Merge pull request #5219 from freqtrade/hyperopt_paramfile

automatic Hyperopt paramfile
This commit is contained in:
Matthias 2021-07-04 13:56:52 +02:00 committed by GitHub
commit 898bef1837
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
17 changed files with 588 additions and 179 deletions

View File

@ -51,7 +51,7 @@ usage: freqtrade hyperopt [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH]
[--spaces {all,buy,sell,roi,stoploss,trailing,default} [{all,buy,sell,roi,stoploss,trailing,default} ...]]
[--print-all] [--no-color] [--print-json] [-j JOBS]
[--random-state INT] [--min-trades INT]
[--hyperopt-loss NAME]
[--hyperopt-loss NAME] [--disable-param-export]
optional arguments:
-h, --help show this help message and exit
@ -118,6 +118,8 @@ optional arguments:
ShortTradeDurHyperOptLoss, OnlyProfitHyperOptLoss,
SharpeHyperOptLoss, SharpeHyperOptLossDaily,
SortinoHyperOptLoss, SortinoHyperOptLossDaily
--disable-param-export
Disable automatic hyperopt parameter export.
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
@ -512,7 +514,13 @@ You should understand this result like:
* You should not use ADX because `'buy_adx_enabled': False`.
* You should **consider** using the RSI indicator (`'buy_rsi_enabled': True`) and the best value is `29.0` (`'buy_rsi': 29.0`)
Your strategy class can immediately take advantage of these results. Simply copy hyperopt results block and paste them at class level, replacing old parameters (if any). New parameters will automatically be loaded next time strategy is executed.
### Automatic parameter application to the strategy
When using Hyperoptable parameters, the result of your hyperopt-run will be written to a json file next to your strategy (so for `MyAwesomeStrategy.py`, the file would be `MyAwesomeStrategy.json`).
This file is also updated when using the `hyperopt-show` sub-command, unless `--disable-param-export` is provided to either of the 2 commands.
Your strategy class can also contain these results explicitly. Simply copy hyperopt results block and paste them at class level, replacing old parameters (if any). New parameters will automatically be loaded next time strategy is executed.
Transferring your whole hyperopt result to your strategy would then look like:
@ -528,6 +536,10 @@ class MyAwesomeStrategy(IStrategy):
}
```
!!! Note
Values in the configuration file will overwrite Parameter-file level parameters - and both will overwrite parameters within the strategy.
The prevalence is therefore: config > parameter file > strategy
### Understand Hyperopt ROI results
If you are optimizing ROI (i.e. if optimization search-space contains 'all', 'default' or 'roi'), your result will look as follows and include a ROI table:

View File

@ -702,7 +702,8 @@ You can show the details of any hyperoptimization epoch previously evaluated by
usage: freqtrade hyperopt-show [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[-d PATH] [--userdir PATH] [--best]
[--profitable] [-n INT] [--print-json]
[--hyperopt-filename PATH] [--no-header]
[--hyperopt-filename FILENAME] [--no-header]
[--disable-param-export]
optional arguments:
-h, --help show this help message and exit
@ -714,6 +715,8 @@ optional arguments:
Hyperopt result filename.Example: `--hyperopt-
filename=hyperopt_results_2020-09-27_16-20-48.pickle`
--no-header Do not print epoch details header.
--disable-param-export
Disable automatic hyperopt parameter export.
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).

View File

@ -29,7 +29,7 @@ ARGS_HYPEROPT = ARGS_COMMON_OPTIMIZE + ["hyperopt", "hyperopt_path",
"epochs", "spaces", "print_all",
"print_colorized", "print_json", "hyperopt_jobs",
"hyperopt_random_state", "hyperopt_min_trades",
"hyperopt_loss"]
"hyperopt_loss", "disableparamexport"]
ARGS_EDGE = ARGS_COMMON_OPTIMIZE + ["stoploss_range"]
@ -85,7 +85,8 @@ ARGS_HYPEROPT_LIST = ["hyperopt_list_best", "hyperopt_list_profitable",
"hyperoptexportfilename", "export_csv"]
ARGS_HYPEROPT_SHOW = ["hyperopt_list_best", "hyperopt_list_profitable", "hyperopt_show_index",
"print_json", "hyperoptexportfilename", "hyperopt_show_no_header"]
"print_json", "hyperoptexportfilename", "hyperopt_show_no_header",
"disableparamexport"]
NO_CONF_REQURIED = ["convert-data", "convert-trade-data", "download-data", "list-timeframes",
"list-markets", "list-pairs", "list-strategies", "list-data",

View File

@ -178,6 +178,11 @@ AVAILABLE_CLI_OPTIONS = {
'Example: `--export-filename=user_data/backtest_results/backtest_today.json`',
metavar='PATH',
),
"disableparamexport": Arg(
'--disable-param-export',
help="Disable automatic hyperopt parameter export.",
action='store_true',
),
"fee": Arg(
'--fee',
help='Specify fee ratio. Will be applied twice (on trade entry and exit).',

View File

@ -129,9 +129,12 @@ def start_hyperopt_show(args: Dict[str, Any]) -> None:
metrics = val['results_metrics']
if 'strategy_name' in metrics:
show_backtest_result(metrics['strategy_name'], metrics,
strategy_name = metrics['strategy_name']
show_backtest_result(strategy_name, metrics,
metrics['stake_currency'])
HyperoptTools.try_export_params(config, strategy_name, val)
HyperoptTools.show_epoch_details(val, total_epochs, print_json, no_header,
header_str="Epoch details")

View File

@ -260,6 +260,8 @@ class Configuration:
self._args_to_config(config, argname='export',
logstring='Parameter --export detected: {} ...')
self._args_to_config(config, argname='disableparamexport',
logstring='Parameter --disableparamexport detected: {} ...')
