Merge 861fa3d9ea
into 586f49cafd
This commit is contained in:
commit
8049149b23
295
user_data/random/backtesting.py
Normal file
295
user_data/random/backtesting.py
Normal file
@ -0,0 +1,295 @@
|
||||
# pragma pylint: disable=missing-docstring, W0212, too-many-arguments
|
||||
|
||||
"""
|
||||
This module contains the backtesting logic
|
||||
"""
|
||||
from argparse import Namespace
|
||||
from typing import Dict, Tuple, Any, List, Optional
|
||||
|
||||
import arrow
|
||||
from pandas import DataFrame, Series
|
||||
from tabulate import tabulate
|
||||
import freqtrade.optimize as optimize
|
||||
from freqtrade import exchange
|
||||
from freqtrade.analyze import Analyze
|
||||
from freqtrade.arguments import Arguments
|
||||
from freqtrade.configuration import Configuration
|
||||
from freqtrade.exchange import Bittrex
|
||||
from freqtrade.logger import Logger
|
||||
from freqtrade.misc import file_dump_json
|
||||
from freqtrade.persistence import Trade
|
||||
import sys
|
||||
import os
|
||||
import time
|
||||
class Backtesting(object):
|
||||
"""
|
||||
Backtesting class, this class contains all the logic to run a backtest
|
||||
|
||||
To run a backtest:
|
||||
backtesting = Backtesting(config)
|
||||
backtesting.start()
|
||||
"""
|
||||
def __init__(self, config: Dict[str, Any]) -> None:
|
||||
|
||||
# Init the logger
|
||||
self.logging = Logger(name=__name__, level=config['loglevel'])
|
||||
self.logger = self.logging.get_logger()
|
||||
self.config = config
|
||||
self.analyze = None
|
||||
self.ticker_interval = None
|
||||
self.tickerdata_to_dataframe = None
|
||||
self.populate_buy_trend = None
|
||||
self.populate_sell_trend = None
|
||||
self._init()
|
||||
|
||||
def _init(self) -> None:
|
||||
"""
|
||||
Init objects required for backtesting
|
||||
:return: None
|
||||
"""
|
||||
self.analyze = Analyze(self.config)
|
||||
self.ticker_interval = self.analyze.strategy.ticker_interval
|
||||
self.tickerdata_to_dataframe = self.analyze.tickerdata_to_dataframe
|
||||
self.populate_buy_trend = self.analyze.populate_buy_trend
|
||||
self.populate_sell_trend = self.analyze.populate_sell_trend
|
||||
exchange._API = Bittrex({'key': '', 'secret': ''})
|
||||
|
||||
@staticmethod
|
||||
def get_timeframe(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]:
|
||||
"""
|
||||
Get the maximum timeframe for the given backtest data
|
||||
:param data: dictionary with preprocessed backtesting data
|
||||
:return: tuple containing min_date, max_date
|
||||
"""
|
||||
all_dates = Series([])
|
||||
for pair_data in data.values():
|
||||
all_dates = all_dates.append(pair_data['date'])
|
||||
all_dates.sort_values(inplace=True)
|
||||
return arrow.get(all_dates.iloc[0]), arrow.get(all_dates.iloc[-1])
|
||||
|
||||
def _generate_text_table(self, data: Dict[str, Dict], results: DataFrame) -> str:
|
||||
"""
|
||||
Generates and returns a text table for the given backtest data and the results dataframe
|
||||
:return: pretty printed table with tabulate as str
|
||||
"""
|
||||
stake_currency = self.config.get('stake_currency')
|
||||
|
||||
floatfmt = ('.8f', '.8f', '.8f', '.8f', '.1f')
|
||||
tabular_data = []
|
||||
headers = ['total profit ' + stake_currency]
|
||||
|
||||
# Append Total
|
||||
tabular_data.append([
|
||||
'TOTAL',
|
||||
results.profit_BTC.sum(),
|
||||
])
|
||||
return tabulate(tabular_data, headers=headers, floatfmt=floatfmt)
|
||||
|
||||
def _get_sell_trade_entry(
