'),
|
||||
timerange=timerange,
|
||||
data_format=config.get('dataformat_ohlcv', 'json'),
|
||||
)
|
||||
|
||||
no_trades = False
|
||||
filename = config.get('exportfilename')
|
||||
if config.get('no_trades', False):
|
||||
no_trades = True
|
||||
elif not config['exportfilename'].is_file() and config['trade_source'] == 'file':
|
||||
logger.warning("Backtest file is missing skipping trades.")
|
||||
no_trades = True
|
||||
elif config['trade_source'] == 'file':
|
||||
if not filename.is_dir() and not filename.is_file():
|
||||
logger.warning("Backtest file is missing skipping trades.")
|
||||
no_trades = True
|
||||
|
||||
trades = load_trades(
|
||||
config['trade_source'],
|
||||
db_url=config.get('db_url'),
|
||||
exportfilename=config.get('exportfilename'),
|
||||
no_trades=no_trades
|
||||
exportfilename=filename,
|
||||
no_trades=no_trades,
|
||||
strategy=config.get("strategy"),
|
||||
)
|
||||
trades = trim_dataframe(trades, timerange, 'open_time')
|
||||
trades = trim_dataframe(trades, timerange, 'open_date')
|
||||
|
||||
return {"ohlcv": data,
|
||||
"trades": trades,
|
||||
@@ -161,11 +168,12 @@ def plot_trades(fig, trades: pd.DataFrame) -> make_subplots:
|
||||
# Trades can be empty
|
||||
if trades is not None and len(trades) > 0:
|
||||
# Create description for sell summarizing the trade
|
||||
trades['desc'] = trades.apply(lambda row: f"{round(row['profitperc'] * 100, 1)}%, "
|
||||
f"{row['sell_reason']}, {row['duration']} min",
|
||||
trades['desc'] = trades.apply(lambda row: f"{round(row['profit_percent'] * 100, 1)}%, "
|
||||
f"{row['sell_reason']}, "
|
||||
f"{row['trade_duration']} min",
|
||||
axis=1)
|
||||
trade_buys = go.Scatter(
|
||||
x=trades["open_time"],
|
||||
x=trades["open_date"],
|
||||
y=trades["open_rate"],
|
||||
mode='markers',
|
||||
name='Trade buy',
|
||||
@@ -180,9 +188,9 @@ def plot_trades(fig, trades: pd.DataFrame) -> make_subplots:
|
||||
)
|
||||
|
||||
trade_sells = go.Scatter(
|
||||
x=trades.loc[trades['profitperc'] > 0, "close_time"],
|
||||
y=trades.loc[trades['profitperc'] > 0, "close_rate"],
|
||||
text=trades.loc[trades['profitperc'] > 0, "desc"],
|
||||
x=trades.loc[trades['profit_percent'] > 0, "close_date"],
|
||||
y=trades.loc[trades['profit_percent'] > 0, "close_rate"],
|
||||
text=trades.loc[trades['profit_percent'] > 0, "desc"],
|
||||
mode='markers',
|
||||
name='Sell - Profit',
|
||||
marker=dict(
|
||||
@@ -193,9 +201,9 @@ def plot_trades(fig, trades: pd.DataFrame) -> make_subplots:
|
||||
)
|
||||
)
|
||||
trade_sells_loss = go.Scatter(
|
||||
x=trades.loc[trades['profitperc'] <= 0, "close_time"],
|
||||
y=trades.loc[trades['profitperc'] <= 0, "close_rate"],
|
||||
text=trades.loc[trades['profitperc'] <= 0, "desc"],
|
||||
x=trades.loc[trades['profit_percent'] <= 0, "close_date"],
|
||||
y=trades.loc[trades['profit_percent'] <= 0, "close_rate"],
|
||||
text=trades.loc[trades['profit_percent'] <= 0, "desc"],
|
||||
mode='markers',
|
||||
name='Sell - Loss',
|
||||
marker=dict(
|
||||
@@ -414,9 +422,12 @@ def generate_profit_graph(pairs: str, data: Dict[str, pd.DataFrame],
|
||||
|
||||
for pair in pairs:
|
||||
profit_col = f'cum_profit_{pair}'
|
||||
df_comb = create_cum_profit(df_comb, trades[trades['pair'] == pair], profit_col, timeframe)
|
||||
|
||||
fig = add_profit(fig, 3, df_comb, profit_col, f"Profit {pair}")
|
||||
try:
|
||||
df_comb = create_cum_profit(df_comb, trades[trades['pair'] == pair], profit_col,
|
||||
timeframe)
|
||||
fig = add_profit(fig, 3, df_comb, profit_col, f"Profit {pair}")
|
||||
except ValueError:
|
||||
pass
|
||||
|
||||
return fig
|
||||
|
||||
@@ -463,6 +474,8 @@ def load_and_plot_trades(config: Dict[str, Any]):
|
||||
"""
|
||||
strategy = StrategyResolver.load_strategy(config)
|
||||
|
||||
exchange = ExchangeResolver.load_exchange(config['exchange']['name'], config)
|
||||
IStrategy.dp = DataProvider(config, exchange)
|
||||
plot_elements = init_plotscript(config)
|
||||
trades = plot_elements['trades']
|
||||
pair_counter = 0
|
||||
@@ -483,7 +496,7 @@ def load_and_plot_trades(config: Dict[str, Any]):
|
||||
plot_config=strategy.plot_config if hasattr(strategy, 'plot_config') else {}
|
||||
)
|
||||
|
||||
store_plot_file(fig, filename=generate_plot_filename(pair, config['ticker_interval']),
|
||||
store_plot_file(fig, filename=generate_plot_filename(pair, config['timeframe']),
|
||||
directory=config['user_data_dir'] / "plot")
|
||||
|
||||
logger.info('End of plotting process. %s plots generated', pair_counter)
|
||||
@@ -502,12 +515,15 @@ def plot_profit(config: Dict[str, Any]) -> None:
|
||||
# Remove open pairs - we don't know the profit yet so can't calculate profit for these.
|
||||
# Also, If only one open pair is left, then the profit-generation would fail.
|
||||
trades = trades[(trades['pair'].isin(plot_elements["pairs"]))
|
||||
& (~trades['close_time'].isnull())
|
||||
& (~trades['close_date'].isnull())
|
||||
]
|
||||
if len(trades) == 0:
|
||||
raise OperationalException("No trades found, cannot generate Profit-plot without "
|
||||
"trades from either Backtest result or database.")
|
||||
|
||||
# Create an average close price of all the pairs that were involved.
|
||||
# this could be useful to gauge the overall market trend
|
||||
fig = generate_profit_graph(plot_elements["pairs"], plot_elements["ohlcv"],
|
||||
trades, config.get('ticker_interval', '5m'))
|
||||
trades, config.get('timeframe', '5m'))
|
||||
store_plot_file(fig, filename='freqtrade-profit-plot.html',
|
||||
directory=config['user_data_dir'] / "plot", auto_open=True)
|
||||
|
@@ -23,7 +23,7 @@ class HyperOptResolver(IResolver):
|
||||
object_type = IHyperOpt
|
||||
object_type_str = "Hyperopt"
|
||||
user_subdir = USERPATH_HYPEROPTS
|
||||
initial_search_path = Path(__file__).parent.parent.joinpath('optimize').resolve()
|
||||
initial_search_path = None
|
||||
|
||||
@staticmethod
|
||||
def load_hyperopt(config: Dict) -> IHyperOpt:
|
||||
@@ -42,14 +42,14 @@ class HyperOptResolver(IResolver):
|
||||
extra_dir=config.get('hyperopt_path'))
|
||||
|
||||
if not hasattr(hyperopt, 'populate_indicators'):
|
||||
logger.warning("Hyperopt class does not provide populate_indicators() method. "
|
||||
"Using populate_indicators from the strategy.")
|
||||
logger.info("Hyperopt class does not provide populate_indicators() method. "
|
||||
"Using populate_indicators from the strategy.")
|
||||
if not hasattr(hyperopt, 'populate_buy_trend'):
|
||||
logger.warning("Hyperopt class does not provide populate_buy_trend() method. "
|
||||
"Using populate_buy_trend from the strategy.")
|
||||
logger.info("Hyperopt class does not provide populate_buy_trend() method. "
|
||||
"Using populate_buy_trend from the strategy.")
|
||||
if not hasattr(hyperopt, 'populate_sell_trend'):
|
||||
logger.warning("Hyperopt class does not provide populate_sell_trend() method. "
|
||||
"Using populate_sell_trend from the strategy.")
|
||||
logger.info("Hyperopt class does not provide populate_sell_trend() method. "
|
||||
"Using populate_sell_trend from the strategy.")
|
||||
return hyperopt
|
||||
|
||||
|
||||
@@ -77,8 +77,9 @@ class HyperOptLossResolver(IResolver):
|
||||
config, kwargs={},
|
||||
extra_dir=config.get('hyperopt_path'))
|
||||
|
||||
# Assign ticker_interval to be used in hyperopt
|
||||
hyperoptloss.__class__.ticker_interval = str(config['ticker_interval'])
|
||||
# Assign timeframe to be used in hyperopt
|
||||
hyperoptloss.__class__.ticker_interval = str(config['timeframe'])
|
||||
hyperoptloss.__class__.timeframe = str(config['timeframe'])
|
||||
|
||||
if not hasattr(hyperoptloss, 'hyperopt_loss_function'):
|
||||
raise OperationalException(
|
||||
|
@@ -50,39 +50,51 @@ class StrategyResolver(IResolver):
|
||||
if 'ask_strategy' not in config:
|
||||
config['ask_strategy'] = {}
|
||||
|
||||
if hasattr(strategy, 'ticker_interval') and not hasattr(strategy, 'timeframe'):
|
||||
# Assign ticker_interval to timeframe to keep compatibility
|
||||
if 'timeframe' not in config:
|
||||
logger.warning(
|
||||
"DEPRECATED: Please migrate to using 'timeframe' instead of 'ticker_interval'."
