Merge pull request #5219 from freqtrade/hyperopt_paramfile
automatic Hyperopt paramfile
This commit is contained in:
commit
898bef1837
@ -51,7 +51,7 @@ usage: freqtrade hyperopt [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH]
|
||||
[--spaces {all,buy,sell,roi,stoploss,trailing,default} [{all,buy,sell,roi,stoploss,trailing,default} ...]]
|
||||
[--print-all] [--no-color] [--print-json] [-j JOBS]
|
||||
[--random-state INT] [--min-trades INT]
|
||||
[--hyperopt-loss NAME]
|
||||
[--hyperopt-loss NAME] [--disable-param-export]
|
||||
|
||||
optional arguments:
|
||||
-h, --help show this help message and exit
|
||||
@ -118,6 +118,8 @@ optional arguments:
|
||||
ShortTradeDurHyperOptLoss, OnlyProfitHyperOptLoss,
|
||||
SharpeHyperOptLoss, SharpeHyperOptLossDaily,
|
||||
SortinoHyperOptLoss, SortinoHyperOptLossDaily
|
||||
--disable-param-export
|
||||
Disable automatic hyperopt parameter export.
|
||||
|
||||
Common arguments:
|
||||
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
|
||||
@ -512,7 +514,13 @@ You should understand this result like:
|
||||
* You should not use ADX because `'buy_adx_enabled': False`.
|
||||
* You should **consider** using the RSI indicator (`'buy_rsi_enabled': True`) and the best value is `29.0` (`'buy_rsi': 29.0`)
|
||||
|
||||
Your strategy class can immediately take advantage of these results. Simply copy hyperopt results block and paste them at class level, replacing old parameters (if any). New parameters will automatically be loaded next time strategy is executed.
|
||||
### Automatic parameter application to the strategy
|
||||
|
||||
When using Hyperoptable parameters, the result of your hyperopt-run will be written to a json file next to your strategy (so for `MyAwesomeStrategy.py`, the file would be `MyAwesomeStrategy.json`).
|
||||
This file is also updated when using the `hyperopt-show` sub-command, unless `--disable-param-export` is provided to either of the 2 commands.
|
||||
|
||||
|
||||
Your strategy class can also contain these results explicitly. Simply copy hyperopt results block and paste them at class level, replacing old parameters (if any). New parameters will automatically be loaded next time strategy is executed.
|
||||
|
||||
Transferring your whole hyperopt result to your strategy would then look like:
|
||||
|
||||
@ -528,6 +536,10 @@ class MyAwesomeStrategy(IStrategy):
|
||||
}
|
||||
```
|
||||
|
||||
!!! Note
|
||||
Values in the configuration file will overwrite Parameter-file level parameters - and both will overwrite parameters within the strategy.
|
||||
The prevalence is therefore: config > parameter file > strategy
|
||||
|
||||
### Understand Hyperopt ROI results
|
||||
|
||||
If you are optimizing ROI (i.e. if optimization search-space contains 'all', 'default' or 'roi'), your result will look as follows and include a ROI table:
|
||||
|
@ -702,7 +702,8 @@ You can show the details of any hyperoptimization epoch previously evaluated by
|
||||
usage: freqtrade hyperopt-show [-h] [-v] [--logfile FILE] [-V] [-c PATH]
|
||||
[-d PATH] [--userdir PATH] [--best]
|
||||
[--profitable] [-n INT] [--print-json]
|
||||
[--hyperopt-filename PATH] [--no-header]
|
||||
[--hyperopt-filename FILENAME] [--no-header]
|
||||
[--disable-param-export]
|
||||
|
||||
optional arguments:
|
||||
-h, --help show this help message and exit
|
||||
@ -714,6 +715,8 @@ optional arguments:
|
||||
Hyperopt result filename.Example: `--hyperopt-
|
||||
filename=hyperopt_results_2020-09-27_16-20-48.pickle`
|
||||
--no-header Do not print epoch details header.
|
||||
--disable-param-export
|
||||
Disable automatic hyperopt parameter export.
|
||||
|
||||
Common arguments:
|
||||
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
|
||||
|
@ -29,7 +29,7 @@ ARGS_HYPEROPT = ARGS_COMMON_OPTIMIZE + ["hyperopt", "hyperopt_path",
|
||||
"epochs", "spaces", "print_all",
|
||||
"print_colorized", "print_json", "hyperopt_jobs",
|
||||
"hyperopt_random_state", "hyperopt_min_trades",
|
||||
"hyperopt_loss"]
|
||||
"hyperopt_loss", "disableparamexport"]
|
||||
|
||||
ARGS_EDGE = ARGS_COMMON_OPTIMIZE + ["stoploss_range"]
|
||||
|
||||
@ -85,7 +85,8 @@ ARGS_HYPEROPT_LIST = ["hyperopt_list_best", "hyperopt_list_profitable",
|
||||
"hyperoptexportfilename", "export_csv"]
|
||||
|
||||
ARGS_HYPEROPT_SHOW = ["hyperopt_list_best", "hyperopt_list_profitable", "hyperopt_show_index",
|
||||
"print_json", "hyperoptexportfilename", "hyperopt_show_no_header"]
|
||||
"print_json", "hyperoptexportfilename", "hyperopt_show_no_header",
|
||||
"disableparamexport"]
|
||||
|
||||
NO_CONF_REQURIED = ["convert-data", "convert-trade-data", "download-data", "list-timeframes",
|
||||
"list-markets", "list-pairs", "list-strategies", "list-data",
|
||||
|
@ -178,6 +178,11 @@ AVAILABLE_CLI_OPTIONS = {
|
||||
'Example: `--export-filename=user_data/backtest_results/backtest_today.json`',
|
||||
metavar='PATH',
|
||||
),
|
||||
"disableparamexport": Arg(
|
||||
'--disable-param-export',
|
||||
help="Disable automatic hyperopt parameter export.",
|
||||
action='store_true',
|
||||
),
|
||||
"fee": Arg(
|
||||
'--fee',
|
||||
help='Specify fee ratio. Will be applied twice (on trade entry and exit).',
|
||||
|
@ -129,9 +129,12 @@ def start_hyperopt_show(args: Dict[str, Any]) -> None:
|
||||
|
||||
metrics = val['results_metrics']
|
||||
if 'strategy_name' in metrics:
|
||||
show_backtest_result(metrics['strategy_name'], metrics,
|
||||
strategy_name = metrics['strategy_name']
|
||||
show_backtest_result(strategy_name, metrics,
|
||||
metrics['stake_currency'])
|
||||
|
||||
HyperoptTools.try_export_params(config, strategy_name, val)
|
||||
|
||||
HyperoptTools.show_epoch_details(val, total_epochs, print_json, no_header,
|
||||
header_str="Epoch details")
|
||||
|
||||
|
@ -260,6 +260,8 @@ class Configuration:
|
||||
self._args_to_config(config, argname='export',
|
||||
logstring='Parameter --export detected: {} ...')
|
||||
|
||||
self._args_to_config(config, argname='disableparamexport',
|
||||
logstring='Parameter --disableparamexport detected: {} ...')