|
||||
self, pair: str, buy_row: DataFrame,
|
||||
partial_ticker: List, trade_count_lock: Dict, args: Dict) -> Optional[Tuple]:
|
||||
|
||||
stake_amount = args['stake_amount']
|
||||
max_open_trades = args.get('max_open_trades', 0)
|
||||
trade = Trade(
|
||||
open_rate=buy_row.close,
|
||||
open_date=buy_row.date,
|
||||
stake_amount=stake_amount,
|
||||
amount=stake_amount / buy_row.open,
|
||||
fee=exchange.get_fee()
|
||||
)
|
||||
|
||||
# calculate win/lose forwards from buy point
|
||||
for sell_row in partial_ticker:
|
||||
if max_open_trades > 0:
|
||||
# Increase trade_count_lock for every iteration
|
||||
trade_count_lock[sell_row.date] = trade_count_lock.get(sell_row.date, 0) + 1
|
||||
|
||||
buy_signal = sell_row.buy
|
||||
if self.analyze.should_sell(trade, sell_row.close, sell_row.date, buy_signal,
|
||||
sell_row.sell):
|
||||
return \
|
||||
sell_row, \
|
||||
(
|
||||
pair,
|
||||
trade.calc_profit_percent(rate=sell_row.close),
|
||||
trade.calc_profit(rate=sell_row.close),
|
||||
(sell_row.date - buy_row.date).seconds // 60
|
||||
), \
|
||||
sell_row.date
|
||||
return None
|
||||
|
||||
def backtest(self, args: Dict) -> DataFrame:
|
||||
"""
|
||||
Implements backtesting functionality
|
||||
|
||||
NOTE: This method is used by Hyperopt at each iteration. Please keep it optimized.
|
||||
Of course try to not have ugly code. By some accessor are sometime slower than functions.
|
||||
Avoid, logging on this method
|
||||
|
||||
:param args: a dict containing:
|
||||
stake_amount: btc amount to use for each trade
|
||||
processed: a processed dictionary with format {pair, data}
|
||||
max_open_trades: maximum number of concurrent trades (default: 0, disabled)
|
||||
realistic: do we try to simulate realistic trades? (default: True)
|
||||
sell_profit_only: sell if profit only
|
||||
use_sell_signal: act on sell-signal
|
||||
:return: DataFrame
|
||||
"""
|
||||
headers = ['date', 'buy', 'open', 'close', 'sell']
|
||||
processed = args['processed']
|
||||
max_open_trades = args.get('max_open_trades', 0)
|
||||
realistic = args.get('realistic', False)
|
||||
record = args.get('record', None)
|
||||
records = []
|
||||
trades = []
|
||||
trade_count_lock = {}
|
||||
for pair, pair_data in processed.items():
|
||||
pair_data['buy'], pair_data['sell'] = 0, 0 # cleanup from previous run
|
||||
|
||||
ticker_data = self.populate_sell_trend(self.populate_buy_trend(pair_data))[headers]
|
||||
ticker = [x for x in ticker_data.itertuples()]
|
||||
|
||||
lock_pair_until = None
|
||||
for index, row in enumerate(ticker):
|
||||
if row.buy == 0 or row.sell == 1:
|
||||
continue # skip rows where no buy signal or that would immediately sell off
|
||||
|
||||
if realistic:
|
||||
if lock_pair_until is not None and row.date <= lock_pair_until:
|
||||
continue
|
||||
if max_open_trades > 0:
|
||||
# Check if max_open_trades has already been reached for the given date
|
||||
if not trade_count_lock.get(row.date, 0) < max_open_trades:
|
||||
continue
|
||||
|
||||
trade_count_lock[row.date] = trade_count_lock.get(row.date, 0) + 1
|
||||
|
||||
ret = self._get_sell_trade_entry(pair, row, ticker[index + 1:],
|
||||
trade_count_lock, args)
|
||||
|
||||
if ret:
|
||||
row2, trade_entry, next_date = ret
|
||||
lock_pair_until = next_date
|
||||
trades.append(trade_entry)
|
||||
if record:
|
||||
# Note, need to be json.dump friendly
|
||||
# record a tuple of pair, current_profit_percent,
|
