add CNN prediction model
This commit is contained in:
commit
85df7faa98
@ -58,4 +58,4 @@ Mandatory parameters are marked as **Required** and have to be set in one of the
|
|||||||
| `model_reward_parameters` | Parameters used inside the user customizable `calculate_reward()` function in `ReinforcementLearner.py` <br> **Datatype:** int.
|
| `model_reward_parameters` | Parameters used inside the user customizable `calculate_reward()` function in `ReinforcementLearner.py` <br> **Datatype:** int.
|
||||||
| | **Extraneous parameters**
|
| | **Extraneous parameters**
|
||||||
| `keras` | If the selected model makes use of Keras (typical for Tensorflow-based prediction models), this flag needs to be activated so that the model save/loading follows Keras standards. <br> **Datatype:** Boolean. <br> Default: `False`.
|
| `keras` | If the selected model makes use of Keras (typical for Tensorflow-based prediction models), this flag needs to be activated so that the model save/loading follows Keras standards. <br> **Datatype:** Boolean. <br> Default: `False`.
|
||||||
| `conv_width` | The width of a convolutional neural network input tensor. This replaces the need for shifting candles (`include_shifted_candles`) by feeding in historical data points as the second dimension of the tensor. Technically, this parameter can also be used for regressors, but it only adds computational overhead and does not change the model training/prediction. <br> **Datatype:** Integer. <br> Default: `2`.
|
| `conv_width` | The width of a convolutional neural network input tensor. This replaces the need for shifting candles (`include_shifted_candles`) by feeding in historical data points as the second dimension of the tensor. Technically, this parameter can also be used for regressors, but it only adds computational overhead and does not change the model training/prediction. <br> **Datatype:** Integer. <br> Default: `2`.
|
@ -3,10 +3,10 @@ from time import time
|
|||||||
from typing import Any
|
from typing import Any
|
||||||
|
|
||||||
from pandas import DataFrame
|
from pandas import DataFrame
|
||||||
|
import numpy as np
|
||||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||||
from freqtrade.freqai.freqai_interface import IFreqaiModel
|
from freqtrade.freqai.freqai_interface import IFreqaiModel
|
||||||
|
import tensorflow as tf
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
@ -17,6 +17,13 @@ class BaseTensorFlowModel(IFreqaiModel):
|
|||||||
User *must* inherit from this class and set fit() and predict().
|
User *must* inherit from this class and set fit() and predict().
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
def __init__(self, **kwargs):
|
||||||
|
super().__init__(config=kwargs['config'])
|
||||||
|
self.keras = True
|
||||||
|
if self.ft_params.get("DI_threshold", 0):
|
||||||
|
self.ft_params["DI_threshold"] = 0
|
||||||
|
logger.warning("DI threshold is not configured for Keras models yet. Deactivating.")
|
||||||
|
|
||||||
def train(
|
def train(
|
||||||
self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
|
self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
|
||||||
) -> Any:
|
) -> Any:
|
||||||
@ -68,3 +75,76 @@ class BaseTensorFlowModel(IFreqaiModel):
|
|||||||
f"({end_time - start_time:.2f} secs) --------------------")
|
f"({end_time - start_time:.2f} secs) --------------------")
|
||||||
|
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
class WindowGenerator:
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
input_width,
|
||||||
|
label_width,
|
||||||
|
shift,
|
||||||
|
train_df=None,
|
||||||
|
val_df=None,
|
||||||
|
test_df=None,
|
||||||
|
train_labels=None,
|
||||||
|
val_labels=None,
|
||||||
|
test_labels=None,
|
||||||
|
batch_size=None,
|
||||||
|
):