|
||||
# Edge section:
|
||||
if 'stoploss_range' in self.args and self.args["stoploss_range"]:
|
||||
txt_range = eval(self.args["stoploss_range"])
|
||||
|
@ -40,6 +40,7 @@ DEFAULT_DATAFRAME_COLUMNS = ['date', 'open', 'high', 'low', 'close', 'volume']
|
||||
DEFAULT_TRADES_COLUMNS = ['timestamp', 'id', 'type', 'side', 'price', 'amount', 'cost']
|
||||
|
||||
LAST_BT_RESULT_FN = '.last_result.json'
|
||||
FTHYPT_FILEVERSION = 'fthypt_fileversion'
|
||||
|
||||
USERPATH_HYPEROPTS = 'hyperopts'
|
||||
USERPATH_STRATEGIES = 'strategies'
|
||||
@ -312,6 +313,7 @@ CONF_SCHEMA = {
|
||||
},
|
||||
'db_url': {'type': 'string'},
|
||||
'export': {'type': 'string', 'enum': EXPORT_OPTIONS, 'default': 'trades'},
|
||||
'disableparamexport': {'type': 'boolean'},
|
||||
'initial_state': {'type': 'string', 'enum': ['running', 'stopped']},
|
||||
'forcebuy_enable': {'type': 'boolean'},
|
||||
'disable_dataframe_checks': {'type': 'boolean'},
|
||||
|
@ -12,7 +12,6 @@ from math import ceil
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
import numpy as np
|
||||
import progressbar
|
||||
import rapidjson
|
||||
from colorama import Fore, Style
|
||||
@ -20,16 +19,16 @@ from colorama import init as colorama_init
|
||||
from joblib import Parallel, cpu_count, delayed, dump, load, wrap_non_picklable_objects
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.constants import DATETIME_PRINT_FORMAT, LAST_BT_RESULT_FN
|
||||
from freqtrade.constants import DATETIME_PRINT_FORMAT, FTHYPT_FILEVERSION, LAST_BT_RESULT_FN
|
||||
from freqtrade.data.converter import trim_dataframes
|
||||
from freqtrade.data.history import get_timerange
|
||||
from freqtrade.misc import file_dump_json, plural
|
||||
from freqtrade.misc import deep_merge_dicts, file_dump_json, plural
|
||||
from freqtrade.optimize.backtesting import Backtesting
|
||||
# Import IHyperOpt and IHyperOptLoss to allow unpickling classes from these modules
|
||||
from freqtrade.optimize.hyperopt_auto import HyperOptAuto
|
||||
from freqtrade.optimize.hyperopt_interface import IHyperOpt # noqa: F401
|
||||
from freqtrade.optimize.hyperopt_loss_interface import IHyperOptLoss # noqa: F401
|
||||
from freqtrade.optimize.hyperopt_tools import HyperoptTools
|
||||
from freqtrade.optimize.hyperopt_tools import HyperoptTools, hyperopt_serializer
|
||||
from freqtrade.optimize.optimize_reports import generate_strategy_stats
|
||||
from freqtrade.resolvers.hyperopt_resolver import HyperOptLossResolver, HyperOptResolver
|
||||
|
||||
@ -78,8 +77,11 @@ class Hyperopt:
|
||||
|
||||
if not self.config.get('hyperopt'):
|
||||
self.custom_hyperopt = HyperOptAuto(self.config)
|
||||
self.auto_hyperopt = True
|
||||
else:
|
||||
self.custom_hyperopt = HyperOptResolver.load_hyperopt(self.config)
|
||||
self.auto_hyperopt = False
|
||||
|
||||
self.backtesting._set_strategy(self.backtesting.strategylist[0])
|
||||
self.custom_hyperopt.strategy = self.backtesting.strategy
|
||||
|
||||
@ -163,13 +165,9 @@ class Hyperopt:
|
||||
While not a valid json object - this allows appending easily.
|
||||
:param epoch: result dictionary for this epoch.
|
||||
"""
|
||||
def default_parser(x):
|
||||
if isinstance(x, np.integer):
|
||||
return int(x)
|
||||
return str(x)
|
||||
|
||||
epoch[FTHYPT_FILEVERSION] = 2
|
||||
with self.results_file.open('a') as f:
|
||||
rapidjson.dump(epoch, f, default=default_parser,
|
||||
rapidjson.dump(epoch, f, default=hyperopt_serializer,
|
||||
number_mode=rapidjson.NM_NATIVE | rapidjson.NM_NAN)
|
||||
f.write("\n")
|
||||
|
||||
@ -201,6 +199,25 @@ class Hyperopt:
|
||||
|
||||
return result
|
||||
|
||||
def _get_no_optimize_details(self) -> Dict[str, Any]:
|
||||
"""
|
||||
Get non-optimized parameters
|
||||
"""
|
||||
result: Dict[str, Any] = {}
|
||||
strategy = self.backtesting.strategy
|
||||
if not HyperoptTools.has_space(self.config, 'roi'):
|
||||
result['roi'] = {str(k): v for k, v in strategy.minimal_roi.items()}
|
||||
if not HyperoptTools.has_space(self.config, 'stoploss'):
|
||||
result['stoploss'] = {'stoploss': strategy.stoploss}
|
||||
if not HyperoptTools.has_space(self.config, 'trailing'):
|
||||
result['trailing'] = {
|
||||
'trailing_stop': strategy.trailing_stop,
|
||||
'trailing_stop_positive': strategy.trailing_stop_positive,
|
||||
'trailing_stop_positive_offset': strategy.trailing_stop_positive_offset,
|
||||
'trailing_only_offset_is_reached': strategy.trailing_only_offset_is_reached,
|
||||
}
|
||||
return result
|
||||
|
||||
def print_results(self, results) -> None:
|
||||
"""
|
||||
Log results if it is better than any previous evaluation
|
||||
@ -310,7 +327,8 @@ class Hyperopt:
|
||||
results_explanation = HyperoptTools.format_results_explanation_string(
|
||||
strat_stats, self.config['stake_currency'])
|
||||
|
||||
not_optimized = self.backtesting.strategy.get_params_dict()
|
||||
not_optimized = self.backtesting.strategy.get_no_optimize_params()
|
||||
not_optimized = deep_merge_dicts(not_optimized, self._get_no_optimize_details())
|
||||
|
||||
trade_count = strat_stats['total_trades']
|
||||
total_profit = strat_stats['profit_total']
|
||||
@ -470,6 +488,12 @@ class Hyperopt:
|
||||
f"saved to '{self.results_file}'.")
