create a prediction_models folder where basic prediction models can live (similar to optimize/hyperopt-loss. Update resolver/docs/and gitignore to accommodate change

This commit is contained in:
robcaulk
2022-05-17 17:13:38 +02:00
parent 80dcd88abf
commit 8664e8f9a3
6 changed files with 174 additions and 10 deletions

View File

@@ -105,6 +105,11 @@ class IFreqaiModel(ABC):
self.dh.full_target_mean, self.dh.full_target_std)
def start_live(self, dataframe: DataFrame, metadata: dict, strategy: IStrategy) -> None:
"""
The main broad execution for dry/live. This function will check if a retraining should be
performed, and if so, retrain and reset the model.
"""
self.dh.set_paths()
@@ -119,7 +124,6 @@ class IFreqaiModel(ABC):
if retrain or not file_exists:
self.dh.download_new_data_for_retraining(new_trained_timerange, metadata)
# dataframe = download-data
corr_dataframes, base_dataframes = self.dh.load_pairs_histories(new_trained_timerange,
metadata)
@@ -131,12 +135,9 @@ class IFreqaiModel(ABC):
self.model = self.train(unfiltered_dataframe, metadata)
self.dh.save_data(self.model)
self.freqai_info
self.model = self.dh.load_data()
preds, do_preds = self.predict(dataframe, metadata)
self.dh.append_predictions(preds, do_preds, len(dataframe))
# dataframe should have len 1 here
return