|
||||
)
|
||||
strategy.timeframe = strategy.ticker_interval
|
||||
|
||||
# Set attributes
|
||||
# Check if we need to override configuration
|
||||
# (Attribute name, default, ask_strategy)
|
||||
attributes = [("minimal_roi", {"0": 10.0}, False),
|
||||
("ticker_interval", None, False),
|
||||
("stoploss", None, False),
|
||||
("trailing_stop", None, False),
|
||||
("trailing_stop_positive", None, False),
|
||||
("trailing_stop_positive_offset", 0.0, False),
|
||||
("trailing_only_offset_is_reached", None, False),
|
||||
("process_only_new_candles", None, False),
|
||||
("order_types", None, False),
|
||||
("order_time_in_force", None, False),
|
||||
("stake_currency", None, False),
|
||||
("stake_amount", None, False),
|
||||
("startup_candle_count", None, False),
|
||||
("unfilledtimeout", None, False),
|
||||
("use_sell_signal", True, True),
|
||||
("sell_profit_only", False, True),
|
||||
("ignore_roi_if_buy_signal", False, True),
|
||||
# (Attribute name, default, subkey)
|
||||
attributes = [("minimal_roi", {"0": 10.0}, None),
|
||||
("timeframe", None, None),
|
||||
("stoploss", None, None),
|
||||
("trailing_stop", None, None),
|
||||
("trailing_stop_positive", None, None),
|
||||
("trailing_stop_positive_offset", 0.0, None),
|
||||
("trailing_only_offset_is_reached", None, None),
|
||||
("process_only_new_candles", None, None),
|
||||
("order_types", None, None),
|
||||
("order_time_in_force", None, None),
|
||||
("stake_currency", None, None),
|
||||
("stake_amount", None, None),
|
||||
("startup_candle_count", None, None),
|
||||
("unfilledtimeout", None, None),
|
||||
("use_sell_signal", True, 'ask_strategy'),
|
||||
("sell_profit_only", False, 'ask_strategy'),
|
||||
("ignore_roi_if_buy_signal", False, 'ask_strategy'),
|
||||
("disable_dataframe_checks", False, None),
|
||||
]
|
||||
for attribute, default, ask_strategy in attributes:
|
||||
if ask_strategy:
|
||||
StrategyResolver._override_attribute_helper(strategy, config['ask_strategy'],
|
||||
for attribute, default, subkey in attributes:
|
||||
if subkey:
|
||||
StrategyResolver._override_attribute_helper(strategy, config.get(subkey, {}),
|
||||
attribute, default)
|
||||
else:
|
||||
StrategyResolver._override_attribute_helper(strategy, config,
|
||||
attribute, default)
|
||||
|
||||
# Assign deprecated variable - to not break users code relying on this.
|
||||
strategy.ticker_interval = strategy.timeframe
|
||||
|
||||
# Loop this list again to have output combined
|
||||
for attribute, _, exp in attributes:
|
||||
if exp and attribute in config['ask_strategy']:
|
||||
logger.info("Strategy using %s: %s", attribute, config['ask_strategy'][attribute])
|
||||
for attribute, _, subkey in attributes:
|
||||
if subkey and attribute in config[subkey]:
|
||||
logger.info("Strategy using %s: %s", attribute, config[subkey][attribute])
|
||||
elif attribute in config:
|
||||
logger.info("Strategy using %s: %s", attribute, config[attribute])
|
||||
|
||||
|
@@ -16,7 +16,9 @@ from werkzeug.security import safe_str_cmp
|
||||
from werkzeug.serving import make_server
|
||||
|
||||
from freqtrade.__init__ import __version__
|
||||
from freqtrade.constants import DATETIME_PRINT_FORMAT
|
||||
from freqtrade.rpc.rpc import RPC, RPCException
|
||||
from freqtrade.rpc.fiat_convert import CryptoToFiatConverter
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -31,7 +33,7 @@ class ArrowJSONEncoder(JSONEncoder):
|
||||
elif isinstance(obj, date):
|
||||
return obj.strftime("%Y-%m-%d")
|
||||
elif isinstance(obj, datetime):
|
||||
return obj.strftime("%Y-%m-%d %H:%M:%S")
|
||||
return obj.strftime(DATETIME_PRINT_FORMAT)
|
||||
iterable = iter(obj)
|
||||
except TypeError:
|
||||
pass
|
||||
@@ -55,7 +57,7 @@ def require_login(func: Callable[[Any, Any], Any]):
|
||||
|
||||
|
||||
# Type should really be Callable[[ApiServer], Any], but that will create a circular dependency
|
||||
def rpc_catch_errors(func: Callable[[Any], Any]):
|
||||
def rpc_catch_errors(func: Callable[..., Any]):
|
||||
|
||||
def func_wrapper(obj, *args, **kwargs):
|
||||
|
||||
@@ -89,7 +91,11 @@ class ApiServer(RPC):
|
||||
|
||||
self._config = freqtrade.config
|
||||
self.app = Flask(__name__)
|
||||
self._cors = CORS(self.app, resources={r"/api/*": {"origins": "*"}})
|
||||
self._cors = CORS(self.app,
|
||||
resources={r"/api/*": {
|
||||
"supports_credentials": True,
|
||||
"origins": self._config['api_server'].get('CORS_origins', [])}}
|
||||
)
|
||||
|
||||
# Setup the Flask-JWT-Extended extension
|
||||
self.app.config['JWT_SECRET_KEY'] = self._config['api_server'].get(
|
||||
@@ -101,6 +107,9 @@ class ApiServer(RPC):
|
||||
# Register application handling
|
||||
self.register_rest_rpc_urls()
|
||||
|
||||
if self._config.get('fiat_display_currency', None):
|
||||
self._fiat_converter = CryptoToFiatConverter()
|
||||
|
||||
thread = threading.Thread(target=self.run, daemon=True)
|
||||
thread.start()
|
||||
|
||||
@@ -170,8 +179,8 @@ class ApiServer(RPC):
|
||||
self.app.add_url_rule(f'{BASE_URI}/stop', 'stop', view_func=self._stop, methods=['POST'])
|
||||
self.app.add_url_rule(f'{BASE_URI}/stopbuy', 'stopbuy',
|
||||
view_func=self._stopbuy, methods=['POST'])
|
||||
self.app.add_url_rule(f'{BASE_URI}/reload_conf', 'reload_conf',
|
||||
view_func=self._reload_conf, methods=['POST'])
|
||||
self.app.add_url_rule(f'{BASE_URI}/reload_config', 'reload_config',
|
||||
view_func=self._reload_config, methods=['POST'])
|
||||
# Info commands
|
||||
self.app.add_url_rule(f'{BASE_URI}/balance', 'balance',
|
||||
view_func=self._balance, methods=['GET'])
|
||||
@@ -192,6 +201,8 @@ class ApiServer(RPC):
|
||||
view_func=self._ping, methods=['GET'])
|
||||
self.app.add_url_rule(f'{BASE_URI}/trades', 'trades',
|
||||
view_func=self._trades, methods=['GET'])
|
||||
self.app.add_url_rule(f'{BASE_URI}/trades/<int:tradeid>', 'trades_delete',
|
||||
view_func=self._trades_delete, methods=['DELETE'])
|
||||
# Combined actions and infos
|
||||
self.app.add_url_rule(f'{BASE_URI}/blacklist', 'blacklist', view_func=self._blacklist,
|
||||
methods=['GET', 'POST'])
|
||||
@@ -302,12 +313,12 @@ class ApiServer(RPC):
|
||||
|
||||
@require_login
|
||||
@rpc_catch_errors
|
||||
def _reload_conf(self):
|
||||
def _reload_config(self):
|
||||
"""
|
||||
Handler for /reload_conf.
|
||||
Handler for /reload_config.
|
||||
Triggers a config file reload
|
||||
"""
|
||||
msg = self._rpc_reload_conf()
|
||||
msg = self._rpc_reload_config()
|
||||
return self.rest_dump(msg)
|
||||
|
||||
@require_login
|
||||
@@ -358,7 +369,6 @@ class ApiServer(RPC):
|
||||
Returns a cumulative profit statistics
|
||||
:return: stats
|
||||
"""
|
||||
logger.info("LocalRPC - Profit Command Called")
|
||||
|
||||
stats = self._rpc_trade_statistics(self._config['stake_currency'],
|
||||
self._config.get('fiat_display_currency')
|
||||
@@ -375,8 +385,6 @@ class ApiServer(RPC):
|
||||
Returns a cumulative performance statistics
|
||||
:return: stats
|
||||
"""
|
||||
logger.info("LocalRPC - performance Command Called")
|
||||
|
||||
stats = self._rpc_performance()
|
||||
|
||||
return self.rest_dump(stats)
|
||||
@@ -419,6 +427,19 @@ class ApiServer(RPC):
|
||||
results = self._rpc_trade_history(limit)
|
||||
return self.rest_dump(results)
|
||||
|
||||
@require_login
|
||||
@rpc_catch_errors
|
||||
def _trades_delete(self, tradeid):
|
||||
"""
|
||||
Handler for DELETE /trades/<tradeid> endpoint.
|
||||
Removes the trade from the database (tries to cancel open orders first!)
|
||||
get:
|
||||
param:
|
||||
tradeid: Numeric trade-id assigned to the trade.
