Merge pull request #1287 from freqtrade/backtest_data_validation
Backtest data validation
This commit is contained in:
commit
7e1a30f9bf
@ -10,8 +10,12 @@ except ImportError:
|
||||
_UJSON = False
|
||||
import logging
|
||||
import os
|
||||
from datetime import datetime
|
||||
from typing import Optional, List, Dict, Tuple, Any
|
||||
import operator
|
||||
|
||||
import arrow
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade import misc, constants, OperationalException
|
||||
from freqtrade.exchange import Exchange
|
||||
@ -59,6 +63,42 @@ def trim_tickerlist(tickerlist: List[Dict], timerange: TimeRange) -> List[Dict]:
|
||||
return tickerlist[start_index:stop_index]
|
||||
|
||||
|
||||
def get_timeframe(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]:
|
||||
"""
|
||||
Get the maximum timeframe for the given backtest data
|
||||
:param data: dictionary with preprocessed backtesting data
|
||||
:return: tuple containing min_date, max_date
|
||||
"""
|
||||
timeframe = [
|
||||
(arrow.get(frame['date'].min()), arrow.get(frame['date'].max()))
|
||||
for frame in data.values()
|
||||
]
|
||||
return min(timeframe, key=operator.itemgetter(0))[0], \
|
||||
max(timeframe, key=operator.itemgetter(1))[1]
|
||||
|
||||
|
||||
def validate_backtest_data(data: Dict[str, DataFrame], min_date: datetime,
|
||||
max_date: datetime, ticker_interval_mins: int) -> bool:
|
||||
"""
|
||||
Validates preprocessed backtesting data for missing values and shows warnings about it that.
|
||||
|
||||
:param data: dictionary with preprocessed backtesting data
|
||||
:param min_date: start-date of the data
|
||||
:param max_date: end-date of the data
|
||||
:param ticker_interval_mins: ticker interval in minutes
|
||||
"""
|
||||
# total difference in minutes / interval-minutes
|
||||
expected_frames = int((max_date - min_date).total_seconds() // 60 // ticker_interval_mins)
|
||||
found_missing = False
|
||||
for pair, df in data.items():
|
||||
dflen = len(df)
|
||||
if dflen < expected_frames:
|
||||
found_missing = True
|
||||
logger.warning("%s has missing frames: expected %s, got %s, that's %s missing values",
|
||||
pair, expected_frames, dflen, expected_frames - dflen)
|
||||
return found_missing
|
||||
|
||||
|
||||
def load_tickerdata_file(
|
||||
datadir: str, pair: str,
|
||||
ticker_interval: str,
|
||||
|
@ -4,14 +4,12 @@
|
||||
This module contains the backtesting logic
|
||||
"""
|
||||
import logging
|
||||
import operator
|
||||
from argparse import Namespace
|
||||
from copy import deepcopy
|
||||
from datetime import datetime, timedelta
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, NamedTuple, Optional, Tuple
|
||||
from typing import Any, Dict, List, NamedTuple, Optional
|
||||
|
||||
import arrow
|
||||
from pandas import DataFrame
|
||||
from tabulate import tabulate
|
||||
|
||||
@ -88,24 +86,9 @@ class Backtesting(object):
|
||||
"""
|
||||
self.strategy = strategy
|
||||
self.ticker_interval = self.config.get('ticker_interval')
|
||||
self.tickerdata_to_dataframe = strategy.tickerdata_to_dataframe
|
||||
self.advise_buy = strategy.advise_buy
|
||||
self.advise_sell = strategy.advise_sell
|
||||
|
||||
@staticmethod
|
||||
def get_timeframe(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]:
|
||||
"""
|
||||
Get the maximum timeframe for the given backtest data
|
||||