|
||||
|
||||
if self.current_best_epoch:
|
||||
if self.auto_hyperopt:
|
||||
HyperoptTools.try_export_params(
|
||||
self.config,
|
||||
self.backtesting.strategy.get_strategy_name(),
|
||||
self.current_best_epoch)
|
||||
|
||||
HyperoptTools.show_epoch_details(self.current_best_epoch, self.total_epochs,
|
||||
self.print_json)
|
||||
else:
|
||||
|
@ -1,23 +1,82 @@
|
||||
|
||||
import io
|
||||
import logging
|
||||
from copy import deepcopy
|
||||
from datetime import datetime, timezone
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
import numpy as np
|
||||
import rapidjson
|
||||
import tabulate
|
||||
from colorama import Fore, Style
|
||||
from pandas import isna, json_normalize
|
||||
|
||||
from freqtrade.constants import FTHYPT_FILEVERSION, USERPATH_STRATEGIES
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.misc import round_coin_value, round_dict
|
||||
from freqtrade.misc import deep_merge_dicts, round_coin_value, round_dict, safe_value_fallback2
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
NON_OPT_PARAM_APPENDIX = " # value loaded from strategy"
|
||||
|
||||
|
||||
def hyperopt_serializer(x):
|
||||
if isinstance(x, np.integer):
|
||||
return int(x)
|
||||
if isinstance(x, np.bool_):
|
||||
return bool(x)
|
||||
|
||||
return str(x)
|
||||
|
||||
|
||||
class HyperoptTools():
|
||||
|
||||
@staticmethod
|
||||
def get_strategy_filename(config: Dict, strategy_name: str) -> Optional[Path]:
|
||||
"""
|
||||
Get Strategy-location (filename) from strategy_name
|
||||
"""
|
||||
from freqtrade.resolvers.strategy_resolver import StrategyResolver
|
||||
directory = Path(config.get('strategy_path', config['user_data_dir'] / USERPATH_STRATEGIES))
|
||||
strategy_objs = StrategyResolver.search_all_objects(directory, False)
|
||||
strategies = [s for s in strategy_objs if s['name'] == strategy_name]
|
||||
if strategies:
|
||||
strategy = strategies[0]
|
||||
|
||||
return Path(strategy['location'])
|
||||
return None
|
||||
|
||||
@staticmethod
|
||||
def export_params(params, strategy_name: str, filename: Path):
|
||||
"""
|
||||
Generate files
|
||||
"""
|
||||
final_params = deepcopy(params['params_not_optimized'])
|
||||
final_params = deep_merge_dicts(params['params_details'], final_params)
|
||||
final_params = {
|
||||
'strategy_name': strategy_name,
|
||||
'params': final_params,
|
||||
'ft_stratparam_v': 1,
|
||||
'export_time': datetime.now(timezone.utc),
|
||||
}
|
||||
logger.info(f"Dumping parameters to {filename}")
|
||||
rapidjson.dump(final_params, filename.open('w'), indent=2,
|
||||
default=hyperopt_serializer,
|
||||
number_mode=rapidjson.NM_NATIVE | rapidjson.NM_NAN
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def try_export_params(config: Dict[str, Any], strategy_name: str, params: Dict):
|
||||
if params.get(FTHYPT_FILEVERSION, 1) >= 2 and not config.get('disableparamexport', False):
|
||||
# Export parameters ...
|
||||
fn = HyperoptTools.get_strategy_filename(config, strategy_name)
|
||||
if fn:
|
||||
HyperoptTools.export_params(params, strategy_name, fn.with_suffix('.json'))
|
||||
else:
|
||||
logger.warn("Strategy not found, not exporting parameter file.")
|
||||
|
||||
@staticmethod
|
||||
def has_space(config: Dict[str, Any], space: str) -> bool:
|
||||
"""
|
||||
@ -99,9 +158,9 @@ class HyperoptTools():
|
||||
non_optimized)
|
||||
HyperoptTools._params_pretty_print(params, 'sell', "Sell hyperspace params:",
|
||||
non_optimized)
|
||||
HyperoptTools._params_pretty_print(params, 'roi', "ROI table:")
|
||||
HyperoptTools._params_pretty_print(params, 'stoploss', "Stoploss:")
|
||||
HyperoptTools._params_pretty_print(params, 'trailing', "Trailing stop:")
|
||||
HyperoptTools._params_pretty_print(params, 'roi', "ROI table:", non_optimized)
|
||||
HyperoptTools._params_pretty_print(params, 'stoploss', "Stoploss:", non_optimized)
|
||||
HyperoptTools._params_pretty_print(params, 'trailing', "Trailing stop:", non_optimized)
|
||||
|
||||
@staticmethod
|
||||
def _params_update_for_json(result_dict, params, non_optimized, space: str) -> None:
|
||||
@ -127,23 +186,34 @@ class HyperoptTools():
|
||||
def _params_pretty_print(params, space: str, header: str, non_optimized={}) -> None:
|
||||
if space in params or space in non_optimized:
|
||||
space_params = HyperoptTools._space_params(params, space, 5)
|
||||
no_params = HyperoptTools._space_params(non_optimized, space, 5)
|
||||
appendix = ''
|
||||
if not space_params and not no_params:
|
||||
# No parameters - don't print
|
||||
return
|
||||
if not space_params:
|
||||
# Not optimized parameters - append string
|
||||
appendix = NON_OPT_PARAM_APPENDIX
|
||||
|
||||
result = f"\n# {header}\n"
|
||||
if space == 'stoploss':
|
||||
result += f"stoploss = {space_params.get('stoploss')}"
|
||||
elif space == 'roi':
|
||||
if space == "stoploss":
|
||||
stoploss = safe_value_fallback2(space_params, no_params, space, space)
|
||||
result += (f"stoploss = {stoploss}{appendix}")
|
||||
|
||||
elif space == "roi":
|
||||
result = result[:-1] + f'{appendix}\n'
|
||||
minimal_roi_result = rapidjson.dumps({
|
||||
str(k): v for k, v in space_params.items()
|
||||
str(k): v for k, v in (space_params or no_params).items()
|
||||
}, default=str, indent=4, number_mode=rapidjson.NM_NATIVE)
|
||||
result += f"minimal_roi = {minimal_roi_result}"
|
||||
elif space == 'trailing':
|
||||
|
||||
for k, v in space_params.items():
|
||||
result += f'{k} = {v}\n'
|
||||
elif space == "trailing":
|
||||
for k, v in (space_params or no_params).items():
|
||||
result += f"{k} = {v}{appendix}\n"
|
||||
|
||||
else:
|
||||
no_params = HyperoptTools._space_params(non_optimized, space, 5)
|
||||
# Buy / sell parameters
|
||||
|
||||
result += f"{space}_params = {HyperoptTools._pprint(space_params, no_params)}"
|
||||
result += f"{space}_params = {HyperoptTools._pprint_dict(space_params, no_params)}"
|
||||
|
||||
result = result.replace("\n", "\n ")
|
||||
print(result)
|
||||
@ -157,7 +227,7 @@ class HyperoptTools():
|
||||
return {}
|
||||
|
||||
@staticmethod
|
||||
def _pprint(params, non_optimized, indent: int = 4):
|
||||
def _pprint_dict(params, non_optimized, indent: int = 4):
|
||||
"""
|
||||
Pretty-print hyperopt results (based on 2 dicts - with add. comment)
|
||||
"""
|
||||
@ -169,7 +239,7 @@ class HyperoptTools():
|
||||
result += " " * indent + f'"{k}": '
|
||||
result += f'"{param}",' if isinstance(param, str) else f'{param},'
|
||||
if k in non_optimized:
|
||||
result += " # value loaded from strategy"
|
||||
result += NON_OPT_PARAM_APPENDIX
|
||||
result += "\n"
|
||||
result += '}'
|
||||
return result
|
||||
|
@ -53,6 +53,21 @@ class StrategyResolver(IResolver):
|
||||
)
|
||||
strategy.timeframe = strategy.ticker_interval
|
||||
|
||||
if strategy._ft_params_from_file:
|
||||
# Set parameters from Hyperopt results file
|
||||
params = strategy._ft_params_from_file
|
||||
strategy.minimal_roi = params.get('roi', strategy.minimal_roi)
|
||||
|
||||
strategy.stoploss = params.get('stoploss', {}).get('stoploss', strategy.stoploss)
|
||||
trailing = params.get('trailing', {})
|
||||
strategy.trailing_stop = trailing.get('trailing_stop', strategy.trailing_stop)
|
||||
strategy.trailing_stop_positive = trailing.get('trailing_stop_positive',
|
||||
strategy.trailing_stop_positive)
|
||||
strategy.trailing_stop_positive_offset = trailing.get(
|
||||
'trailing_stop_positive_offset', strategy.trailing_stop_positive_offset)
|
||||
strategy.trailing_only_offset_is_reached = trailing.get(
|
||||
'trailing_only_offset_is_reached', strategy.trailing_only_offset_is_reached)
|
||||
|
||||
# Set attributes
|
||||
# Check if we need to override configuration
|
||||
# (Attribute name, default, subkey)
|
||||
|
@ -5,8 +5,10 @@ This module defines a base class for auto-hyperoptable strategies.
