create children class to PyTorchClassifier to implement the fit method where we initialize the trainer and model objects
This commit is contained in:
parent
566346dd87
commit
833aaf8e10
@ -19,35 +19,32 @@ class PyTorchModelTrainer:
|
|||||||
optimizer: Optimizer,
|
optimizer: Optimizer,
|
||||||
criterion: nn.Module,
|
criterion: nn.Module,
|
||||||
device: str,
|
device: str,
|
||||||
batch_size: int,
|
|
||||||
max_iters: int,
|
|
||||||
max_n_eval_batches: int,
|
|
||||||
init_model: Dict,
|
init_model: Dict,
|
||||||
model_meta_data: Dict[str, Any] = {},
|
model_meta_data: Dict[str, Any] = {},
|
||||||
|
**kwargs
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
:param model: The PyTorch model to be trained.
|
:param model: The PyTorch model to be trained.
|
||||||
:param optimizer: The optimizer to use for training.
|
:param optimizer: The optimizer to use for training.
|
||||||
:param criterion: The loss function to use for training.
|
:param criterion: The loss function to use for training.
|
||||||
:param device: The device to use for training (e.g. 'cpu', 'cuda').
|
:param device: The device to use for training (e.g. 'cpu', 'cuda').
|
||||||
:param batch_size: The size of the batches to use during training.
|
|
||||||
:param max_iters: The number of training iterations to run.
|
|
||||||
iteration here refers to the number of times we call
|
|
||||||
self.optimizer.step(). used to calculate n_epochs.
|
|
||||||
:param max_n_eval_batches: The maximum number batches to use for evaluation.
|
|
||||||
:param init_model: A dictionary containing the initial model/optimizer
|
:param init_model: A dictionary containing the initial model/optimizer
|
||||||
state_dict and model_meta_data saved by self.save() method.
|
state_dict and model_meta_data saved by self.save() method.
|
||||||
:param model_meta_data: Additional metadata about the model (optional).
|
:param model_meta_data: Additional metadata about the model (optional).
|
||||||
|
:param max_iters: The number of training iterations to run.
|
||||||
|
iteration here refers to the number of times we call
|
||||||
|
self.optimizer.step(). used to calculate n_epochs.
|
||||||
|
:param batch_size: The size of the batches to use during training.
|
||||||
|
:param max_n_eval_batches: The maximum number batches to use for evaluation.
|
||||||
"""
|
"""
|
||||||
self.model = model
|
self.model = model
|
||||||
self.optimizer = optimizer
|
self.optimizer = optimizer
|
||||||
self.criterion = criterion
|
self.criterion = criterion
|
||||||
self.model_meta_data = model_meta_data
|
self.model_meta_data = model_meta_data
|
||||||
self.device = device
|
self.device = device
|
||||||
self.max_iters = max_iters
|
self.max_iters: int = kwargs.get("max_iters", 100)
|
||||||
self.batch_size = batch_size
|
self.batch_size: int = kwargs.get("batch_size", 64)
|
||||||
self.max_n_eval_batches = max_n_eval_batches
|
self.max_n_eval_batches: Optional[int] = kwargs.get("max_n_eval_batches", None)
|
||||||
|
|
||||||
if init_model:
|
if init_model:
|
||||||
self.load_from_checkpoint(init_model)
|
self.load_from_checkpoint(init_model)
|
||||||
|
|
||||||
|
81
freqtrade/freqai/prediction_models/MLPPyTorchClassifier.py
Normal file
81
freqtrade/freqai/prediction_models/MLPPyTorchClassifier.py
Normal file
@ -0,0 +1,81 @@
|
|||||||
|
from typing import Any, Dict
|
||||||
|
|
||||||
|
from freqtrade.freqai.base_models.PyTorchModelTrainer import PyTorchModelTrainer
|
||||||
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||||
|
from freqtrade.freqai.prediction_models.PyTorchClassifierClassifier import PyTorchClassifier
|
||||||
|
from freqtrade.freqai.prediction_models.PyTorchMLPModel import PyTorchMLPModel
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
class MLPPyTorchClassifier(PyTorchClassifier):
|
||||||
|
"""
|
||||||
|
This class implements the fit method of IFreqaiModel.
|
||||||
|
int the fit method we initialize the model and trainer objects.