:param data: dictionary with preprocessed backtesting data
|
||||
:return: tuple containing min_date, max_date
|
||||
"""
|
||||
timeframe = [
|
||||
(arrow.get(frame['date'].min()), arrow.get(frame['date'].max()))
|
||||
for frame in data.values()
|
||||
]
|
||||
return min(timeframe, key=operator.itemgetter(0))[0], \
|
||||
max(timeframe, key=operator.itemgetter(1))[1]
|
||||
|
||||
def _generate_text_table(self, data: Dict[str, Dict], results: DataFrame,
|
||||
skip_nan: bool = False) -> str:
|
||||
"""
|
||||
@ -371,10 +354,12 @@ class Backtesting(object):
|
||||
self._set_strategy(strat)
|
||||
|
||||
# need to reprocess data every time to populate signals
|
||||
preprocessed = self.tickerdata_to_dataframe(data)
|
||||
preprocessed = self.strategy.tickerdata_to_dataframe(data)
|
||||
|
||||
# Print timeframe
|
||||
min_date, max_date = self.get_timeframe(preprocessed)
|
||||
min_date, max_date = optimize.get_timeframe(preprocessed)
|
||||
# Validate dataframe for missing values
|
||||
optimize.validate_backtest_data(preprocessed, min_date, max_date,
|
||||
constants.TICKER_INTERVAL_MINUTES[self.ticker_interval])
|
||||
logger.info(
|
||||
'Measuring data from %s up to %s (%s days)..',
|
||||
min_date.isoformat(),
|
||||
|
@ -352,7 +352,7 @@ class Hyperopt(Backtesting):
|
||||
|
||||
if self.has_space('buy'):
|
||||
self.strategy.advise_indicators = Hyperopt.populate_indicators # type: ignore
|
||||
dump(self.tickerdata_to_dataframe(data), TICKERDATA_PICKLE)
|
||||
dump(self.strategy.tickerdata_to_dataframe(data), TICKERDATA_PICKLE)
|
||||
self.exchange = None # type: ignore
|
||||
self.load_previous_results()
|
||||
|
||||
|
@ -89,7 +89,7 @@ def simple_backtest(config, contour, num_results, mocker) -> None:
|
||||
backtesting = Backtesting(config)
|
||||
|
||||
data = load_data_test(contour)
|
||||
processed = backtesting.tickerdata_to_dataframe(data)
|
||||
processed = backtesting.strategy.tickerdata_to_dataframe(data)
|
||||
assert isinstance(processed, dict)
|
||||
results = backtesting.backtest(
|
||||
{
|
||||
@ -119,13 +119,13 @@ def _load_pair_as_ticks(pair, tickfreq):
|
||||
|
||||
# FIX: fixturize this?
|
||||
def _make_backtest_conf(mocker, conf=None, pair='UNITTEST/BTC', record=None):
|
||||
data = optimize.load_data(None, ticker_interval='8m', pairs=[pair])
|
||||
data = optimize.load_data(None, ticker_interval='1m', pairs=[pair])
|
||||
data = trim_dictlist(data, -201)
|
||||
patch_exchange(mocker)
|
||||
backtesting = Backtesting(conf)
|
||||
return {
|
||||
'stake_amount': conf['stake_amount'],
|
||||
'processed': backtesting.tickerdata_to_dataframe(data),
|
||||
'processed': backtesting.strategy.tickerdata_to_dataframe(data),
|
||||
'max_open_trades': 10,
|
||||
'position_stacking': False,
|
||||
'record': record
|
||||
@ -313,7 +313,7 @@ def test_backtesting_init(mocker, default_conf) -> None:
|
||||
backtesting = Backtesting(default_conf)
|
||||
assert backtesting.config == default_conf
|
||||
assert backtesting.ticker_interval == '5m'
|
||||
assert callable(backtesting.tickerdata_to_dataframe)
|
||||
assert callable(backtesting.strategy.tickerdata_to_dataframe)
|
||||
assert callable(backtesting.advise_buy)
|
||||
assert callable(backtesting.advise_sell)
|
||||
get_fee.assert_called()
|
||||
@ -327,7 +327,7 @@ def test_tickerdata_to_dataframe(default_conf, mocker) -> None:
|
||||
tickerlist = {'UNITTEST/BTC': tick}
|
||||
|