# Edge section:
if 'stoploss_range' in self.args and self.args["stoploss_range"]:
txt_range = eval(self.args["stoploss_range"])

View File

@ -40,6 +40,7 @@ DEFAULT_DATAFRAME_COLUMNS = ['date', 'open', 'high', 'low', 'close', 'volume']
DEFAULT_TRADES_COLUMNS = ['timestamp', 'id', 'type', 'side', 'price', 'amount', 'cost']
LAST_BT_RESULT_FN = '.last_result.json'
FTHYPT_FILEVERSION = 'fthypt_fileversion'
USERPATH_HYPEROPTS = 'hyperopts'
USERPATH_STRATEGIES = 'strategies'
@ -312,6 +313,7 @@ CONF_SCHEMA = {
},
'db_url': {'type': 'string'},
'export': {'type': 'string', 'enum': EXPORT_OPTIONS, 'default': 'trades'},
'disableparamexport': {'type': 'boolean'},
'initial_state': {'type': 'string', 'enum': ['running', 'stopped']},
'forcebuy_enable': {'type': 'boolean'},
'disable_dataframe_checks': {'type': 'boolean'},

View File

@ -12,7 +12,6 @@ from math import ceil
from pathlib import Path
from typing import Any, Dict, List, Optional
import numpy as np
import progressbar
import rapidjson
from colorama import Fore, Style
@ -20,16 +19,16 @@ from colorama import init as colorama_init
from joblib import Parallel, cpu_count, delayed, dump, load, wrap_non_picklable_objects
from pandas import DataFrame
from freqtrade.constants import DATETIME_PRINT_FORMAT, LAST_BT_RESULT_FN
from freqtrade.constants import DATETIME_PRINT_FORMAT, FTHYPT_FILEVERSION, LAST_BT_RESULT_FN
from freqtrade.data.converter import trim_dataframes
from freqtrade.data.history import get_timerange
from freqtrade.misc import file_dump_json, plural
from freqtrade.misc import deep_merge_dicts, file_dump_json, plural
from freqtrade.optimize.backtesting import Backtesting
# Import IHyperOpt and IHyperOptLoss to allow unpickling classes from these modules
from freqtrade.optimize.hyperopt_auto import HyperOptAuto
from freqtrade.optimize.hyperopt_interface import IHyperOpt # noqa: F401
from freqtrade.optimize.hyperopt_loss_interface import IHyperOptLoss # noqa: F401
from freqtrade.optimize.hyperopt_tools import HyperoptTools
from freqtrade.optimize.hyperopt_tools import HyperoptTools, hyperopt_serializer
from freqtrade.optimize.optimize_reports import generate_strategy_stats
from freqtrade.resolvers.hyperopt_resolver import HyperOptLossResolver, HyperOptResolver
@ -78,8 +77,11 @@ class Hyperopt:
if not self.config.get('hyperopt'):
self.custom_hyperopt = HyperOptAuto(self.config)
self.auto_hyperopt = True
else:
self.custom_hyperopt = HyperOptResolver.load_hyperopt(self.config)
self.auto_hyperopt = False
self.backtesting._set_strategy(self.backtesting.strategylist[0])
self.custom_hyperopt.strategy = self.backtesting.strategy
@ -163,13 +165,9 @@ class Hyperopt:
While not a valid json object - this allows appending easily.
:param epoch: result dictionary for this epoch.
"""
def default_parser(x):
if isinstance(x, np.integer):
return int(x)
return str(x)
epoch[FTHYPT_FILEVERSION] = 2
with self.results_file.open('a') as f:
rapidjson.dump(epoch, f, default=default_parser,
rapidjson.dump(epoch, f, default=hyperopt_serializer,
number_mode=rapidjson.NM_NATIVE | rapidjson.NM_NAN)
f.write("\n")
@ -201,6 +199,25 @@ class Hyperopt:
return result
def _get_no_optimize_details(self) -> Dict[str, Any]:
"""
Get non-optimized parameters
"""
result: Dict[str, Any] = {}
strategy = self.backtesting.strategy
if not HyperoptTools.has_space(self.config, 'roi'):
result['roi'] = {str(k): v for k, v in strategy.minimal_roi.items()}
if not HyperoptTools.has_space(self.config, 'stoploss'):
result['stoploss'] = {'stoploss': strategy.stoploss}
if not HyperoptTools.has_space(self.config, 'trailing'):
result['trailing'] = {
'trailing_stop': strategy.trailing_stop,
'trailing_stop_positive': strategy.trailing_stop_positive,
'trailing_stop_positive_offset': strategy.trailing_stop_positive_offset,
'trailing_only_offset_is_reached': strategy.trailing_only_offset_is_reached,
}
return result
def print_results(self, results) -> None:
"""
Log results if it is better than any previous evaluation
@ -310,7 +327,8 @@ class Hyperopt:
results_explanation = HyperoptTools.format_results_explanation_string(
strat_stats, self.config['stake_currency'])
not_optimized = self.backtesting.strategy.get_params_dict()
not_optimized = self.backtesting.strategy.get_no_optimize_params()
not_optimized = deep_merge_dicts(not_optimized, self._get_no_optimize_details())
trade_count = strat_stats['total_trades']
total_profit = strat_stats['profit_total']
@ -470,6 +488,12 @@ class Hyperopt:
f"saved to '{self.results_file}'.")
