Merge pull request #4543 from brookmiles/fix-math-custom-stoploss-docs
correct math used in examples and clarify some terminology regarding …
This commit is contained in:
commit
84ca9bd2c7
@ -71,12 +71,13 @@ See `custom_stoploss` examples below on how to access the saved dataframe column
|
||||
|
||||
## Custom stoploss
|
||||
|
||||
A stoploss can only ever move upwards - so if you set it to an absolute profit of 2%, you can never move it below this price.
|
||||
Also, the traditional `stoploss` value serves as an absolute lower level and will be instated as the initial stoploss.
|
||||
The stoploss price can only ever move upwards - if the stoploss value returned from `custom_stoploss` would result in a lower stoploss price than was previously set, it will be ignored. The traditional `stoploss` value serves as an absolute lower level and will be instated as the initial stoploss.
|
||||
|
||||
The usage of the custom stoploss method must be enabled by setting `use_custom_stoploss=True` on the strategy object.
|
||||
The method must return a stoploss value (float / number) with a relative ratio below the current price.
|
||||
E.g. `current_profit = 0.05` (5% profit) - stoploss returns `0.02` - then you "locked in" a profit of 3% (`0.05 - 0.02 = 0.03`).
|
||||
The method must return a stoploss value (float / number) as a percentage of the current price.
|
||||
E.g. If the `current_rate` is 200 USD, then returning `0.02` will set the stoploss price 2% lower, at 196 USD.
|
||||
|
||||
The absolute value of the return value is used (the sign is ignored), so returning `0.05` or `-0.05` have the same result, a stoploss 5% below the current price.
|
||||
|
||||
To simulate a regular trailing stoploss of 4% (trailing 4% behind the maximum reached price) you would use the following very simple method:
|
||||
|
||||
@ -206,18 +207,26 @@ class AwesomeStrategy(IStrategy):
|
||||
return max(min(desired_stoploss, 0.05), 0.025)
|
||||
```
|
||||
|
||||
#### Absolute stoploss
|
||||
#### Calculating stoploss relative to open price
|
||||
|
||||
The below example sets absolute profit levels based on the current profit.
|
||||
Stoploss values returned from `custom_stoploss()` always specify a percentage relative to `current_rate`. In order to set a stoploss relative to the *open* price, we need to use `current_profit` to calculate what percentage relative to the `current_rate` will give you the same result as if the percentage was specified from the open price.
|
||||
|
||||
The helper function [`stoploss_from_open()`](strategy-customization.md#stoploss_from_open) can be used to convert from an open price relative stop, to a current price relative stop which can be returned from `custom_stoploss()`.
|
||||
|
||||
#### Stepped stoploss
|
||||
|
||||
Instead of continuously trailing behind the current price, this example sets fixed stoploss price levels based on the current profit.
|
||||
|
||||
* Use the regular stoploss until 20% profit is reached
|
||||
* Once profit is > 40%, stoploss will be at 25%, locking in at least 25% of the profit.
|
||||
* Once profit is > 25% - stoploss will be 15%.
|
||||
* Once profit is > 20% - stoploss will be set to 7%.
|
||||
* Once profit is > 20% - set stoploss to 7% above open price.
|
||||
* Once profit is > 25% - set stoploss to 15% above open price.
|
||||
* Once profit is > 40% - set stoploss to 25% above open price.
|
||||
|
||||
|
||||
``` python
|
||||
from datetime import datetime
|
||||
from freqtrade.persistence import Trade
|
||||
from freqtrade.strategy import stoploss_from_open
|
||||
|
||||
class AwesomeStrategy(IStrategy):
|
||||
|
||||
@ -228,13 +237,15 @@ class AwesomeStrategy(IStrategy):
|
||||
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
|
||||
current_rate: float, current_profit: float, **kwargs) -> float:
|
||||
|
||||
# Calculate as `-desired_stop_from_open + current_profit` to get the distance between current_profit and initial price
|
||||
# evaluate highest to lowest, so that highest possible stop is used
|
||||
if current_profit > 0.40:
|
||||
return (-0.25 + current_profit)
|
||||
if current_profit > 0.25:
|
||||
return (-0.15 + current_profit)
|
||||
if current_profit > 0.20:
|
||||
return (-0.07 + current_profit)
|
||||
return stoploss_from_open(0.25, current_profit)
|
||||
elif current_profit > 0.25:
|
||||
return stoploss_from_open(0.15, current_profit)
|
||||
elif current_profit > 0.20:
|
||||
return stoploss_from_open(0.07, current_profit)
|
||||
|
||||
# return maximum stoploss value, keeping current stoploss price unchanged
|
||||
return 1
|
||||
```
|
||||
#### Custom stoploss using an indicator from dataframe example
|
||||
@ -266,7 +277,7 @@ class AwesomeStrategy(IStrategy):
|
||||
# using current_time directly (like below) will only work in backtesting.
|
||||
# so check "runmode" to make sure that it's only used in backtesting/hyperopt
|
||||
if self.dp and self.dp.runmode.value in ('backtest', 'hyperopt'):
|
||||
relative_sl = self.custom_info[pair].loc[current_time]['atr]
|
||||
relative_sl = self.custom_info[pair].loc[current_time]['atr']
|
||||
# in live / dry-run, it'll be really the current time
|
||||
else:
|
||||
# but we can just use the last entry from an already analyzed dataframe instead
|
||||
|
@ -587,6 +587,43 @@ All columns of the informative dataframe will be available on the returning data
|
||||
|
||||
***
|
||||
|
||||
### *stoploss_from_open()*
|
||||
|
||||
Stoploss values returned from `custom_stoploss` must specify a percentage relative to `current_rate`, but sometimes you may want to specify a stoploss relative to the open price instead. `stoploss_from_open()` is a helper function to calculate a stoploss value that can be returned from `custom_stoploss` which will be equivalent to the desired percentage above the open price.