||||
# entry-date, duration
|
||||
records.append((pair, trade_entry[1],
|
||||
row.date.strftime('%s'),
|
||||
row2.date.strftime('%s'),
|
||||
row.date, trade_entry[3]))
|
||||
# For now export inside backtest(), maybe change so that backtest()
|
||||
# returns a tuple like: (dataframe, records, logs, etc)
|
||||
if record and record.find('trades') >= 0:
|
||||
self.logger.info('Dumping backtest results')
|
||||
file_dump_json('backtest-result.json', records)
|
||||
labels = ['currency', 'profit_percent', 'profit_BTC', 'duration']
|
||||
return DataFrame.from_records(trades, columns=labels)
|
||||
|
||||
def start(self) -> None:
|
||||
"""
|
||||
Run a backtesting end-to-end
|
||||
:return: None
|
||||
"""
|
||||
data = {}
|
||||
pairs = self.config['exchange']['pair_whitelist']
|
||||
self.logger.info('Using stake_currency: %s ...', self.config['stake_currency'])
|
||||
self.logger.info('Using stake_amount: %s ...', self.config['stake_amount'])
|
||||
|
||||
if self.config.get('live'):
|
||||
self.logger.info('Downloading data for all pairs in whitelist ...')
|
||||
for pair in pairs:
|
||||
data[pair] = exchange.get_ticker_history(pair, self.ticker_interval)
|
||||
else:
|
||||
self.logger.info('Using local backtesting data (using whitelist in given config) ...')
|
||||
|
||||
timerange = Arguments.parse_timerange(self.config.get('timerange'))
|
||||
data = optimize.load_data(
|
||||
self.config['datadir'],
|
||||
pairs=pairs,
|
||||
ticker_interval=self.ticker_interval,
|
||||
refresh_pairs=self.config.get('refresh_pairs', False),
|
||||
timerange=timerange
|
||||
)
|
||||
|
||||
# Ignore max_open_trades in backtesting, except realistic flag was passed
|
||||
if self.config.get('realistic_simulation', False):
|
||||
max_open_trades = self.config['max_open_trades']
|
||||
else:
|
||||
self.logger.info('Ignoring max_open_trades (realistic_simulation not set) ...')
|
||||
max_open_trades = 0
|
||||
|
||||
preprocessed = self.tickerdata_to_dataframe(data)
|
||||
|
||||
# Print timeframe
|
||||
min_date, max_date = self.get_timeframe(preprocessed)
|
||||
self.logger.info(
|
||||
'Measuring data from %s up to %s (%s days)..',
|
||||
min_date.isoformat(),
|
||||
max_date.isoformat(),
|
||||
(max_date - min_date).days
|
||||
)
|
||||
|
||||
# Execute backtest and print results
|
||||
sell_profit_only = self.config.get('experimental', {}).get('sell_profit_only', False)
|
||||
use_sell_signal = self.config.get('experimental', {}).get('use_sell_signal', False)
|
||||
results = self.backtest(
|
||||
{
|
||||
'stake_amount': self.config.get('stake_amount'),
|
||||
'processed': preprocessed,
|
||||
'max_open_trades': max_open_trades,
|
||||
'realistic': self.config.get('realistic_simulation', False),
|
||||
'sell_profit_only': sell_profit_only,
|
||||
'use_sell_signal': use_sell_signal,
|
||||
'record': self.config.get('export')
|
||||
}
|
||||
)
|
||||
|
||||
self.logging.set_format('%(message)s')
|
||||
self.logger.info(
|
||||
'\n==================================== '
|
||||
'BACKTESTING REPORT'
|
||||
' ====================================\n'
|
||||
'%s',
|
||||
self._generate_text_table(
|
||||
data,
|
||||
results
|
||||
)
|
||||
)
|
||||
time.sleep(2)
|
||||
os.close(1)
|
||||
def setup_configuration(args: Namespace) -> Dict[str, Any]:
|
||||
"""
|
||||
Prepare the configuration for the backtesting
|
||||
:param args: Cli args from Arguments()
|
||||