if self.current_best_epoch:
if self.auto_hyperopt:
HyperoptTools.try_export_params(
self.config,
self.backtesting.strategy.get_strategy_name(),
self.current_best_epoch)
HyperoptTools.show_epoch_details(self.current_best_epoch, self.total_epochs,
self.print_json)
else:

View File

@ -1,23 +1,82 @@
import io
import logging
from copy import deepcopy
from datetime import datetime, timezone
from pathlib import Path
from typing import Any, Dict, List
from typing import Any, Dict, List, Optional
import numpy as np
import rapidjson
import tabulate
from colorama import Fore, Style
from pandas import isna, json_normalize
from freqtrade.constants import FTHYPT_FILEVERSION, USERPATH_STRATEGIES
from freqtrade.exceptions import OperationalException
from freqtrade.misc import round_coin_value, round_dict
from freqtrade.misc import deep_merge_dicts, round_coin_value, round_dict, safe_value_fallback2
logger = logging.getLogger(__name__)
NON_OPT_PARAM_APPENDIX = " # value loaded from strategy"
def hyperopt_serializer(x):
if isinstance(x, np.integer):
return int(x)
if isinstance(x, np.bool_):
return bool(x)
return str(x)
class HyperoptTools():
@staticmethod
def get_strategy_filename(config: Dict, strategy_name: str) -> Optional[Path]:
"""
Get Strategy-location (filename) from strategy_name
"""
from freqtrade.resolvers.strategy_resolver import StrategyResolver
directory = Path(config.get('strategy_path', config['user_data_dir'] / USERPATH_STRATEGIES))
strategy_objs = StrategyResolver.search_all_objects(directory, False)
strategies = [s for s in strategy_objs if s['name'] == strategy_name]
if strategies:
strategy = strategies[0]
return Path(strategy['location'])
return None
@staticmethod
def export_params(params, strategy_name: str, filename: Path):
"""
Generate files
"""
final_params = deepcopy(params['params_not_optimized'])
final_params = deep_merge_dicts(params['params_details'], final_params)
final_params = {
'strategy_name': strategy_name,
'params': final_params,
'ft_stratparam_v': 1,
'export_time': datetime.now(timezone.utc),
}
logger.info(f"Dumping parameters to {filename}")
rapidjson.dump(final_params, filename.open('w'), indent=2,
default=hyperopt_serializer,
number_mode=rapidjson.NM_NATIVE | rapidjson.NM_NAN
)
@staticmethod
def try_export_params(config: Dict[str, Any], strategy_name: str, params: Dict):
if params.get(FTHYPT_FILEVERSION, 1) >= 2 and not config.get('disableparamexport', False):
# Export parameters ...
fn = HyperoptTools.get_strategy_filename(config, strategy_name)
if fn:
HyperoptTools.export_params(params, strategy_name, fn.with_suffix('.json'))
else:
logger.warn("Strategy not found, not exporting parameter file.")
@staticmethod
def has_space(config: Dict[str, Any], space: str) -> bool:
"""
@ -99,9 +158,9 @@ class HyperoptTools():
non_optimized)
HyperoptTools._params_pretty_print(params, 'sell', "Sell hyperspace params:",
non_optimized)
HyperoptTools._params_pretty_print(params, 'roi', "ROI table:")
HyperoptTools._params_pretty_print(params, 'stoploss', "Stoploss:")
HyperoptTools._params_pretty_print(params, 'trailing', "Trailing stop:")
HyperoptTools._params_pretty_print(params, 'roi', "ROI table:", non_optimized)
HyperoptTools._params_pretty_print(params, 'stoploss', "Stoploss:", non_optimized)
HyperoptTools._params_pretty_print(params, 'trailing', "Trailing stop:", non_optimized)
@staticmethod
def _params_update_for_json(result_dict, params, non_optimized, space: str) -> None:
@ -127,23 +186,34 @@ class HyperoptTools():
def _params_pretty_print(params, space: str, header: str, non_optimized={}) -> None:
if space in params or space in non_optimized:
space_params = HyperoptTools._space_params(params, space, 5)
no_params = HyperoptTools._space_params(non_optimized, space, 5)
appendix = ''
if not space_params and not no_params:
# No parameters - don't print
return
if not space_params:
# Not optimized parameters - append string
appendix = NON_OPT_PARAM_APPENDIX
result = f"\n# {header}\n"
if space == 'stoploss':
result += f"stoploss = {space_params.get('stoploss')}"
elif space == 'roi':
if space == "stoploss":
stoploss = safe_value_fallback2(space_params, no_params, space, space)
result += (f"stoploss = {stoploss}{appendix}")
elif space == "roi":
result = result[:-1] + f'{appendix}\n'
minimal_roi_result = rapidjson.dumps({
str(k): v for k, v in space_params.items()
str(k): v for k, v in (space_params or no_params).items()
}, default=str, indent=4, number_mode=rapidjson.NM_NATIVE)
result += f"minimal_roi = {minimal_roi_result}"
elif space == 'trailing':
for k, v in space_params.items():
result += f'{k} = {v}\n'
elif space == "trailing":
for k, v in (space_params or no_params).items():
result += f"{k} = {v}{appendix}\n"
else:
no_params = HyperoptTools._space_params(non_optimized, space, 5)
# Buy / sell parameters
result += f"{space}_params = {HyperoptTools._pprint(space_params, no_params)}"
result += f"{space}_params = {HyperoptTools._pprint_dict(space_params, no_params)}"
result = result.replace("\n", "\n ")
print(result)
@ -157,7 +227,7 @@ class HyperoptTools():
return {}
@staticmethod
def _pprint(params, non_optimized, indent: int = 4):
def _pprint_dict(params, non_optimized, indent: int = 4):
"""
Pretty-print hyperopt results (based on 2 dicts - with add. comment)
"""
@ -169,7 +239,7 @@ class HyperoptTools():
result += " " * indent + f'"{k}": '
result += f'"{param}",' if isinstance(param, str) else f'{param},'
if k in non_optimized:
result += " # value loaded from strategy"
result += NON_OPT_PARAM_APPENDIX
result += "\n"
result += '}'
return result

View File

@ -53,6 +53,21 @@ class StrategyResolver(IResolver):
)
strategy.timeframe = strategy.ticker_interval
if strategy._ft_params_from_file:
# Set parameters from Hyperopt results file
params = strategy._ft_params_from_file
strategy.minimal_roi = params.get('roi', strategy.minimal_roi)
strategy.stoploss = params.get('stoploss', {}).get('stoploss', strategy.stoploss)
trailing = params.get('trailing', {})
strategy.trailing_stop = trailing.get('trailing_stop', strategy.trailing_stop)
strategy.trailing_stop_positive = trailing.get('trailing_stop_positive',
strategy.trailing_stop_positive)
strategy.trailing_stop_positive_offset = trailing.get(
'trailing_stop_positive_offset', strategy.trailing_stop_positive_offset)
strategy.trailing_only_offset_is_reached = trailing.get(
'trailing_only_offset_is_reached', strategy.trailing_only_offset_is_reached)
# Set attributes
# Check if we need to override configuration
# (Attribute name, default, subkey)

View File

@ -5,8 +5,10 @@ This module defines a base class for auto-hyperoptable strategies.