|
||||
import logging
|
||||
from abc import ABC, abstractmethod
|
||||
from contextlib import suppress
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Iterator, List, Optional, Sequence, Tuple, Union
|
||||
|
||||
from freqtrade.misc import deep_merge_dicts, json_load
|
||||
from freqtrade.optimize.hyperopt_tools import HyperoptTools
|
||||
|
||||
|
||||
@ -333,10 +335,36 @@ class HyperStrategyMixin(object):
|
||||
"""
|
||||
Load Hyperoptable parameters
|
||||
"""
|
||||
self._load_params(getattr(self, 'buy_params', None), 'buy', hyperopt)
|
||||
self._load_params(getattr(self, 'sell_params', None), 'sell', hyperopt)
|
||||
params = self.load_params_from_file()
|
||||
params = params.get('params', {})
|
||||
self._ft_params_from_file = params
|
||||
buy_params = deep_merge_dicts(params.get('buy', {}), getattr(self, 'buy_params', None))
|
||||
sell_params = deep_merge_dicts(params.get('sell', {}), getattr(self, 'sell_params', None))
|
||||
|
||||
def _load_params(self, params: dict, space: str, hyperopt: bool = False) -> None:
|
||||
self._load_params(buy_params, 'buy', hyperopt)
|
||||
self._load_params(sell_params, 'sell', hyperopt)
|
||||
|
||||
def load_params_from_file(self) -> Dict:
|
||||
filename_str = getattr(self, '__file__', '')
|
||||
if not filename_str:
|
||||
return {}
|
||||
filename = Path(filename_str).with_suffix('.json')
|
||||
|
||||
if filename.is_file():
|
||||
logger.info(f"Loading parameters from file {filename}")
|
||||
try:
|
||||
params = json_load(filename.open('r'))
|
||||
if params.get('strategy_name') != self.__class__.__name__:
|
||||
raise OperationalException('Invalid parameter file provided.')
|
||||
return params
|
||||
except ValueError:
|
||||
logger.warning("Invalid parameter file format.")
|
||||
return {}
|
||||
logger.info("Found no parameter file.")
|
||||
|
||||
return {}
|
||||
|
||||
def _load_params(self, params: Dict, space: str, hyperopt: bool = False) -> None:
|
||||
"""
|
||||
Set optimizable parameter values.
|
||||
:param params: Dictionary with new parameter values.
|
||||
@ -363,7 +391,7 @@ class HyperStrategyMixin(object):
|
||||
else:
|
||||
logger.info(f'Strategy Parameter(default): {attr_name} = {attr.value}')
|
||||
|
||||
def get_params_dict(self):
|
||||
def get_no_optimize_params(self):
|
||||
"""
|
||||
Returns list of Parameters that are not part of the current optimize job
|
||||
"""
|
||||
|
@ -62,6 +62,7 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
_populate_fun_len: int = 0
|
||||
_buy_fun_len: int = 0
|
||||
_sell_fun_len: int = 0
|
||||
_ft_params_from_file: Dict = {}
|
||||
# associated minimal roi
|
||||
minimal_roi: Dict
|
||||
|
||||
|
@ -1168,6 +1168,7 @@ def test_hyperopt_show(mocker, capsys, saved_hyperopt_results):
|
||||
'freqtrade.optimize.hyperopt_tools.HyperoptTools.load_previous_results',
|
||||
MagicMock(return_value=saved_hyperopt_results)
|
||||
)
|
||||
mocker.patch('freqtrade.commands.hyperopt_commands.show_backtest_result')
|
||||
|
||||
args = [
|
||||
"hyperopt-show",
|
||||
|
@ -324,6 +324,7 @@ def get_default_conf(testdatadir):
|
||||
"verbosity": 3,
|
||||
"strategy_path": str(Path(__file__).parent / "strategy" / "strats"),
|
||||
"strategy": "DefaultStrategy",
|
||||
"disableparamexport": True,
|
||||
"internals": {},
|
||||
"export": "none",
|
||||
}
|
||||
@ -1953,12 +1954,13 @@ def saved_hyperopt_results():
|
||||
'params_dict': {
|
||||
'mfi-value': 15, 'fastd-value': 20, 'adx-value': 25, 'rsi-value': 28, 'mfi-enabled': False, 'fastd-enabled': True, 'adx-enabled': True, 'rsi-enabled': True, 'trigger': 'macd_cross_signal', 'sell-mfi-value': 88, 'sell-fastd-value': 97, 'sell-adx-value': 51, 'sell-rsi-value': 67, 'sell-mfi-enabled': False, 'sell-fastd-enabled': False, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-bb_upper', 'roi_t1': 1190, 'roi_t2': 541, 'roi_t3': 408, 'roi_p1': 0.026035863879169705, 'roi_p2': 0.12508730043628782, 'roi_p3': 0.27766427921605896, 'stoploss': -0.2562930402099556}, # noqa: E501
|
||||
'params_details': {'buy': {'mfi-value': 15, 'fastd-value': 20, 'adx-value': 25, 'rsi-value': 28, 'mfi-enabled': False, 'fastd-enabled': True, 'adx-enabled': True, 'rsi-enabled': True, 'trigger': 'macd_cross_signal'}, 'sell': {'sell-mfi-value': 88, 'sell-fastd-value': 97, 'sell-adx-value': 51, 'sell-rsi-value': 67, 'sell-mfi-enabled': False, 'sell-fastd-enabled': False, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-bb_upper'}, 'roi': {0: 0.4287874435315165, 408: 0.15112316431545753, 949: 0.026035863879169705, 2139: 0}, 'stoploss': {'stoploss': -0.2562930402099556}}, # noqa: E501
|
||||
'results_metrics': {'total_trades': 2, 'wins': 0, 'draws': 0, 'losses': 2, 'profit_mean': -0.01254995, 'profit_median': -0.012222, 'profit_total': -0.00125625, 'profit_total_abs': -2.50999, 'holding_avg': timedelta(minutes=3930.0)}, # noqa: E501
|
||||
'results_metrics': {'total_trades': 2, 'wins': 0, 'draws': 0, 'losses': 2, 'profit_mean': -0.01254995, 'profit_median': -0.012222, 'profit_total': -0.00125625, 'profit_total_abs': -2.50999, 'holding_avg': timedelta(minutes=3930.0), 'stake_currency': 'BTC', 'strategy_name': 'SampleStrategy'}, # noqa: E501
|
||||
'results_explanation': ' 2 trades. Avg profit -1.25%. Total profit -0.00125625 BTC ( -2.51Σ%). Avg duration 3930.0 min.', # noqa: E501
|
||||
'total_profit': -0.00125625,
|
||||
'current_epoch': 1,
|
||||
'is_initial_point': True,
|
||||
'is_best': True
|
||||
'is_best': True,
|
||||
|
||||
}, {
|
||||
'loss': 20.0,
|
||||
'params_dict': {
|
||||
|
@ -1,9 +1,6 @@
|
||||
# pragma pylint: disable=missing-docstring,W0212,C0103
|
