Merge pull request #249 from kryofly/tests_dec28

tests for dataframe, whitelist and backtesting
This commit is contained in:
Janne Sinivirta 2017-12-29 19:14:57 +02:00 committed by GitHub
commit 80e1e64eae
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 216 additions and 0 deletions

View File

@ -1,5 +1,6 @@
# pragma pylint: disable=missing-docstring,W0212 # pragma pylint: disable=missing-docstring,W0212
import math
import pandas as pd import pandas as pd
from freqtrade import exchange, optimize from freqtrade import exchange, optimize
from freqtrade.exchange import Bittrex from freqtrade.exchange import Bittrex
@ -46,3 +47,110 @@ def test_backtest_1min_ticker_interval(default_conf, mocker):
data = optimize.load_data(ticker_interval=1, pairs=['BTC_UNITEST']) data = optimize.load_data(ticker_interval=1, pairs=['BTC_UNITEST'])
results = backtest(default_conf['stake_amount'], optimize.preprocess(data), 1, True) results = backtest(default_conf['stake_amount'], optimize.preprocess(data), 1, True)
assert not results.empty assert not results.empty
def trim_dataframe(df, num):
new = dict()
for pair, pair_data in df.items():
new[pair] = pair_data[-num:] # last 50 rows
return new
def load_data_test(what):
data = optimize.load_data(ticker_interval=1, pairs=['BTC_UNITEST'])
data = trim_dataframe(data, -40)
pair = data['BTC_UNITEST']
# Depending on the what parameter we now adjust the
# loaded data:
# pair :: [{'O': 0.123, 'H': 0.123, 'L': 0.123,
# 'C': 0.123, 'V': 123.123,
# 'T': '2017-11-04T23:02:00', 'BV': 0.123}]
if what == 'raise':
o = 0.001
h = 0.001
ll = 0.001
c = 0.001
ll -= 0.0001
h += 0.0001
for frame in pair:
o += 0.0001
h += 0.0001
ll += 0.0001
c += 0.0001
# save prices rounded to satoshis
frame['O'] = round(o, 9)
frame['H'] = round(h, 9)
frame['L'] = round(ll, 9)
frame['C'] = round(c, 9)
if what == 'lower':
o = 0.001
h = 0.001
ll = 0.001
c = 0.001
ll -= 0.0001
h += 0.0001
for frame in pair:
o -= 0.0001
h -= 0.0001
ll -= 0.0001
c -= 0.0001
# save prices rounded to satoshis
frame['O'] = round(o, 9)
frame['H'] = round(h, 9)
frame['L'] = round(ll, 9)
frame['C'] = round(c, 9)
if what == 'sine':
i = 0
o = (2 + math.sin(i/10)) / 1000
h = o
ll = o
c = o
h += 0.0001
ll -= 0.0001
for frame in pair:
o = (2 + math.sin(i/10)) / 1000
h = (2 + math.sin(i/10)) / 1000 + 0.0001
ll = (2 + math.sin(i/10)) / 1000 - 0.0001
c = (2 + math.sin(i/10)) / 1000 - 0.000001
# save prices rounded to satoshis
frame['O'] = round(o, 9)
frame['H'] = round(h, 9)
frame['L'] = round(ll, 9)
frame['C'] = round(c, 9)
i += 1
return data
def simple_backtest(config, contour, num_results):
data = load_data_test(contour)
processed = optimize.preprocess(data)
assert isinstance(processed, dict)
results = backtest(config['stake_amount'], processed, 1, True)
# results :: <class 'pandas.core.frame.DataFrame'>
assert len(results) == num_results
# Test backtest on offline data
# loaded by freqdata/optimize/__init__.py::load_data()
def test_backtest2(default_conf, mocker):
mocker.patch.dict('freqtrade.main._CONF', default_conf)
data = optimize.load_data(ticker_interval=5, pairs=['BTC_ETH'])
results = backtest(default_conf['stake_amount'], optimize.preprocess(data), 10, True)
num_resutls = len(results)
assert num_resutls > 0
def test_processed(default_conf, mocker):
mocker.patch.dict('freqtrade.main._CONF', default_conf)
data = load_data_test('raise')
assert optimize.preprocess(data)
def test_raise(default_conf, mocker):
mocker.patch.dict('freqtrade.main._CONF', default_conf)
tests = [['raise', 359], ['lower', 0], ['sine', 1734]]
for [contour, numres] in tests:
simple_backtest(default_conf, contour, numres)

View File

@ -0,0 +1,81 @@
from freqtrade.main import refresh_whitelist
# whitelist, blacklist, filtering, all of that will
# eventually become some rules to run on a generic ACL engine
# perhaps try to anticipate that by using some python package
def assert_list_equal(l1, l2):
for pair in l1:
assert pair in l2
for pair in l2:
assert pair in l1
def whitelist_conf():
return {
"stake_currency": "BTC",
"exchange": {
"pair_whitelist": [
"BTC_ETH",
"BTC_TKN",
"BTC_TRST",
"BTC_SWT",
"BTC_BCC"
],
},
}
def get_health():
return [{'Currency': 'ETH',
'IsActive': True
},
{'Currency': 'TKN',
'IsActive': True
}]
def get_health_empty():
return []
# below three test could be merged into a single
# test that ran randomlly generated health lists
def test_refresh_whitelist(mocker):
conf = whitelist_conf()
mocker.patch.dict('freqtrade.main._CONF', conf)
mocker.patch.multiple('freqtrade.main.exchange',
get_wallet_health=get_health)
# no argument: use the whitelist provided by config
refresh_whitelist()
whitelist = ['BTC_ETH', 'BTC_TKN']
pairslist = conf['exchange']['pair_whitelist']
# Ensure all except those in whitelist are removed
assert_list_equal(whitelist, pairslist)
def test_refresh_whitelist_dynamic(mocker):
conf = whitelist_conf()
mocker.patch.dict('freqtrade.main._CONF', conf)
mocker.patch.multiple('freqtrade.main.exchange',
get_wallet_health=get_health)
# argument: use the whitelist dynamically by exchange-volume
whitelist = ['BTC_ETH', 'BTC_TKN']
refresh_whitelist(whitelist)
pairslist = conf['exchange']['pair_whitelist']
assert_list_equal(whitelist, pairslist)
def test_refresh_whitelist_dynamic_empty(mocker):
conf = whitelist_conf()
mocker.patch.dict('freqtrade.main._CONF', conf)
mocker.patch.multiple('freqtrade.main.exchange',
get_wallet_health=get_health_empty)
# argument: use the whitelist dynamically by exchange-volume
whitelist = []
conf['exchange']['pair_whitelist'] = []
refresh_whitelist(whitelist)
pairslist = conf['exchange']['pair_whitelist']
assert_list_equal(whitelist, pairslist)

View File

@ -0,0 +1,27 @@
import pandas
from freqtrade import analyze
import freqtrade.optimize
_pairs = ['BTC_ETH']
def load_dataframe_pair(pairs):
ld = freqtrade.optimize.load_data(ticker_interval=5, pairs=pairs)
assert isinstance(ld, dict)
assert isinstance(pairs[0], str)
dataframe = ld[pairs[0]]
dataframe = analyze.analyze_ticker(dataframe)
return dataframe
def test_dataframe_load():
dataframe = load_dataframe_pair(_pairs)
assert isinstance(dataframe, pandas.core.frame.DataFrame)
def test_dataframe_columns_exists():
dataframe = load_dataframe_pair(_pairs)
assert 'high' in dataframe.columns
assert 'low' in dataframe.columns
assert 'close' in dataframe.columns