|
||||||
|
# Store the raw data.
|
||||||
|
self.train_df = train_df
|
||||||
|
self.val_df = val_df
|
||||||
|
self.test_df = test_df
|
||||||
|
self.train_labels = train_labels
|
||||||
|
self.val_labels = val_labels
|
||||||
|
self.test_labels = test_labels
|
||||||
|
self.batch_size = batch_size
|
||||||
|
self.input_width = input_width
|
||||||
|
self.label_width = label_width
|
||||||
|
self.shift = shift
|
||||||
|
self.total_window_size = input_width + shift
|
||||||
|
self.input_slice = slice(0, input_width)
|
||||||
|
self.input_indices = np.arange(self.total_window_size)[self.input_slice]
|
||||||
|
|
||||||
|
def make_dataset(self, data, labels=None):
|
||||||
|
data = np.array(data, dtype=np.float32)
|
||||||
|
if labels is not None:
|
||||||
|
labels = np.array(labels, dtype=np.float32)
|
||||||
|
ds = tf.keras.preprocessing.timeseries_dataset_from_array(
|
||||||
|
data=data,
|
||||||
|
targets=labels,
|
||||||
|
sequence_length=self.total_window_size,
|
||||||
|
sequence_stride=1,
|
||||||
|
sampling_rate=1,
|
||||||
|
shuffle=False,
|
||||||
|
batch_size=self.batch_size,
|
||||||
|
)
|
||||||
|
|
||||||
|
return ds
|
||||||
|
|
||||||
|
@property
|
||||||
|
def train(self):
|
||||||
|
return self.make_dataset(self.train_df, self.train_labels)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def val(self):
|
||||||
|
return self.make_dataset(self.val_df, self.val_labels)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def test(self):
|
||||||
|
return self.make_dataset(self.test_df, self.test_labels)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def inference(self):
|
||||||
|
return self.make_dataset(self.test_df)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def example(self):
|
||||||
|
"""Get and cache an example batch of `inputs, labels` for plotting."""
|
||||||
|
result = getattr(self, "_example", None)
|
||||||
|
if result is None:
|
||||||
|
# No example batch was found, so get one from the `.train` dataset
|
||||||
|
result = next(iter(self.train))
|
||||||
|
# And cache it for next time
|
||||||
|
self._example = result
|
||||||
|
return result
|
||||||
|
@ -77,9 +77,10 @@ class FreqaiDataKitchen:
|
|||||||
self.backtest_predictions_folder: str = "backtesting_predictions"
|
self.backtest_predictions_folder: str = "backtesting_predictions"
|
||||||
self.live = live
|
self.live = live
|
||||||
self.pair = pair
|
self.pair = pair
|
||||||
|
self.model_save_type = self.freqai_config.get('model_save_type', 'joblib')
|
||||||
|
|
||||||
self.svm_model: linear_model.SGDOneClassSVM = None
|
self.svm_model: linear_model.SGDOneClassSVM = None
|
||||||
self.keras: bool = self.freqai_config.get("keras", False)
|
# self.model_save_type: bool = self.freqai_config.get("keras", False)
|
||||||
self.set_all_pairs()
|
self.set_all_pairs()
|
||||||
if not self.live:
|
if not self.live:
|
||||||
if not self.config["timerange"]:
|
if not self.config["timerange"]:
|
||||||
@ -569,7 +570,7 @@ class FreqaiDataKitchen:
|
|||||||
predict: bool = If true, inference an existing SVM model, else construct one
|
predict: bool = If true, inference an existing SVM model, else construct one
|
||||||
"""
|
"""
|
||||||
|
|
||||||
if self.keras:
|
if self.model_save_type == 'keras':
|
||||||
logger.warning(
|
logger.warning(
|
||||||
"SVM outlier removal not currently supported for Keras based models. "
|
"SVM outlier removal not currently supported for Keras based models. "
|
||||||
"Skipping user requested function."
|
"Skipping user requested function."
|
||||||
|
@ -73,10 +73,10 @@ class IFreqaiModel(ABC):
|
|||||||
self.identifier: str = self.freqai_info.get("identifier", "no_id_provided")
|
self.identifier: str = self.freqai_info.get("identifier", "no_id_provided")
|
||||||
self.scanning = False
|
self.scanning = False
|
||||||
self.ft_params = self.freqai_info["feature_parameters"]
|
self.ft_params = self.freqai_info["feature_parameters"]
|
||||||
self.keras: bool = self.freqai_info.get("keras", False)
|
# self.keras: bool = self.freqai_info.get("keras", False)
|
||||||
if self.keras and self.ft_params.get("DI_threshold", 0):
|
# if self.keras and self.ft_params.get("DI_threshold", 0):
|
||||||
self.ft_params["DI_threshold"] = 0
|
# self.ft_params["DI_threshold"] = 0
|
||||||
logger.warning("DI threshold is not configured for Keras models yet. Deactivating.")