:return: Configuration
|
||||
"""
|
||||
configuration = Configuration(args)
|
||||
config = configuration.get_config()
|
||||
|
||||
# Ensure we do not use Exchange credentials
|
||||
config['exchange']['key'] = ''
|
||||
config['exchange']['secret'] = ''
|
||||
|
||||
return config
|
||||
|
||||
|
||||
def start(args: Namespace) -> None:
|
||||
"""
|
||||
Start Backtesting script
|
||||
:param args: Cli args from Arguments()
|
||||
:return: None
|
||||
"""
|
||||
|
||||
# Initialize logger
|
||||
logger = Logger(name=__name__).get_logger()
|
||||
logger.info('Starting freqtrade in Backtesting mode')
|
||||
|
||||
# Initialize configuration
|
||||
config = setup_configuration(args)
|
||||
|
||||
# Initialize backtesting object
|
||||
backtesting = Backtesting(config)
|
||||
backtesting.start()
|
342
user_data/random/default_strategy.py
Normal file
342
user_data/random/default_strategy.py
Normal file
@ -0,0 +1,342 @@
|
||||
|
||||
# --- Do not remove these libs ---
|
||||
from freqtrade.strategy.interface import IStrategy
|
||||
from typing import Dict, List
|
||||
from hyperopt import hp
|
||||
from functools import reduce
|
||||
from pandas import DataFrame
|
||||
# --------------------------------
|
||||
|
||||
# Add your lib to import here
|
||||
import talib.abstract as ta
|
||||
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||||
import numpy # noqa
|
||||
|
||||
import random
|
||||
|
||||
# Update this variable if you change the class name
|
||||
class_name = 'DefaultStrategy'
|
||||
|
||||
|
||||
# This class is a sample. Feel free to customize it.
|
||||
|
||||
|
||||
|
||||
|
||||
def Select():
|
||||
param = []
|
||||
random_items = []
|
||||
param.append(str('[' + 'uptrend_long_ema' + '[' + 'enabled' + ']'))
|
||||
param.append(str('[' + 'macd_below_zero' + '][' + 'enabled' + ']'))
|
||||
param.append(str('[' + 'uptrend_short_ema' '][' + 'enabled'+ ']'))
|
||||
param.append(str('[' + 'mfi' '][' + 'enabled'+ ']'))
|
||||
param.append(str('[' + 'fastd' '][' + 'enabled'+ ']'))
|
||||
param.append(str('[' + 'adx' '][' + 'enabled'+ ']'))
|
||||
param.append(str('[' + 'rsi' '][' + 'enabled'+ ']'))
|
||||
param.append(str('[' + 'over_sar' '][' + 'enabled'+ ']'))
|
||||
param.append(str('[' + 'green_candle' '][' + 'enabled'+ ']'))
|
||||
param.append(str('[' + 'uptrend_sma' '][' + 'enabled'+ ']'))
|
||||
param.append(str('[' + 'closebb' '][' + 'enabled'+ ']'))
|
||||
param.append(str('[' + 'temabb' '][' + 'enabled'+ ']'))
|
||||
param.append(str('[' + 'fastdt' '][' + 'enabled'+ ']'))
|
||||
param.append(str('[' + 'ao' '][' + 'enabled'+ ']'))
|
||||
param.append(str('[' + 'ema3' '][' + 'enabled'+ ']'))
|
||||
param.append(str('[' + 'macd' '][' + 'enabled'+ ']'))
|
||||
param.append(str('[' + 'closesar' '][' + 'enabled'+ ']'))
|
||||
param.append(str('[' + 'htsine' '][' + 'enabled'+ ']'))
|
||||
param.append(str('[' + 'has' '][' + 'enabled'+ ']'))
|
||||
param.append(str('[' + 'plusdi' '][' + 'enabled'+ ']'))
|
||||
howmany = random.randint(1,20)
|
||||
random_items = random.choices(population=param, k=howmany)
|
||||
print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~')
|
||||
print('The Parameters Enabled Are As Follows!!!: ' + str(random_items))
|
||||
print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~')
|
||||
return random_items
|
||||
|
||||
|
||||
|
||||
|
||||
class DefaultStrategy(IStrategy):
|
||||
"""
|
||||
This is a test strategy to inspire you.
