Update function signatures in all templates
add typehints to help the user's editor suggest the right things.
This commit is contained in:
@@ -1,5 +1,6 @@
|
||||
import logging
|
||||
from functools import reduce
|
||||
from typing import Dict
|
||||
|
||||
import talib.abstract as ta
|
||||
from pandas import DataFrame
|
||||
@@ -24,20 +25,21 @@ class freqai_rl_test_strat(IStrategy):
|
||||
startup_candle_count: int = 300
|
||||
can_short = False
|
||||
|
||||
def feature_engineering_expand_all(self, dataframe, period, **kwargs):
|
||||
def feature_engineering_expand_all(self, dataframe: DataFrame, period: int,
|
||||
metadata: Dict, **kwargs):
|
||||
|
||||
dataframe["%-rsi-period"] = ta.RSI(dataframe, timeperiod=period)
|
||||
|
||||
return dataframe
|
||||
|
||||
def feature_engineering_expand_basic(self, dataframe: DataFrame, **kwargs):
|
||||
def feature_engineering_expand_basic(self, dataframe: DataFrame, metadata: Dict, **kwargs):
|
||||
|
||||
dataframe["%-pct-change"] = dataframe["close"].pct_change()
|
||||
dataframe["%-raw_volume"] = dataframe["volume"]
|
||||
|
||||
return dataframe
|
||||
|
||||
def feature_engineering_standard(self, dataframe, **kwargs):
|
||||
def feature_engineering_standard(self, dataframe: DataFrame, metadata: Dict, **kwargs):
|
||||
|
||||
dataframe["%-day_of_week"] = dataframe["date"].dt.dayofweek
|
||||
dataframe["%-hour_of_day"] = dataframe["date"].dt.hour
|
||||
@@ -49,7 +51,7 @@ class freqai_rl_test_strat(IStrategy):
|
||||
|
||||
return dataframe
|
||||
|
||||
def set_freqai_targets(self, dataframe, **kwargs):
|
||||
def set_freqai_targets(self, dataframe: DataFrame, metadata: Dict, **kwargs):
|
||||
|
||||
dataframe["&-action"] = 0
|
||||
|
||||
|
@@ -1,5 +1,6 @@
|
||||
import logging
|
||||
from functools import reduce
|
||||
from typing import Dict
|
||||
|
||||
import numpy as np
|
||||
import talib.abstract as ta
|
||||
@@ -56,7 +57,8 @@ class freqai_test_classifier(IStrategy):
|
||||
informative_pairs.append((pair, tf))
|
||||
return informative_pairs
|
||||
|
||||
def feature_engineering_expand_all(self, dataframe, period, **kwargs):
|
||||
def feature_engineering_expand_all(self, dataframe: DataFrame, period: int,
|
||||
metadata: Dict, **kwargs):
|
||||
|
||||
dataframe["%-rsi-period"] = ta.RSI(dataframe, timeperiod=period)
|
||||
dataframe["%-mfi-period"] = ta.MFI(dataframe, timeperiod=period)
|
||||
@@ -64,7 +66,7 @@ class freqai_test_classifier(IStrategy):
|
||||
|
||||
return dataframe
|
||||
|
||||
def feature_engineering_expand_basic(self, dataframe: DataFrame, **kwargs):
|
||||
def feature_engineering_expand_basic(self, dataframe: DataFrame, metadata: Dict, **kwargs):
|
||||
|
||||
dataframe["%-pct-change"] = dataframe["close"].pct_change()
|
||||
dataframe["%-raw_volume"] = dataframe["volume"]
|
||||
@@ -72,14 +74,14 @@ class freqai_test_classifier(IStrategy):
|
||||
|
||||
return dataframe
|
||||
|
||||
def feature_engineering_standard(self, dataframe, **kwargs):
|
||||