||||
backtesting = Backtesting(default_conf)
|
||||
data = backtesting.tickerdata_to_dataframe(tickerlist)
|
||||
data = backtesting.strategy.tickerdata_to_dataframe(tickerlist)
|
||||
assert len(data['UNITTEST/BTC']) == 99
|
||||
|
||||
# Load strategy to compare the result between Backtesting function and strategy are the same
|
||||
@ -336,22 +336,6 @@ def test_tickerdata_to_dataframe(default_conf, mocker) -> None:
|
||||
assert data['UNITTEST/BTC'].equals(data2['UNITTEST/BTC'])
|
||||
|
||||
|
||||
def test_get_timeframe(default_conf, mocker) -> None:
|
||||
patch_exchange(mocker)
|
||||
backtesting = Backtesting(default_conf)
|
||||
|
||||
data = backtesting.tickerdata_to_dataframe(
|
||||
optimize.load_data(
|
||||
None,
|
||||
ticker_interval='1m',
|
||||
pairs=['UNITTEST/BTC']
|
||||
)
|
||||
)
|
||||
min_date, max_date = backtesting.get_timeframe(data)
|
||||
assert min_date.isoformat() == '2017-11-04T23:02:00+00:00'
|
||||
assert max_date.isoformat() == '2017-11-14T22:58:00+00:00'
|
||||
|
||||
|
||||
def test_generate_text_table(default_conf, mocker):
|
||||
patch_exchange(mocker)
|
||||
backtesting = Backtesting(default_conf)
|
||||
@ -451,21 +435,21 @@ def test_generate_text_table_strategyn(default_conf, mocker):
|
||||
|
||||
|
||||
def test_backtesting_start(default_conf, mocker, caplog) -> None:
|
||||
def get_timeframe(input1, input2):
|
||||
def get_timeframe(input1):
|
||||
return Arrow(2017, 11, 14, 21, 17), Arrow(2017, 11, 14, 22, 59)
|
||||
|
||||
mocker.patch('freqtrade.optimize.load_data', mocked_load_data)
|
||||
mocker.patch('freqtrade.optimize.get_timeframe', get_timeframe)
|
||||
mocker.patch('freqtrade.exchange.Exchange.refresh_tickers', MagicMock())
|
||||
patch_exchange(mocker)
|
||||
mocker.patch.multiple(
|
||||
'freqtrade.optimize.backtesting.Backtesting',
|
||||
backtest=MagicMock(),
|
||||
_generate_text_table=MagicMock(return_value='1'),
|
||||
get_timeframe=get_timeframe,
|
||||
)
|
||||
|
||||
default_conf['exchange']['pair_whitelist'] = ['UNITTEST/BTC']
|
||||
default_conf['ticker_interval'] = 1
|
||||
default_conf['ticker_interval'] = "1m"
|
||||
default_conf['live'] = False
|
||||
default_conf['datadir'] = None
|
||||
default_conf['export'] = None
|
||||
@ -486,17 +470,17 @@ def test_backtesting_start(default_conf, mocker, caplog) -> None:
|
||||
|
||||
|
||||
def test_backtesting_start_no_data(default_conf, mocker, caplog) -> None:
|
||||
def get_timeframe(input1, input2):
|
||||
def get_timeframe(input1):
|
||||
return Arrow(2017, 11, 14, 21, 17), Arrow(2017, 11, 14, 22, 59)
|
||||
|
||||
mocker.patch('freqtrade.optimize.load_data', MagicMock(return_value={}))
|
||||
mocker.patch('freqtrade.optimize.get_timeframe', get_timeframe)
|
||||
mocker.patch('freqtrade.exchange.Exchange.refresh_tickers', MagicMock())
|
||||
patch_exchange(mocker)
|
||||
mocker.patch.multiple(
|
||||
'freqtrade.optimize.backtesting.Backtesting',
|
||||
backtest=MagicMock(),
|
||||
_generate_text_table=MagicMock(return_value='1'),
|
||||
get_timeframe=get_timeframe,
|
||||
)
|
||||
|
||||
default_conf['exchange']['pair_whitelist'] = ['UNITTEST/BTC']
|
||||
@ -520,7 +504,7 @@ def test_backtest(default_conf, fee, mocker) -> None:
|
||||
pair = 'UNITTEST/BTC'
|
||||
data = optimize.load_data(None, ticker_interval='5m', pairs=['UNITTEST/BTC'])
|
||||
data = trim_dictlist(data, -200)
|
||||