|
||||
"""
|
||||
result = self._rpc_delete(tradeid)
|
||||
return self.rest_dump(result)
|
||||
|
||||
@require_login
|
||||
@rpc_catch_errors
|
||||
def _whitelist(self):
|
||||
|
@@ -6,12 +6,14 @@ from abc import abstractmethod
|
||||
from datetime import date, datetime, timedelta
|
||||
from enum import Enum
|
||||
from math import isnan
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import arrow
|
||||
from numpy import NAN, mean
|
||||
|
||||
from freqtrade.exceptions import DependencyException, TemporaryError
|
||||
from freqtrade.exceptions import (ExchangeError,
|
||||
PricingError)
|
||||
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_msecs
|
||||
from freqtrade.misc import shorten_date
|
||||
from freqtrade.persistence import Trade
|
||||
from freqtrade.rpc.fiat_convert import CryptoToFiatConverter
|
||||
@@ -101,10 +103,15 @@ class RPC:
|
||||
'trailing_stop_positive': config.get('trailing_stop_positive'),
|
||||
'trailing_stop_positive_offset': config.get('trailing_stop_positive_offset'),
|
||||
'trailing_only_offset_is_reached': config.get('trailing_only_offset_is_reached'),
|
||||
'ticker_interval': config['ticker_interval'],
|
||||
'ticker_interval': config['timeframe'], # DEPRECATED
|
||||
'timeframe': config['timeframe'],
|
||||
'timeframe_ms': timeframe_to_msecs(config['timeframe']),
|
||||
'timeframe_min': timeframe_to_minutes(config['timeframe']),
|
||||
'exchange': config['exchange']['name'],
|
||||
'strategy': config['strategy'],
|
||||
'forcebuy_enabled': config.get('forcebuy_enable', False),
|
||||
'ask_strategy': config.get('ask_strategy', {}),
|
||||
'bid_strategy': config.get('bid_strategy', {}),
|
||||
'state': str(self._freqtrade.state)
|
||||
}
|
||||
return val
|
||||
@@ -123,21 +130,36 @@ class RPC:
|
||||
for trade in trades:
|
||||
order = None
|
||||
if trade.open_order_id:
|
||||
order = self._freqtrade.exchange.get_order(trade.open_order_id, trade.pair)
|
||||
order = self._freqtrade.exchange.fetch_order(trade.open_order_id, trade.pair)
|
||||
# calculate profit and send message to user
|
||||
try:
|
||||
current_rate = self._freqtrade.get_sell_rate(trade.pair, False)
|
||||
except DependencyException:
|
||||
except (ExchangeError, PricingError):
|
||||
current_rate = NAN
|
||||
current_profit = trade.calc_profit_ratio(current_rate)
|
||||
current_profit_abs = trade.calc_profit(current_rate)
|
||||
# Calculate guaranteed profit (in case of trailing stop)
|
||||
stoploss_entry_dist = trade.calc_profit(trade.stop_loss)
|
||||
stoploss_entry_dist_ratio = trade.calc_profit_ratio(trade.stop_loss)
|
||||
# calculate distance to stoploss
|
||||
stoploss_current_dist = trade.stop_loss - current_rate
|
||||
stoploss_current_dist_ratio = stoploss_current_dist / current_rate
|
||||
|
||||
fmt_close_profit = (f'{round(trade.close_profit * 100, 2):.2f}%'
|
||||
if trade.close_profit else None)
|
||||
if trade.close_profit is not None else None)
|
||||
trade_dict = trade.to_json()
|
||||
trade_dict.update(dict(
|
||||
base_currency=self._freqtrade.config['stake_currency'],
|
||||
close_profit=fmt_close_profit,
|
||||
close_profit=trade.close_profit if trade.close_profit is not None else None,
|
||||
close_profit_pct=fmt_close_profit,
|
||||
current_rate=current_rate,
|
||||
current_profit=round(current_profit * 100, 2),
|
||||
current_profit=current_profit,
|
||||
current_profit_pct=round(current_profit * 100, 2),
|
||||
current_profit_abs=current_profit_abs,
|
||||
stoploss_current_dist=stoploss_current_dist,
|
||||
stoploss_current_dist_ratio=round(stoploss_current_dist_ratio, 8),
|
||||
stoploss_entry_dist=stoploss_entry_dist,
|
||||
stoploss_entry_dist_ratio=round(stoploss_entry_dist_ratio, 8),
|
||||
open_order='({} {} rem={:.8f})'.format(
|
||||
order['type'], order['side'], order['remaining']
|
||||
) if order else None,
|
||||
@@ -156,7 +178,7 @@ class RPC:
|
||||
# calculate profit and send message to user
|
||||
try:
|
||||
current_rate = self._freqtrade.get_sell_rate(trade.pair, False)
|
||||
except DependencyException:
|
||||
except (PricingError, ExchangeError):
|
||||
current_rate = NAN
|
||||
trade_percent = (100 * trade.calc_profit_ratio(current_rate))
|
||||
trade_profit = trade.calc_profit(current_rate)
|
||||
@@ -202,22 +224,20 @@ class RPC:
|
||||
]).order_by(Trade.close_date).all()
|
||||
curdayprofit = sum(trade.close_profit_abs for trade in trades)
|
||||
profit_days[profitday] = {
|
||||
'amount': f'{curdayprofit:.8f}',
|
||||
'amount': curdayprofit,
|
||||
'trades': len(trades)
|
||||
}
|
||||
|
||||
data = [
|
||||
{
|
||||
'date': key,
|
||||
'abs_profit': f'{float(value["amount"]):.8f}',
|
||||
'fiat_value': '{value:.3f}'.format(
|
||||
value=self._fiat_converter.convert_amount(
|
||||
'abs_profit': value["amount"],
|
||||
'fiat_value': self._fiat_converter.convert_amount(
|
||||
value['amount'],
|
||||
stake_currency,
|
||||
fiat_display_currency
|
||||
) if self._fiat_converter else 0,
|
||||
),
|
||||
'trade_count': f'{value["trades"]}',
|
||||
'trade_count': value["trades"],
|
||||
}
|
||||
for key, value in profit_days.items()
|
||||
]
|
||||
@@ -230,9 +250,10 @@ class RPC:
|
||||
def _rpc_trade_history(self, limit: int) -> Dict:
|
||||
""" Returns the X last trades """
|
||||
if limit > 0:
|
||||
trades = Trade.get_trades().order_by(Trade.id.desc()).limit(limit)
|
||||
trades = Trade.get_trades([Trade.is_open.is_(False)]).order_by(
|
||||
Trade.id.desc()).limit(limit)
|
||||
else:
|
||||
trades = Trade.get_trades().order_by(Trade.id.desc()).all()
|
||||
trades = Trade.get_trades([Trade.is_open.is_(False)]).order_by(Trade.id.desc()).all()
|
||||
|
||||
output = [trade.to_json() for trade in trades]
|
||||
|
||||
@@ -251,6 +272,8 @@ class RPC:
|
||||
profit_closed_coin = []
|
||||
profit_closed_ratio = []
|
||||
durations = []
|
||||
winning_trades = 0
|
||||
losing_trades = 0
|
||||
|
||||
for trade in trades:
|
||||
current_rate: float = 0.0
|
||||
@@ -264,11 +287,15 @@ class RPC:
|
||||
profit_ratio = trade.close_profit
|
||||
profit_closed_coin.append(trade.close_profit_abs)
|
||||
profit_closed_ratio.append(profit_ratio)
|
||||
if trade.close_profit >= 0:
|
||||
winning_trades += 1
|
||||
else:
|
||||
losing_trades += 1
|
||||
else:
|
||||
# Get current rate
|
||||
try:
|
||||
current_rate = self._freqtrade.get_sell_rate(trade.pair, False)
|
||||
except DependencyException:
|
||||
except (PricingError, ExchangeError):
|
||||
current_rate = NAN
|
||||
profit_ratio = trade.calc_profit_ratio(rate=current_rate)
|
||||
|
||||
@@ -279,15 +306,11 @@ class RPC:
|
||||
|
||||
best_pair = Trade.get_best_pair()
|
||||
|
||||
if not best_pair:
|
||||
raise RPCException('no closed trade')
|
||||
|
||||
bp_pair, bp_rate = best_pair
|
||||
|
||||
# Prepare data to display
|
||||
profit_closed_coin_sum = round(sum(profit_closed_coin), 8)
|
||||
profit_closed_percent = (round(mean(profit_closed_ratio) * 100, 2) if profit_closed_ratio
|
||||
else 0.0)
|
||||
profit_closed_ratio_mean = mean(profit_closed_ratio) if profit_closed_ratio else 0.0
|
||||
profit_closed_ratio_sum = sum(profit_closed_ratio) if profit_closed_ratio else 0.0
|
||||
|
||||
profit_closed_fiat = self._fiat_converter.convert_amount(
|
||||
profit_closed_coin_sum,
|
||||
stake_currency,
|
||||
@@ -295,27 +318,43 @@ class RPC:
|
||||
) if self._fiat_converter else 0
|
||||
|
||||
profit_all_coin_sum = round(sum(profit_all_coin), 8)
|
||||
profit_all_percent = round(mean(profit_all_ratio) * 100, 2) if profit_all_ratio else 0.0
|
||||
profit_all_ratio_mean = mean(profit_all_ratio) if profit_all_ratio else 0.0
|
||||
profit_all_ratio_sum = sum(profit_all_ratio) if profit_all_ratio else 0.0
|
||||
profit_all_fiat = self._fiat_converter.convert_amount(
|
||||
profit_all_coin_sum,
|
||||
stake_currency,
|
||||
fiat_display_currency
|
||||
) if self._fiat_converter else 0
|
||||
|
||||
first_date = trades[0].open_date if trades else None
|
||||
last_date = trades[-1].open_date if trades else None
|
||||
num = float(len(durations) or 1)
|
||||
return {
|
||||
'profit_closed_coin': profit_closed_coin_sum,
|
||||
'profit_closed_percent': profit_closed_percent,
|
||||
'profit_closed_percent': round(profit_closed_ratio_mean * 100, 2), # DEPRECATED
|
||||
'profit_closed_percent_mean': round(profit_closed_ratio_mean * 100, 2),
|
||||
'profit_closed_ratio_mean': profit_closed_ratio_mean,
|
||||
'profit_closed_percent_sum': round(profit_closed_ratio_sum * 100, 2),
|
||||
'profit_closed_ratio_sum': profit_closed_ratio_sum,
|
||||
'profit_closed_fiat': profit_closed_fiat,
|
||||
'profit_all_coin': profit_all_coin_sum,
|
||||
'profit_all_percent': profit_all_percent,
|
||||
'profit_all_percent': round(profit_all_ratio_mean * 100, 2), # DEPRECATED
|
||||
'profit_all_percent_mean': round(profit_all_ratio_mean * 100, 2),
|
||||
'profit_all_ratio_mean': profit_all_ratio_mean,
|
||||
'profit_all_percent_sum': round(profit_all_ratio_sum * 100, 2),
|
||||
'profit_all_ratio_sum': profit_all_ratio_sum,
|
||||
'profit_all_fiat': profit_all_fiat,
|
||||
'trade_count': len(trades),
|
||||
'first_trade_date': arrow.get(trades[0].open_date).humanize(),
|
||||
'latest_trade_date': arrow.get(trades[-1].open_date).humanize(),
|
||||
'closed_trade_count': len([t for t in trades if not t.is_open]),
|
||||
'first_trade_date': arrow.get(first_date).humanize() if first_date else '',
|
||||
'first_trade_timestamp': int(first_date.timestamp() * 1000) if first_date else 0,
|
||||
'latest_trade_date': arrow.get(last_date).humanize() if last_date else '',
|
||||
'latest_trade_timestamp': int(last_date.timestamp() * 1000) if last_date else 0,
|
||||
'avg_duration': str(timedelta(seconds=sum(durations) / num)).split('.')[0],
|
||||
'best_pair': bp_pair,
|
||||
'best_rate': round(bp_rate * 100, 2),
|
||||
'best_pair': best_pair[0] if best_pair else '',
|
||||
'best_rate': round(best_pair[1] * 100, 2) if best_pair else 0,
|
||||
'winning_trades': winning_trades,
|
||||
'losing_trades': losing_trades,
|
||||
}
|
||||
|
||||
def _rpc_balance(self, stake_currency: str, fiat_display_currency: str) -> Dict:
|
||||
@@ -324,7 +363,7 @@ class RPC:
|
||||
total = 0.0
|
||||
try:
|
||||
tickers = self._freqtrade.exchange.get_tickers()
|
||||
except (TemporaryError, DependencyException):
|
||||
except (ExchangeError):
|
||||
raise RPCException('Error getting current tickers.')
|
||||
|
||||
self._freqtrade.wallets.update(require_update=False)
|
||||
@@ -345,7 +384,7 @@ class RPC:
|
||||
if pair.startswith(stake_currency):
|
||||
rate = 1.0 / rate
|
||||
est_stake = rate * balance.total
|
||||
except (TemporaryError, DependencyException):
|
||||
except (ExchangeError):
|
||||
logger.warning(f" Could not get rate for pair {coin}.")