|
||||||
|
the only requirement from the model is to be aligned to PyTorchClassifier
|
||||||
|
predict method that expects the model to predict tensor of type long.
|
||||||
|
the trainer defines the training loop.
|
||||||
|
|
||||||
|
parameters are passed via `model_training_parameters` under the freqai
|
||||||
|
section in the config file. e.g:
|
||||||
|
{
|
||||||
|
...
|
||||||
|
"freqai": {
|
||||||
|
...
|
||||||
|
"model_training_parameters" : {
|
||||||
|
"learning_rate": 3e-4,
|
||||||
|
"trainer_kwargs": {
|
||||||
|
"max_iters": 5000,
|
||||||
|
"batch_size": 64,
|
||||||
|
"max_n_eval_batches": None,
|
||||||
|
},
|
||||||
|
"model_kwargs": {
|
||||||
|
"hidden_dim": 512,
|
||||||
|
"dropout_percent": 0.2,
|
||||||
|
"n_layer": 1,
|
||||||
|
},
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, **kwargs):
|
||||||
|
super().__init__(**kwargs)
|
||||||
|
model_training_params = self.freqai_info.get("model_training_parameters", {})
|
||||||
|
self.learning_rate: float = model_training_params.get("learning_rate", 3e-4)
|
||||||
|
self.model_kwargs: Dict[str, any] = model_training_params.get("model_kwargs", {})
|
||||||
|
self.trainer_kwargs: Dict[str, any] = model_training_params.get("trainer_kwargs", {})
|
||||||
|
|
||||||
|
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
|
||||||
|
"""
|
||||||
|
User sets up the training and test data to fit their desired model here
|
||||||
|
:param data_dictionary: the dictionary constructed by DataHandler to hold
|
||||||
|
all the training and test data/labels.
|
||||||
|
:raises ValueError: If self.class_names is not defined in the parent class.
|
||||||
|
"""
|
||||||
|
|
||||||
|
class_names = self.get_class_names()
|
||||||
|
self.convert_label_column_to_int(data_dictionary, dk, class_names)
|
||||||
|
n_features = data_dictionary["train_features"].shape[-1]
|
||||||
|
model = PyTorchMLPModel(
|
||||||
|
input_dim=n_features,
|
||||||
|
output_dim=len(class_names),
|
||||||
|
**self.model_kwargs
|
||||||
|
)
|
||||||
|
model.to(self.device)
|
||||||
|
optimizer = torch.optim.AdamW(model.parameters(), lr=self.learning_rate)
|
||||||
|
criterion = torch.nn.CrossEntropyLoss()
|
||||||
|
init_model = self.get_init_model(dk.pair)
|
||||||
|
trainer = PyTorchModelTrainer(
|
||||||
|
model=model,
|
||||||
|
optimizer=optimizer,
|
||||||
|
criterion=criterion,
|
||||||
|
model_meta_data={"class_names": class_names},
|
||||||
|
device=self.device,
|
||||||
|
init_model=init_model,
|
||||||
|
**self.trainer_kwargs,
|
||||||
|
)
|
||||||
|
trainer.fit(data_dictionary)
|
||||||
|
return trainer
|
@ -1,5 +1,5 @@
|
|||||||
import logging
|
import logging
|
||||||
from typing import Any, Dict, List, Optional, Tuple
|
from typing import Dict, List, Tuple
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import numpy.typing as npt
|
import numpy.typing as npt
|
||||||
@ -10,17 +10,16 @@ from torch.nn import functional as F
|
|||||||
|
|
||||||
from freqtrade.exceptions import OperationalException
|
from freqtrade.exceptions import OperationalException
|
||||||
from freqtrade.freqai.base_models.BasePyTorchModel import BasePyTorchModel
|
from freqtrade.freqai.base_models.BasePyTorchModel import BasePyTorchModel
|
||||||
from freqtrade.freqai.base_models.PyTorchModelTrainer import PyTorchModelTrainer
|
|
||||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||||
from freqtrade.freqai.prediction_models.PyTorchMLPModel import PyTorchMLPModel
|
|
||||||
|
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
class PyTorchClassifierMultiTarget(BasePyTorchModel):
|
class PyTorchClassifier(BasePyTorchModel):
|
||||||
"""
|
"""
|
||||||
A PyTorch implementation of a multi-target classifier.