data_processed = backtesting.tickerdata_to_dataframe(data)
|
||||
data_processed = backtesting.strategy.tickerdata_to_dataframe(data)
|
||||
results = backtesting.backtest(
|
||||
{
|
||||
'stake_amount': default_conf['stake_amount'],
|
||||
@ -571,7 +555,7 @@ def test_backtest_1min_ticker_interval(default_conf, fee, mocker) -> None:
|
||||
results = backtesting.backtest(
|
||||
{
|
||||
'stake_amount': default_conf['stake_amount'],
|
||||
'processed': backtesting.tickerdata_to_dataframe(data),
|
||||
'processed': backtesting.strategy.tickerdata_to_dataframe(data),
|
||||
'max_open_trades': 1,
|
||||
'position_stacking': False
|
||||
}
|
||||
@ -585,7 +569,7 @@ def test_processed(default_conf, mocker) -> None:
|
||||
backtesting = Backtesting(default_conf)
|
||||
|
||||
dict_of_tickerrows = load_data_test('raise')
|
||||
dataframes = backtesting.tickerdata_to_dataframe(dict_of_tickerrows)
|
||||
dataframes = backtesting.strategy.tickerdata_to_dataframe(dict_of_tickerrows)
|
||||
dataframe = dataframes['UNITTEST/BTC']
|
||||
cols = dataframe.columns
|
||||
# assert the dataframe got some of the indicator columns
|
||||
|
@ -194,7 +194,7 @@ def test_start_calls_optimizer(mocker, default_conf, caplog) -> None:
|
||||
default_conf.update({'spaces': 'all'})
|
||||
|
||||
hyperopt = Hyperopt(default_conf)
|
||||
hyperopt.tickerdata_to_dataframe = MagicMock()
|
||||
hyperopt.strategy.tickerdata_to_dataframe = MagicMock()
|
||||
|
||||
hyperopt.start()
|
||||
parallel.assert_called_once()
|
||||
@ -242,7 +242,7 @@ def test_has_space(hyperopt):
|
||||
def test_populate_indicators(hyperopt) -> None:
|
||||
tick = load_tickerdata_file(None, 'UNITTEST/BTC', '1m')
|
||||
tickerlist = {'UNITTEST/BTC': tick}
|
||||
dataframes = hyperopt.tickerdata_to_dataframe(tickerlist)
|
||||
dataframes = hyperopt.strategy.tickerdata_to_dataframe(tickerlist)
|
||||
dataframe = hyperopt.populate_indicators(dataframes['UNITTEST/BTC'], {'pair': 'UNITTEST/BTC'})
|
||||
|
||||
# Check if some indicators are generated. We will not test all of them
|
||||
@ -254,7 +254,7 @@ def test_populate_indicators(hyperopt) -> None:
|
||||
def test_buy_strategy_generator(hyperopt) -> None:
|
||||
tick = load_tickerdata_file(None, 'UNITTEST/BTC', '1m')
|
||||
tickerlist = {'UNITTEST/BTC': tick}
|
||||
dataframes = hyperopt.tickerdata_to_dataframe(tickerlist)
|
||||
dataframes = hyperopt.strategy.tickerdata_to_dataframe(tickerlist)
|
||||
dataframe = hyperopt.populate_indicators(dataframes['UNITTEST/BTC'], {'pair': 'UNITTEST/BTC'})
|
||||
|
||||
populate_buy_trend = hyperopt.buy_strategy_generator(
|
||||
|
@ -7,7 +7,7 @@ from shutil import copyfile
|
||||
|
||||
import arrow
|
||||
|
||||
from freqtrade import optimize
|
||||
from freqtrade import optimize, constants
|
||||
from freqtrade.arguments import TimeRange
|
||||
from freqtrade.misc import file_dump_json
|
||||
from freqtrade.optimize.__init__ import (download_backtesting_testdata,
|
||||
@ -15,7 +15,8 @@ from freqtrade.optimize.__init__ import (download_backtesting_testdata,
|
||||
load_cached_data_for_updating,
|
||||
load_tickerdata_file,
|
||||
make_testdata_path, trim_tickerlist)
|
||||
from freqtrade.tests.conftest import get_patched_exchange, log_has
|
||||
from freqtrade.strategy.default_strategy import DefaultStrategy
|
||||
from freqtrade.tests.conftest import get_patched_exchange, log_has, patch_exchange
|
||||
|
||||