import logging
from abc import ABC, abstractmethod
from contextlib import suppress
from pathlib import Path
from typing import Any, Dict, Iterator, List, Optional, Sequence, Tuple, Union
from freqtrade.misc import deep_merge_dicts, json_load
from freqtrade.optimize.hyperopt_tools import HyperoptTools
@ -333,10 +335,36 @@ class HyperStrategyMixin(object):
"""
Load Hyperoptable parameters
"""
self._load_params(getattr(self, 'buy_params', None), 'buy', hyperopt)
self._load_params(getattr(self, 'sell_params', None), 'sell', hyperopt)
params = self.load_params_from_file()
params = params.get('params', {})
self._ft_params_from_file = params
buy_params = deep_merge_dicts(params.get('buy', {}), getattr(self, 'buy_params', None))
sell_params = deep_merge_dicts(params.get('sell', {}), getattr(self, 'sell_params', None))
def _load_params(self, params: dict, space: str, hyperopt: bool = False) -> None:
self._load_params(buy_params, 'buy', hyperopt)
self._load_params(sell_params, 'sell', hyperopt)
def load_params_from_file(self) -> Dict:
filename_str = getattr(self, '__file__', '')
if not filename_str:
return {}
filename = Path(filename_str).with_suffix('.json')
if filename.is_file():
logger.info(f"Loading parameters from file {filename}")
try:
params = json_load(filename.open('r'))
if params.get('strategy_name') != self.__class__.__name__:
raise OperationalException('Invalid parameter file provided.')
return params
except ValueError:
logger.warning("Invalid parameter file format.")
return {}
logger.info("Found no parameter file.")
return {}
def _load_params(self, params: Dict, space: str, hyperopt: bool = False) -> None:
"""
Set optimizable parameter values.
:param params: Dictionary with new parameter values.
@ -363,7 +391,7 @@ class HyperStrategyMixin(object):
else:
logger.info(f'Strategy Parameter(default): {attr_name} = {attr.value}')
def get_params_dict(self):
def get_no_optimize_params(self):
"""
Returns list of Parameters that are not part of the current optimize job
"""

View File

@ -62,6 +62,7 @@ class IStrategy(ABC, HyperStrategyMixin):
_populate_fun_len: int = 0
_buy_fun_len: int = 0
_sell_fun_len: int = 0
_ft_params_from_file: Dict = {}
# associated minimal roi
minimal_roi: Dict

View File

@ -1168,6 +1168,7 @@ def test_hyperopt_show(mocker, capsys, saved_hyperopt_results):
'freqtrade.optimize.hyperopt_tools.HyperoptTools.load_previous_results',
MagicMock(return_value=saved_hyperopt_results)
)
mocker.patch('freqtrade.commands.hyperopt_commands.show_backtest_result')
args = [
"hyperopt-show",

View File

@ -324,6 +324,7 @@ def get_default_conf(testdatadir):
"verbosity": 3,
"strategy_path": str(Path(__file__).parent / "strategy" / "strats"),
"strategy": "DefaultStrategy",
"disableparamexport": True,
"internals": {},
"export": "none",
}
@ -1953,12 +1954,13 @@ def saved_hyperopt_results():
'params_dict': {
'mfi-value': 15, 'fastd-value': 20, 'adx-value': 25, 'rsi-value': 28, 'mfi-enabled': False, 'fastd-enabled': True, 'adx-enabled': True, 'rsi-enabled': True, 'trigger': 'macd_cross_signal', 'sell-mfi-value': 88, 'sell-fastd-value': 97, 'sell-adx-value': 51, 'sell-rsi-value': 67, 'sell-mfi-enabled': False, 'sell-fastd-enabled': False, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-bb_upper', 'roi_t1': 1190, 'roi_t2': 541, 'roi_t3': 408, 'roi_p1': 0.026035863879169705, 'roi_p2': 0.12508730043628782, 'roi_p3': 0.27766427921605896, 'stoploss': -0.2562930402099556}, # noqa: E501
'params_details': {'buy': {'mfi-value': 15, 'fastd-value': 20, 'adx-value': 25, 'rsi-value': 28, 'mfi-enabled': False, 'fastd-enabled': True, 'adx-enabled': True, 'rsi-enabled': True, 'trigger': 'macd_cross_signal'}, 'sell': {'sell-mfi-value': 88, 'sell-fastd-value': 97, 'sell-adx-value': 51, 'sell-rsi-value': 67, 'sell-mfi-enabled': False, 'sell-fastd-enabled': False, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-bb_upper'}, 'roi': {0: 0.4287874435315165, 408: 0.15112316431545753, 949: 0.026035863879169705, 2139: 0}, 'stoploss': {'stoploss': -0.2562930402099556}}, # noqa: E501
'results_metrics': {'total_trades': 2, 'wins': 0, 'draws': 0, 'losses': 2, 'profit_mean': -0.01254995, 'profit_median': -0.012222, 'profit_total': -0.00125625, 'profit_total_abs': -2.50999, 'holding_avg': timedelta(minutes=3930.0)}, # noqa: E501
'results_metrics': {'total_trades': 2, 'wins': 0, 'draws': 0, 'losses': 2, 'profit_mean': -0.01254995, 'profit_median': -0.012222, 'profit_total': -0.00125625, 'profit_total_abs': -2.50999, 'holding_avg': timedelta(minutes=3930.0), 'stake_currency': 'BTC', 'strategy_name': 'SampleStrategy'}, # noqa: E501