|
A PyTorch implementation of a classifier.
|
||||||
|
User must implement fit method
|
||||||
"""
|
"""
|
||||||
def __init__(self, **kwargs):
|
def __init__(self, **kwargs):
|
||||||
"""
|
"""
|
||||||
@ -34,59 +33,9 @@ class PyTorchClassifierMultiTarget(BasePyTorchModel):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
super().__init__(**kwargs)
|
super().__init__(**kwargs)
|
||||||
model_training_params = self.freqai_info.get("model_training_parameters", {})
|
|
||||||
self.max_iters: int = model_training_params.get("max_iters", 100)
|
|
||||||
self.batch_size: int = model_training_params.get("batch_size", 64)
|
|
||||||
self.learning_rate: float = model_training_params.get("learning_rate", 3e-4)
|
|
||||||
self.max_n_eval_batches: Optional[int] = model_training_params.get(
|
|
||||||
"max_n_eval_batches", None
|
|
||||||
)
|
|
||||||
self.model_kwargs: Dict[str, any] = model_training_params.get("model_kwargs", {})
|
|
||||||
self.class_name_to_index = None
|
self.class_name_to_index = None
|
||||||
self.index_to_class_name = None
|
self.index_to_class_name = None
|
||||||
|
|
||||||
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
|
|
||||||
"""
|
|
||||||
User sets up the training and test data to fit their desired model here
|
|
||||||
:param data_dictionary: the dictionary constructed by DataHandler to hold
|
|
||||||
all the training and test data/labels.
|
|
||||||
:raises ValueError: If self.class_names is not defined in the parent class.
|
|
||||||
|
|
||||||
"""
|
|
||||||
|
|
||||||
if not hasattr(self, "class_names"):
|
|
||||||
raise ValueError(
|
|
||||||
"Missing attribute: self.class_names "
|
|
||||||
"set self.freqai.class_names = [\"class a\", \"class b\", \"class c\"] "
|
|
||||||
"inside IStrategy.set_freqai_targets method."
|
|
||||||
)
|
|
||||||
|
|
||||||
self.init_class_names_to_index_mapping(self.class_names)
|
|
||||||
self.encode_classes_name(data_dictionary, dk)
|
|
||||||
n_features = data_dictionary["train_features"].shape[-1]
|
|
||||||
model = PyTorchMLPModel(
|
|
||||||
input_dim=n_features,
|
|
||||||
output_dim=len(self.class_names),
|
|
||||||
**self.model_kwargs
|
|
||||||
)
|
|
||||||
model.to(self.device)
|
|
||||||
optimizer = torch.optim.AdamW(model.parameters(), lr=self.learning_rate)
|
|
||||||
criterion = torch.nn.CrossEntropyLoss()
|
|
||||||
init_model = self.get_init_model(dk.pair)
|
|
||||||
trainer = PyTorchModelTrainer(
|
|
||||||
model=model,
|
|
||||||
optimizer=optimizer,
|
|
||||||
criterion=criterion,
|
|
||||||
model_meta_data={"class_names": self.class_names},
|
|
||||||
device=self.device,
|
|
||||||
batch_size=self.batch_size,
|
|
||||||
max_iters=self.max_iters,
|
|
||||||
max_n_eval_batches=self.max_n_eval_batches,
|
|
||||||
init_model=init_model
|
|
||||||
)
|
|
||||||
trainer.fit(data_dictionary)
|
|
||||||
return trainer
|
|
||||||
|
|
||||||
def predict(
|
def predict(
|
||||||
self, unfiltered_df: DataFrame, dk: FreqaiDataKitchen, **kwargs
|
self, unfiltered_df: DataFrame, dk: FreqaiDataKitchen, **kwargs
|
||||||
) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
|
) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
|
||||||
@ -97,7 +46,7 @@ class PyTorchClassifierMultiTarget(BasePyTorchModel):
|
|||||||
:pred_df: dataframe containing the predictions
|
:pred_df: dataframe containing the predictions
|
||||||
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
|
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
|
||||||
data (NaNs) or felt uncertain about data (PCA and DI index)
|
data (NaNs) or felt uncertain about data (PCA and DI index)
|
||||||
:raises ValueError: if 'class_name' doesn't exist in model meta_data.
