Merge pull request #4543 from brookmiles/fix-math-custom-stoploss-docs
correct math used in examples and clarify some terminology regarding …
This commit is contained in:
commit
84ca9bd2c7
@ -71,12 +71,13 @@ See `custom_stoploss` examples below on how to access the saved dataframe column
|
|||||||
|
|
||||||
## Custom stoploss
|
## Custom stoploss
|
||||||
|
|
||||||
A stoploss can only ever move upwards - so if you set it to an absolute profit of 2%, you can never move it below this price.
|
The stoploss price can only ever move upwards - if the stoploss value returned from `custom_stoploss` would result in a lower stoploss price than was previously set, it will be ignored. The traditional `stoploss` value serves as an absolute lower level and will be instated as the initial stoploss.
|
||||||
Also, the traditional `stoploss` value serves as an absolute lower level and will be instated as the initial stoploss.
|
|
||||||
|
|
||||||
The usage of the custom stoploss method must be enabled by setting `use_custom_stoploss=True` on the strategy object.
|
The usage of the custom stoploss method must be enabled by setting `use_custom_stoploss=True` on the strategy object.
|
||||||
The method must return a stoploss value (float / number) with a relative ratio below the current price.
|
The method must return a stoploss value (float / number) as a percentage of the current price.
|
||||||
E.g. `current_profit = 0.05` (5% profit) - stoploss returns `0.02` - then you "locked in" a profit of 3% (`0.05 - 0.02 = 0.03`).
|
E.g. If the `current_rate` is 200 USD, then returning `0.02` will set the stoploss price 2% lower, at 196 USD.
|
||||||
|
|
||||||
|
The absolute value of the return value is used (the sign is ignored), so returning `0.05` or `-0.05` have the same result, a stoploss 5% below the current price.
|
||||||
|
|
||||||
To simulate a regular trailing stoploss of 4% (trailing 4% behind the maximum reached price) you would use the following very simple method:
|
To simulate a regular trailing stoploss of 4% (trailing 4% behind the maximum reached price) you would use the following very simple method:
|
||||||
|
|
||||||
@ -206,18 +207,26 @@ class AwesomeStrategy(IStrategy):
|
|||||||
return max(min(desired_stoploss, 0.05), 0.025)
|
return max(min(desired_stoploss, 0.05), 0.025)
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Absolute stoploss
|
#### Calculating stoploss relative to open price
|
||||||
|
|
||||||
The below example sets absolute profit levels based on the current profit.
|
Stoploss values returned from `custom_stoploss()` always specify a percentage relative to `current_rate`. In order to set a stoploss relative to the *open* price, we need to use `current_profit` to calculate what percentage relative to the `current_rate` will give you the same result as if the percentage was specified from the open price.
|
||||||
|
|
||||||
|
The helper function [`stoploss_from_open()`](strategy-customization.md#stoploss_from_open) can be used to convert from an open price relative stop, to a current price relative stop which can be returned from `custom_stoploss()`.
|
||||||
|
|
||||||
|
#### Stepped stoploss
|
||||||
|
|
||||||
|
Instead of continuously trailing behind the current price, this example sets fixed stoploss price levels based on the current profit.
|
||||||
|
|
||||||
* Use the regular stoploss until 20% profit is reached
|
* Use the regular stoploss until 20% profit is reached
|
||||||
* Once profit is > 40%, stoploss will be at 25%, locking in at least 25% of the profit.
|
* Once profit is > 20% - set stoploss to 7% above open price.
|
||||||
* Once profit is > 25% - stoploss will be 15%.
|
* Once profit is > 25% - set stoploss to 15% above open price.
|
||||||
* Once profit is > 20% - stoploss will be set to 7%.
|
* Once profit is > 40% - set stoploss to 25% above open price.
|
||||||
|
|
||||||
|
|
||||||
``` python
|
``` python
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
from freqtrade.persistence import Trade
|
from freqtrade.persistence import Trade
|
||||||
|
from freqtrade.strategy import stoploss_from_open
|
||||||
|
|
||||||
class AwesomeStrategy(IStrategy):
|
class AwesomeStrategy(IStrategy):
|
||||||
|
|
||||||
@ -228,13 +237,15 @@ class AwesomeStrategy(IStrategy):
|
|||||||
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
|
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
|
||||||
current_rate: float, current_profit: float, **kwargs) -> float:
|
current_rate: float, current_profit: float, **kwargs) -> float:
|
||||||
|
|
||||||
# Calculate as `-desired_stop_from_open + current_profit` to get the distance between current_profit and initial price
|
# evaluate highest to lowest, so that highest possible stop is used
|
||||||
if current_profit > 0.40:
|
if current_profit > 0.40:
|
||||||
return (-0.25 + current_profit)
|
return stoploss_from_open(0.25, current_profit)
|
||||||
if current_profit > 0.25:
|
elif current_profit > 0.25:
|
||||||
return (-0.15 + current_profit)
|
return stoploss_from_open(0.15, current_profit)
|
||||||
if current_profit > 0.20:
|
elif current_profit > 0.20:
|
||||||
return (-0.07 + current_profit)
|
return stoploss_from_open(0.07, current_profit)
|
||||||
|
|
||||||
|
# return maximum stoploss value, keeping current stoploss price unchanged
|
||||||
return 1
|
return 1
|
||||||
```
|
```
|
||||||
#### Custom stoploss using an indicator from dataframe example
|
#### Custom stoploss using an indicator from dataframe example
|
||||||
@ -266,7 +277,7 @@ class AwesomeStrategy(IStrategy):