# Change this if modifying UNITTEST/BTC testdatafile
|
||||
_BTC_UNITTEST_LENGTH = 13681
|
||||
@ -433,3 +434,61 @@ def test_file_dump_json() -> None:
|
||||
|
||||
# Remove the file
|
||||
_clean_test_file(file)
|
||||
|
||||
|
||||
def test_get_timeframe(default_conf, mocker) -> None:
|
||||
patch_exchange(mocker)
|
||||
strategy = DefaultStrategy(default_conf)
|
||||
|
||||
data = strategy.tickerdata_to_dataframe(
|
||||
optimize.load_data(
|
||||
None,
|
||||
ticker_interval='1m',
|
||||
pairs=['UNITTEST/BTC']
|
||||
)
|
||||
)
|
||||
min_date, max_date = optimize.get_timeframe(data)
|
||||
assert min_date.isoformat() == '2017-11-04T23:02:00+00:00'
|
||||
assert max_date.isoformat() == '2017-11-14T22:58:00+00:00'
|
||||
|
||||
|
||||
def test_validate_backtest_data_warn(default_conf, mocker, caplog) -> None:
|
||||
patch_exchange(mocker)
|
||||
strategy = DefaultStrategy(default_conf)
|
||||
|
||||
data = strategy.tickerdata_to_dataframe(
|
||||
optimize.load_data(
|
||||
None,
|
||||
ticker_interval='1m',
|
||||
pairs=['UNITTEST/BTC']
|
||||
)
|
||||
)
|
||||
min_date, max_date = optimize.get_timeframe(data)
|
||||
caplog.clear()
|
||||
assert optimize.validate_backtest_data(data, min_date, max_date,
|
||||
constants.TICKER_INTERVAL_MINUTES["1m"])
|
||||
assert len(caplog.record_tuples) == 1
|
||||
assert log_has(
|
||||
"UNITTEST/BTC has missing frames: expected 14396, got 13680, that's 716 missing values",
|
||||
caplog.record_tuples)
|
||||
|
||||
|
||||
def test_validate_backtest_data(default_conf, mocker, caplog) -> None:
|
||||
patch_exchange(mocker)
|
||||
strategy = DefaultStrategy(default_conf)
|
||||
|
||||
timerange = TimeRange('index', 'index', 200, 250)
|
||||
data = strategy.tickerdata_to_dataframe(
|
||||
optimize.load_data(
|
||||
None,
|
||||
ticker_interval='5m',
|
||||
pairs=['UNITTEST/BTC'],
|
||||
timerange=timerange
|
||||
)
|
||||
)
|
||||
|
||||
min_date, max_date = optimize.get_timeframe(data)
|
||||
caplog.clear()
|
||||
assert not optimize.validate_backtest_data(data, min_date, max_date,
|
||||
constants.TICKER_INTERVAL_MINUTES["5m"])
|
||||
assert len(caplog.record_tuples) == 0
|
||||
|
@ -1,381 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Script to display when the bot will buy a specific pair
|
||||
|
||||
Mandatory Cli parameters:
|
||||
-p / --pair: pair to examine
|
||||
|
||||
Option but recommended
|
||||
-s / --strategy: strategy to use
|
||||
|
||||
|
||||
Optional Cli parameters
|
||||
-d / --datadir: path to pair backtest data
|
||||
--timerange: specify what timerange of data to use.
|
||||
-l / --live: Live, to download the latest ticker for the pair
|
||||
-db / --db-url: Show trades stored in database
|
||||
|
||||
|
||||
Indicators recommended
|
||||
Row 1: sma, ema3, ema5, ema10, ema50
|
||||
Row 3: macd, rsi, fisher_rsi, mfi, slowd, slowk, fastd, fastk
|
||||
|
||||
Example of usage:
|
||||
> python3 scripts/plot_dataframe.py --pair BTC/EUR -d user_data/data/ --indicators1 sma,ema3
|
||||
--indicators2 fastk,fastd
|
||||
"""
|
||||
import json
|
||||
import logging
|
||||
import sys
|
||||
from argparse import Namespace
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Any
|
||||
|
||||
import pandas as pd
|
||||
import plotly.graph_objs as go
|
||||
import pytz
|
||||
|
||||
from plotly import tools
|
||||
from plotly.offline import plot
|
||||
|
||||