'results_explanation': ' 2 trades. Avg profit -1.25%. Total profit -0.00125625 BTC ( -2.51Σ%). Avg duration 3930.0 min.', # noqa: E501
'total_profit': -0.00125625,
'current_epoch': 1,
'is_initial_point': True,
'is_best': True
'is_best': True,
}, {
'loss': 20.0,
'params_dict': {

View File

@ -1,9 +1,6 @@
# pragma pylint: disable=missing-docstring,W0212,C0103
import logging
import re
from datetime import datetime
from pathlib import Path
from typing import Dict, List
from unittest.mock import ANY, MagicMock
import pandas as pd
@ -28,12 +25,6 @@ from tests.conftest import (get_args, log_has, log_has_re, patch_exchange,
from .hyperopts.default_hyperopt import DefaultHyperOpt
# Functions for recurrent object patching
def create_results() -> List[Dict]:
return [{'loss': 1, 'result': 'foo', 'params': {}, 'is_best': True}]
def test_setup_hyperopt_configuration_without_arguments(mocker, default_conf, caplog) -> None:
patched_configuration_load_config_file(mocker, default_conf)
@ -303,52 +294,6 @@ def test_no_log_if_loss_does_not_improve(hyperopt, caplog) -> None:
assert caplog.record_tuples == []
def test_save_results_saves_epochs(mocker, hyperopt, tmpdir, caplog) -> None:
# Test writing to temp dir and reading again
epochs = create_results()
hyperopt.results_file = Path(tmpdir / 'ut_results.fthypt')
caplog.set_level(logging.DEBUG)
for epoch in epochs:
hyperopt._save_result(epoch)
assert log_has(f"1 epoch saved to '{hyperopt.results_file}'.", caplog)
hyperopt._save_result(epochs[0])
assert log_has(f"2 epochs saved to '{hyperopt.results_file}'.", caplog)
hyperopt_epochs = HyperoptTools.load_previous_results(hyperopt.results_file)
assert len(hyperopt_epochs) == 2
def test_load_previous_results(testdatadir, caplog) -> None:
results_file = testdatadir / 'hyperopt_results_SampleStrategy.pickle'
hyperopt_epochs = HyperoptTools.load_previous_results(results_file)
assert len(hyperopt_epochs) == 5
assert log_has_re(r"Reading pickled epochs from .*", caplog)
caplog.clear()
# Modern version
results_file = testdatadir / 'strategy_SampleStrategy.fthypt'
hyperopt_epochs = HyperoptTools.load_previous_results(results_file)
assert len(hyperopt_epochs) == 5
assert log_has_re(r"Reading epochs from .*", caplog)
def test_load_previous_results2(mocker, testdatadir, caplog) -> None:
mocker.patch('freqtrade.optimize.hyperopt_tools.HyperoptTools._read_results_pickle',
return_value=[{'asdf': '222'}])
results_file = testdatadir / 'hyperopt_results_SampleStrategy.pickle'
with pytest.raises(OperationalException, match=r"The file .* incompatible.*"):
HyperoptTools.load_previous_results(results_file)
def test_roi_table_generation(hyperopt) -> None:
params = {
'roi_t1': 5,
@ -362,6 +307,18 @@ def test_roi_table_generation(hyperopt) -> None:
assert hyperopt.custom_hyperopt.generate_roi_table(params) == {0: 6, 15: 3, 25: 1, 30: 0}
def test_params_no_optimize_details(hyperopt) -> None:
hyperopt.config['spaces'] = ['buy']
res = hyperopt._get_no_optimize_details()
assert isinstance(res, dict)
assert "trailing" in res
assert res["trailing"]['trailing_stop'] is False
assert "roi" in res
assert res['roi']['0'] == 0.04
assert "stoploss" in res
assert res['stoploss']['stoploss'] == -0.1
def test_start_calls_optimizer(mocker, hyperopt_conf, capsys) -> None:
dumper = mocker.patch('freqtrade.optimize.hyperopt.dump')
dumper2 = mocker.patch('freqtrade.optimize.hyperopt.Hyperopt._save_result')
@ -467,40 +424,6 @@ def test_hyperopt_format_results(hyperopt):
assert '0:50:00 min' in result
@pytest.mark.parametrize("spaces, expected_results", [
(['buy'],
{'buy': True, 'sell': False, 'roi': False, 'stoploss': False, 'trailing': False}),
(['sell'],
{'buy': False, 'sell': True, 'roi': False, 'stoploss': False, 'trailing': False}),
(['roi'],
{'buy': False, 'sell': False, 'roi': True, 'stoploss': False, 'trailing': False}),
(['stoploss'],
{'buy': False, 'sell': False, 'roi': False, 'stoploss': True, 'trailing': False}),
(['trailing'],
{'buy': False, 'sell': False, 'roi': False, 'stoploss': False, 'trailing': True}),
(['buy', 'sell', 'roi', 'stoploss'],
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': False}),
(['buy', 'sell', 'roi', 'stoploss', 'trailing'],
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': True}),
(['buy', 'roi'],
{'buy': True, 'sell': False, 'roi': True, 'stoploss': False, 'trailing': False}),
(['all'],
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': True}),
(['default'],
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': False}),
(['default', 'trailing'],
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': True}),
(['all', 'buy'],
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': True}),
