plot features as html instead of png
This commit is contained in:
parent
b707a6da35
commit
86aa875bc9
@ -1,13 +1,9 @@
|
|||||||
import logging
|
import logging
|
||||||
from datetime import datetime, timezone
|
from datetime import datetime, timezone
|
||||||
# for plot_feature_importance
|
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import plotly.graph_objects as go
|
|
||||||
import plotly.io as pio
|
|
||||||
from plotly.subplots import make_subplots
|
|
||||||
|
|
||||||
from freqtrade.configuration import TimeRange
|
from freqtrade.configuration import TimeRange
|
||||||
from freqtrade.data.dataprovider import DataProvider
|
from freqtrade.data.dataprovider import DataProvider
|
||||||
@ -142,64 +138,56 @@ def get_required_data_timerange(
|
|||||||
# )
|
# )
|
||||||
|
|
||||||
|
|
||||||
def plot_feature_importance(model, feature_names, pair, train_dir, count_max=25) -> None:
|
def plot_feature_importance(model, feature_names, pair, train_dir, count_max=50) -> None:
|
||||||
"""
|
"""
|
||||||
Plot Best and Worst Features by importance for CatBoost model.
|
Plot Best and Worst Features by importance for CatBoost model.
|
||||||
Called once per sub-train.
|
Called once per sub-train.
|
||||||
|
|
||||||
Required: pip install kaleido
|
|
||||||
|
|
||||||
Usage: plot_feature_importance(
|
Usage: plot_feature_importance(
|
||||||
model=model,
|
model=model,
|
||||||
feature_names=dk.training_features_list,
|
feature_names=dk.training_features_list,
|
||||||
pair=pair,
|
pair=pair,
|
||||||
train_dir=dk.data_path)
|
train_dir=dk.data_path)
|
||||||
"""
|
"""
|
||||||
|
try:
|
||||||
|
import plotly.graph_objects as go
|
||||||
|
from plotly.subplots import make_subplots
|
||||||
|
except ImportError:
|
||||||
|
logger.exception("Module plotly not found \n Please install using `pip3 install plotly`")
|
||||||
|
exit(1)
|
||||||
|
|
||||||
|
from freqtrade.plot.plotting import store_plot_file
|
||||||
|
|
||||||
# Gather feature importance from model
|
# Gather feature importance from model
|
||||||
if "catboost.core" in str(model.__class__):
|
if "catboost.core" in str(model.__class__):
|
||||||
fi = model.get_feature_importance()
|
feature_importance = model.get_feature_importance()
|
||||||
|
|
||||||
elif "lightgbm.sklearn" in str(model.__class__):
|
elif "lightgbm.sklearn" in str(model.__class__):
|
||||||
fi = model.feature_importances_
|
feature_importance = model.feature_importances_
|
||||||
|
|
||||||
else:
|
else:
|
||||||
raise NotImplementedError(f"Cannot extract feature importance for {model.__class__}")
|
raise NotImplementedError(f"Cannot extract feature importance for {model.__class__}")
|
||||||
|
|
||||||
# Data preparation
|
# Data preparation
|
||||||
fi_df = pd.DataFrame({
|
fi_df = pd.DataFrame({
|
||||||
"feature_names": np.array(feature_names),
|
"feature_names": np.array(feature_names),
|
||||||
"feature_importance": np.array(fi)
|
"feature_importance": np.array(feature_importance)
|
||||||
})
|
})
|
||||||
fi_df_top = fi_df.nlargest(count_max, "feature_importance")[::-1]
|
fi_df_top = fi_df.nlargest(count_max, "feature_importance")[::-1]
|
||||||
fi_df_worst = fi_df.nsmallest(count_max, "feature_importance")[::-1]
|
fi_df_worst = fi_df.nsmallest(count_max, "feature_importance")[::-1]
|
||||||
|
|
||||||
# Plotting
|
# Plotting
|
||||||
|
def add_feature_trace(fig, fi_df, col):
|
||||||
|
return fig.add_trace(
|
||||||
|
go.Bar(
|
||||||
|
x=fi_df["feature_importance"],
|
||||||
|
y=fi_df["feature_names"],
|
||||||
|
orientation='h', showlegend=False
|
||||||
|
), row=1, col=col
|
||||||
|
)
|
||||||
fig = make_subplots(rows=1, cols=2, horizontal_spacing=0.5)
|
fig = make_subplots(rows=1, cols=2, horizontal_spacing=0.5)
|
||||||
fig.add_trace(
|
fig = add_feature_trace(fig, fi_df_top, 1)
|
||||||
go.Bar(
|
fig = add_feature_trace(fig, fi_df_worst, 2)
|
||||||
x=fi_df_top["feature_importance"],
|
fig.update_layout(title_text=f"Best and Worst Features {pair}")
|
||||||
y=fi_df_top["feature_names"],
|
|
||||||
orientation='h', showlegend=False
|
|
||||||
), row=1, col=1
|
|
||||||
)
|
|
||||||
fig.add_trace(
|
|
||||||
go.Bar(
|
|
||||||
x=fi_df_worst["feature_importance"],
|
|
||||||
y=fi_df_worst["feature_names"],
|
|
||||||
orientation='h', showlegend=False
|
|
||||||
), row=1, col=2
|
|
||||||
)
|
|
||||||
fig.update_layout(
|
|
||||||
title_text=f"Best and Worst Features {pair}",
|
|
||||||
width=1000, height=600
|
|
||||||
)
|
|
||||||
|
|
||||||
# Create directory and save image
|
# Store plot file
|
||||||
model_dir, train_name = str(train_dir).rsplit("/", 1)
|
model_dir, train_name = str(train_dir).rsplit("/", 1)
|
||||||
fi_dir = Path(f"{model_dir}/feature_importance/{pair.split('/')[0]}")
|
fi_dir = Path(f"{model_dir}/feature_importance/{pair.split('/')[0]}")
|
||||||
fi_dir.mkdir(parents=True, exist_ok=True)
|
store_plot_file(fig, f"{train_name}.html", fi_dir)
|
||||||
|
|
||||||
pio.write_image(fig, f"{fi_dir}/{train_name}.png", format="png")
|
|
||||||
|
|
||||||
logger.info(f"Freqai saving feature importance plot {fi_dir}/{train_name}.png")
|
|
||||||
|
@ -2,4 +2,3 @@
|
|||||||
-r requirements.txt
|
-r requirements.txt
|
||||||
|
|
||||||
plotly==5.10.0
|
plotly==5.10.0
|
||||||
kaleido==0.2.1
|
|
||||||
|
Loading…
Reference in New Issue
Block a user