|
||||
continue
|
||||
total = total + (est_stake or 0)
|
||||
@@ -391,9 +430,9 @@ class RPC:
|
||||
|
||||
return {'status': 'already stopped'}
|
||||
|
||||
def _rpc_reload_conf(self) -> Dict[str, str]:
|
||||
""" Handler for reload_conf. """
|
||||
self._freqtrade.state = State.RELOAD_CONF
|
||||
def _rpc_reload_config(self) -> Dict[str, str]:
|
||||
""" Handler for reload_config. """
|
||||
self._freqtrade.state = State.RELOAD_CONFIG
|
||||
return {'status': 'reloading config ...'}
|
||||
|
||||
def _rpc_stopbuy(self) -> Dict[str, str]:
|
||||
@@ -404,7 +443,7 @@ class RPC:
|
||||
# Set 'max_open_trades' to 0
|
||||
self._freqtrade.config['max_open_trades'] = 0
|
||||
|
||||
return {'status': 'No more buy will occur from now. Run /reload_conf to reset.'}
|
||||
return {'status': 'No more buy will occur from now. Run /reload_config to reset.'}
|
||||
|
||||
def _rpc_forcesell(self, trade_id: str) -> Dict[str, str]:
|
||||
"""
|
||||
@@ -414,7 +453,7 @@ class RPC:
|
||||
def _exec_forcesell(trade: Trade) -> None:
|
||||
# Check if there is there is an open order
|
||||
if trade.open_order_id:
|
||||
order = self._freqtrade.exchange.get_order(trade.open_order_id, trade.pair)
|
||||
order = self._freqtrade.exchange.fetch_order(trade.open_order_id, trade.pair)
|
||||
|
||||
# Cancel open LIMIT_BUY orders and close trade
|
||||
if order and order['status'] == 'open' \
|
||||
@@ -483,7 +522,7 @@ class RPC:
|
||||
# check if valid pair
|
||||
|
||||
# check if pair already has an open pair
|
||||
trade = Trade.get_trades([Trade.is_open.is_(True), Trade.pair.is_(pair)]).first()
|
||||
trade = Trade.get_trades([Trade.is_open.is_(True), Trade.pair == pair]).first()
|
||||
if trade:
|
||||
raise RPCException(f'position for {pair} already open - id: {trade.id}')
|
||||
|
||||
@@ -492,11 +531,51 @@ class RPC:
|
||||
|
||||
# execute buy
|
||||
if self._freqtrade.execute_buy(pair, stakeamount, price):
|
||||
trade = Trade.get_trades([Trade.is_open.is_(True), Trade.pair.is_(pair)]).first()
|
||||
trade = Trade.get_trades([Trade.is_open.is_(True), Trade.pair == pair]).first()
|
||||
return trade
|
||||
else:
|
||||
return None
|
||||
|
||||
def _rpc_delete(self, trade_id: str) -> Dict[str, Union[str, int]]:
|
||||
"""
|
||||
Handler for delete <id>.
|
||||
Delete the given trade and close eventually existing open orders.
|
||||
"""
|
||||
with self._freqtrade._sell_lock:
|
||||
c_count = 0
|
||||
trade = Trade.get_trades(trade_filter=[Trade.id == trade_id]).first()
|
||||
if not trade:
|
||||
logger.warning('delete trade: Invalid argument received')
|
||||
raise RPCException('invalid argument')
|
||||
|
||||
# Try cancelling regular order if that exists
|
||||
if trade.open_order_id:
|
||||
try:
|
||||
self._freqtrade.exchange.cancel_order(trade.open_order_id, trade.pair)
|
||||
c_count += 1
|
||||
except (ExchangeError):
|
||||
pass
|
||||
|
||||
# cancel stoploss on exchange ...
|
||||
if (self._freqtrade.strategy.order_types.get('stoploss_on_exchange')
|
||||
and trade.stoploss_order_id):
|
||||
try:
|
||||
self._freqtrade.exchange.cancel_stoploss_order(trade.stoploss_order_id,
|
||||
trade.pair)
|
||||
c_count += 1
|
||||
except (ExchangeError):
|
||||
pass
|
||||
|
||||
Trade.session.delete(trade)
|
||||
Trade.session.flush()
|
||||
self._freqtrade.wallets.update()
|
||||
return {
|
||||
'result': 'success',
|
||||
'trade_id': trade_id,
|
||||
'result_msg': f'Deleted trade {trade_id}. Closed {c_count} open orders.',
|
||||
'cancel_order_count': c_count,
|
||||
}
|
||||
|
||||
def _rpc_performance(self) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Handler for performance.
|
||||
@@ -529,16 +608,26 @@ class RPC:
|
||||
|
||||
def _rpc_blacklist(self, add: List[str] = None) -> Dict:
|
||||
""" Returns the currently active blacklist"""
|
||||
errors = {}
|
||||
if add:
|
||||
stake_currency = self._freqtrade.config.get('stake_currency')
|
||||
for pair in add:
|
||||
if (self._freqtrade.exchange.get_pair_quote_currency(pair) == stake_currency
|
||||
and pair not in self._freqtrade.pairlists.blacklist):
|
||||
self._freqtrade.pairlists.blacklist.append(pair)
|
||||
if self._freqtrade.exchange.get_pair_quote_currency(pair) == stake_currency:
|
||||
if pair not in self._freqtrade.pairlists.blacklist:
|
||||
self._freqtrade.pairlists.blacklist.append(pair)
|
||||
else:
|
||||
errors[pair] = {
|
||||
'error_msg': f'Pair {pair} already in pairlist.'}
|
||||
|
||||
else:
|
||||
errors[pair] = {
|
||||
'error_msg': f"Pair {pair} does not match stake currency."
|
||||
}
|
||||
|
||||
res = {'method': self._freqtrade.pairlists.name_list,
|
||||
'length': len(self._freqtrade.pairlists.blacklist),
|
||||
'blacklist': self._freqtrade.pairlists.blacklist,
|
||||
'errors': errors,
|
||||
}
|
||||
return res
|
||||
|
||||
|
@@ -72,7 +72,7 @@ class RPCManager:
|
||||
minimal_roi = config['minimal_roi']
|
||||
stoploss = config['stoploss']
|
||||
trailing_stop = config['trailing_stop']
|
||||
ticker_interval = config['ticker_interval']
|
||||
timeframe = config['timeframe']
|
||||
exchange_name = config['exchange']['name']
|
||||
strategy_name = config.get('strategy', '')
|
||||
self.send_msg({
|
||||
@@ -81,7 +81,7 @@ class RPCManager:
|
||||
f'*Stake per trade:* `{stake_amount} {stake_currency}`\n'
|
||||
f'*Minimum ROI:* `{minimal_roi}`\n'
|
||||
f'*{"Trailing " if trailing_stop else ""}Stoploss:* `{stoploss}`\n'
|
||||
f'*Ticker Interval:* `{ticker_interval}`\n'
|
||||
f'*Timeframe:* `{timeframe}`\n'
|
||||
f'*Strategy:* `{strategy_name}`'
|
||||
})
|
||||
self.send_msg({
|
||||
|
@@ -3,7 +3,9 @@
|
||||
"""
|
||||
This module manage Telegram communication
|
||||
"""
|
||||
import json
|
||||
import logging
|
||||
import arrow
|
||||
from typing import Any, Callable, Dict
|
||||
|
||||
from tabulate import tabulate
|
||||
@@ -19,7 +21,6 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
logger.debug('Included module rpc.telegram ...')
|
||||
|
||||
|
||||
MAX_TELEGRAM_MESSAGE_LENGTH = 4096
|
||||
|
||||
|
||||
@@ -29,6 +30,7 @@ def authorized_only(command_handler: Callable[..., None]) -> Callable[..., Any]:
|
||||
:param command_handler: Telegram CommandHandler
|
||||
:return: decorated function
|
||||
"""
|
||||
|
||||
def wrapper(self, *args, **kwargs):
|
||||
""" Decorator logic """
|
||||
update = kwargs.get('update') or args[0]
|
||||
@@ -91,11 +93,13 @@ class Telegram(RPC):
|
||||
CommandHandler('stop', self._stop),
|
||||
CommandHandler('forcesell', self._forcesell),
|
||||
CommandHandler('forcebuy', self._forcebuy),
|
||||
CommandHandler('trades', self._trades),
|
||||
CommandHandler('delete', self._delete_trade),
|
||||
CommandHandler('performance', self._performance),
|
||||
CommandHandler('daily', self._daily),
|
||||
CommandHandler('count', self._count),
|
||||
CommandHandler('reload_conf', self._reload_conf),
|
||||
CommandHandler('show_config', self._show_config),
|
||||
CommandHandler(['reload_config', 'reload_conf'], self._reload_config),
|
||||
CommandHandler(['show_config', 'show_conf'], self._show_config),
|
||||
CommandHandler('stopbuy', self._stopbuy),
|
||||
CommandHandler('whitelist', self._whitelist),
|
||||
CommandHandler('blacklist', self._blacklist),
|
||||
@@ -133,7 +137,7 @@ class Telegram(RPC):
|
||||
else:
|
||||
msg['stake_amount_fiat'] = 0
|
||||
|
||||
message = ("*{exchange}:* Buying {pair}\n"
|
||||
message = ("\N{LARGE BLUE CIRCLE} *{exchange}:* Buying {pair}\n"
|
||||
"*Amount:* `{amount:.8f}`\n"
|
||||
"*Open Rate:* `{limit:.8f}`\n"
|
||||
"*Current Rate:* `{current_rate:.8f}`\n"
|
||||
@@ -144,7 +148,8 @@ class Telegram(RPC):
|
||||
message += ")`"
|
||||
|
||||
elif msg['type'] == RPCMessageType.BUY_CANCEL_NOTIFICATION:
|
||||
message = "*{exchange}:* Cancelling Open Buy Order for {pair}".format(**msg)
|
||||
message = ("\N{WARNING SIGN} *{exchange}:* "
|
||||
"Cancelling Open Buy Order for {pair}".format(**msg))
|
||||
|
||||
elif msg['type'] == RPCMessageType.SELL_NOTIFICATION:
|
||||
msg['amount'] = round(msg['amount'], 8)
|
||||
@@ -153,7 +158,9 @@ class Telegram(RPC):
|
||||
microsecond=0) - msg['open_date'].replace(microsecond=0)
|
||||
msg['duration_min'] = msg['duration'].total_seconds() / 60
|
||||
|
||||
message = ("*{exchange}:* Selling {pair}\n"
|
||||
msg['emoji'] = self._get_sell_emoji(msg)
|
||||
|
||||
message = ("{emoji} *{exchange}:* Selling {pair}\n"
|
||||
"*Amount:* `{amount:.8f}`\n"
|
||||
"*Open Rate:* `{open_rate:.8f}`\n"
|
||||
"*Current Rate:* `{current_rate:.8f}`\n"
|
||||
@@ -165,21 +172,21 @@ class Telegram(RPC):