(['default', 'buy'],
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': False}),
])
def test_has_space(hyperopt_conf, spaces, expected_results):
for s in ['buy', 'sell', 'roi', 'stoploss', 'trailing']:
hyperopt_conf.update({'spaces': spaces})
assert HyperoptTools.has_space(hyperopt_conf, s) == expected_results[s]
def test_populate_indicators(hyperopt, testdatadir) -> None:
data = load_data(testdatadir, '1m', ['UNITTEST/BTC'], fill_up_missing=True)
dataframes = hyperopt.backtesting.strategy.ohlcvdata_to_dataframe(data)
@ -686,6 +609,8 @@ def test_generate_optimizer(mocker, hyperopt_conf) -> None:
def test_clean_hyperopt(mocker, hyperopt_conf, caplog):
patch_exchange(mocker)
mocker.patch("freqtrade.strategy.hyper.HyperStrategyMixin.load_params_from_file",
MagicMock(return_value={}))
mocker.patch("freqtrade.optimize.hyperopt.Path.is_file", MagicMock(return_value=True))
unlinkmock = mocker.patch("freqtrade.optimize.hyperopt.Path.unlink", MagicMock())
h = Hyperopt(hyperopt_conf)
@ -1068,42 +993,6 @@ def test_simplified_interface_failed(mocker, hyperopt_conf, method, space) -> No
hyperopt.start()
def test_show_epoch_details(capsys):
test_result = {
'params_details': {
'trailing': {
'trailing_stop': True,
'trailing_stop_positive': 0.02,
'trailing_stop_positive_offset': 0.04,
'trailing_only_offset_is_reached': True
},
'roi': {
0: 0.18,
90: 0.14,
225: 0.05,
430: 0},
},
'results_explanation': 'foo result',
'is_initial_point': False,
'total_profit': 0,
'current_epoch': 2, # This starts from 1 (in a human-friendly manner)
'is_best': True
}
HyperoptTools.show_epoch_details(test_result, 5, False, no_header=True)
captured = capsys.readouterr()
assert '# Trailing stop:' in captured.out
# re.match(r"Pairs for .*", captured.out)
assert re.search(r'^\s+trailing_stop = True$', captured.out, re.MULTILINE)
assert re.search(r'^\s+trailing_stop_positive = 0.02$', captured.out, re.MULTILINE)
assert re.search(r'^\s+trailing_stop_positive_offset = 0.04$', captured.out, re.MULTILINE)
assert re.search(r'^\s+trailing_only_offset_is_reached = True$', captured.out, re.MULTILINE)
assert '# ROI table:' in captured.out
assert re.search(r'^\s+minimal_roi = \{$', captured.out, re.MULTILINE)
assert re.search(r'^\s+\"90\"\:\s0.14,\s*$', captured.out, re.MULTILINE)
def test_in_strategy_auto_hyperopt(mocker, hyperopt_conf, tmpdir, fee) -> None:
patch_exchange(mocker)
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
@ -1143,17 +1032,3 @@ def test_SKDecimal():
assert space.transform([2.0]) == [200]
assert space.transform([1.0]) == [100]
assert space.transform([1.5, 1.6]) == [150, 160]
def test___pprint():
params = {'buy_std': 1.2, 'buy_rsi': 31, 'buy_enable': True, 'buy_what': 'asdf'}
non_params = {'buy_notoptimied': 55}
x = HyperoptTools._pprint(params, non_params)
assert x == """{
"buy_std": 1.2,
"buy_rsi": 31,
"buy_enable": True,
"buy_what": "asdf",
"buy_notoptimied": 55, # value loaded from strategy
}"""

View File

@ -0,0 +1,317 @@
import logging
import re
from pathlib import Path
from typing import Dict, List
import numpy as np
import pytest
import rapidjson
from freqtrade.constants import FTHYPT_FILEVERSION
from freqtrade.exceptions import OperationalException
from freqtrade.optimize.hyperopt_tools import HyperoptTools, hyperopt_serializer
from tests.conftest import log_has, log_has_re
# Functions for recurrent object patching
def create_results() -> List[Dict]:
return [{'loss': 1, 'result': 'foo', 'params': {}, 'is_best': True}]
def test_save_results_saves_epochs(hyperopt, tmpdir, caplog) -> None:
# Test writing to temp dir and reading again
epochs = create_results()
hyperopt.results_file = Path(tmpdir / 'ut_results.fthypt')
caplog.set_level(logging.DEBUG)
for epoch in epochs:
hyperopt._save_result(epoch)
assert log_has(f"1 epoch saved to '{hyperopt.results_file}'.", caplog)
hyperopt._save_result(epochs[0])
assert log_has(f"2 epochs saved to '{hyperopt.results_file}'.", caplog)
hyperopt_epochs = HyperoptTools.load_previous_results(hyperopt.results_file)
assert len(hyperopt_epochs) == 2
def test_load_previous_results(testdatadir, caplog) -> None:
results_file = testdatadir / 'hyperopt_results_SampleStrategy.pickle'
hyperopt_epochs = HyperoptTools.load_previous_results(results_file)
assert len(hyperopt_epochs) == 5
assert log_has_re(r"Reading pickled epochs from .*", caplog)
caplog.clear()
# Modern version
results_file = testdatadir / 'strategy_SampleStrategy.fthypt'
hyperopt_epochs = HyperoptTools.load_previous_results(results_file)
assert len(hyperopt_epochs) == 5
assert log_has_re(r"Reading epochs from .*", caplog)
def test_load_previous_results2(mocker, testdatadir, caplog) -> None:
mocker.patch('freqtrade.optimize.hyperopt_tools.HyperoptTools._read_results_pickle',
return_value=[{'asdf': '222'}])
results_file = testdatadir / 'hyperopt_results_SampleStrategy.pickle'
with pytest.raises(OperationalException, match=r"The file .* incompatible.*"):
HyperoptTools.load_previous_results(results_file)
@pytest.mark.parametrize("spaces, expected_results", [
(['buy'],
{'buy': True, 'sell': False, 'roi': False, 'stoploss': False, 'trailing': False}),
(['sell'],
{'buy': False, 'sell': True, 'roi': False, 'stoploss': False, 'trailing': False}),
(['roi'],
{'buy': False, 'sell': False, 'roi': True, 'stoploss': False, 'trailing': False}),
(['stoploss'],
{'buy': False, 'sell': False, 'roi': False, 'stoploss': True, 'trailing': False}),
(['trailing'],
{'buy': False, 'sell': False, 'roi': False, 'stoploss': False, 'trailing': True}),
(['buy', 'sell', 'roi', 'stoploss'],
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': False}),
(['buy', 'sell', 'roi', 'stoploss', 'trailing'],
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': True}),
(['buy', 'roi'],
{'buy': True, 'sell': False, 'roi': True, 'stoploss': False, 'trailing': False}),
(['all'],
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': True}),
(['default'],
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': False}),
(['default', 'trailing'],
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': True}),
(['all', 'buy'],
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': True}),
(['default', 'buy'],
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': False}),
])
def test_has_space(hyperopt_conf, spaces, expected_results):
for s in ['buy', 'sell', 'roi', 'stoploss', 'trailing']:
hyperopt_conf.update({'spaces': spaces})
assert HyperoptTools.has_space(hyperopt_conf, s) == expected_results[s]
def test_show_epoch_details(capsys):
test_result = {
'params_details': {
'trailing': {
'trailing_stop': True,
'trailing_stop_positive': 0.02,
'trailing_stop_positive_offset': 0.04,
'trailing_only_offset_is_reached': True
},
'roi': {
0: 0.18,
90: 0.14,
225: 0.05,
430: 0},
},
'results_explanation': 'foo result',
'is_initial_point': False,
'total_profit': 0,
'current_epoch': 2, # This starts from 1 (in a human-friendly manner)
'is_best': True
}
HyperoptTools.show_epoch_details(test_result, 5, False, no_header=True)
captured = capsys.readouterr()
assert '# Trailing stop:' in captured.out
# re.match(r"Pairs for .*", captured.out)
assert re.search(r'^\s+trailing_stop = True$', captured.out, re.MULTILINE)
assert re.search(r'^\s+trailing_stop_positive = 0.02$', captured.out, re.MULTILINE)
assert re.search(r'^\s+trailing_stop_positive_offset = 0.04$', captured.out, re.MULTILINE)
assert re.search(r'^\s+trailing_only_offset_is_reached = True$', captured.out, re.MULTILINE)
assert '# ROI table:' in captured.out
assert re.search(r'^\s+minimal_roi = \{$', captured.out, re.MULTILINE)
assert re.search(r'^\s+\"90\"\:\s0.14,\s*$', captured.out, re.MULTILINE)
def test__pprint_dict():
params = {'buy_std': 1.2, 'buy_rsi': 31, 'buy_enable': True, 'buy_what': 'asdf'}
non_params = {'buy_notoptimied': 55}
x = HyperoptTools._pprint_dict(params, non_params)
assert x == """{
"buy_std": 1.2,
"buy_rsi": 31,
"buy_enable": True,
"buy_what": "asdf",
"buy_notoptimied": 55, # value loaded from strategy
}"""
def test_get_strategy_filename(default_conf):
x = HyperoptTools.get_strategy_filename(default_conf, 'DefaultStrategy')
assert isinstance(x, Path)
assert x == Path(__file__).parents[1] / 'strategy/strats/default_strategy.py'
x = HyperoptTools.get_strategy_filename(default_conf, 'NonExistingStrategy')
assert x is None
def test_export_params(tmpdir):
filename = Path(tmpdir) / "DefaultStrategy.json"
assert not filename.is_file()
params = {
"params_details": {
"buy": {
"buy_rsi": 30
},
"sell": {
"sell_rsi": 70
},
"roi": {
"0": 0.528,
"346": 0.08499,
"507": 0.049,
"1595": 0
}
},
"params_not_optimized": {
"stoploss": -0.05,
"trailing": {
"trailing_stop": False,
"trailing_stop_positive": 0.05,
"trailing_stop_positive_offset": 0.1,
"trailing_only_offset_is_reached": True
},
}
}
HyperoptTools.export_params(params, "DefaultStrategy", filename)
assert filename.is_file()
content = rapidjson.load(filename.open('r'))
assert content['strategy_name'] == 'DefaultStrategy'
assert 'params' in content
assert "buy" in content["params"]
assert "sell" in content["params"]
assert "roi" in content["params"]
assert "stoploss" in content["params"]
assert "trailing" in content["params"]
def test_try_export_params(default_conf, tmpdir, caplog, mocker):
default_conf['disableparamexport'] = False
