freqAI Strategy - improve user experience
This commit is contained in:
@@ -47,16 +47,94 @@ class FreqaiExampleStrategy(IStrategy):
|
||||
std_dev_multiplier_sell = CategoricalParameter(
|
||||
[0.75, 1, 1.25, 1.5, 1.75], space="sell", default=1.25, optimize=True)
|
||||
|
||||
def populate_any_indicators(
|
||||
def freqai_feature_engineering_indicator_periods(self, dataframe, period, **kwargs):
|
||||
"""
|
||||
This function will be called for all include_timeframes in each indicator_periods_candles
|
||||
(including corr_pairs).
|
||||
After that, the features will be shifted by the number of candles in the
|
||||
include_shifted_candles.
|
||||
:param df: strategy dataframe which will receive the features
|
||||
:param period: period of the indicator - usage example:
|
||||
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
|
||||
"""
|
||||
dataframe["%-rsi-period"] = ta.RSI(dataframe, timeperiod=period)
|
||||
dataframe["%-mfi-period"] = ta.MFI(dataframe, timeperiod=period)
|
||||
dataframe["%-adx-period"] = ta.ADX(dataframe, timeperiod=period)
|
||||
dataframe["%-sma-period"] = ta.SMA(dataframe, timeperiod=period)
|
||||
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
|
||||
|
||||
bollinger = qtpylib.bollinger_bands(
|
||||
qtpylib.typical_price(dataframe), window=period, stds=2.2
|
||||
)
|
||||
dataframe["bb_lowerband-period"] = bollinger["lower"]
|
||||
dataframe["bb_middleband-period"] = bollinger["mid"]
|
||||
dataframe["bb_upperband-period"] = bollinger["upper"]
|
||||
|
||||
dataframe["%-bb_width-period"] = (
|
||||
dataframe["bb_upperband-period"]
|
||||
- dataframe["bb_lowerband-period"]
|
||||
) / dataframe["bb_middleband-period"]
|
||||
dataframe["%-close-bb_lower-period"] = (
|
||||
dataframe["close"] / dataframe["bb_lowerband-period"]
|
||||
)
|
||||
|
||||
dataframe["%-roc-period"] = ta.ROC(dataframe, timeperiod=period)
|
||||
|
||||
dataframe["%-relative_volume-period"] = (
|
||||
dataframe["volume"] / dataframe["volume"].rolling(period).mean()
|
||||
)
|
||||
|
||||
return dataframe
|
||||
|
||||
def freqai_feature_engineering_generic(self, dataframe, **kwargs):
|
||||
"""
|
||||
This optional function will be called for all include_timeframes (including corr_pairs).
|
||||
After that, the features will be shifted by the number of candles in the
|
||||
include_shifted_candles.
|
||||
:param df: strategy dataframe which will receive the features
|
||||
dataframe["%-pct-change"] = dataframe["close"].pct_change()
|
||||
"""
|
||||
dataframe["%-pct-change"] = dataframe["close"].pct_change()
|
||||
dataframe["%-raw_volume"] = dataframe["volume"]
|
||||
dataframe["%-raw_price"] = dataframe["close"]
|
||||
return dataframe
|
||||
|
||||
def freqai_feature_engineering_generalized_indicators(self, dataframe, **kwargs):
|
||||
"""
|
||||
This optional function will be called once with the dataframe of the main timeframe.
|
||||
:param df: strategy dataframe which will receive the features
|
||||
usage example: dataframe["%-day_of_week"] = (dataframe["date"].dt.dayofweek + 1) / 7
|
||||
"""
|
||||
dataframe["%-day_of_week"] = (dataframe["date"].dt.dayofweek + 1) / 7
|
||||
dataframe["%-hour_of_day"] = (dataframe["date"].dt.hour + 1) / 25
|
||||
return dataframe
|
||||
|
||||
def freqai_set_targets(self, dataframe, **kwargs):
|
||||
"""
|
||||
Required function to set the targets for the model.
|
||||
:param df: strategy dataframe which will receive the targets
|
||||
usage example: dataframe["&-target"] = dataframe["close"].shift(-1) / dataframe["close"]
|
||||
"""
|
||||
dataframe["&-s_close"] = (
|
||||
dataframe["close"]
|
||||
.shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
|
||||
.rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
|
||||
.mean()
|
||||
/ dataframe["close"]
|
||||
- 1
|
||||
)
|
||||
return dataframe
|
||||
|
||||
def populate_any_indicators_old(
|
||||
self, pair, df, tf, informative=None, set_generalized_indicators=False
|
||||
):
|
||||
"""
|
||||
DEPRECATED - USE FEATURE ENGINEERING FUNCTIONS INSTEAD
|
||||
Function designed to automatically generate, name and merge features
|
||||
from user indicated timeframes in the configuration file. User controls the indicators
|
||||
passed to the training/prediction by prepending indicators with `f'%-{pair}`
|
||||
(see convention below). I.e. user should not prepend any supporting metrics
|
||||
(e.g. bb_lowerband below) with % unless they explicitly want to pass that metric to the
|
||||
model.
|
||||
from user indicated timeframes in the configuration file. User can add
|
||||
additional features here, but must follow the naming convention.
|
||||
This method is *only* used in FreqaiDataKitchen class and therefore
|
||||
it is only called if FreqAI is active.
|
||||
:param pair: pair to be used as informative
|
||||
:param df: strategy dataframe which will receive merges from informatives
|
||||
:param tf: timeframe of the dataframe which will modify the feature names
|
||||
|
Reference in New Issue
Block a user