|
||||
# Check if all sell properties are available.
|
||||
# This might not be the case if the message origin is triggered by /forcesell
|
||||
if (all(prop in msg for prop in ['gain', 'fiat_currency', 'stake_currency'])
|
||||
and self._fiat_converter):
|
||||
and self._fiat_converter):
|
||||
msg['profit_fiat'] = self._fiat_converter.convert_amount(
|
||||
msg['profit_amount'], msg['stake_currency'], msg['fiat_currency'])
|
||||
message += (' `({gain}: {profit_amount:.8f} {stake_currency}'
|
||||
' / {profit_fiat:.3f} {fiat_currency})`').format(**msg)
|
||||
|
||||
elif msg['type'] == RPCMessageType.SELL_CANCEL_NOTIFICATION:
|
||||
message = ("*{exchange}:* Cancelling Open Sell Order "
|
||||
message = ("\N{WARNING SIGN} *{exchange}:* Cancelling Open Sell Order "
|
||||
"for {pair}. Reason: {reason}").format(**msg)
|
||||
|
||||
elif msg['type'] == RPCMessageType.STATUS_NOTIFICATION:
|
||||
message = '*Status:* `{status}`'.format(**msg)
|
||||
|
||||
elif msg['type'] == RPCMessageType.WARNING_NOTIFICATION:
|
||||
message = '*Warning:* `{status}`'.format(**msg)
|
||||
message = '\N{WARNING SIGN} *Warning:* `{status}`'.format(**msg)
|
||||
|
||||
elif msg['type'] == RPCMessageType.CUSTOM_NOTIFICATION:
|
||||
message = '{status}'.format(**msg)
|
||||
@@ -189,6 +196,20 @@ class Telegram(RPC):
|
||||
|
||||
self._send_msg(message)
|
||||
|
||||
def _get_sell_emoji(self, msg):
|
||||
"""
|
||||
Get emoji for sell-side
|
||||
"""
|
||||
|
||||
if float(msg['profit_percent']) >= 5.0:
|
||||
return "\N{ROCKET}"
|
||||
elif float(msg['profit_percent']) >= 0.0:
|
||||
return "\N{EIGHT SPOKED ASTERISK}"
|
||||
elif msg['sell_reason'] == "stop_loss":
|
||||
return"\N{WARNING SIGN}"
|
||||
else:
|
||||
return "\N{CROSS MARK}"
|
||||
|
||||
@authorized_only
|
||||
def _status(self, update: Update, context: CallbackContext) -> None:
|
||||
"""
|
||||
@@ -215,13 +236,15 @@ class Telegram(RPC):
|
||||
"*Open Rate:* `{open_rate:.8f}`",
|
||||
"*Close Rate:* `{close_rate}`" if r['close_rate'] else "",
|
||||
"*Current Rate:* `{current_rate:.8f}`",
|
||||
"*Close Profit:* `{close_profit}`" if r['close_profit'] else "",
|
||||
"*Current Profit:* `{current_profit:.2f}%`",
|
||||
("*Close Profit:* `{close_profit_pct}`"
|
||||
if r['close_profit_pct'] is not None else ""),
|
||||
"*Current Profit:* `{current_profit_pct:.2f}%`",
|
||||
|
||||
# Adding initial stoploss only if it is different from stoploss
|
||||
"*Initial Stoploss:* `{initial_stop_loss:.8f}` " +
|
||||
("`({initial_stop_loss_pct:.2f}%)`" if r['initial_stop_loss_pct'] else "")
|
||||
if r['stop_loss'] != r['initial_stop_loss'] else "",
|
||||
("`({initial_stop_loss_pct:.2f}%)`") if (
|
||||
r['stop_loss'] != r['initial_stop_loss']
|
||||
and r['initial_stop_loss_pct'] is not None) else "",
|
||||
|
||||
# Adding stoploss and stoploss percentage only if it is not None
|
||||
"*Stoploss:* `{stop_loss:.8f}` " +
|
||||
@@ -282,8 +305,8 @@ class Telegram(RPC):
|
||||
)
|
||||
stats_tab = tabulate(
|
||||
[[day['date'],
|
||||
f"{day['abs_profit']} {stats['stake_currency']}",
|
||||
f"{day['fiat_value']} {stats['fiat_display_currency']}",
|
||||
f"{day['abs_profit']:.8f} {stats['stake_currency']}",
|
||||
f"{day['fiat_value']:.3f} {stats['fiat_display_currency']}",
|
||||
f"{day['trade_count']} trades"] for day in stats['data']],
|
||||
headers=[
|
||||
'Day',
|
||||
@@ -309,38 +332,50 @@ class Telegram(RPC):
|
||||
stake_cur = self._config['stake_currency']
|
||||
fiat_disp_cur = self._config.get('fiat_display_currency', '')
|
||||
|
||||
try:
|
||||
stats = self._rpc_trade_statistics(
|
||||
stake_cur,
|
||||
fiat_disp_cur)
|
||||
profit_closed_coin = stats['profit_closed_coin']
|
||||
profit_closed_percent = stats['profit_closed_percent']
|
||||
profit_closed_fiat = stats['profit_closed_fiat']
|
||||
profit_all_coin = stats['profit_all_coin']
|
||||
profit_all_percent = stats['profit_all_percent']
|
||||
profit_all_fiat = stats['profit_all_fiat']
|
||||
trade_count = stats['trade_count']
|
||||
first_trade_date = stats['first_trade_date']
|
||||
latest_trade_date = stats['latest_trade_date']
|
||||
avg_duration = stats['avg_duration']
|
||||
best_pair = stats['best_pair']
|
||||
best_rate = stats['best_rate']
|
||||
stats = self._rpc_trade_statistics(
|
||||
stake_cur,
|
||||
fiat_disp_cur)
|
||||
profit_closed_coin = stats['profit_closed_coin']
|
||||
profit_closed_percent_mean = stats['profit_closed_percent_mean']
|
||||
profit_closed_percent_sum = stats['profit_closed_percent_sum']
|
||||
profit_closed_fiat = stats['profit_closed_fiat']
|
||||
profit_all_coin = stats['profit_all_coin']
|
||||
profit_all_percent_mean = stats['profit_all_percent_mean']
|
||||
profit_all_percent_sum = stats['profit_all_percent_sum']
|
||||
profit_all_fiat = stats['profit_all_fiat']
|
||||
trade_count = stats['trade_count']
|
||||
first_trade_date = stats['first_trade_date']
|
||||
latest_trade_date = stats['latest_trade_date']
|
||||
avg_duration = stats['avg_duration']
|
||||
best_pair = stats['best_pair']
|
||||
best_rate = stats['best_rate']
|
||||
if stats['trade_count'] == 0:
|
||||
markdown_msg = 'No trades yet.'
|
||||
else:
|
||||
# Message to display
|
||||
markdown_msg = "*ROI:* Close trades\n" \
|
||||
f"∙ `{profit_closed_coin:.8f} {stake_cur} "\
|
||||
f"({profit_closed_percent:.2f}%)`\n" \
|
||||
f"∙ `{profit_closed_fiat:.3f} {fiat_disp_cur}`\n" \
|
||||
f"*ROI:* All trades\n" \
|
||||
f"∙ `{profit_all_coin:.8f} {stake_cur} ({profit_all_percent:.2f}%)`\n" \
|
||||
f"∙ `{profit_all_fiat:.3f} {fiat_disp_cur}`\n" \
|
||||
f"*Total Trade Count:* `{trade_count}`\n" \
|
||||
f"*First Trade opened:* `{first_trade_date}`\n" \
|
||||
f"*Latest Trade opened:* `{latest_trade_date}`\n" \
|
||||
f"*Avg. Duration:* `{avg_duration}`\n" \
|
||||
f"*Best Performing:* `{best_pair}: {best_rate:.2f}%`"
|
||||
self._send_msg(markdown_msg)
|
||||
except RPCException as e:
|
||||
self._send_msg(str(e))
|
||||
if stats['closed_trade_count'] > 0:
|
||||
markdown_msg = ("*ROI:* Closed trades\n"
|
||||
f"∙ `{profit_closed_coin:.8f} {stake_cur} "
|
||||
f"({profit_closed_percent_mean:.2f}%) "
|
||||
f"({profit_closed_percent_sum} \N{GREEK CAPITAL LETTER SIGMA}%)`\n"
|
||||
f"∙ `{profit_closed_fiat:.3f} {fiat_disp_cur}`\n")
|
||||
else:
|
||||
markdown_msg = "`No closed trade` \n"
|
||||
|
||||
markdown_msg += (f"*ROI:* All trades\n"
|
||||
f"∙ `{profit_all_coin:.8f} {stake_cur} "
|
||||
f"({profit_all_percent_mean:.2f}%) "
|
||||
f"({profit_all_percent_sum} \N{GREEK CAPITAL LETTER SIGMA}%)`\n"
|
||||
f"∙ `{profit_all_fiat:.3f} {fiat_disp_cur}`\n"
|
||||
f"*Total Trade Count:* `{trade_count}`\n"
|
||||
f"*First Trade opened:* `{first_trade_date}`\n"
|
||||
f"*Latest Trade opened:* `{latest_trade_date}\n`"
|
||||
f"*Win / Loss:* `{stats['winning_trades']} / {stats['losing_trades']}`"
|
||||
)
|
||||
if stats['closed_trade_count'] > 0:
|
||||
markdown_msg += (f"\n*Avg. Duration:* `{avg_duration}`\n"
|
||||
f"*Best Performing:* `{best_pair}: {best_rate:.2f}%`")
|
||||
self._send_msg(markdown_msg)
|
||||
|
||||
@authorized_only
|
||||
def _balance(self, update: Update, context: CallbackContext) -> None:
|
||||
@@ -356,14 +391,14 @@ class Telegram(RPC):
|
||||
"This mode is still experimental!\n"
|
||||
"Starting capital: "
|
||||
f"`{self._config['dry_run_wallet']}` {self._config['stake_currency']}.\n"
|
||||
)
|
||||
)
|
||||
for currency in result['currencies']:
|
||||
if currency['est_stake'] > 0.0001:
|
||||
curr_output = "*{currency}:*\n" \
|
||||
"\t`Available: {free: .8f}`\n" \
|
||||
"\t`Balance: {balance: .8f}`\n" \
|
||||
"\t`Pending: {used: .8f}`\n" \
|
||||
"\t`Est. {stake}: {est_stake: .8f}`\n".format(**currency)
|
||||
curr_output = ("*{currency}:*\n"
|
||||
"\t`Available: {free: .8f}`\n"
|
||||
"\t`Balance: {balance: .8f}`\n"
|
||||
"\t`Pending: {used: .8f}`\n"
|
||||
"\t`Est. {stake}: {est_stake: .8f}`\n").format(**currency)
|
||||
else:
|
||||
curr_output = "*{currency}:* not showing <1$ amount \n".format(**currency)
|
||||
|
||||
@@ -374,9 +409,9 @@ class Telegram(RPC):
|
||||
else:
|
||||
output += curr_output
|
||||
|
||||
output += "\n*Estimated Value*:\n" \
|
||||
"\t`{stake}: {total: .8f}`\n" \
|
||||
"\t`{symbol}: {value: .2f}`\n".format(**result)
|
||||
output += ("\n*Estimated Value*:\n"
|
||||
"\t`{stake}: {total: .8f}`\n"
|
||||
"\t`{symbol}: {value: .2f}`\n").format(**result)
|
||||
self._send_msg(output)
|
||||
except RPCException as e:
|
||||
self._send_msg(str(e))
|
||||
@@ -406,15 +441,15 @@ class Telegram(RPC):
|
||||
self._send_msg('Status: `{status}`'.format(**msg))
|
||||
|
||||
@authorized_only
|
||||
def _reload_conf(self, update: Update, context: CallbackContext) -> None:
|
||||
def _reload_config(self, update: Update, context: CallbackContext) -> None:
|
||||
"""
|
||||
Handler for /reload_conf.
|
||||
Handler for /reload_config.
|
||||
Triggers a config file reload
|
||||
:param bot: telegram bot
|
||||
:param update: message update
|
||||
:return: None
|
||||
"""
|
||||
msg = self._rpc_reload_conf()
|
||||
msg = self._rpc_reload_config()
|
||||
self._send_msg('Status: `{status}`'.format(**msg))
|
||||
|
||||
@authorized_only
|
||||
@@ -464,6 +499,62 @@ class Telegram(RPC):
|
||||
except RPCException as e:
|
||||
self._send_msg(str(e))
|
||||
|
||||
@authorized_only
|
||||
def _trades(self, update: Update, context: CallbackContext) -> None:
|
||||
"""
|
||||
Handler for /trades <n>
|
||||
Returns last n recent trades.