|
||||
More information in https://github.com/gcarq/freqtrade/blob/develop/docs/bot-optimization.md
|
||||
|
||||
You can:
|
||||
- Rename the class name (Do not forget to update class_name)
|
||||
- Add any methods you want to build your strategy
|
||||
- Add any lib you need to build your strategy
|
||||
|
||||
You must keep:
|
||||
- the lib in the section "Do not remove these libs"
|
||||
- the prototype for the methods: minimal_roi, stoploss, populate_indicators, populate_buy_trend,
|
||||
populate_sell_trend, hyperopt_space, buy_strategy_generator
|
||||
"""
|
||||
|
||||
# Minimal ROI designed for the strategy.
|
||||
# This attribute will be overridden if the config file contains "minimal_roi"
|
||||
minimal_roi = {
|
||||
"40": 0.0,
|
||||
"30": 0.01,
|
||||
"20": 0.02,
|
||||
"0": 0.04
|
||||
}
|
||||
|
||||
ticker_interval = 5
|
||||
|
||||
# Optimal stoploss designed for the strategy
|
||||
# This attribute will be overridden if the config file contains "stoploss"
|
||||
stoploss = -0.10
|
||||
|
||||
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Adds several different TA indicators to the given DataFrame
|
||||
|
||||
Performance Note: For the best performance be frugal on the number of indicators
|
||||
you are using. Let uncomment only the indicator you are using in your strategies
|
||||
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
|
||||
"""
|
||||
|
||||
# Momentum Indicator
|
||||
# ------------------------------------
|
||||
|
||||
# ADX
|
||||
dataframe['adx'] = ta.ADX(dataframe)
|
||||
|
||||
|
||||
# Awesome oscillator
|
||||
dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)
|
||||
|
||||
# Commodity Channel Index: values Oversold:<-100, Overbought:>100
|
||||
dataframe['cci'] = ta.CCI(dataframe)
|
||||
|
||||
# MACD
|
||||
macd = ta.MACD(dataframe)
|
||||
dataframe['macd'] = macd['macd']
|
||||
dataframe['macdsignal'] = macd['macdsignal']
|
||||
dataframe['macdhist'] = macd['macdhist']
|
||||
|
||||
# MFI
|
||||
dataframe['mfi'] = ta.MFI(dataframe)
|
||||
|
||||
# Minus Directional Indicator / Movement
|
||||
dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
|
||||
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
||||
|
||||
# Plus Directional Indicator / Movement
|
||||
dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
|
||||
dataframe['plus_di'] = ta.PLUS_DI(dataframe)
|
||||
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
||||
|
||||
# ROC
|
||||
dataframe['roc'] = ta.ROC(dataframe)
|
||||
|
||||
# RSI
|
||||
dataframe['rsi'] = ta.RSI(dataframe)
|
||||
|
||||
# Inverse Fisher transform on RSI, values [-1.0, 1.0] (https://goo.gl/2JGGoy)
|
||||
rsi = 0.1 * (dataframe['rsi'] - 50)
|
||||
dataframe['fisher_rsi'] = (numpy.exp(2 * rsi) - 1) / (numpy.exp(2 * rsi) + 1)
|
||||
|
||||
# Inverse Fisher transform on RSI normalized, value [0.0, 100.0] (https://goo.gl/2JGGoy)
|
||||
dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)
|
||||
|
||||
# Stoch
|
||||
stoch = ta.STOCH(dataframe)
|
||||
dataframe['slowd'] = stoch['slowd']
|
||||
dataframe['slowk'] = stoch['slowk']
|
||||
|
||||
# Stoch fast
|
||||
stoch_fast = ta.STOCHF(dataframe)
|
||||
dataframe['fastd'] = stoch_fast['fastd']
|
||||
dataframe['fastk'] = stoch_fast['fastk']
|
||||
|
||||
# Stoch RSI
|
||||
