Merge pull request #9 from vertti/replace-with-talib
Use TA-lib for MACD and StochRSI
This commit is contained in:
commit
8ac4fe7734
@ -40,6 +40,7 @@ if not feel free to raise a github issue.
|
|||||||
##### Prerequisites
|
##### Prerequisites
|
||||||
* python3.6
|
* python3.6
|
||||||
* sqlite
|
* sqlite
|
||||||
|
* [TA-lib](https://github.com/mrjbq7/ta-lib#dependencies) binaries
|
||||||
|
|
||||||
##### Install
|
##### Install
|
||||||
```
|
```
|
||||||
|
46
analyze.py
46
analyze.py
@ -4,18 +4,20 @@ import logging
|
|||||||
import arrow
|
import arrow
|
||||||
import requests
|
import requests
|
||||||
from pandas.io.json import json_normalize
|
from pandas.io.json import json_normalize
|
||||||
from stockstats import StockDataFrame
|
from pandas import DataFrame
|
||||||
|
# from stockstats import StockDataFrame
|
||||||
|
import talib.abstract as ta
|
||||||
|
|
||||||
logging.basicConfig(level=logging.DEBUG,
|
logging.basicConfig(level=logging.DEBUG,
|
||||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
def get_ticker_dataframe(pair: str) -> StockDataFrame:
|
def get_ticker_dataframe(pair: str) -> DataFrame:
|
||||||
"""
|
"""
|
||||||
Analyses the trend for the given pair
|
Analyses the trend for the given pair
|
||||||
:param pair: pair as str in format BTC_ETH or BTC-ETH
|
:param pair: pair as str in format BTC_ETH or BTC-ETH
|
||||||
:return: StockDataFrame
|
:return: DataFrame
|
||||||
"""
|
"""
|
||||||
minimum_date = arrow.now() - timedelta(hours=6)
|
minimum_date = arrow.now() - timedelta(hours=6)
|
||||||
url = 'https://bittrex.com/Api/v2.0/pub/market/GetTicks'
|
url = 'https://bittrex.com/Api/v2.0/pub/market/GetTicks'
|
||||||
@ -39,33 +41,35 @@ def get_ticker_dataframe(pair: str) -> StockDataFrame:
|
|||||||
'low': t['L'],
|
'low': t['L'],
|
||||||
'date': t['T'],
|
'date': t['T'],
|
||||||
} for t in sorted(data['result'], key=lambda k: k['T']) if arrow.get(t['T']) > minimum_date]
|
} for t in sorted(data['result'], key=lambda k: k['T']) if arrow.get(t['T']) > minimum_date]
|
||||||
dataframe = StockDataFrame(json_normalize(data))
|
dataframe = DataFrame(json_normalize(data))
|
||||||
|
|
||||||
# calculate StochRSI
|
# calculate StochRSI
|
||||||
window = 14
|
stochrsi = ta.STOCHRSI(dataframe)
|
||||||
rsi = dataframe['rsi_{}'.format(window)]
|
dataframe['stochrsi'] = stochrsi['fastd'] # values between 0-100, not 0-1
|
||||||
rolling = rsi.rolling(window=window, center=False)
|
|
||||||
low = rolling.min()
|
macd = ta.MACD(dataframe)
|
||||||
high = rolling.max()
|
dataframe['macd'] = macd['macd']
|
||||||
dataframe['stochrsi'] = (rsi - low) / (high - low)
|
dataframe['macds'] = macd['macdsignal']
|
||||||
|
dataframe['macdh'] = macd['macdhist']
|
||||||
|
|
||||||
return dataframe
|
return dataframe
|
||||||
|
|
||||||
|
|
||||||
def populate_trends(dataframe: StockDataFrame) -> StockDataFrame:
|
def populate_trends(dataframe: DataFrame) -> DataFrame:
|
||||||
"""
|
"""
|
||||||
Populates the trends for the given dataframe
|
Populates the trends for the given dataframe
|
||||||
:param dataframe: StockDataFrame
|
:param dataframe: DataFrame
|
||||||
:return: StockDataFrame with populated trends
|
:return: DataFrame with populated trends
|
||||||
"""
|
"""
|
||||||
"""
|
"""
|
||||||
dataframe.loc[
|
dataframe.loc[
|
||||||
(dataframe['stochrsi'] < 0.20)
|