|
||||
:param bot: telegram bot
|
||||
:param update: message update
|
||||
:return: None
|
||||
"""
|
||||
stake_cur = self._config['stake_currency']
|
||||
try:
|
||||
nrecent = int(context.args[0])
|
||||
except (TypeError, ValueError, IndexError):
|
||||
nrecent = 10
|
||||
try:
|
||||
trades = self._rpc_trade_history(
|
||||
nrecent
|
||||
)
|
||||
trades_tab = tabulate(
|
||||
[[arrow.get(trade['open_date']).humanize(),
|
||||
trade['pair'],
|
||||
f"{(100 * trade['close_profit']):.2f}% ({trade['close_profit_abs']})"]
|
||||
for trade in trades['trades']],
|
||||
headers=[
|
||||
'Open Date',
|
||||
'Pair',
|
||||
f'Profit ({stake_cur})',
|
||||
],
|
||||
tablefmt='simple')
|
||||
message = (f"<b>{min(trades['trades_count'], nrecent)} recent trades</b>:\n"
|
||||
+ (f"<pre>{trades_tab}</pre>" if trades['trades_count'] > 0 else ''))
|
||||
self._send_msg(message, parse_mode=ParseMode.HTML)
|
||||
except RPCException as e:
|
||||
self._send_msg(str(e))
|
||||
|
||||
@authorized_only
|
||||
def _delete_trade(self, update: Update, context: CallbackContext) -> None:
|
||||
"""
|
||||
Handler for /delete <id>.
|
||||
Delete the given trade
|
||||
:param bot: telegram bot
|
||||
:param update: message update
|
||||
:return: None
|
||||
"""
|
||||
|
||||
trade_id = context.args[0] if len(context.args) > 0 else None
|
||||
try:
|
||||
msg = self._rpc_delete(trade_id)
|
||||
self._send_msg((
|
||||
'`{result_msg}`\n'
|
||||
'Please make sure to take care of this asset on the exchange manually.'
|
||||
).format(**msg))
|
||||
|
||||
except RPCException as e:
|
||||
self._send_msg(str(e))
|
||||
|
||||
@authorized_only
|
||||
def _performance(self, update: Update, context: CallbackContext) -> None:
|
||||
"""
|
||||
@@ -532,6 +623,11 @@ class Telegram(RPC):
|
||||
try:
|
||||
|
||||
blacklist = self._rpc_blacklist(context.args)
|
||||
errmsgs = []
|
||||
for pair, error in blacklist['errors'].items():
|
||||
errmsgs.append(f"Error adding `{pair}` to blacklist: `{error['error_msg']}`")
|
||||
if errmsgs:
|
||||
self._send_msg('\n'.join(errmsgs))
|
||||
|
||||
message = f"Blacklist contains {blacklist['length']} pairs\n"
|
||||
message += f"`{', '.join(blacklist['blacklist'])}`"
|
||||
@@ -564,32 +660,34 @@ class Telegram(RPC):
|
||||
:param update: message update
|
||||
:return: None
|
||||
"""
|
||||
forcebuy_text = "*/forcebuy <pair> [<rate>]:* `Instantly buys the given pair. " \
|
||||
"Optionally takes a rate at which to buy.` \n"
|
||||
message = "*/start:* `Starts the trader`\n" \
|
||||
"*/stop:* `Stops the trader`\n" \
|
||||
"*/status [table]:* `Lists all open trades`\n" \
|
||||
" *table :* `will display trades in a table`\n" \
|
||||
" `pending buy orders are marked with an asterisk (*)`\n" \
|
||||
" `pending sell orders are marked with a double asterisk (**)`\n" \
|
||||
"*/profit:* `Lists cumulative profit from all finished trades`\n" \
|
||||
"*/forcesell <trade_id>|all:* `Instantly sells the given trade or all trades, " \
|
||||
"regardless of profit`\n" \
|
||||
f"{forcebuy_text if self._config.get('forcebuy_enable', False) else '' }" \
|
||||
"*/performance:* `Show performance of each finished trade grouped by pair`\n" \
|
||||
"*/daily <n>:* `Shows profit or loss per day, over the last n days`\n" \
|
||||
"*/count:* `Show number of trades running compared to allowed number of trades`" \
|
||||
"\n" \
|
||||
"*/balance:* `Show account balance per currency`\n" \
|
||||
"*/stopbuy:* `Stops buying, but handles open trades gracefully` \n" \
|
||||
"*/reload_conf:* `Reload configuration file` \n" \
|
||||
"*/show_config:* `Show running configuration` \n" \
|
||||
"*/whitelist:* `Show current whitelist` \n" \
|
||||
"*/blacklist [pair]:* `Show current blacklist, or adds one or more pairs " \
|
||||
"to the blacklist.` \n" \
|
||||
"*/edge:* `Shows validated pairs by Edge if it is enabled` \n" \
|
||||
"*/help:* `This help message`\n" \
|
||||
"*/version:* `Show version`"
|
||||
forcebuy_text = ("*/forcebuy <pair> [<rate>]:* `Instantly buys the given pair. "
|
||||
"Optionally takes a rate at which to buy.` \n")
|
||||
message = ("*/start:* `Starts the trader`\n"
|
||||
"*/stop:* `Stops the trader`\n"
|
||||
"*/status [table]:* `Lists all open trades`\n"
|
||||
" *table :* `will display trades in a table`\n"
|
||||
" `pending buy orders are marked with an asterisk (*)`\n"
|
||||
" `pending sell orders are marked with a double asterisk (**)`\n"
|
||||
"*/trades [limit]:* `Lists last closed trades (limited to 10 by default)`\n"
|
||||
"*/profit:* `Lists cumulative profit from all finished trades`\n"
|
||||
"*/forcesell <trade_id>|all:* `Instantly sells the given trade or all trades, "
|
||||
"regardless of profit`\n"
|
||||
f"{forcebuy_text if self._config.get('forcebuy_enable', False) else ''}"
|
||||
"*/delete <trade_id>:* `Instantly delete the given trade in the database`\n"
|
||||
"*/performance:* `Show performance of each finished trade grouped by pair`\n"
|
||||
"*/daily <n>:* `Shows profit or loss per day, over the last n days`\n"
|
||||
"*/count:* `Show number of trades running compared to allowed number of trades`"
|
||||
"\n"
|
||||
"*/balance:* `Show account balance per currency`\n"
|
||||
"*/stopbuy:* `Stops buying, but handles open trades gracefully` \n"
|
||||
"*/reload_config:* `Reload configuration file` \n"
|
||||
"*/show_config:* `Show running configuration` \n"
|
||||
"*/whitelist:* `Show current whitelist` \n"
|
||||
"*/blacklist [pair]:* `Show current blacklist, or adds one or more pairs "
|
||||
"to the blacklist.` \n"
|
||||
"*/edge:* `Shows validated pairs by Edge if it is enabled` \n"
|
||||
"*/help:* `This help message`\n"
|
||||
"*/version:* `Show version`")
|
||||
|
||||
self._send_msg(message)
|
||||
|
||||
@@ -631,8 +729,10 @@ class Telegram(RPC):
|
||||
f"*Stake per trade:* `{val['stake_amount']} {val['stake_currency']}`\n"
|
||||
f"*Max open Trades:* `{val['max_open_trades']}`\n"
|
||||
f"*Minimum ROI:* `{val['minimal_roi']}`\n"
|
||||
f"*Ask strategy:* ```\n{json.dumps(val['ask_strategy'])}```\n"
|
||||
f"*Bid strategy:* ```\n{json.dumps(val['bid_strategy'])}```\n"
|
||||
f"{sl_info}"
|
||||
f"*Ticker Interval:* `{val['ticker_interval']}`\n"
|
||||
f"*Timeframe:* `{val['timeframe']}`\n"
|
||||
f"*Strategy:* `{val['strategy']}`\n"
|
||||
f"*Current state:* `{val['state']}`"
|
||||
)
|
||||
|
@@ -12,7 +12,7 @@ class State(Enum):
|
||||
"""
|
||||
RUNNING = 1
|
||||
STOPPED = 2
|
||||
RELOAD_CONF = 3
|
||||
RELOAD_CONFIG = 3
|
||||
|
||||
def __str__(self):
|
||||
return f"{self.name.lower()}"
|
||||
|
@@ -7,20 +7,19 @@ import warnings
|
||||
from abc import ABC, abstractmethod
|
||||
from datetime import datetime, timezone
|
||||
from enum import Enum
|
||||
from typing import Dict, NamedTuple, Optional, Tuple
|
||||
from typing import Dict, List, NamedTuple, Optional, Tuple
|
||||
|
||||
import arrow
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.constants import ListPairsWithTimeframes
|
||||
from freqtrade.data.dataprovider import DataProvider
|
||||
from freqtrade.exceptions import StrategyError
|
||||
from freqtrade.exceptions import StrategyError, OperationalException
|
||||
from freqtrade.exchange import timeframe_to_minutes
|
||||
from freqtrade.persistence import Trade
|
||||
from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper
|
||||
from freqtrade.typing import ListPairsWithTimeframes
|
||||
from freqtrade.wallets import Wallets
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@@ -45,6 +44,10 @@ class SellType(Enum):
|
||||
EMERGENCY_SELL = "emergency_sell"
|
||||
NONE = ""
|
||||
|
||||
def __str__(self):
|
||||
# explicitly convert to String to help with exporting data.
|
||||
return self.value
|
||||
|
||||
|
||||
class SellCheckTuple(NamedTuple):
|
||||
"""
|
||||
@@ -62,7 +65,7 @@ class IStrategy(ABC):
|
||||
Attributes you can use:
|
||||
minimal_roi -> Dict: Minimal ROI designed for the strategy
|
||||
stoploss -> float: optimal stoploss designed for the strategy
|
||||
ticker_interval -> str: value of the timeframe (ticker interval) to use with the strategy
|
||||
timeframe -> str: value of the timeframe (ticker interval) to use with the strategy
|
||||
"""
|
||||
# Strategy interface version
|
||||
# Default to version 2
|
||||
@@ -85,8 +88,9 @@ class IStrategy(ABC):
|
||||
trailing_stop_positive_offset: float = 0.0
|
||||
trailing_only_offset_is_reached = False
|
||||
|
||||
# associated ticker interval
|
||||
ticker_interval: str
|
||||
# associated timeframe
|
||||
ticker_interval: str # DEPRECATED
|
||||
timeframe: str
|
||||
|
||||
# Optional order types
|
||||
order_types: Dict = {
|
||||
@@ -106,6 +110,9 @@ class IStrategy(ABC):
|
||||
# run "populate_indicators" only for new candle
|
||||
process_only_new_candles: bool = False
|
||||
|
||||
# Disable checking the dataframe (converts the error into a warning message)
|
||||
disable_dataframe_checks: bool = False
|
||||
|
||||
# Count of candles the strategy requires before producing valid signals
|
||||
startup_candle_count: int = 0
|
||||
|
||||
@@ -187,6 +194,63 @@ class IStrategy(ABC):
|
||||
"""
|
||||
return False
|
||||
|
||||
def bot_loop_start(self, **kwargs) -> None:
|
||||
"""
|
||||
Called at the start of the bot iteration (one loop).