stoch_rsi = ta.STOCHRSI(dataframe)
|
||||
dataframe['fastd_rsi'] = stoch_rsi['fastd']
|
||||
dataframe['fastk_rsi'] = stoch_rsi['fastk']
|
||||
|
||||
|
||||
# Overlap Studies
|
||||
# ------------------------------------
|
||||
|
||||
"""
|
||||
# Previous Bollinger bands
|
||||
# Because ta.BBANDS implementation is broken with small numbers, it actually
|
||||
# returns middle band for all the three bands. Switch to qtpylib.bollinger_bands
|
||||
# and use middle band instead.
|
||||
|
||||
dataframe['blower'] = ta.BBANDS(dataframe, nbdevup=2, nbdevdn=2)['lowerband']
|
||||
"""
|
||||
|
||||
# Bollinger bands
|
||||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
||||
dataframe['bb_lowerband'] = bollinger['lower']
|
||||
dataframe['bb_middleband'] = bollinger['mid']
|
||||
dataframe['bb_upperband'] = bollinger['upper']
|
||||
|
||||
|
||||
# EMA - Exponential Moving Average
|
||||
dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
|
||||
dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
|
||||
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
|
||||
dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
|
||||
dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
|
||||
|
||||
# SAR Parabol
|
||||
dataframe['sar'] = ta.SAR(dataframe)
|
||||
|
||||
# SMA - Simple Moving Average
|
||||
dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
|
||||
|
||||
|
||||
# TEMA - Triple Exponential Moving Average
|
||||
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
|
||||
|
||||
# Cycle Indicator
|
||||
# ------------------------------------
|
||||
# Hilbert Transform Indicator - SineWave
|
||||
hilbert = ta.HT_SINE(dataframe)
|
||||
dataframe['htsine'] = hilbert['sine']
|
||||
dataframe['htleadsine'] = hilbert['leadsine']
|
||||
|
||||
# Pattern Recognition - Bullish candlestick patterns
|
||||
# ------------------------------------
|
||||
|
||||
# Hammer: values [0, 100]
|
||||
dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
|
||||
# Inverted Hammer: values [0, 100]
|
||||
dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe)
|
||||
# Dragonfly Doji: values [0, 100]
|
||||
dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe)
|
||||
# Piercing Line: values [0, 100]
|
||||
dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100]
|
||||
# Morningstar: values [0, 100]
|
||||
dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100]
|
||||
# Three White Soldiers: values [0, 100]
|
||||
dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100]
|
||||
|
||||
|
||||
# Pattern Recognition - Bearish candlestick patterns
|
||||
# ------------------------------------
|
||||
|
||||
# Hanging Man: values [0, 100]
|
||||
dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe)
|
||||
# Shooting Star: values [0, 100]
|
||||
dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe)
|
||||
# Gravestone Doji: values [0, 100]
|
||||
dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe)
|
||||
# Dark Cloud Cover: values [0, 100]
|
||||
dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe)
|
||||
# Evening Doji Star: values [0, 100]
|
||||
dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe)
|
||||
# Evening Star: values [0, 100]
|
||||
dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe)
|
||||
|
||||
|
||||