(dataframe['stochrsi'] < 20)
|
||||||
& (dataframe['close_30_ema'] > (1 + 0.0025) * dataframe['close_60_ema']),
|
& (dataframe['close_30_ema'] > (1 + 0.0025) * dataframe['close_60_ema']),
|
||||||
'underpriced'
|
'underpriced'
|
||||||
] = 1
|
] = 1
|
||||||
"""
|
"""
|
||||||
dataframe.loc[
|
dataframe.loc[
|
||||||
(dataframe['stochrsi'] < 0.20)
|
(dataframe['stochrsi'] < 20)
|
||||||
& (dataframe['macd'] > dataframe['macds']),
|
& (dataframe['macd'] > dataframe['macds']),
|
||||||
'underpriced'
|
'underpriced'
|
||||||
] = 1
|
] = 1
|
||||||
@ -93,10 +97,10 @@ def get_buy_signal(pair: str) -> bool:
|
|||||||
return signal
|
return signal
|
||||||
|
|
||||||
|
|
||||||
def plot_dataframe(dataframe: StockDataFrame, pair: str) -> None:
|
def plot_dataframe(dataframe: DataFrame, pair: str) -> None:
|
||||||
"""
|
"""
|
||||||
Plots the given dataframe
|
Plots the given dataframe
|
||||||
:param dataframe: StockDataFrame
|
:param dataframe: DataFrame
|
||||||
:param pair: pair as str
|
:param pair: pair as str
|
||||||
:return: None
|
:return: None
|
||||||
"""
|
"""
|
||||||
@ -110,8 +114,8 @@ def plot_dataframe(dataframe: StockDataFrame, pair: str) -> None:
|
|||||||
fig, (ax1, ax2, ax3) = plt.subplots(3, sharex=True)
|
fig, (ax1, ax2, ax3) = plt.subplots(3, sharex=True)
|
||||||
fig.suptitle(pair, fontsize=14, fontweight='bold')
|
fig.suptitle(pair, fontsize=14, fontweight='bold')
|
||||||
ax1.plot(dataframe.index.values, dataframe['close'], label='close')
|
ax1.plot(dataframe.index.values, dataframe['close'], label='close')
|
||||||
ax1.plot(dataframe.index.values, dataframe['close_30_ema'], label='EMA(60)')
|
# ax1.plot(dataframe.index.values, dataframe['close_30_ema'], label='EMA(60)')
|
||||||
ax1.plot(dataframe.index.values, dataframe['close_90_ema'], label='EMA(120)')
|
# ax1.plot(dataframe.index.values, dataframe['close_90_ema'], label='EMA(120)')
|
||||||
# ax1.plot(dataframe.index.values, dataframe['sell'], 'ro', label='sell')
|
# ax1.plot(dataframe.index.values, dataframe['sell'], 'ro', label='sell')
|
||||||
ax1.plot(dataframe.index.values, dataframe['buy'], 'bo', label='buy')
|
ax1.plot(dataframe.index.values, dataframe['buy'], 'bo', label='buy')
|
||||||
ax1.legend()
|
ax1.legend()
|
||||||
@ -123,8 +127,8 @@ def plot_dataframe(dataframe: StockDataFrame, pair: str) -> None:
|
|||||||
ax2.legend()
|
ax2.legend()
|
||||||
|
|
||||||
ax3.plot(dataframe.index.values, dataframe['stochrsi'], label='StochRSI')
|
ax3.plot(dataframe.index.values, dataframe['stochrsi'], label='StochRSI')
|
||||||
ax3.plot(dataframe.index.values, [0.80] * len(dataframe.index.values))
|
ax3.plot(dataframe.index.values, [80] * len(dataframe.index.values))
|
||||||
ax3.plot(dataframe.index.values, [0.20] * len(dataframe.index.values))
|
ax3.plot(dataframe.index.values, [20] * len(dataframe.index.values))
|
||||||
ax3.legend()
|
ax3.legend()
|
||||||
|
|
||||||
# Fine-tune figure; make subplots close to each other and hide x ticks for
|
# Fine-tune figure; make subplots close to each other and hide x ticks for
|
||||||
|
@ -11,5 +11,5 @@ matplotlib==2.0.2
|
|||||||
PYQT5==5.9
|
PYQT5==5.9
|
||||||
scikit-learn==0.19.0
|
scikit-learn==0.19.0
|
||||||
scipy==0.19.1
|
scipy==0.19.1
|
||||||
stockstats==0.2.0
|
jsonschema==2.6.0
|
||||||
jsonschema==2.6.0
|
TA-Lib==0.4.10
|
Loading…
Reference in New Issue
Block a user