import freqtrade.optimize as optimize
|
||||
from freqtrade import persistence
|
||||
from freqtrade.arguments import Arguments, TimeRange
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.optimize.backtesting import setup_configuration
|
||||
from freqtrade.persistence import Trade
|
||||
from freqtrade.strategy.resolver import StrategyResolver
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
_CONF: Dict[str, Any] = {}
|
||||
|
||||
timeZone = pytz.UTC
|
||||
|
||||
|
||||
def load_trades(args: Namespace, pair: str, timerange: TimeRange) -> pd.DataFrame:
|
||||
trades: pd.DataFrame = pd.DataFrame()
|
||||
if args.db_url:
|
||||
persistence.init(_CONF)
|
||||
columns = ["pair", "profit", "opents", "closets", "open_rate", "close_rate", "duration"]
|
||||
|
||||
for x in Trade.query.all():
|
||||
print("date: {}".format(x.open_date))
|
||||
|
||||
trades = pd.DataFrame([(t.pair, t.calc_profit(),
|
||||
t.open_date.replace(tzinfo=timeZone),
|
||||
t.close_date.replace(tzinfo=timeZone) if t.close_date else None,
|
||||
t.open_rate, t.close_rate,
|
||||
t.close_date.timestamp() - t.open_date.timestamp() if t.close_date else None)
|
||||
for t in Trade.query.filter(Trade.pair.is_(pair)).all()],
|
||||
columns=columns)
|
||||
|
||||
elif args.exportfilename:
|
||||
file = Path(args.exportfilename)
|
||||
# must align with columns in backtest.py
|
||||
columns = ["pair", "profit", "opents", "closets", "index", "duration",
|
||||
"open_rate", "close_rate", "open_at_end", "sell_reason"]
|
||||
with file.open() as f:
|
||||
data = json.load(f)
|
||||
trades = pd.DataFrame(data, columns=columns)
|
||||
trades = trades.loc[trades["pair"] == pair]
|
||||
if timerange:
|
||||
if timerange.starttype == 'date':
|
||||
trades = trades.loc[trades["opents"] >= timerange.startts]
|
||||
if timerange.stoptype == 'date':
|
||||
trades = trades.loc[trades["opents"] <= timerange.stopts]
|
||||
|
||||
trades['opents'] = pd.to_datetime(trades['opents'],
|
||||
unit='s',
|
||||
utc=True,
|
||||
infer_datetime_format=True)
|
||||
trades['closets'] = pd.to_datetime(trades['closets'],
|
||||
unit='s',
|
||||
utc=True,
|
||||
infer_datetime_format=True)
|
||||
return trades
|
||||
|
||||
|
||||
def plot_analyzed_dataframe(args: Namespace) -> None:
|
||||
"""
|
||||
Calls analyze() and plots the returned dataframe
|
||||
:return: None
|
||||
"""
|
||||
global _CONF
|
||||
|
||||
# Load the configuration
|
||||
_CONF.update(setup_configuration(args))
|
||||
|
||||
print(_CONF)
|
||||
# Set the pair to audit
|
||||
pair = args.pair
|
||||
|
||||
if pair is None:
|
||||
logger.critical('Parameter --pair mandatory;. E.g --pair ETH/BTC')
|
||||
exit()
|
||||
|
||||
if '/' not in pair:
|
||||
logger.critical('--pair format must be XXX/YYY')
|
||||
exit()
|
||||
|
||||
# Set timerange to use
|
||||
timerange = Arguments.parse_timerange(args.timerange)
|
||||
|
||||
# Load the strategy
|
||||
try:
|
||||
strategy = StrategyResolver(_CONF).strategy
|
||||
exchange = Exchange(_CONF)
|
||||
except AttributeError:
|
||||
logger.critical(
|
||||
'Impossible to load the strategy. Please check the file "user_data/strategies/%s.py"',
|
||||
args.strategy
|
||||
)
|
||||
exit()
|
||||
|
||||
# Set the ticker to use
|
||||
tick_interval = strategy.ticker_interval
|
||||
|
||||
# Load pair tickers
|
||||
tickers = {}
|
||||
if args.live:
|
||||
logger.info('Downloading pair.')