|
:raises ValueError: if 'class_names' doesn't exist in model meta_data.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
class_names = self.model.model_meta_data.get("class_names", None)
|
class_names = self.model.model_meta_data.get("class_names", None)
|
||||||
@ -106,6 +55,8 @@ class PyTorchClassifierMultiTarget(BasePyTorchModel):
|
|||||||
"Missing class names. "
|
"Missing class names. "
|
||||||
"self.model.model_meta_data[\"class_names\"] is None."
|
"self.model.model_meta_data[\"class_names\"] is None."
|
||||||
)
|
)
|
||||||
|
|
||||||
|
if not self.class_name_to_index:
|
||||||
self.init_class_names_to_index_mapping(class_names)
|
self.init_class_names_to_index_mapping(class_names)
|
||||||
|
|
||||||
dk.find_features(unfiltered_df)
|
dk.find_features(unfiltered_df)
|
||||||
@ -116,49 +67,77 @@ class PyTorchClassifierMultiTarget(BasePyTorchModel):
|
|||||||
dk.data_dictionary["prediction_features"] = filtered_df
|
dk.data_dictionary["prediction_features"] = filtered_df
|
||||||
|
|
||||||
self.data_cleaning_predict(dk)
|
self.data_cleaning_predict(dk)
|
||||||
dk.data_dictionary["prediction_features"] = torch.tensor(
|
x = torch.from_numpy(dk.data_dictionary["prediction_features"].values)\
|
||||||
dk.data_dictionary["prediction_features"].values
|
.float()\
|
||||||
).float().to(self.device)
|
.to(self.device)
|
||||||
|
|
||||||
logits = self.model.model(dk.data_dictionary["prediction_features"])
|
logits = self.model.model(x)
|
||||||
probs = F.softmax(logits, dim=-1)
|
probs = F.softmax(logits, dim=-1)
|
||||||
predicted_classes = torch.argmax(probs, dim=-1)
|
predicted_classes = torch.argmax(probs, dim=-1)
|
||||||
predicted_classes_str = self.decode_classes_name(predicted_classes)
|
predicted_classes_str = self.decode_class_names(predicted_classes)
|
||||||
pred_df_prob = DataFrame(probs.detach().numpy(), columns=class_names)
|
pred_df_prob = DataFrame(probs.detach().numpy(), columns=class_names)
|
||||||
pred_df = DataFrame(predicted_classes_str, columns=[dk.label_list[0]])
|
pred_df = DataFrame(predicted_classes_str, columns=[dk.label_list[0]])
|
||||||
pred_df = pd.concat([pred_df, pred_df_prob], axis=1)
|
pred_df = pd.concat([pred_df, pred_df_prob], axis=1)
|
||||||
return (pred_df, dk.do_predict)
|
return (pred_df, dk.do_predict)
|
||||||
|
|
||||||
def encode_classes_name(self, data_dictionary: Dict[str, pd.DataFrame], dk: FreqaiDataKitchen):
|
def encode_class_names(
|
||||||
|
self,
|
||||||
|
data_dictionary: Dict[str, pd.DataFrame],
|
||||||
|
dk: FreqaiDataKitchen,
|
||||||
|
class_names: List[str],
|
||||||
|
):
|
||||||
"""
|
"""
|
||||||
encode class name str -> int
|
encode class name, str -> int
|
||||||
assuming first column of *_labels data frame to contain class names
|
assuming first column of *_labels data frame to be the target column
|
||||||
|
containing the class names
|
||||||
"""
|
"""
|
||||||
|
|
||||||
target_column_name = dk.label_list[0]
|
target_column_name = dk.label_list[0]
|
||||||
for split in ["train", "test"]:
|
for split in ["train", "test"]:
|
||||||
label_df = data_dictionary[f"{split}_labels"]
|
label_df = data_dictionary[f"{split}_labels"]
|
||||||
self.assert_valid_class_names(label_df[target_column_name])
|
self.assert_valid_class_names(label_df[target_column_name], class_names)
|
||||||
label_df[target_column_name] = list(
|
label_df[target_column_name] = list(
|
||||||