|
||||
Might be used to perform pair-independent tasks
|
||||
(e.g. gather some remote resource for comparison)
|
||||
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
|
||||
"""
|
||||
pass
|
||||
|
||||
def confirm_trade_entry(self, pair: str, order_type: str, amount: float, rate: float,
|
||||
time_in_force: str, **kwargs) -> bool:
|
||||
"""
|
||||
Called right before placing a buy order.
|
||||
Timing for this function is critical, so avoid doing heavy computations or
|
||||
network requests in this method.
|
||||
|
||||
For full documentation please go to https://www.freqtrade.io/en/latest/strategy-advanced/
|
||||
|
||||
When not implemented by a strategy, returns True (always confirming).
|
||||
|
||||
:param pair: Pair that's about to be bought.
|
||||
:param order_type: Order type (as configured in order_types). usually limit or market.
|
||||
:param amount: Amount in target (quote) currency that's going to be traded.
|
||||
:param rate: Rate that's going to be used when using limit orders
|
||||
:param time_in_force: Time in force. Defaults to GTC (Good-til-cancelled).
|
||||
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
|
||||
:return bool: When True is returned, then the buy-order is placed on the exchange.
|
||||
False aborts the process
|
||||
"""
|
||||
return True
|
||||
|
||||
def confirm_trade_exit(self, pair: str, trade: Trade, order_type: str, amount: float,
|
||||
rate: float, time_in_force: str, sell_reason: str, **kwargs) -> bool:
|
||||
"""
|
||||
Called right before placing a regular sell order.
|
||||
Timing for this function is critical, so avoid doing heavy computations or
|
||||
network requests in this method.
|
||||
|
||||
For full documentation please go to https://www.freqtrade.io/en/latest/strategy-advanced/
|
||||
|
||||
When not implemented by a strategy, returns True (always confirming).
|
||||
|
||||
:param pair: Pair that's about to be sold.
|
||||
:param trade: trade object.
|
||||
:param order_type: Order type (as configured in order_types). usually limit or market.
|
||||
:param amount: Amount in quote currency.
|
||||
:param rate: Rate that's going to be used when using limit orders
|
||||
:param time_in_force: Time in force. Defaults to GTC (Good-til-cancelled).
|
||||
:param sell_reason: Sell reason.
|
||||
Can be any of ['roi', 'stop_loss', 'stoploss_on_exchange', 'trailing_stop_loss',
|
||||
'sell_signal', 'force_sell', 'emergency_sell']
|
||||
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
|
||||
:return bool: When True is returned, then the sell-order is placed on the exchange.
|
||||
False aborts the process
|
||||
"""
|
||||
return True
|
||||
|
||||
def informative_pairs(self) -> ListPairsWithTimeframes:
|
||||
"""
|
||||
Define additional, informative pair/interval combinations to be cached from the exchange.
|
||||
@@ -200,6 +264,10 @@ class IStrategy(ABC):
|
||||
"""
|
||||
return []
|
||||
|
||||
###
|
||||
# END - Intended to be overridden by strategy
|
||||
###
|
||||
|
||||
def get_strategy_name(self) -> str:
|
||||
"""
|
||||
Returns strategy class name
|
||||
@@ -269,6 +337,8 @@ class IStrategy(ABC):
|
||||
# Defs that only make change on new candle data.
|
||||
dataframe = self.analyze_ticker(dataframe, metadata)
|
||||
self._last_candle_seen_per_pair[pair] = dataframe.iloc[-1]['date']
|
||||
if self.dp:
|
||||
self.dp._set_cached_df(pair, self.timeframe, dataframe)
|
||||
else:
|
||||
logger.debug("Skipping TA Analysis for already analyzed candle")
|
||||
dataframe['buy'] = 0
|
||||
@@ -280,14 +350,53 @@ class IStrategy(ABC):
|
||||
|
||||
return dataframe
|
||||
|
||||
def analyze_pair(self, pair: str) -> None:
|
||||
"""
|
||||
Fetch data for this pair from dataprovider and analyze.
|
||||
Stores the dataframe into the dataprovider.
|
||||
The analyzed dataframe is then accessible via `dp.get_analyzed_dataframe()`.
|
||||
:param pair: Pair to analyze.
|
||||
"""
|
||||
if not self.dp:
|
||||
raise OperationalException("DataProvider not found.")
|
||||
dataframe = self.dp.ohlcv(pair, self.timeframe)
|
||||
if not isinstance(dataframe, DataFrame) or dataframe.empty:
|
||||
logger.warning('Empty candle (OHLCV) data for pair %s', pair)
|
||||
return
|
||||
|
||||
try:
|
||||
df_len, df_close, df_date = self.preserve_df(dataframe)
|
||||
|
||||
dataframe = strategy_safe_wrapper(
|
||||
self._analyze_ticker_internal, message=""
|
||||
)(dataframe, {'pair': pair})
|
||||
|
||||
self.assert_df(dataframe, df_len, df_close, df_date)
|
||||
except StrategyError as error:
|
||||
logger.warning(f"Unable to analyze candle (OHLCV) data for pair {pair}: {error}")
|
||||
return
|
||||
|
||||
if dataframe.empty:
|
||||
logger.warning('Empty dataframe for pair %s', pair)
|
||||
return
|
||||
|
||||
def analyze(self, pairs: List[str]) -> None:
|
||||
"""
|
||||
Analyze all pairs using analyze_pair().
|
||||
:param pairs: List of pairs to analyze
|
||||
"""
|
||||
for pair in pairs:
|
||||
self.analyze_pair(pair)
|
||||
|
||||
@staticmethod
|
||||
def preserve_df(dataframe: DataFrame) -> Tuple[int, float, datetime]:
|
||||
""" keep some data for dataframes """
|
||||
return len(dataframe), dataframe["close"].iloc[-1], dataframe["date"].iloc[-1]
|
||||
|
||||
@staticmethod
|
||||
def assert_df(dataframe: DataFrame, df_len: int, df_close: float, df_date: datetime):
|
||||
""" make sure data is unmodified """
|
||||
def assert_df(self, dataframe: DataFrame, df_len: int, df_close: float, df_date: datetime):
|
||||
"""
|
||||
Ensure dataframe (length, last candle) was not modified, and has all elements we need.
|
||||
"""
|
||||
message = ""
|
||||
if df_len != len(dataframe):
|
||||
message = "length"
|
||||
@@ -296,64 +405,48 @@ class IStrategy(ABC):
|
||||
elif df_date != dataframe["date"].iloc[-1]:
|
||||
message = "last date"
|
||||
if message:
|
||||
raise StrategyError(f"Dataframe returned from strategy has mismatching {message}.")
|
||||
if self.disable_dataframe_checks:
|
||||
logger.warning(f"Dataframe returned from strategy has mismatching {message}.")
|
||||
else:
|
||||
raise StrategyError(f"Dataframe returned from strategy has mismatching {message}.")
|
||||
|
||||
def get_signal(self, pair: str, interval: str, dataframe: DataFrame) -> Tuple[bool, bool]:
|
||||
def get_signal(self, pair: str, timeframe: str, dataframe: DataFrame) -> Tuple[bool, bool]:
|
||||
"""
|
||||
Calculates current signal based several technical analysis indicators
|
||||
Calculates current signal based based on the buy / sell columns of the dataframe.
|
||||
Used by Bot to get the signal to buy or sell
|
||||
:param pair: pair in format ANT/BTC
|
||||
:param interval: Interval to use (in min)
|
||||
:param dataframe: Dataframe to analyze
|
||||
:param timeframe: timeframe to use
|
||||
:param dataframe: Analyzed dataframe to get signal from.
|
||||
:return: (Buy, Sell) A bool-tuple indicating buy/sell signal
|
||||
"""
|
||||
if not isinstance(dataframe, DataFrame) or dataframe.empty:
|
||||
logger.warning('Empty candle (OHLCV) data for pair %s', pair)
|
||||
return False, False
|
||||
|
||||
try:
|
||||
df_len, df_close, df_date = self.preserve_df(dataframe)
|
||||
dataframe = strategy_safe_wrapper(
|
||||
self._analyze_ticker_internal, message=""
|
||||
)(dataframe, {'pair': pair})
|
||||
self.assert_df(dataframe, df_len, df_close, df_date)
|
||||
except StrategyError as error:
|
||||
logger.warning(f"Unable to analyze candle (OHLCV) data for pair {pair}: {error}")
|
||||
|
||||
return False, False
|
||||
|
||||
if dataframe.empty:
|
||||
logger.warning('Empty dataframe for pair %s', pair)
|
||||
logger.warning(f'Empty candle (OHLCV) data for pair {pair}')
|
||||
return False, False
|
||||
|
||||
latest_date = dataframe['date'].max()
|
||||
latest = dataframe.loc[dataframe['date'] == latest_date].iloc[-1]
|
||||
|
||||
interval_minutes = timeframe_to_minutes(interval)
|
||||
# Explicitly convert to arrow object to ensure the below comparison does not fail
|
||||
latest_date = arrow.get(latest_date)
|
||||
|
||||
# Check if dataframe is out of date
|
||||
timeframe_minutes = timeframe_to_minutes(timeframe)
|
||||
offset = self.config.get('exchange', {}).get('outdated_offset', 5)
|
||||
if latest_date < (arrow.utcnow().shift(minutes=-(interval_minutes * 2 + offset))):
|
||||
if latest_date < (arrow.utcnow().shift(minutes=-(timeframe_minutes * 2 + offset))):
|
||||
logger.warning(
|
||||
'Outdated history for pair %s. Last tick is %s minutes old',
|
||||
pair,
|
||||
int((arrow.utcnow() - latest_date).total_seconds() // 60)
|
||||
pair, int((arrow.utcnow() - latest_date).total_seconds() // 60)
|
||||
)
|
||||
return False, False
|
||||
|
||||
# Check if dataframe has new candle
|
||||
if (arrow.utcnow() - latest_date).total_seconds() // 60 >= interval_minutes:
|
||||
if (arrow.utcnow() - latest_date).total_seconds() // 60 >= timeframe_minutes:
|
||||
logger.warning('Old candle for pair %s. Last candle is %s minutes old',
|
||||
pair, int((arrow.utcnow() - latest_date).total_seconds() // 60))
|
||||
return False, False
|
||||
|
||||
(buy, sell) = latest[SignalType.BUY.value] == 1, latest[SignalType.SELL.value] == 1
|
||||
logger.debug(
|
||||
'trigger: %s (pair=%s) buy=%s sell=%s',
|
||||
latest['date'],
|
||||
pair,
|
||||
str(buy),
|
||||
str(sell)
|
||||
)
|
||||
logger.debug('trigger: %s (pair=%s) buy=%s sell=%s',
|
||||
latest['date'], pair, str(buy), str(sell))
|
||||
return buy, sell
|
||||
|
||||
def should_sell(self, trade: Trade, rate: float, date: datetime, buy: bool,
|
||||
@@ -499,7 +592,8 @@ class IStrategy(ABC):
|
||||
|
||||
def ohlcvdata_to_dataframe(self, data: Dict[str, DataFrame]) -> Dict[str, DataFrame]:
|
||||
"""
|
||||
Creates a dataframe and populates indicators for given candle (OHLCV) data
|
||||
Populates indicators for given candle (OHLCV) data (for multiple pairs)
|
||||
Does not run advice_buy or advise_sell!
|
||||
Used by optimize operations only, not during dry / live runs.