|
||||
exchange.refresh_tickers([pair], tick_interval)
|
||||
tickers[pair] = exchange.klines[pair]
|
||||
else:
|
||||
tickers = optimize.load_data(
|
||||
datadir=_CONF.get("datadir"),
|
||||
pairs=[pair],
|
||||
ticker_interval=tick_interval,
|
||||
refresh_pairs=_CONF.get('refresh_pairs', False),
|
||||
timerange=timerange,
|
||||
exchange=Exchange(_CONF)
|
||||
)
|
||||
|
||||
# No ticker found, or impossible to download
|
||||
if tickers == {}:
|
||||
exit()
|
||||
|
||||
# Get trades already made from the DB
|
||||
trades = load_trades(args, pair, timerange)
|
||||
|
||||
dataframes = strategy.tickerdata_to_dataframe(tickers)
|
||||
|
||||
dataframe = dataframes[pair]
|
||||
dataframe = strategy.advise_buy(dataframe, {'pair': pair})
|
||||
dataframe = strategy.advise_sell(dataframe, {'pair': pair})
|
||||
|
||||
if len(dataframe.index) > args.plot_limit:
|
||||
logger.warning('Ticker contained more than %s candles as defined '
|
||||
'with --plot-limit, clipping.', args.plot_limit)
|
||||
dataframe = dataframe.tail(args.plot_limit)
|
||||
|
||||
trades = trades.loc[trades['opents'] >= dataframe.iloc[0]['date']]
|
||||
fig = generate_graph(
|
||||
pair=pair,
|
||||
trades=trades,
|
||||
data=dataframe,
|
||||
args=args
|
||||
)
|
||||
|
||||
plot(fig, filename=str(Path('user_data').joinpath('freqtrade-plot.html')))
|
||||
|
||||
|
||||
def generate_graph(pair, trades: pd.DataFrame, data: pd.DataFrame, args) -> tools.make_subplots:
|
||||
"""
|
||||
Generate the graph from the data generated by Backtesting or from DB
|
||||
:param pair: Pair to Display on the graph
|
||||
:param trades: All trades created
|
||||
:param data: Dataframe
|
||||
:param args: sys.argv that contrains the two params indicators1, and indicators2
|
||||
:return: None
|
||||
"""
|
||||
|
||||
# Define the graph
|
||||
fig = tools.make_subplots(
|
||||
rows=3,
|
||||
cols=1,
|
||||
shared_xaxes=True,
|
||||
row_width=[1, 1, 4],
|
||||
vertical_spacing=0.0001,
|
||||
)
|
||||
fig['layout'].update(title=pair)
|
||||
fig['layout']['yaxis1'].update(title='Price')
|
||||
fig['layout']['yaxis2'].update(title='Volume')
|
||||
fig['layout']['yaxis3'].update(title='Other')
|
||||
|
||||
# Common information
|
||||
candles = go.Candlestick(
|
||||
x=data.date,
|
||||
open=data.open,
|
||||
high=data.high,
|
||||
low=data.low,
|
||||
close=data.close,
|
||||
name='Price'
|
||||
)
|
||||
|
||||
df_buy = data[data['buy'] == 1]
|
||||
buys = go.Scattergl(
|
||||
x=df_buy.date,
|
||||
y=df_buy.close,
|
||||
mode='markers',
|
||||
name='buy',
|
||||
marker=dict(
|
||||
symbol='triangle-up-dot',
|
||||
size=9,
|
||||
line=dict(width=1),
|
||||
color='green',
|
||||
)
|
||||
)
|
||||
df_sell = data[data['sell'] == 1]
|
||||
sells = go.Scattergl(
|
||||
x=df_sell.date,
|
||||
y=df_sell.close,
|
||||
mode='markers',
|
||||
name='sell',
|
||||
marker=dict(
|
||||
symbol='triangle-down-dot',
|
||||
size=9,
|
||||
line=dict(width=1),
|
||||
color='red',
|
||||
)
|
||||
)
|
||||
|
||||
trade_buys = go.Scattergl(
|
||||
x=trades["opents"],
|
||||
y=trades["open_rate"],
|
||||
mode='markers',
|
||||
name='trade_buy',
|
||||
marker=dict(
|
||||
symbol='square-open',
|
||||
size=11,
|
||||
line=dict(width=2),
|
||||
color='green'
|
||||
)
|
||||
)
|
||||
trade_sells = go.Scattergl(
|
||||
x=trades["closets"],
|
||||
y=trades["close_rate"],
|
||||
mode='markers',
|
||||
name='trade_sell',
|
||||
marker=dict(
|
||||
symbol='square-open',
|
||||
size=11,
|
||||
line=dict(width=2),
|
||||
color='red'
|
||||
)
|
||||
)