|
|||||||
# using current_time directly (like below) will only work in backtesting.
|
# using current_time directly (like below) will only work in backtesting.
|
||||||
# so check "runmode" to make sure that it's only used in backtesting/hyperopt
|
# so check "runmode" to make sure that it's only used in backtesting/hyperopt
|
||||||
if self.dp and self.dp.runmode.value in ('backtest', 'hyperopt'):
|
if self.dp and self.dp.runmode.value in ('backtest', 'hyperopt'):
|
||||||
relative_sl = self.custom_info[pair].loc[current_time]['atr]
|
relative_sl = self.custom_info[pair].loc[current_time]['atr']
|
||||||
# in live / dry-run, it'll be really the current time
|
# in live / dry-run, it'll be really the current time
|
||||||
else:
|
else:
|
||||||
# but we can just use the last entry from an already analyzed dataframe instead
|
# but we can just use the last entry from an already analyzed dataframe instead
|
||||||
|
@ -587,6 +587,43 @@ All columns of the informative dataframe will be available on the returning data
|
|||||||
|
|
||||||
***
|
***
|
||||||
|
|
||||||
|
### *stoploss_from_open()*
|
||||||
|
|
||||||
|
Stoploss values returned from `custom_stoploss` must specify a percentage relative to `current_rate`, but sometimes you may want to specify a stoploss relative to the open price instead. `stoploss_from_open()` is a helper function to calculate a stoploss value that can be returned from `custom_stoploss` which will be equivalent to the desired percentage above the open price.
|
||||||
|
|
||||||
|
??? Example "Returning a stoploss relative to the open price from the custom stoploss function"
|
||||||
|
|
||||||
|
Say the open price was $100, and `current_price` is $121 (`current_profit` will be `0.21`).
|
||||||
|
|
||||||
|
If we want a stop price at 7% above the open price we can call `stoploss_from_open(0.07, current_profit)` which will return `0.1157024793`. 11.57% below $121 is $107, which is the same as 7% above $100.
|
||||||
|
|
||||||
|
|
||||||
|
``` python
|
||||||
|
|
||||||
|
from datetime import datetime
|
||||||
|
from freqtrade.persistence import Trade
|
||||||
|
from freqtrade.strategy import IStrategy, stoploss_from_open
|
||||||
|
|
||||||
|
class AwesomeStrategy(IStrategy):
|
||||||
|
|
||||||
|
# ... populate_* methods
|
||||||
|
|
||||||
|
use_custom_stoploss = True
|
||||||
|
|
||||||
|
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
|
||||||
|
current_rate: float, current_profit: float, **kwargs) -> float:
|
||||||
|
|
||||||
|
# once the profit has risin above 10%, keep the stoploss at 7% above the open price
|
||||||
|
if current_profit > 0.10:
|
||||||
|
return stoploss_from_open(0.07, current_profit)
|
||||||
|
|
||||||
|
return 1
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
Full examples can be found in the [Custom stoploss](strategy-advanced.md#custom-stoploss) section of the Documentation.
|
||||||
|
|
||||||
|
|
||||||
## Additional data (Wallets)
|
## Additional data (Wallets)
|
||||||
|
|
||||||
The strategy provides access to the `Wallets` object. This contains the current balances on the exchange.
|
The strategy provides access to the `Wallets` object. This contains the current balances on the exchange.