||||
import logging
|
||||
import re
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
from typing import Dict, List
|
||||
from unittest.mock import ANY, MagicMock
|
||||
|
||||
import pandas as pd
|
||||
@ -28,12 +25,6 @@ from tests.conftest import (get_args, log_has, log_has_re, patch_exchange,
|
||||
from .hyperopts.default_hyperopt import DefaultHyperOpt
|
||||
|
||||
|
||||
# Functions for recurrent object patching
|
||||
def create_results() -> List[Dict]:
|
||||
|
||||
return [{'loss': 1, 'result': 'foo', 'params': {}, 'is_best': True}]
|
||||
|
||||
|
||||
def test_setup_hyperopt_configuration_without_arguments(mocker, default_conf, caplog) -> None:
|
||||
patched_configuration_load_config_file(mocker, default_conf)
|
||||
|
||||
@ -303,52 +294,6 @@ def test_no_log_if_loss_does_not_improve(hyperopt, caplog) -> None:
|
||||
assert caplog.record_tuples == []
|
||||
|
||||
|
||||
def test_save_results_saves_epochs(mocker, hyperopt, tmpdir, caplog) -> None:
|
||||
# Test writing to temp dir and reading again
|
||||
epochs = create_results()
|
||||
hyperopt.results_file = Path(tmpdir / 'ut_results.fthypt')
|
||||
|
||||
caplog.set_level(logging.DEBUG)
|
||||
|
||||
for epoch in epochs:
|
||||
hyperopt._save_result(epoch)
|
||||
assert log_has(f"1 epoch saved to '{hyperopt.results_file}'.", caplog)
|
||||
|
||||
hyperopt._save_result(epochs[0])
|
||||
assert log_has(f"2 epochs saved to '{hyperopt.results_file}'.", caplog)
|
||||
|
||||
hyperopt_epochs = HyperoptTools.load_previous_results(hyperopt.results_file)
|
||||
assert len(hyperopt_epochs) == 2
|
||||
|
||||
|
||||
def test_load_previous_results(testdatadir, caplog) -> None:
|
||||
|
||||
results_file = testdatadir / 'hyperopt_results_SampleStrategy.pickle'
|
||||
|
||||
hyperopt_epochs = HyperoptTools.load_previous_results(results_file)
|
||||
|
||||
assert len(hyperopt_epochs) == 5
|
||||
assert log_has_re(r"Reading pickled epochs from .*", caplog)
|
||||
|
||||
caplog.clear()
|
||||
|
||||
# Modern version
|
||||
results_file = testdatadir / 'strategy_SampleStrategy.fthypt'
|
||||
|
||||
hyperopt_epochs = HyperoptTools.load_previous_results(results_file)
|
||||
|
||||
assert len(hyperopt_epochs) == 5
|
||||
assert log_has_re(r"Reading epochs from .*", caplog)
|
||||
|
||||
|
||||
def test_load_previous_results2(mocker, testdatadir, caplog) -> None:
|
||||
mocker.patch('freqtrade.optimize.hyperopt_tools.HyperoptTools._read_results_pickle',
|
||||
return_value=[{'asdf': '222'}])
|
||||
results_file = testdatadir / 'hyperopt_results_SampleStrategy.pickle'
|
||||
with pytest.raises(OperationalException, match=r"The file .* incompatible.*"):
|
||||
HyperoptTools.load_previous_results(results_file)
|
||||
|
||||
|
||||
def test_roi_table_generation(hyperopt) -> None:
|
||||
params = {
|
||||
'roi_t1': 5,
|
||||
@ -362,6 +307,18 @@ def test_roi_table_generation(hyperopt) -> None:
|
||||
assert hyperopt.custom_hyperopt.generate_roi_table(params) == {0: 6, 15: 3, 25: 1, 30: 0}
|
||||
|
||||
|
||||
def test_params_no_optimize_details(hyperopt) -> None:
|
||||
hyperopt.config['spaces'] = ['buy']
|
||||
res = hyperopt._get_no_optimize_details()
|
||||
assert isinstance(res, dict)
|
||||
assert "trailing" in res
|
||||
assert res["trailing"]['trailing_stop'] is False
|
||||
assert "roi" in res
|
||||
assert res['roi']['0'] == 0.04
|
||||
assert "stoploss" in res
|
||||
assert res['stoploss']['stoploss'] == -0.1
|
||||
|
||||
|
||||
def test_start_calls_optimizer(mocker, hyperopt_conf, capsys) -> None:
|
||||
dumper = mocker.patch('freqtrade.optimize.hyperopt.dump')
|
||||
dumper2 = mocker.patch('freqtrade.optimize.hyperopt.Hyperopt._save_result')
|
||||
@ -467,40 +424,6 @@ def test_hyperopt_format_results(hyperopt):
|
||||
assert '0:50:00 min' in result
|
||||
|
||||
|
||||
@pytest.mark.parametrize("spaces, expected_results", [
|
||||
(['buy'],
|
||||
{'buy': True, 'sell': False, 'roi': False, 'stoploss': False, 'trailing': False}),
|
||||
(['sell'],
|
||||
{'buy': False, 'sell': True, 'roi': False, 'stoploss': False, 'trailing': False}),
|
||||
(['roi'],
|
||||
{'buy': False, 'sell': False, 'roi': True, 'stoploss': False, 'trailing': False}),
|
||||
(['stoploss'],
|
||||
{'buy': False, 'sell': False, 'roi': False, 'stoploss': True, 'trailing': False}),
|
||||
(['trailing'],
|
||||
{'buy': False, 'sell': False, 'roi': False, 'stoploss': False, 'trailing': True}),
|
||||
(['buy', 'sell', 'roi', 'stoploss'],
|
||||
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': False}),
|
||||
(['buy', 'sell', 'roi', 'stoploss', 'trailing'],
|
||||
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': True}),
|
||||
(['buy', 'roi'],
|
||||
{'buy': True, 'sell': False, 'roi': True, 'stoploss': False, 'trailing': False}),
|
||||
(['all'],
|
||||
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': True}),
|
||||
(['default'],
|
||||
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': False}),
|
||||
(['default', 'trailing'],
|
||||
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': True}),
|
||||
(['all', 'buy'],
|
||||
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': True}),
|
||||
(['default', 'buy'],
|
||||
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': False}),
|
||||
])
|
||||
def test_has_space(hyperopt_conf, spaces, expected_results):
|
||||
for s in ['buy', 'sell', 'roi', 'stoploss', 'trailing']:
|
||||
hyperopt_conf.update({'spaces': spaces})
|
||||
assert HyperoptTools.has_space(hyperopt_conf, s) == expected_results[s]
|
||||
|
||||
|
||||
def test_populate_indicators(hyperopt, testdatadir) -> None:
|
||||
data = load_data(testdatadir, '1m', ['UNITTEST/BTC'], fill_up_missing=True)
|
||||
dataframes = hyperopt.backtesting.strategy.ohlcvdata_to_dataframe(data)
|
||||
@ -686,6 +609,8 @@ def test_generate_optimizer(mocker, hyperopt_conf) -> None:
|
||||
def test_clean_hyperopt(mocker, hyperopt_conf, caplog):
|
||||
patch_exchange(mocker)
|
||||
|
||||
mocker.patch("freqtrade.strategy.hyper.HyperStrategyMixin.load_params_from_file",
|
||||
MagicMock(return_value={}))
|
||||
mocker.patch("freqtrade.optimize.hyperopt.Path.is_file", MagicMock(return_value=True))
|
||||
unlinkmock = mocker.patch("freqtrade.optimize.hyperopt.Path.unlink", MagicMock())
|
||||
h = Hyperopt(hyperopt_conf)
|
||||
@ -1068,42 +993,6 @@ def test_simplified_interface_failed(mocker, hyperopt_conf, method, space) -> No
|
||||
hyperopt.start()
|
||||
|
||||
|
||||
def test_show_epoch_details(capsys):
|
||||
test_result = {
|
||||
'params_details': {
|
||||
'trailing': {
|
||||
'trailing_stop': True,
|
||||
'trailing_stop_positive': 0.02,
|
||||
'trailing_stop_positive_offset': 0.04,
|
||||
'trailing_only_offset_is_reached': True
|
||||
},
|
||||
'roi': {
|
||||
0: 0.18,
|
||||
90: 0.14,
|
||||
225: 0.05,
|
||||
430: 0},
|
||||
},
|
||||
'results_explanation': 'foo result',
|
||||
'is_initial_point': False,
|
||||
'total_profit': 0,
|
||||
'current_epoch': 2, # This starts from 1 (in a human-friendly manner)
|
||||
'is_best': True
|
||||
}
|
||||
|
||||
HyperoptTools.show_epoch_details(test_result, 5, False, no_header=True)
|
||||
captured = capsys.readouterr()
|
||||
assert '# Trailing stop:' in captured.out
|
||||
# re.match(r"Pairs for .*", captured.out)
|
||||
assert re.search(r'^\s+trailing_stop = True$', captured.out, re.MULTILINE)
|
||||
assert re.search(r'^\s+trailing_stop_positive = 0.02$', captured.out, re.MULTILINE)
|
||||
assert re.search(r'^\s+trailing_stop_positive_offset = 0.04$', captured.out, re.MULTILINE)
|
||||
assert re.search(r'^\s+trailing_only_offset_is_reached = True$', captured.out, re.MULTILINE)
|
||||
|
||||
assert '# ROI table:' in captured.out
|
||||
assert re.search(r'^\s+minimal_roi = \{$', captured.out, re.MULTILINE)
|
||||
assert re.search(r'^\s+\"90\"\:\s0.14,\s*$', captured.out, re.MULTILINE)
|
||||
|
||||
|
||||
def test_in_strategy_auto_hyperopt(mocker, hyperopt_conf, tmpdir, fee) -> None:
|
||||
patch_exchange(mocker)
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
|
||||
@ -1143,17 +1032,3 @@ def test_SKDecimal():
|
||||
assert space.transform([2.0]) == [200]
|
||||
assert space.transform([1.0]) == [100]
|
||||
assert space.transform([1.5, 1.6]) == [150, 160]
|
||||
|
||||
|
||||
def test___pprint():
|
||||
params = {'buy_std': 1.2, 'buy_rsi': 31, 'buy_enable': True, 'buy_what': 'asdf'}
|
||||
non_params = {'buy_notoptimied': 55}
|
||||
|
||||
x = HyperoptTools._pprint(params, non_params)
|
||||
assert x == """{
|
||||
"buy_std": 1.2,
|
||||
"buy_rsi": 31,
|
||||
"buy_enable": True,
|
||||
"buy_what": "asdf",
|
||||
"buy_notoptimied": 55, # value loaded from strategy
|
||||
}"""
|
||||
|
317
tests/optimize/test_hyperopt_tools.py
Normal file
317
tests/optimize/test_hyperopt_tools.py
Normal file
@ -0,0 +1,317 @@
|
||||
import logging
|
||||
import re
|
||||
from pathlib import Path
|
||||
from typing import Dict, List
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
import rapidjson
|
||||
|
||||
from freqtrade.constants import FTHYPT_FILEVERSION
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.optimize.hyperopt_tools import HyperoptTools, hyperopt_serializer
|
||||
from tests.conftest import log_has, log_has_re
|
||||
|
||||
|
||||
# Functions for recurrent object patching
|
||||
def create_results() -> List[Dict]:
|
||||
|
||||
return [{'loss': 1, 'result': 'foo', 'params': {}, 'is_best': True}]
|
||||
|
||||
|
||||
def test_save_results_saves_epochs(hyperopt, tmpdir, caplog) -> None:
|
||||
# Test writing to temp dir and reading again
|
||||
epochs = create_results()
|
||||
hyperopt.results_file = Path(tmpdir / 'ut_results.fthypt')
|
||||
|
||||
caplog.set_level(logging.DEBUG)
|
||||
|
||||
for epoch in epochs:
|
||||
hyperopt._save_result(epoch)
|
||||
assert log_has(f"1 epoch saved to '{hyperopt.results_file}'.", caplog)
|
||||
|
||||
hyperopt._save_result(epochs[0])
|
||||
assert log_has(f"2 epochs saved to '{hyperopt.results_file}'.", caplog)
|
||||
|
||||
hyperopt_epochs = HyperoptTools.load_previous_results(hyperopt.results_file)
|
||||
assert len(hyperopt_epochs) == 2
|
||||
|
||||
|
||||
def test_load_previous_results(testdatadir, caplog) -> None:
|
||||
|
||||
results_file = testdatadir / 'hyperopt_results_SampleStrategy.pickle'
|
||||
|
||||
hyperopt_epochs = HyperoptTools.load_previous_results(results_file)
|
||||
|
||||
assert len(hyperopt_epochs) == 5
|
||||
assert log_has_re(r"Reading pickled epochs from .*", caplog)
|
||||
|
||||
caplog.clear()
|
||||
|
||||
# Modern version
|
||||
results_file = testdatadir / 'strategy_SampleStrategy.fthypt'
|
||||
|
||||
hyperopt_epochs = HyperoptTools.load_previous_results(results_file)
|
||||
|
||||
assert len(hyperopt_epochs) == 5
|
||||
assert log_has_re(r"Reading epochs from .*", caplog)
|
||||
|
||||
|
||||
def test_load_previous_results2(mocker, testdatadir, caplog) -> None:
|
||||
mocker.patch('freqtrade.optimize.hyperopt_tools.HyperoptTools._read_results_pickle',
|
||||
return_value=[{'asdf': '222'}])
|
||||
results_file = testdatadir / 'hyperopt_results_SampleStrategy.pickle'
|
||||
with pytest.raises(OperationalException, match=r"The file .* incompatible.*"):
|
||||