|
# logger.warning("DI threshold is not configured for Keras models yet. Deactivating.")
|
||||||
self.CONV_WIDTH = self.freqai_info.get("conv_width", 2)
|
self.CONV_WIDTH = self.freqai_info.get("conv_width", 2)
|
||||||
if self.ft_params.get("inlier_metric_window", 0):
|
if self.ft_params.get("inlier_metric_window", 0):
|
||||||
self.CONV_WIDTH = self.ft_params.get("inlier_metric_window", 0) * 2
|
self.CONV_WIDTH = self.ft_params.get("inlier_metric_window", 0) * 2
|
||||||
@ -645,7 +645,8 @@ class IFreqaiModel(ABC):
|
|||||||
|
|
||||||
# # for keras type models, the conv_window needs to be prepended so
|
# # for keras type models, the conv_window needs to be prepended so
|
||||||
# # viewing is correct in frequi
|
# # viewing is correct in frequi
|
||||||
if self.freqai_info.get('keras', False) or self.ft_params.get('inlier_metric_window', 0):
|
if (not self.freqai_info.get('model_save_type', 'joblib') or
|
||||||
|
self.ft_params.get('inlier_metric_window', 0)):
|
||||||
n_lost_points = self.freqai_info.get('conv_width', 2)
|
n_lost_points = self.freqai_info.get('conv_width', 2)
|
||||||
zeros_df = DataFrame(np.zeros((n_lost_points, len(hist_preds_df.columns))),
|
zeros_df = DataFrame(np.zeros((n_lost_points, len(hist_preds_df.columns))),
|
||||||
columns=hist_preds_df.columns)
|
columns=hist_preds_df.columns)
|
||||||
|
144
freqtrade/freqai/prediction_models/CNNPredictionModel.py
Normal file
144
freqtrade/freqai/prediction_models/CNNPredictionModel.py
Normal file
@ -0,0 +1,144 @@
|
|||||||
|
import logging
|
||||||
|
from typing import Any, Dict, Tuple
|
||||||
|
|
||||||
|
from pandas import DataFrame
|
||||||
|
from freqtrade.exceptions import OperationalException
|
||||||
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||||
|
import tensorflow as tf
|
||||||
|
from freqtrade.freqai.base_models.BaseTensorFlowModel import BaseTensorFlowModel, WindowGenerator
|
||||||
|
from tensorflow.keras.layers import Input, Conv1D, Dense
|
||||||
|
from tensorflow.keras.models import Model
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
# tf.config.run_functions_eagerly(True)
|
||||||
|
# tf.data.experimental.enable_debug_mode()
|
||||||
|
|
||||||
|
MAX_EPOCHS = 10
|
||||||
|
|
||||||
|
|
||||||
|
class CNNPredictionModel(BaseTensorFlowModel):
|
||||||
|
"""
|
||||||
|
User created prediction model. The class needs to override three necessary
|
||||||
|
functions, predict(), fit().
|
||||||
|
"""
|
||||||
|
|
||||||
|
def fit(self, data_dictionary: Dict[str, Any], dk: FreqaiDataKitchen) -> Any:
|
||||||
|
"""
|
||||||
|
User sets up the training and test data to fit their desired model here
|
||||||
|
:params:
|
||||||
|
:data_dictionary: the dictionary constructed by DataHandler to hold
|
||||||
|
all the training and test data/labels.
|
||||||
|
"""
|
||||||
|
train_df = data_dictionary["train_features"]
|
||||||
|
train_labels = data_dictionary["train_labels"]
|
||||||
|
test_df = data_dictionary["test_features"]
|
||||||
|
test_labels = data_dictionary["test_labels"]
|
||||||
|
n_labels = len(train_labels.columns)
|
||||||
|
if n_labels > 1:
|
||||||
|
raise OperationalException(
|
||||||
|
"Neural Net not yet configured for multi-targets. Please "
|
||||||
|
" reduce number of targets to 1 in strategy."