map(lambda x: self.class_name_to_index[x], label_df[target_column_name])
|
map(lambda x: self.class_name_to_index[x], label_df[target_column_name])
|
||||||
)
|
)
|
||||||
|
|
||||||
def assert_valid_class_names(self, labels: pd.Series):
|
@staticmethod
|
||||||
non_defined_labels = set(labels) - set(self.class_names)
|
def assert_valid_class_names(
|
||||||
|
target_column: pd.Series,
|
||||||
|
class_names: List[str]
|
||||||
|
):
|
||||||
|
non_defined_labels = set(target_column) - set(class_names)
|
||||||
if len(non_defined_labels) != 0:
|
if len(non_defined_labels) != 0:
|
||||||
raise OperationalException(
|
raise OperationalException(
|
||||||
f"Found non defined labels: {non_defined_labels}, ",
|
f"Found non defined labels: {non_defined_labels}, ",
|
||||||
f"expecting labels: {self.class_names}"
|
f"expecting labels: {class_names}"
|
||||||
)
|
)
|
||||||
|
|
||||||
def decode_classes_name(self, classes: torch.Tensor) -> List[str]:
|
def decode_class_names(self, class_ints: torch.Tensor) -> List[str]:
|
||||||
"""
|
"""
|
||||||
decode class name int -> str
|
decode class name, int -> str
|
||||||
"""
|
"""
|
||||||
|
|
||||||
return list(map(lambda x: self.index_to_class_name[x.item()], classes))
|
return list(map(lambda x: self.index_to_class_name[x.item()], class_ints))
|
||||||
|
|
||||||
def init_class_names_to_index_mapping(self, class_names):
|
def init_class_names_to_index_mapping(self, class_names):
|
||||||
self.class_name_to_index = {s: i for i, s in enumerate(class_names)}
|
self.class_name_to_index = {s: i for i, s in enumerate(class_names)}
|
||||||
self.index_to_class_name = {i: s for i, s in enumerate(class_names)}
|
self.index_to_class_name = {i: s for i, s in enumerate(class_names)}
|
||||||
logger.info(f"class_name_to_index: {self.class_name_to_index}")
|
logger.info(f"encoded class name to index: {self.class_name_to_index}")
|
||||||
|
|
||||||
|
def convert_label_column_to_int(
|
||||||
|
self,
|
||||||
|
data_dictionary: Dict[str, pd.DataFrame],
|
||||||
|
dk: FreqaiDataKitchen,
|
||||||
|
class_names: List[str]
|
||||||
|
):
|
||||||
|
self.init_class_names_to_index_mapping(class_names)
|
||||||
|
self.encode_class_names(data_dictionary, dk, class_names)
|
||||||
|
|
||||||
|
def get_class_names(self) -> List[str]:
|
||||||
|
if not hasattr(self, "class_names"):
|
||||||
|
raise ValueError(
|
||||||
|
"Missing attribute: self.class_names "
|
||||||
|
"set self.freqai.class_names = [\"class a\", \"class b\", \"class c\"] "
|
||||||
|
"inside IStrategy.set_freqai_targets method."
|
||||||
|
)
|
||||||
|
return self.class_names
|
@ -88,10 +88,12 @@ def test_extract_data_and_train_model_Standard(mocker, freqai_conf, model, pca,
|
|||||||
if 'PyTorchClassifierMultiTarget' in model:
|
if 'PyTorchClassifierMultiTarget' in model:
|
||||||
model_save_ext = 'zip'
|
model_save_ext = 'zip'
|
||||||
freqai_conf['freqai']['model_training_parameters'].update({
|
freqai_conf['freqai']['model_training_parameters'].update({
|
||||||
|
"learning_rate": 3e-4,
|
||||||
|
"trainer_kwargs": {
|
||||||
"max_iters": 1,
|
"max_iters": 1,
|
||||||
"batch_size": 64,
|
"batch_size": 64,
|
||||||
"learning_rate": 3e-4,
|
|
||||||
"max_n_eval_batches": 1,
|
"max_n_eval_batches": 1,
|
||||||
|
},
|
||||||
"model_kwargs": {
|
"model_kwargs": {
|
||||||
"hidden_dim": 32,
|
"hidden_dim": 32,
|
||||||
"dropout_percent": 0.2,
|
"dropout_percent": 0.2,
|
||||||
|
Loading…
Reference in New Issue
Block a user