HyperoptTools.load_previous_results(results_file)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("spaces, expected_results", [
|
||||
(['buy'],
|
||||
{'buy': True, 'sell': False, 'roi': False, 'stoploss': False, 'trailing': False}),
|
||||
(['sell'],
|
||||
{'buy': False, 'sell': True, 'roi': False, 'stoploss': False, 'trailing': False}),
|
||||
(['roi'],
|
||||
{'buy': False, 'sell': False, 'roi': True, 'stoploss': False, 'trailing': False}),
|
||||
(['stoploss'],
|
||||
{'buy': False, 'sell': False, 'roi': False, 'stoploss': True, 'trailing': False}),
|
||||
(['trailing'],
|
||||
{'buy': False, 'sell': False, 'roi': False, 'stoploss': False, 'trailing': True}),
|
||||
(['buy', 'sell', 'roi', 'stoploss'],
|
||||
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': False}),
|
||||
(['buy', 'sell', 'roi', 'stoploss', 'trailing'],
|
||||
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': True}),
|
||||
(['buy', 'roi'],
|
||||
{'buy': True, 'sell': False, 'roi': True, 'stoploss': False, 'trailing': False}),
|
||||
(['all'],
|
||||
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': True}),
|
||||
(['default'],
|
||||
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': False}),
|
||||
(['default', 'trailing'],
|
||||
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': True}),
|
||||
(['all', 'buy'],
|
||||
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': True}),
|
||||
(['default', 'buy'],
|
||||
{'buy': True, 'sell': True, 'roi': True, 'stoploss': True, 'trailing': False}),
|
||||
])
|
||||
def test_has_space(hyperopt_conf, spaces, expected_results):
|
||||
for s in ['buy', 'sell', 'roi', 'stoploss', 'trailing']:
|
||||
hyperopt_conf.update({'spaces': spaces})
|
||||
assert HyperoptTools.has_space(hyperopt_conf, s) == expected_results[s]
|
||||
|
||||
|
||||
def test_show_epoch_details(capsys):
|
||||
test_result = {
|
||||
'params_details': {
|
||||
'trailing': {
|
||||
'trailing_stop': True,
|
||||
'trailing_stop_positive': 0.02,
|
||||
'trailing_stop_positive_offset': 0.04,
|
||||
'trailing_only_offset_is_reached': True
|
||||
},
|
||||
'roi': {
|
||||
0: 0.18,
|
||||
90: 0.14,
|
||||
225: 0.05,
|
||||
430: 0},
|
||||
},
|
||||
'results_explanation': 'foo result',
|
||||
'is_initial_point': False,
|
||||
'total_profit': 0,
|
||||
'current_epoch': 2, # This starts from 1 (in a human-friendly manner)
|
||||
'is_best': True
|
||||
}
|
||||
|
||||
HyperoptTools.show_epoch_details(test_result, 5, False, no_header=True)
|
||||
captured = capsys.readouterr()
|
||||
assert '# Trailing stop:' in captured.out
|
||||
# re.match(r"Pairs for .*", captured.out)
|
||||
assert re.search(r'^\s+trailing_stop = True$', captured.out, re.MULTILINE)
|
||||
assert re.search(r'^\s+trailing_stop_positive = 0.02$', captured.out, re.MULTILINE)
|
||||
assert re.search(r'^\s+trailing_stop_positive_offset = 0.04$', captured.out, re.MULTILINE)
|
||||
assert re.search(r'^\s+trailing_only_offset_is_reached = True$', captured.out, re.MULTILINE)
|
||||
|
||||
assert '# ROI table:' in captured.out
|
||||
assert re.search(r'^\s+minimal_roi = \{$', captured.out, re.MULTILINE)
|
||||
assert re.search(r'^\s+\"90\"\:\s0.14,\s*$', captured.out, re.MULTILINE)
|
||||
|
||||
|
||||
def test__pprint_dict():
|
||||
params = {'buy_std': 1.2, 'buy_rsi': 31, 'buy_enable': True, 'buy_what': 'asdf'}
|
||||
non_params = {'buy_notoptimied': 55}
|
||||
|
||||
x = HyperoptTools._pprint_dict(params, non_params)
|
||||
assert x == """{
|
||||
"buy_std": 1.2,
|
||||
"buy_rsi": 31,
|
||||
"buy_enable": True,
|
||||
"buy_what": "asdf",
|
||||
"buy_notoptimied": 55, # value loaded from strategy
|
||||
}"""
|
||||
|
||||
|
||||
def test_get_strategy_filename(default_conf):
|
||||
|
||||
x = HyperoptTools.get_strategy_filename(default_conf, 'DefaultStrategy')
|
||||
assert isinstance(x, Path)
|
||||
assert x == Path(__file__).parents[1] / 'strategy/strats/default_strategy.py'
|
||||
|
||||
x = HyperoptTools.get_strategy_filename(default_conf, 'NonExistingStrategy')
|
||||
assert x is None
|
||||
|
||||
|
||||
def test_export_params(tmpdir):
|
||||
|
||||
filename = Path(tmpdir) / "DefaultStrategy.json"
|
||||
assert not filename.is_file()
|
||||
params = {
|
||||
"params_details": {
|
||||
"buy": {
|
||||
"buy_rsi": 30
|
||||
},
|
||||
"sell": {
|
||||
"sell_rsi": 70
|
||||
},
|
||||
"roi": {
|
||||
"0": 0.528,
|
||||
"346": 0.08499,
|
||||
"507": 0.049,
|
||||
"1595": 0
|
||||
}
|
||||
},
|
||||
"params_not_optimized": {
|
||||
"stoploss": -0.05,
|
||||
"trailing": {
|
||||
"trailing_stop": False,
|
||||
"trailing_stop_positive": 0.05,
|
||||
"trailing_stop_positive_offset": 0.1,
|
||||
"trailing_only_offset_is_reached": True
|
||||
},
|
||||
}
|
||||
|
||||
}
|
||||
HyperoptTools.export_params(params, "DefaultStrategy", filename)
|
||||
|
||||
assert filename.is_file()
|
||||
|
||||
content = rapidjson.load(filename.open('r'))
|
||||
assert content['strategy_name'] == 'DefaultStrategy'
|
||||
assert 'params' in content
|
||||
assert "buy" in content["params"]
|
||||
assert "sell" in content["params"]
|
||||
assert "roi" in content["params"]
|
||||
assert "stoploss" in content["params"]
|
||||
assert "trailing" in content["params"]
|
||||
|
||||
|
||||
def test_try_export_params(default_conf, tmpdir, caplog, mocker):
|
||||
default_conf['disableparamexport'] = False
|
||||
export_mock = mocker.patch("freqtrade.optimize.hyperopt_tools.HyperoptTools.export_params")
|
||||
|
||||
filename = Path(tmpdir) / "DefaultStrategy.json"
|
||||
assert not filename.is_file()
|
||||
params = {
|
||||
"params_details": {
|
||||
"buy": {
|
||||
"buy_rsi": 30