export_mock = mocker.patch("freqtrade.optimize.hyperopt_tools.HyperoptTools.export_params")
filename = Path(tmpdir) / "DefaultStrategy.json"
assert not filename.is_file()
params = {
"params_details": {
"buy": {
"buy_rsi": 30
},
"sell": {
"sell_rsi": 70
},
"roi": {
"0": 0.528,
"346": 0.08499,
"507": 0.049,
"1595": 0
}
},
"params_not_optimized": {
"stoploss": -0.05,
"trailing": {
"trailing_stop": False,
"trailing_stop_positive": 0.05,
"trailing_stop_positive_offset": 0.1,
"trailing_only_offset_is_reached": True
},
},
FTHYPT_FILEVERSION: 2,
}
HyperoptTools.try_export_params(default_conf, "DefaultStrategy22", params)
assert log_has("Strategy not found, not exporting parameter file.", caplog)
assert export_mock.call_count == 0
caplog.clear()
HyperoptTools.try_export_params(default_conf, "DefaultStrategy", params)
assert export_mock.call_count == 1
assert export_mock.call_args_list[0][0][1] == 'DefaultStrategy'
assert export_mock.call_args_list[0][0][2].name == 'default_strategy.json'
def test_params_print(capsys):
params = {
"buy": {
"buy_rsi": 30
},
"sell": {
"sell_rsi": 70
},
}
non_optimized = {
"buy": {
"buy_adx": 44
},
"sell": {
"sell_adx": 65
},
"stoploss": {
"stoploss": -0.05,
},
"roi": {
"0": 0.05,
"20": 0.01,
},
"trailing": {
"trailing_stop": False,
"trailing_stop_positive": 0.05,
"trailing_stop_positive_offset": 0.1,
"trailing_only_offset_is_reached": True
},
}
HyperoptTools._params_pretty_print(params, 'buy', 'No header', non_optimized)
captured = capsys.readouterr()
assert re.search("# No header", captured.out)
assert re.search('"buy_rsi": 30,\n', captured.out)
assert re.search('"buy_adx": 44, # value loaded.*\n', captured.out)
assert not re.search("sell", captured.out)
HyperoptTools._params_pretty_print(params, 'sell', 'Sell Header', non_optimized)
captured = capsys.readouterr()
assert re.search("# Sell Header", captured.out)
assert re.search('"sell_rsi": 70,\n', captured.out)
assert re.search('"sell_adx": 65, # value loaded.*\n', captured.out)
HyperoptTools._params_pretty_print(params, 'roi', 'ROI Table:', non_optimized)
captured = capsys.readouterr()
assert re.search("# ROI Table: # value loaded.*\n", captured.out)
assert re.search('minimal_roi = {\n', captured.out)
assert re.search('"20": 0.01\n', captured.out)
HyperoptTools._params_pretty_print(params, 'trailing', 'Trailing stop:', non_optimized)
captured = capsys.readouterr()
assert re.search("# Trailing stop:", captured.out)
assert re.search('trailing_stop = False # value loaded.*\n', captured.out)
assert re.search('trailing_stop_positive = 0.05 # value loaded.*\n', captured.out)
assert re.search('trailing_stop_positive_offset = 0.1 # value loaded.*\n', captured.out)
assert re.search('trailing_only_offset_is_reached = True # value loaded.*\n', captured.out)
def test_hyperopt_serializer():
assert isinstance(hyperopt_serializer(np.int_(5)), int)
assert isinstance(hyperopt_serializer(np.bool_(True)), bool)
assert isinstance(hyperopt_serializer(np.bool_(False)), bool)

View File

@ -1,6 +1,7 @@
# pragma pylint: disable=missing-docstring, C0103
import logging
from datetime import datetime, timedelta, timezone
from pathlib import Path
from unittest.mock import MagicMock
import arrow
@ -707,3 +708,50 @@ def test_auto_hyperopt_interface(default_conf):
with pytest.raises(OperationalException, match=r"Inconclusive parameter.*"):
[x for x in strategy.detect_parameters('sell')]
def test_auto_hyperopt_interface_loadparams(default_conf, mocker, caplog):
default_conf.update({'strategy': 'HyperoptableStrategy'})
del default_conf['stoploss']
del default_conf['minimal_roi']
mocker.patch.object(Path, 'is_file', MagicMock(return_value=True))
mocker.patch.object(Path, 'open')
expected_result = {
"strategy_name": "HyperoptableStrategy",
"params": {
"stoploss": {
"stoploss": -0.05,
},
"roi": {
"0": 0.2,
"1200": 0.01
}
}
}
mocker.patch('freqtrade.strategy.hyper.json_load', return_value=expected_result)
PairLocks.timeframe = default_conf['timeframe']
strategy = StrategyResolver.load_strategy(default_conf)
assert strategy.stoploss == -0.05
assert strategy.minimal_roi == {0: 0.2, 1200: 0.01}
expected_result = {
"strategy_name": "HyperoptableStrategy_No",
"params": {
"stoploss": {
"stoploss": -0.05,
},
"roi": {
"0": 0.2,
"1200": 0.01
}
}
}
mocker.patch('freqtrade.strategy.hyper.json_load', return_value=expected_result)
with pytest.raises(OperationalException, match="Invalid parameter file provided."):
StrategyResolver.load_strategy(default_conf)
mocker.patch('freqtrade.strategy.hyper.json_load', MagicMock(side_effect=ValueError()))
StrategyResolver.load_strategy(default_conf)
assert log_has("Invalid parameter file format.", caplog)