# Pattern Recognition - Bullish/Bearish candlestick patterns
|
||||
# ------------------------------------
|
||||
|
||||
# Three Line Strike: values [0, -100, 100]
|
||||
dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
|
||||
# Spinning Top: values [0, -100, 100]
|
||||
dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100]
|
||||
# Engulfing: values [0, -100, 100]
|
||||
dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100]
|
||||
# Harami: values [0, -100, 100]
|
||||
dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100]
|
||||
# Three Outside Up/Down: values [0, -100, 100]
|
||||
dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100]
|
||||
# Three Inside Up/Down: values [0, -100, 100]
|
||||
dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100]
|
||||
|
||||
|
||||
# Chart type
|
||||
# ------------------------------------
|
||||
|
||||
# Heikinashi stategy
|
||||
heikinashi = qtpylib.heikinashi(dataframe)
|
||||
dataframe['ha_open'] = heikinashi['open']
|
||||
dataframe['ha_close'] = heikinashi['close']
|
||||
dataframe['ha_high'] = heikinashi['high']
|
||||
dataframe['ha_low'] = heikinashi['low']
|
||||
|
||||
|
||||
return dataframe
|
||||
|
||||
params = Select()
|
||||
valm = random.randint(1,100)
|
||||
print('MFI Value :' + str(valm) + ' XXX')
|
||||
valfast = random.randint(1,100)
|
||||
print('FASTD Value :' + str(valfast) + ' XXX')
|
||||
valadx = random.randint(1,100)
|
||||
print('ADX Value :' + str(valadx) + ' XXX')
|
||||
valrsi = random.randint(1,100)
|
||||
print('RSI Value :' + str(valrsi) + ' XXX')
|
||||
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
|
||||
|
||||
conditions = []
|
||||
# GUARDS AND TRENDS
|
||||
if 'uptrend_long_ema' in str(self.params):
|
||||
conditions.append(dataframe['ema50'] > dataframe['ema100'])
|
||||
if 'macd_below_zero' in str(self.params):
|
||||
conditions.append(dataframe['macd'] < 0)
|
||||
if 'uptrend_short_ema' in str(self.params):
|
||||
conditions.append(dataframe['ema5'] > dataframe['ema10'])
|
||||
if 'mfi' in str(self.params):
|
||||
|
||||
conditions.append(dataframe['mfi'] < self.valm)
|
||||
if 'fastd' in str(self.params):
|
||||
|
||||
conditions.append(dataframe['fastd'] < self.valfast)
|
||||
if 'adx' in str(self.params):
|
||||
|
||||
conditions.append(dataframe['adx'] > self.valadx)
|
||||
if 'rsi' in str(self.params):
|
||||
|
||||
conditions.append(dataframe['rsi'] < self.valrsi)
|
||||
if 'over_sar' in str(self.params):
|
||||
conditions.append(dataframe['close'] > dataframe['sar'])
|
||||
if 'green_candle' in str(self.params):
|
||||
conditions.append(dataframe['close'] > dataframe['open'])
|
||||
if 'uptrend_sma' in str(self.params):
|
||||
prevsma = dataframe['sma'].shift(1)
|
||||
conditions.append(dataframe['sma'] > prevsma)
|
||||
if 'closebb' in str(self.params):
|
||||
conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
|
||||
if 'temabb' in str(self.params):
|
||||
conditions.append(dataframe['tema'] < dataframe['bb_lowerband'])
|
||||
if 'fastdt' in str(self.params):
|
||||
conditions.append(qtpylib.crossed_above(dataframe['fastd'], 10.0))
|
||||
if 'ao' in str(self.params):
|
||||
conditions.append(qtpylib.crossed_above(dataframe['ao'], 0.0))
|
||||
if 'ema3' in str(self.params):
|
||||
conditions.append(qtpylib.crossed_above(dataframe['ema3'], dataframe['ema10']))