|
||||
},
|
||||
"sell": {
|
||||
"sell_rsi": 70
|
||||
},
|
||||
"roi": {
|
||||
"0": 0.528,
|
||||
"346": 0.08499,
|
||||
"507": 0.049,
|
||||
"1595": 0
|
||||
}
|
||||
},
|
||||
"params_not_optimized": {
|
||||
"stoploss": -0.05,
|
||||
"trailing": {
|
||||
"trailing_stop": False,
|
||||
"trailing_stop_positive": 0.05,
|
||||
"trailing_stop_positive_offset": 0.1,
|
||||
"trailing_only_offset_is_reached": True
|
||||
},
|
||||
},
|
||||
FTHYPT_FILEVERSION: 2,
|
||||
|
||||
}
|
||||
HyperoptTools.try_export_params(default_conf, "DefaultStrategy22", params)
|
||||
|
||||
assert log_has("Strategy not found, not exporting parameter file.", caplog)
|
||||
assert export_mock.call_count == 0
|
||||
caplog.clear()
|
||||
|
||||
HyperoptTools.try_export_params(default_conf, "DefaultStrategy", params)
|
||||
|
||||
assert export_mock.call_count == 1
|
||||
assert export_mock.call_args_list[0][0][1] == 'DefaultStrategy'
|
||||
assert export_mock.call_args_list[0][0][2].name == 'default_strategy.json'
|
||||
|
||||
|
||||
def test_params_print(capsys):
|
||||
|
||||
params = {
|
||||
"buy": {
|
||||
"buy_rsi": 30
|
||||
},
|
||||
"sell": {
|
||||
"sell_rsi": 70
|
||||
},
|
||||
}
|
||||
non_optimized = {
|
||||
"buy": {
|
||||
"buy_adx": 44
|
||||
},
|
||||
"sell": {
|
||||
"sell_adx": 65
|
||||
},
|
||||
"stoploss": {
|
||||
"stoploss": -0.05,
|
||||
},
|
||||
"roi": {
|
||||
"0": 0.05,
|
||||
"20": 0.01,
|
||||
},
|
||||
"trailing": {
|
||||
"trailing_stop": False,
|
||||
"trailing_stop_positive": 0.05,
|
||||
"trailing_stop_positive_offset": 0.1,
|
||||
"trailing_only_offset_is_reached": True
|
||||
},
|
||||
|
||||
}
|
||||
HyperoptTools._params_pretty_print(params, 'buy', 'No header', non_optimized)
|
||||
|
||||
captured = capsys.readouterr()
|
||||
assert re.search("# No header", captured.out)
|
||||
assert re.search('"buy_rsi": 30,\n', captured.out)
|
||||
assert re.search('"buy_adx": 44, # value loaded.*\n', captured.out)
|
||||
assert not re.search("sell", captured.out)
|
||||
|
||||
HyperoptTools._params_pretty_print(params, 'sell', 'Sell Header', non_optimized)
|
||||
captured = capsys.readouterr()
|
||||
assert re.search("# Sell Header", captured.out)
|
||||
assert re.search('"sell_rsi": 70,\n', captured.out)
|
||||
assert re.search('"sell_adx": 65, # value loaded.*\n', captured.out)
|
||||
|
||||
HyperoptTools._params_pretty_print(params, 'roi', 'ROI Table:', non_optimized)
|
||||
captured = capsys.readouterr()
|
||||
assert re.search("# ROI Table: # value loaded.*\n", captured.out)
|
||||
assert re.search('minimal_roi = {\n', captured.out)
|
||||
assert re.search('"20": 0.01\n', captured.out)
|
||||
|
||||
HyperoptTools._params_pretty_print(params, 'trailing', 'Trailing stop:', non_optimized)
|
||||
captured = capsys.readouterr()
|
||||
assert re.search("# Trailing stop:", captured.out)
|
||||
assert re.search('trailing_stop = False # value loaded.*\n', captured.out)
|
||||
assert re.search('trailing_stop_positive = 0.05 # value loaded.*\n', captured.out)
|
||||
assert re.search('trailing_stop_positive_offset = 0.1 # value loaded.*\n', captured.out)
|
||||
assert re.search('trailing_only_offset_is_reached = True # value loaded.*\n', captured.out)
|
||||
|
||||
|
||||
def test_hyperopt_serializer():
|
||||
|
||||
assert isinstance(hyperopt_serializer(np.int_(5)), int)
|
||||
assert isinstance(hyperopt_serializer(np.bool_(True)), bool)
|
||||
assert isinstance(hyperopt_serializer(np.bool_(False)), bool)
|
@ -1,6 +1,7 @@
|
||||
# pragma pylint: disable=missing-docstring, C0103
|
||||
import logging
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from pathlib import Path
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
import arrow
|
||||
@ -707,3 +708,50 @@ def test_auto_hyperopt_interface(default_conf):
|
||||
|
||||
with pytest.raises(OperationalException, match=r"Inconclusive parameter.*"):
|
||||
[x for x in strategy.detect_parameters('sell')]
|
||||
|
||||
|
||||
def test_auto_hyperopt_interface_loadparams(default_conf, mocker, caplog):
|
||||
default_conf.update({'strategy': 'HyperoptableStrategy'})
|
||||
del default_conf['stoploss']
|
||||
del default_conf['minimal_roi']
|
||||
mocker.patch.object(Path, 'is_file', MagicMock(return_value=True))
|
||||
mocker.patch.object(Path, 'open')
|
||||
expected_result = {
|
||||
"strategy_name": "HyperoptableStrategy",
|
||||
"params": {
|
||||
"stoploss": {
|
||||
"stoploss": -0.05,
|
||||
},
|
||||
"roi": {
|
||||
"0": 0.2,
|
||||
"1200": 0.01
|
||||
}
|
||||
}
|
||||
}
|
||||
mocker.patch('freqtrade.strategy.hyper.json_load', return_value=expected_result)
|
||||
PairLocks.timeframe = default_conf['timeframe']
|
||||
strategy = StrategyResolver.load_strategy(default_conf)
|
||||
assert strategy.stoploss == -0.05
|
||||
assert strategy.minimal_roi == {0: 0.2, 1200: 0.01}
|
||||
|
||||
expected_result = {
|
||||
"strategy_name": "HyperoptableStrategy_No",
|
||||
"params": {
|
||||
"stoploss": {
|
||||
"stoploss": -0.05,
|
||||
},
|
||||
"roi": {
|
||||
"0": 0.2,
|
||||
"1200": 0.01
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
mocker.patch('freqtrade.strategy.hyper.json_load', return_value=expected_result)
|
||||
with pytest.raises(OperationalException, match="Invalid parameter file provided."):
|
||||
StrategyResolver.load_strategy(default_conf)
|
||||
|
||||
mocker.patch('freqtrade.strategy.hyper.json_load', MagicMock(side_effect=ValueError()))
|
||||
|
||||
StrategyResolver.load_strategy(default_conf)
|
||||
assert log_has("Invalid parameter file format.", caplog)
|
||||
|
Loading…
Reference in New Issue
Block a user