|
||||
|
||||
??? Example "Returning a stoploss relative to the open price from the custom stoploss function"
|
||||
|
||||
Say the open price was $100, and `current_price` is $121 (`current_profit` will be `0.21`).
|
||||
|
||||
If we want a stop price at 7% above the open price we can call `stoploss_from_open(0.07, current_profit)` which will return `0.1157024793`. 11.57% below $121 is $107, which is the same as 7% above $100.
|
||||
|
||||
|
||||
``` python
|
||||
|
||||
from datetime import datetime
|
||||
from freqtrade.persistence import Trade
|
||||
from freqtrade.strategy import IStrategy, stoploss_from_open
|
||||
|
||||
class AwesomeStrategy(IStrategy):
|
||||
|
||||
# ... populate_* methods
|
||||
|
||||
use_custom_stoploss = True
|
||||
|
||||
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
|
||||
current_rate: float, current_profit: float, **kwargs) -> float:
|
||||
|
||||
# once the profit has risin above 10%, keep the stoploss at 7% above the open price
|
||||
if current_profit > 0.10:
|
||||
return stoploss_from_open(0.07, current_profit)
|
||||
|
||||
return 1
|
||||
|
||||
```
|
||||
|
||||
Full examples can be found in the [Custom stoploss](strategy-advanced.md#custom-stoploss) section of the Documentation.
|
||||
|
||||
|
||||
## Additional data (Wallets)
|
||||
|
||||
The strategy provides access to the `Wallets` object. This contains the current balances on the exchange.
|
||||
|
@ -2,4 +2,4 @@
|
||||
from freqtrade.exchange import (timeframe_to_minutes, timeframe_to_msecs, timeframe_to_next_date,
|
||||
timeframe_to_prev_date, timeframe_to_seconds)
|
||||
from freqtrade.strategy.interface import IStrategy
|
||||
from freqtrade.strategy.strategy_helper import merge_informative_pair
|
||||
from freqtrade.strategy.strategy_helper import merge_informative_pair, stoploss_from_open
|
||||
|
@ -56,3 +56,30 @@ def merge_informative_pair(dataframe: pd.DataFrame, informative: pd.DataFrame,
|
||||
dataframe = dataframe.ffill()
|
||||
|
||||
return dataframe
|
||||
|
||||
|
||||
def stoploss_from_open(open_relative_stop: float, current_profit: float) -> float:
|
||||
"""
|
||||
|
||||
Given the current profit, and a desired stop loss value relative to the open price,
|
||||
return a stop loss value that is relative to the current price, and which can be
|
||||
returned from `custom_stoploss`.
|
||||
|
||||
The requested stop can be positive for a stop above the open price, or negative for
|
||||
a stop below the open price. The return value is always >= 0.
|
||||
|
||||
Returns 0 if the resulting stop price would be above the current price.
|
||||
|
||||
:param open_relative_stop: Desired stop loss percentage relative to open price
|
||||
:param current_profit: The current profit percentage
|
||||
:return: Positive stop loss value relative to current price
|
||||
"""
|
||||
|
||||
# formula is undefined for current_profit -1, return maximum value
|
||||
if current_profit == -1:
|
||||
return 1
|
||||
|
||||
stoploss = 1-((1+open_relative_stop)/(1+current_profit))
|
||||
|
||||
# negative stoploss values indicate the requested stop price is higher than the current price
|
||||
return max(stoploss, 0.0)
|
||||
|
@ -1,8 +1,10 @@
|
||||
from math import isclose
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import pytest
|
||||
|
||||
from freqtrade.strategy import merge_informative_pair, timeframe_to_minutes
|
||||
from freqtrade.strategy import merge_informative_pair, stoploss_from_open, timeframe_to_minutes
|
||||
|
||||
|
||||
def generate_test_data(timeframe: str, size: int):
|
||||
@ -95,3 +97,38 @@ def test_merge_informative_pair_lower():
|
||||
|
||||
with pytest.raises(ValueError, match=r"Tried to merge a faster timeframe .*"):
|
||||
merge_informative_pair(data, informative, '1h', '15m', ffill=True)
|
||||
|
||||
|
||||
def test_stoploss_from_open():
|
||||
open_price_ranges = [
|
||||
[0.01, 1.00, 30],
|
||||
[1, 100, 30],
|
||||
[100, 10000, 30],
|
||||
]
|
||||
current_profit_range = [-0.99, 2, 30]
|
||||
desired_stop_range = [-0.50, 0.50, 30]
|
||||
|
||||
for open_range in open_price_ranges:
|
||||
for open_price in np.linspace(*open_range):
|
||||
for desired_stop in np.linspace(*desired_stop_range):
|
||||
|
||||
# -1 is not a valid current_profit, should return 1
|
||||
assert stoploss_from_open(desired_stop, -1) == 1
|
||||
|
||||
for current_profit in np.linspace(*current_profit_range):
|
||||
current_price = open_price * (1 + current_profit)
|
||||
expected_stop_price = open_price * (1 + desired_stop)
|
||||
|
||||
stoploss = stoploss_from_open(desired_stop, current_profit)
|
||||
|
||||
assert stoploss >= 0
|
||||
assert stoploss <= 1
|
||||
|
||||
stop_price = current_price * (1 - stoploss)
|
||||
|
||||
# there is no correct answer if the expected stop price is above
|
||||
# the current price
|
||||
if expected_stop_price > current_price:
|
||||
assert stoploss == 0
|
||||
else:
|
||||
assert isclose(stop_price, expected_stop_price, rel_tol=0.00001)
|
||||
|
Loading…
Reference in New Issue
Block a user