def feature_engineering_standard(self, dataframe: DataFrame, metadata: Dict, **kwargs):
|
||||
|
||||
dataframe["%-day_of_week"] = dataframe["date"].dt.dayofweek
|
||||
dataframe["%-hour_of_day"] = dataframe["date"].dt.hour
|
||||
|
||||
return dataframe
|
||||
|
||||
def set_freqai_targets(self, dataframe, **kwargs):
|
||||
def set_freqai_targets(self, dataframe: DataFrame, metadata: Dict, **kwargs):
|
||||
|
||||
dataframe['&s-up_or_down'] = np.where(dataframe["close"].shift(-100) >
|
||||
dataframe["close"], 'up', 'down')
|
||||
|
@@ -1,5 +1,6 @@
|
||||
import logging
|
||||
from functools import reduce
|
||||
from typing import Dict
|
||||
|
||||
import numpy as np
|
||||
import talib.abstract as ta
|
||||
@@ -43,7 +44,8 @@ class freqai_test_multimodel_classifier_strat(IStrategy):
|
||||
)
|
||||
max_roi_time_long = IntParameter(0, 800, default=400, space="sell", optimize=False, load=True)
|
||||
|
||||
def feature_engineering_expand_all(self, dataframe, period, **kwargs):
|
||||
def feature_engineering_expand_all(self, dataframe: DataFrame, period: int,
|
||||
metadata: Dict, **kwargs):
|
||||
|
||||
dataframe["%-rsi-period"] = ta.RSI(dataframe, timeperiod=period)
|
||||
dataframe["%-mfi-period"] = ta.MFI(dataframe, timeperiod=period)
|
||||
@@ -51,7 +53,7 @@ class freqai_test_multimodel_classifier_strat(IStrategy):
|
||||
|
||||
return dataframe
|
||||
|
||||
def feature_engineering_expand_basic(self, dataframe: DataFrame, **kwargs):
|
||||
def feature_engineering_expand_basic(self, dataframe: DataFrame, metadata: Dict, **kwargs):
|
||||
|
||||
dataframe["%-pct-change"] = dataframe["close"].pct_change()
|
||||
dataframe["%-raw_volume"] = dataframe["volume"]
|
||||
@@ -59,14 +61,14 @@ class freqai_test_multimodel_classifier_strat(IStrategy):
|
||||
|
||||
return dataframe
|
||||
|
||||
def feature_engineering_standard(self, dataframe, **kwargs):
|
||||
def feature_engineering_standard(self, dataframe: DataFrame, metadata: Dict, **kwargs):
|
||||
|
||||
dataframe["%-day_of_week"] = dataframe["date"].dt.dayofweek
|
||||
dataframe["%-hour_of_day"] = dataframe["date"].dt.hour
|
||||
|
||||
return dataframe
|
||||
|
||||
def set_freqai_targets(self, dataframe, **kwargs):
|
||||
def set_freqai_targets(self, dataframe: DataFrame, metadata: Dict, **kwargs):
|
||||
|
||||
dataframe['&s-up_or_down'] = np.where(dataframe["close"].shift(-50) >
|
||||
dataframe["close"], 'up', 'down')
|
||||
|
@@ -1,5 +1,6 @@
|
||||
import logging
|
||||
from functools import reduce
|
||||
from typing import Dict
|
||||
|
||||
import talib.abstract as ta
|
||||
from pandas import DataFrame
|
||||
@@ -42,7 +43,8 @@ class freqai_test_multimodel_strat(IStrategy):
|
||||
)
|
||||
max_roi_time_long = IntParameter(0, 800, default=400, space="sell", optimize=False, load=True)
|
||||
|
||||
def feature_engineering_expand_all(self, dataframe, period, **kwargs):
|
||||
def feature_engineering_expand_all(self, dataframe: DataFrame, period: int,
|
||||
metadata: Dict, **kwargs):
|
||||
|
||||