|
||||
if 'macd' in str(self.params):
|
||||
conditions.append(qtpylib.crossed_above(dataframe['macd'], dataframe['macdsignal']))
|
||||
if 'closesar' in str(self.params):
|
||||
conditions.append(qtpylib.crossed_above(dataframe['close'], dataframe['sar']))
|
||||
if 'htsine' in str(self.params):
|
||||
conditions.append(qtpylib.crossed_above(dataframe['htleadsine'], dataframe['htsine']))
|
||||
if 'has' in str(self.params):
|
||||
conditions.append((qtpylib.crossed_above(dataframe['ha_close'], dataframe['ha_open'])) & (dataframe['ha_low'] == dataframe['ha_open']))
|
||||
if 'plusdi' in str(self.params):
|
||||
conditions.append(qtpylib.crossed_above(dataframe['plus_di'], dataframe['minus_di']))
|
||||
|
||||
dataframe.loc[
|
||||
reduce(lambda x, y: x & y, conditions),
|
||||
'buy'] = 1
|
||||
|
||||
return dataframe
|
||||
|
||||
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Based on TA indicators, populates the sell signal for the given dataframe
|
||||
:param dataframe: DataFrame
|
||||
:return: DataFrame with buy column
|
||||
"""
|
||||
dataframe.loc[
|
||||
(
|
||||
),
|
||||
'sell'] = 1
|
||||
return dataframe
|
||||
|
68
user_data/random/random.py
Normal file
68
user_data/random/random.py
Normal file
@ -0,0 +1,68 @@
|
||||
#!/usr/bin/env python3
|
||||
import os
|
||||
import multiprocessing
|
||||
from itertools import zip_longest
|
||||
import subprocess
|
||||
import re
|
||||
PROC_COUNT = multiprocessing.cpu_count() - 1
|
||||
cwd = os.getcwd()
|
||||
print(cwd)
|
||||
global procs
|
||||
import time
|
||||
limit = 24
|
||||
WORK_DIR = os.path.join(
|
||||
os.path.sep,
|
||||
os.path.abspath(os.path.dirname(__file__)),
|
||||
'..', 'freqtrade', 'main.py'
|
||||
)
|
||||
|
||||
# Spawn workers
|
||||
command = [
|
||||
'python3.6',
|
||||
'-u',
|
||||
WORK_DIR,
|
||||
'backtesting',
|
||||
]
|
||||
global current
|
||||
current = 0
|
||||
procs = 0
|
||||
DEVNULL = open(os.devnull, 'wb')
|
||||
|
||||
while True:
|
||||
while procs < 32:
|
||||
try:
|
||||
procs + 1
|
||||
proc = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, bufsize=1, universal_newlines=True)
|
||||
data = proc.communicate()
|
||||
string = str(data)
|
||||
params = re.search(r'~~~~(.*)~~~~', string).group(1)
|
||||
mfi = re.search(r'MFI Value(.*)XXX', string)
|
||||
fastd = re.search(r'FASTD Value(.*)XXX', string)
|
||||
adx = re.search(r'ADX Value(.*)XXX', string)
|
||||
rsi = re.search(r'RSI Value(.*)XXX', string)
|
||||
tot = re.search(r'TOTAL(.*)', string).group(1)
|
||||
total = re.search(r'[-+]?([0-9]*\.[0-9]+|[0-9]+)', tot).group(1)
|
||||
if total and (float(total) > float(current)):
|
||||
current = total
|
||||
print('total better profit paremeters: ')
|
||||
print(total)
|
||||
if params:
|
||||
print(params)
|
||||
print('~~~~~~')
|
||||
print('Only enable the above settings, not all settings below are used!')
|
||||
print('~~~~~~')
|
||||
if mfi:
|
||||
print('~~~MFI~~~')
|
||||
print(mfi.group(1))
|
||||
if fastd:
|
||||
print('~~~FASTD~~~')
|
||||
print(fastd.group(1))
|
||||
if adx:
|
||||
print('~~~ADX~~~')
|
||||
print(adx.group(1))
|
||||
if rsi:
|
||||
print('~~~RSI~~~')
|
||||
print(rsi.group(1))
|
||||
procs - 1
|
||||
except Exception as e:
|
||||
print(e)
|
Loading…
Reference in New Issue
Block a user