|
||||||
|
)
|
||||||
|
|
||||||
|
n_features = len(data_dictionary["train_features"].columns)
|
||||||
|
BATCH_SIZE = self.freqai_info.get("batch_size", 64)
|
||||||
|
input_dims = [BATCH_SIZE, self.CONV_WIDTH, n_features]
|
||||||
|
|
||||||
|
w1 = WindowGenerator(
|
||||||
|
input_width=self.CONV_WIDTH,
|
||||||
|
label_width=1,
|
||||||
|
shift=1,
|
||||||
|
train_df=train_df,
|
||||||
|
val_df=test_df,
|
||||||
|
train_labels=train_labels,
|
||||||
|
val_labels=test_labels,
|
||||||
|
batch_size=BATCH_SIZE,
|
||||||
|
)
|
||||||
|
|
||||||
|
model = self.create_model(input_dims, n_labels)
|
||||||
|
|
||||||
|
steps_per_epoch = np.ceil(len(test_df) / BATCH_SIZE)
|
||||||
|
lr_schedule = tf.keras.optimizers.schedules.InverseTimeDecay(
|
||||||
|
0.001, decay_steps=steps_per_epoch * 1000, decay_rate=1, staircase=False
|
||||||
|
)
|
||||||
|
|
||||||
|
early_stopping = tf.keras.callbacks.EarlyStopping(
|
||||||
|
monitor="loss", patience=3, mode="min", min_delta=0.0001
|
||||||
|
)
|
||||||
|
|
||||||
|
model.compile(
|
||||||
|
loss=tf.losses.MeanSquaredError(),
|
||||||
|
optimizer=tf.optimizers.Adam(lr_schedule),
|
||||||
|
metrics=[tf.metrics.MeanAbsoluteError()],
|
||||||
|
)
|
||||||
|
|
||||||
|
model.fit(
|
||||||
|
w1.train,
|
||||||
|
epochs=MAX_EPOCHS,
|
||||||
|
shuffle=False,
|
||||||
|
validation_data=w1.val,
|
||||||
|
callbacks=[early_stopping],
|
||||||
|
verbose=1,
|
||||||
|
)
|
||||||
|
|
||||||
|
return model
|
||||||
|
|
||||||
|
def predict(
|
||||||
|
self, unfiltered_dataframe: DataFrame, dk: FreqaiDataKitchen, first=True
|
||||||
|
) -> Tuple[DataFrame, DataFrame]:
|
||||||
|
"""
|
||||||
|
Filter the prediction features data and predict with it.
|
||||||
|
:param: unfiltered_dataframe: Full dataframe for the current backtest period.
|
||||||
|
:return:
|
||||||
|
:predictions: np.array of predictions
|
||||||
|
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
|
||||||
|
data (NaNs) or felt uncertain about data (PCA and DI index)
|
||||||
|
"""
|
||||||
|
|
||||||
|
dk.find_features(unfiltered_dataframe)
|
||||||
|
filtered_dataframe, _ = dk.filter_features(
|
||||||
|
unfiltered_dataframe, dk.training_features_list, training_filter=False
|
||||||
|
)
|
||||||
|
filtered_dataframe = dk.normalize_data_from_metadata(filtered_dataframe)
|
||||||
|
dk.data_dictionary["prediction_features"] = filtered_dataframe
|
||||||
|
|
||||||
|
# optional additional data cleaning/analysis
|
||||||
|
self.data_cleaning_predict(dk, filtered_dataframe)
|
||||||
|
|
||||||
|
if first:
|
||||||
|
full_df = dk.data_dictionary["prediction_features"]
|
||||||
|
|
||||||
|
w1 = WindowGenerator(
|
||||||
|
input_width=self.CONV_WIDTH,
|
||||||
|
label_width=1,
|
||||||
|
shift=1,
|
||||||
|
test_df=full_df,
|
||||||
|
batch_size=len(full_df),
|
||||||
|
)
|
||||||
|
|
||||||
|
predictions = self.model.predict(w1.inference)
|
||||||
|
len_diff = len(dk.do_predict) - len(predictions)
|
||||||
|
if len_diff > 0:
|
||||||
|
dk.do_predict = dk.do_predict[len_diff:]
|
||||||
|
|
||||||
|
else:
|
||||||
|
data = dk.data_dictionary["prediction_features"]
|
||||||
|
data = tf.expand_dims(data, axis=0)
|
||||||
|
predictions = self.model(data, training=False)
|
||||||
|
|
||||||
|
predictions = predictions[:, 0, 0]
|
||||||
|
pred_df = DataFrame(predictions, columns=dk.label_list)
|
||||||
|
|
||||||
|
pred_df = dk.denormalize_labels_from_metadata(pred_df)
|
||||||
|
|
||||||
|
return (pred_df, np.ones(len(pred_df)))
|
||||||
|
|
||||||
|
def create_model(self, input_dims, n_labels) -> Any:
|
||||||
|
|
||||||
|
input_layer = Input(shape=(input_dims[1], input_dims[2]))
|
||||||
|
Layer_1 = Conv1D(filters=32, kernel_size=(self.CONV_WIDTH,), activation="relu")(input_layer)
|
||||||
|
Layer_3 = Dense(units=32, activation="relu")(Layer_1)
|
||||||
|
output_layer = Dense(units=n_labels)(Layer_3)
|
||||||
|
return Model(inputs=input_layer, outputs=output_layer)
|
Loading…
Reference in New Issue
Block a user