|
||||
Using .copy() to get a fresh copy of the dataframe for every strategy run.
|
||||
Has positive effects on memory usage for whatever reason - also when
|
||||
|
@@ -5,7 +5,7 @@ from freqtrade.exceptions import StrategyError
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def strategy_safe_wrapper(f, message: str = "", default_retval=None):
|
||||
def strategy_safe_wrapper(f, message: str = "", default_retval=None, supress_error=False):
|
||||
"""
|
||||
Wrapper around user-provided methods and functions.
|
||||
Caches all exceptions and returns either the default_retval (if it's not None) or raises
|
||||
@@ -20,7 +20,7 @@ def strategy_safe_wrapper(f, message: str = "", default_retval=None):
|
||||
f"Strategy caused the following exception: {error}"
|
||||
f"{f}"
|
||||
)
|
||||
if default_retval is None:
|
||||
if default_retval is None and not supress_error:
|
||||
raise StrategyError(str(error)) from error
|
||||
return default_retval
|
||||
except Exception as error:
|
||||
@@ -28,7 +28,7 @@ def strategy_safe_wrapper(f, message: str = "", default_retval=None):
|
||||
f"{message}"
|
||||
f"Unexpected error {error} calling {f}"
|
||||
)
|
||||
if default_retval is None:
|
||||
if default_retval is None and not supress_error:
|
||||
raise StrategyError(str(error)) from error
|
||||
return default_retval
|
||||
|
||||
|
@@ -4,7 +4,7 @@
|
||||
"stake_amount": {{ stake_amount }},
|
||||
"tradable_balance_ratio": 0.99,
|
||||
"fiat_display_currency": "{{ fiat_display_currency }}",
|
||||
"ticker_interval": "{{ ticker_interval }}",
|
||||
"timeframe": "{{ timeframe }}",
|
||||
"dry_run": {{ dry_run | lower }},
|
||||
"cancel_open_orders_on_exit": false,
|
||||
"unfilledtimeout": {
|
||||
@@ -53,6 +53,16 @@
|
||||
"token": "{{ telegram_token }}",
|
||||
"chat_id": "{{ telegram_chat_id }}"
|
||||
},
|
||||
"api_server": {
|
||||
"enabled": false,
|
||||
"listen_ip_address": "127.0.0.1",
|
||||
"listen_port": 8080,
|
||||
"verbosity": "info",
|
||||
"jwt_secret_key": "somethingrandom",
|
||||
"CORS_origins": [],
|
||||
"username": "",
|
||||
"password": ""
|
||||
},
|
||||
"initial_state": "running",
|
||||
"forcebuy_enable": false,
|
||||
"internals": {
|
||||
|
@@ -51,8 +51,8 @@ class {{ strategy }}(IStrategy):
|
||||
# trailing_stop_positive = 0.01
|
||||
# trailing_stop_positive_offset = 0.0 # Disabled / not configured
|
||||
|
||||
# Optimal ticker interval for the strategy.
|
||||
ticker_interval = '5m'
|
||||
# Optimal timeframe for the strategy.
|
||||
timeframe = '5m'
|
||||
|
||||
# Run "populate_indicators()" only for new candle.
|
||||
process_only_new_candles = False
|
||||
|
@@ -53,7 +53,7 @@ class SampleStrategy(IStrategy):
|
||||
# trailing_stop_positive_offset = 0.0 # Disabled / not configured
|
||||
|
||||
# Optimal ticker interval for the strategy.
|
||||
ticker_interval = '5m'
|
||||
timeframe = '5m'
|
||||
|
||||
# Run "populate_indicators()" only for new candle.
|
||||
process_only_new_candles = False
|
||||
|
@@ -34,7 +34,7 @@
|
||||
"# config = Configuration.from_files([\"config.json\"])\n",
|
||||
"\n",
|
||||
"# Define some constants\n",
|
||||
"config[\"ticker_interval\"] = \"5m\"\n",
|
||||
"config[\"timeframe\"] = \"5m\"\n",
|
||||
"# Name of the strategy class\n",
|
||||
"config[\"strategy\"] = \"SampleStrategy\"\n",
|
||||
"# Location of the data\n",
|
||||
@@ -53,7 +53,7 @@
|
||||
"from freqtrade.data.history import load_pair_history\n",
|
||||
"\n",
|
||||
"candles = load_pair_history(datadir=data_location,\n",
|
||||
" timeframe=config[\"ticker_interval\"],\n",
|
||||
" timeframe=config[\"timeframe\"],\n",
|
||||
" pair=pair)\n",
|
||||
"\n",
|
||||
"# Confirm success\n",
|
||||
@@ -136,10 +136,51 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from freqtrade.data.btanalysis import load_backtest_data\n",
|
||||
"from freqtrade.data.btanalysis import load_backtest_data, load_backtest_stats\n",
|
||||
"\n",
|
||||
"# Load backtest results\n",
|
||||
"trades = load_backtest_data(config[\"user_data_dir\"] / \"backtest_results/backtest-result.json\")\n",
|
||||
"# if backtest_dir points to a directory, it'll automatically load the last backtest file.\n",
|
||||
"backtest_dir = config[\"user_data_dir\"] / \"backtest_results\"\n",
|
||||
"# backtest_dir can also point to a specific file \n",
|
||||
"# backtest_dir = config[\"user_data_dir\"] / \"backtest_results/backtest-result-2020-07-01_20-04-22.json\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# You can get the full backtest statistics by using the following command.\n",
|
||||
"# This contains all information used to generate the backtest result.\n",
|
||||
"stats = load_backtest_stats(backtest_dir)\n",
|
||||
"\n",
|
||||
"strategy = 'SampleStrategy'\n",
|
||||
"# All statistics are available per strategy, so if `--strategy-list` was used during backtest, this will be reflected here as well.\n",
|
||||
"# Example usages:\n",
|
||||
"print(stats['strategy'][strategy]['results_per_pair'])\n",
|
||||
"# Get pairlist used for this backtest\n",
|
||||
"print(stats['strategy'][strategy]['pairlist'])\n",
|
||||
"# Get market change (average change of all pairs from start to end of the backtest period)\n",
|
||||
"print(stats['strategy'][strategy]['market_change'])\n",
|
||||
"# Maximum drawdown ()\n",
|
||||
"print(stats['strategy'][strategy]['max_drawdown'])\n",
|
||||
"# Maximum drawdown start and end\n",
|
||||
"print(stats['strategy'][strategy]['drawdown_start'])\n",
|
||||
"print(stats['strategy'][strategy]['drawdown_end'])\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Get strategy comparison (only relevant if multiple strategies were compared)\n",
|
||||
"print(stats['strategy_comparison'])\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Load backtested trades as dataframe\n",
|
||||
"trades = load_backtest_data(backtest_dir)\n",
|
||||
"\n",
|
||||
"# Show value-counts per pair\n",
|
||||
"trades.groupby(\"pair\")[\"sell_reason\"].value_counts()"
|
||||
|
@@ -1,4 +1,65 @@
|
||||
|
||||
def bot_loop_start(self, **kwargs) -> None:
|
||||
"""
|
||||
Called at the start of the bot iteration (one loop).
|
||||
Might be used to perform pair-independent tasks
|
||||
(e.g. gather some remote ressource for comparison)
|
||||
|
||||
For full documentation please go to https://www.freqtrade.io/en/latest/strategy-advanced/
|
||||
|
||||
When not implemented by a strategy, this simply does nothing.
|
||||
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
|
||||
"""
|
||||
pass
|
||||
|
||||
def confirm_trade_entry(self, pair: str, order_type: str, amount: float, rate: float,
|
||||
time_in_force: str, **kwargs) -> bool:
|
||||
"""
|
||||
Called right before placing a buy order.
|
||||
Timing for this function is critical, so avoid doing heavy computations or
|
||||
network requests in this method.
|
||||
|
||||
For full documentation please go to https://www.freqtrade.io/en/latest/strategy-advanced/
|
||||
|
||||
When not implemented by a strategy, returns True (always confirming).
|
||||
|
||||
:param pair: Pair that's about to be bought.
|
||||
:param order_type: Order type (as configured in order_types). usually limit or market.
|
||||
:param amount: Amount in target (quote) currency that's going to be traded.
|
||||
:param rate: Rate that's going to be used when using limit orders
|
||||
:param time_in_force: Time in force. Defaults to GTC (Good-til-cancelled).
|
||||
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
|
||||
:return bool: When True is returned, then the buy-order is placed on the exchange.
|
||||
False aborts the process
|
||||
"""
|
||||
return True
|
||||
|
||||
def confirm_trade_exit(self, pair: str, trade: 'Trade', order_type: str, amount: float,
|
||||
rate: float, time_in_force: str, sell_reason: str, **kwargs) -> bool:
|
||||
"""
|
||||
Called right before placing a regular sell order.
|
||||
Timing for this function is critical, so avoid doing heavy computations or
|
||||
network requests in this method.
|
||||
|
||||
For full documentation please go to https://www.freqtrade.io/en/latest/strategy-advanced/
|
||||
|
||||
When not implemented by a strategy, returns True (always confirming).
|
||||
|
||||
:param pair: Pair that's about to be sold.
|
||||
:param trade: trade object.
|
||||
:param order_type: Order type (as configured in order_types). usually limit or market.
|
||||
:param amount: Amount in quote currency.
|
||||
:param rate: Rate that's going to be used when using limit orders
|
||||
:param time_in_force: Time in force. Defaults to GTC (Good-til-cancelled).
|
||||
:param sell_reason: Sell reason.
|
||||
Can be any of ['roi', 'stop_loss', 'stoploss_on_exchange', 'trailing_stop_loss',
|
||||
'sell_signal', 'force_sell', 'emergency_sell']
|
||||
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
|
||||
:return bool: When True is returned, then the sell-order is placed on the exchange.
|
||||
False aborts the process
|
||||
"""
|
||||
return True
|
||||
|
||||
def check_buy_timeout(self, pair: str, trade: 'Trade', order: dict, **kwargs) -> bool:
|
||||
"""
|
||||
Check buy timeout function callback.
|
||||
|
@@ -1,8 +0,0 @@
|
||||
"""
|
||||
Common Freqtrade types
|
||||
"""
|
||||
|
||||
from typing import List, Tuple
|
||||
|
||||
# List of pairs with their timeframes
|
||||
ListPairsWithTimeframes = List[Tuple[str, str]]
|
@@ -71,7 +71,7 @@ class Worker:
|
||||
state = None
|
||||
while True:
|
||||
state = self._worker(old_state=state)
|
||||
if state == State.RELOAD_CONF:
|
||||
if state == State.RELOAD_CONFIG:
|
||||
self._reconfigure()
|
||||
|
||||
def _worker(self, old_state: Optional[State]) -> State:
|
||||
@@ -90,6 +90,9 @@ class Worker:
|
||||
if state == State.RUNNING:
|
||||
self.freqtrade.startup()
|
||||
|
||||
if state == State.STOPPED:
|
||||
self.freqtrade.check_for_open_trades()
|
||||
|
||||
# Reset heartbeat timestamp to log the heartbeat message at
|
||||
# first throttling iteration when the state changes
|
||||
self._heartbeat_msg = 0
|
||||
|
Reference in New Issue
Block a user