|
||||
|
||||
# Row 1
|
||||
fig.append_trace(candles, 1, 1)
|
||||
|
||||
if 'bb_lowerband' in data and 'bb_upperband' in data:
|
||||
bb_lower = go.Scatter(
|
||||
x=data.date,
|
||||
y=data.bb_lowerband,
|
||||
name='BB lower',
|
||||
line={'color': 'rgba(255,255,255,0)'},
|
||||
)
|
||||
bb_upper = go.Scatter(
|
||||
x=data.date,
|
||||
y=data.bb_upperband,
|
||||
name='BB upper',
|
||||
fill="tonexty",
|
||||
fillcolor="rgba(0,176,246,0.2)",
|
||||
line={'color': 'rgba(255,255,255,0)'},
|
||||
)
|
||||
fig.append_trace(bb_lower, 1, 1)
|
||||
fig.append_trace(bb_upper, 1, 1)
|
||||
|
||||
fig = generate_row(fig=fig, row=1, raw_indicators=args.indicators1, data=data)
|
||||
fig.append_trace(buys, 1, 1)
|
||||
fig.append_trace(sells, 1, 1)
|
||||
fig.append_trace(trade_buys, 1, 1)
|
||||
fig.append_trace(trade_sells, 1, 1)
|
||||
|
||||
# Row 2
|
||||
volume = go.Bar(
|
||||
x=data['date'],
|
||||
y=data['volume'],
|
||||
name='Volume'
|
||||
)
|
||||
fig.append_trace(volume, 2, 1)
|
||||
|
||||
# Row 3
|
||||
fig = generate_row(fig=fig, row=3, raw_indicators=args.indicators2, data=data)
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
def generate_row(fig, row, raw_indicators, data) -> tools.make_subplots:
|
||||
"""
|
||||
Generator all the indicator selected by the user for a specific row
|
||||
"""
|
||||
for indicator in raw_indicators.split(','):
|
||||
if indicator in data:
|
||||
scattergl = go.Scattergl(
|
||||
x=data['date'],
|
||||
y=data[indicator],
|
||||
name=indicator
|
||||
)
|
||||
fig.append_trace(scattergl, row, 1)
|
||||
else:
|
||||
logger.info(
|
||||
'Indicator "%s" ignored. Reason: This indicator is not found '
|
||||
'in your strategy.',
|
||||
indicator
|
||||
)
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
def plot_parse_args(args: List[str]) -> Namespace:
|
||||
"""
|
||||
Parse args passed to the script
|
||||
:param args: Cli arguments
|
||||
:return: args: Array with all arguments
|
||||
"""
|
||||
arguments = Arguments(args, 'Graph dataframe')
|
||||
arguments.scripts_options()
|
||||
arguments.parser.add_argument(
|
||||
'--indicators1',
|
||||
help='Set indicators from your strategy you want in the first row of the graph. Separate '
|
||||
'them with a coma. E.g: ema3,ema5 (default: %(default)s)',
|
||||
type=str,
|
||||
default='sma,ema3,ema5',
|
||||
dest='indicators1',
|
||||
)
|
||||
|
||||
arguments.parser.add_argument(
|
||||
'--indicators2',
|
||||
help='Set indicators from your strategy you want in the third row of the graph. Separate '
|
||||
'them with a coma. E.g: fastd,fastk (default: %(default)s)',
|
||||
type=str,
|
||||
default='macd',
|
||||
dest='indicators2',
|
||||
)
|
||||
arguments.parser.add_argument(
|
||||
'--plot-limit',
|
||||
help='Specify tick limit for plotting - too high values cause huge files - '
|
||||
'Default: %(default)s',
|
||||
dest='plot_limit',
|
||||
default=750,
|
||||
type=int,
|
||||
)
|
||||
arguments.common_args_parser()
|
||||
arguments.optimizer_shared_options(arguments.parser)
|
||||
arguments.backtesting_options(arguments.parser)
|
||||
return arguments.parse_args()
|
||||
|
||||
|
||||
def main(sysargv: List[str]) -> None:
|
||||
"""
|
||||
This function will initiate the bot and start the trading loop.
|
||||
:return: None
|
||||
"""
|
||||
logger.info('Starting Plot Dataframe')
|
||||
plot_analyzed_dataframe(
|
||||
plot_parse_args(sysargv)
|
||||
)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main(sys.argv[1:])
|
Loading…
Reference in New Issue
Block a user