create children class to PyTorchClassifier to implement the fit method where we initialize the trainer and model objects
This commit is contained in:
@@ -19,35 +19,32 @@ class PyTorchModelTrainer:
|
||||
optimizer: Optimizer,
|
||||
criterion: nn.Module,
|
||||
device: str,
|
||||
batch_size: int,
|
||||
max_iters: int,
|
||||
max_n_eval_batches: int,
|
||||
init_model: Dict,
|
||||
model_meta_data: Dict[str, Any] = {},
|
||||
**kwargs
|
||||
):
|
||||
"""
|
||||
:param model: The PyTorch model to be trained.
|
||||
:param optimizer: The optimizer to use for training.
|
||||
:param criterion: The loss function to use for training.
|
||||
:param device: The device to use for training (e.g. 'cpu', 'cuda').
|
||||
:param batch_size: The size of the batches to use during training.
|
||||
:param init_model: A dictionary containing the initial model/optimizer
|
||||
state_dict and model_meta_data saved by self.save() method.
|
||||
:param model_meta_data: Additional metadata about the model (optional).
|
||||
:param max_iters: The number of training iterations to run.
|
||||
iteration here refers to the number of times we call
|
||||
self.optimizer.step(). used to calculate n_epochs.
|
||||
:param batch_size: The size of the batches to use during training.
|
||||
:param max_n_eval_batches: The maximum number batches to use for evaluation.
|
||||
:param init_model: A dictionary containing the initial model/optimizer
|
||||
state_dict and model_meta_data saved by self.save() method.
|
||||
:param model_meta_data: Additional metadata about the model (optional).
|
||||
"""
|
||||
self.model = model
|
||||
self.optimizer = optimizer
|
||||
self.criterion = criterion
|
||||
self.model_meta_data = model_meta_data
|
||||
self.device = device
|
||||
self.max_iters = max_iters
|
||||
self.batch_size = batch_size
|
||||
self.max_n_eval_batches = max_n_eval_batches
|
||||
|
||||
self.max_iters: int = kwargs.get("max_iters", 100)
|
||||
self.batch_size: int = kwargs.get("batch_size", 64)
|
||||
self.max_n_eval_batches: Optional[int] = kwargs.get("max_n_eval_batches", None)
|
||||
if init_model:
|
||||
self.load_from_checkpoint(init_model)
|
||||
|
||||
|
Reference in New Issue
Block a user