|
||||||
|
@ -2,4 +2,4 @@
|
|||||||
from freqtrade.exchange import (timeframe_to_minutes, timeframe_to_msecs, timeframe_to_next_date,
|
from freqtrade.exchange import (timeframe_to_minutes, timeframe_to_msecs, timeframe_to_next_date,
|
||||||
timeframe_to_prev_date, timeframe_to_seconds)
|
timeframe_to_prev_date, timeframe_to_seconds)
|
||||||
from freqtrade.strategy.interface import IStrategy
|
from freqtrade.strategy.interface import IStrategy
|
||||||
from freqtrade.strategy.strategy_helper import merge_informative_pair
|
from freqtrade.strategy.strategy_helper import merge_informative_pair, stoploss_from_open
|
||||||
|
@ -56,3 +56,30 @@ def merge_informative_pair(dataframe: pd.DataFrame, informative: pd.DataFrame,
|
|||||||
dataframe = dataframe.ffill()
|
dataframe = dataframe.ffill()
|
||||||
|
|
||||||
return dataframe
|
return dataframe
|
||||||
|
|
||||||
|
|
||||||
|
def stoploss_from_open(open_relative_stop: float, current_profit: float) -> float:
|
||||||
|
"""
|
||||||
|
|
||||||
|
Given the current profit, and a desired stop loss value relative to the open price,
|
||||||
|
return a stop loss value that is relative to the current price, and which can be
|
||||||
|
returned from `custom_stoploss`.
|
||||||
|
|
||||||
|
The requested stop can be positive for a stop above the open price, or negative for
|
||||||
|
a stop below the open price. The return value is always >= 0.
|
||||||
|
|
||||||
|
Returns 0 if the resulting stop price would be above the current price.
|
||||||
|
|
||||||
|
:param open_relative_stop: Desired stop loss percentage relative to open price
|
||||||
|
:param current_profit: The current profit percentage
|
||||||
|
:return: Positive stop loss value relative to current price
|
||||||
|
"""
|
||||||
|
|
||||||
|
# formula is undefined for current_profit -1, return maximum value
|
||||||
|
if current_profit == -1:
|
||||||
|
return 1
|
||||||
|
|
||||||
|
stoploss = 1-((1+open_relative_stop)/(1+current_profit))
|
||||||
|
|
||||||
|
# negative stoploss values indicate the requested stop price is higher than the current price
|
||||||
|
return max(stoploss, 0.0)
|
||||||
|
@ -1,8 +1,10 @@
|
|||||||
|
from math import isclose
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import pytest
|
import pytest
|
||||||
|
|
||||||
from freqtrade.strategy import merge_informative_pair, timeframe_to_minutes
|
from freqtrade.strategy import merge_informative_pair, stoploss_from_open, timeframe_to_minutes
|
||||||
|
|
||||||
|
|
||||||
def generate_test_data(timeframe: str, size: int):
|
def generate_test_data(timeframe: str, size: int):
|
||||||
@ -95,3 +97,38 @@ def test_merge_informative_pair_lower():
|
|||||||
|
|
||||||
with pytest.raises(ValueError, match=r"Tried to merge a faster timeframe .*"):
|
with pytest.raises(ValueError, match=r"Tried to merge a faster timeframe .*"):
|
||||||
merge_informative_pair(data, informative, '1h', '15m', ffill=True)
|
merge_informative_pair(data, informative, '1h', '15m', ffill=True)
|
||||||
|
|
||||||
|
|
||||||
|
def test_stoploss_from_open():
|
||||||
|
open_price_ranges = [
|
||||||
|
[0.01, 1.00, 30],
|
||||||
|
[1, 100, 30],
|
||||||
|
[100, 10000, 30],
|
||||||
|
]
|
||||||
|
current_profit_range = [-0.99, 2, 30]
|
||||||
|
desired_stop_range = [-0.50, 0.50, 30]
|
||||||
|
|
||||||
|
for open_range in open_price_ranges:
|
||||||
|
for open_price in np.linspace(*open_range):
|
||||||
|
for desired_stop in np.linspace(*desired_stop_range):
|
||||||
|
|
||||||
|
# -1 is not a valid current_profit, should return 1
|
||||||
|
assert stoploss_from_open(desired_stop, -1) == 1
|
||||||
|
|
||||||
|
for current_profit in np.linspace(*current_profit_range):
|
||||||
|
current_price = open_price * (1 + current_profit)
|
||||||
|
expected_stop_price = open_price * (1 + desired_stop)
|
||||||
|
|
||||||
|
stoploss = stoploss_from_open(desired_stop, current_profit)
|
||||||
|
|
||||||
|
assert stoploss >= 0
|
||||||
|
assert stoploss <= 1
|
||||||
|
|
||||||
|
stop_price = current_price * (1 - stoploss)
|
||||||
|
|
||||||
|
# there is no correct answer if the expected stop price is above
|
||||||
|
# the current price
|
||||||
|
if expected_stop_price > current_price:
|
||||||
|
assert stoploss == 0
|
||||||
|
else:
|
||||||
|
assert isclose(stop_price, expected_stop_price, rel_tol=0.00001)
|
||||||
|
Loading…
Reference in New Issue
Block a user