dataframe["%-rsi-period"] = ta.RSI(dataframe, timeperiod=period)
|
||||
dataframe["%-mfi-period"] = ta.MFI(dataframe, timeperiod=period)
|
||||
@@ -50,7 +52,7 @@ class freqai_test_multimodel_strat(IStrategy):
|
||||
|
||||
return dataframe
|
||||
|
||||
def feature_engineering_expand_basic(self, dataframe: DataFrame, **kwargs):
|
||||
def feature_engineering_expand_basic(self, dataframe: DataFrame, metadata: Dict, **kwargs):
|
||||
|
||||
dataframe["%-pct-change"] = dataframe["close"].pct_change()
|
||||
dataframe["%-raw_volume"] = dataframe["volume"]
|
||||
@@ -58,14 +60,14 @@ class freqai_test_multimodel_strat(IStrategy):
|
||||
|
||||
return dataframe
|
||||
|
||||
def feature_engineering_standard(self, dataframe, **kwargs):
|
||||
def feature_engineering_standard(self, dataframe: DataFrame, metadata: Dict, **kwargs):
|
||||
|
||||
dataframe["%-day_of_week"] = dataframe["date"].dt.dayofweek
|
||||
dataframe["%-hour_of_day"] = dataframe["date"].dt.hour
|
||||
|
||||
return dataframe
|
||||
|
||||
def set_freqai_targets(self, dataframe, **kwargs):
|
||||
def set_freqai_targets(self, dataframe: DataFrame, metadata: Dict, **kwargs):
|
||||
|
||||
dataframe["&-s_close"] = (
|
||||
dataframe["close"]
|
||||
|
@@ -1,5 +1,6 @@
|
||||
import logging
|
||||
from functools import reduce
|
||||
from typing import Dict
|
||||
|
||||
import talib.abstract as ta
|
||||
from pandas import DataFrame
|
||||
@@ -42,7 +43,8 @@ class freqai_test_strat(IStrategy):
|
||||
)
|
||||
max_roi_time_long = IntParameter(0, 800, default=400, space="sell", optimize=False, load=True)
|
||||
|
||||
def feature_engineering_expand_all(self, dataframe, period, **kwargs):
|
||||
def feature_engineering_expand_all(self, dataframe: DataFrame, period: int,
|
||||
metadata: Dict, **kwargs):
|
||||
|
||||
dataframe["%-rsi-period"] = ta.RSI(dataframe, timeperiod=period)
|
||||
dataframe["%-mfi-period"] = ta.MFI(dataframe, timeperiod=period)
|
||||
@@ -50,7 +52,7 @@ class freqai_test_strat(IStrategy):
|
||||
|
||||
return dataframe
|
||||
|
||||
def feature_engineering_expand_basic(self, dataframe: DataFrame, **kwargs):
|
||||
def feature_engineering_expand_basic(self, dataframe: DataFrame, metadata: Dict, **kwargs):
|
||||
|
||||
dataframe["%-pct-change"] = dataframe["close"].pct_change()
|
||||
dataframe["%-raw_volume"] = dataframe["volume"]
|
||||
@@ -58,14 +60,14 @@ class freqai_test_strat(IStrategy):
|
||||
|
||||
return dataframe
|
||||
|
||||
def feature_engineering_standard(self, dataframe, **kwargs):
|
||||
def feature_engineering_standard(self, dataframe: DataFrame, metadata: Dict, **kwargs):
|
||||
|
||||
dataframe["%-day_of_week"] = dataframe["date"].dt.dayofweek
|
||||
dataframe["%-hour_of_day"] = dataframe["date"].dt.hour
|
||||
|
||||
return dataframe
|
||||
|
||||
def set_freqai_targets(self, dataframe, **kwargs):
|
||||
def set_freqai_targets(self, dataframe: DataFrame, metadata: Dict, **kwargs):
|
||||
|
||||
dataframe["&-s_close"] = (
|
||||
dataframe["close"]
|
||||
|
Reference in New Issue
Block a user