Merge branch 'develop' into verify_date_on_new_candle_on_get_signal
This commit is contained in:
@@ -24,4 +24,11 @@ if __version__ == 'develop':
|
||||
# stderr=subprocess.DEVNULL).decode("utf-8").rstrip().strip('"')
|
||||
except Exception:
|
||||
# git not available, ignore
|
||||
pass
|
||||
try:
|
||||
# Try Fallback to freqtrade_commit file (created by CI while building docker image)
|
||||
from pathlib import Path
|
||||
versionfile = Path('./freqtrade_commit')
|
||||
if versionfile.is_file():
|
||||
__version__ = f"docker-{versionfile.read_text()[:8]}"
|
||||
except Exception:
|
||||
pass
|
||||
|
@@ -19,7 +19,8 @@ from freqtrade.commands.list_commands import (start_list_exchanges,
|
||||
start_list_hyperopts,
|
||||
start_list_markets,
|
||||
start_list_strategies,
|
||||
start_list_timeframes)
|
||||
start_list_timeframes,
|
||||
start_show_trades)
|
||||
from freqtrade.commands.optimize_commands import (start_backtesting,
|
||||
start_edge, start_hyperopt)
|
||||
from freqtrade.commands.pairlist_commands import start_test_pairlist
|
||||
|
@@ -59,11 +59,13 @@ ARGS_DOWNLOAD_DATA = ["pairs", "pairs_file", "days", "download_trades", "exchang
|
||||
|
||||
ARGS_PLOT_DATAFRAME = ["pairs", "indicators1", "indicators2", "plot_limit",
|
||||
"db_url", "trade_source", "export", "exportfilename",
|
||||
"timerange", "ticker_interval"]
|
||||
"timerange", "ticker_interval", "no_trades"]
|
||||
|
||||
ARGS_PLOT_PROFIT = ["pairs", "timerange", "export", "exportfilename", "db_url",
|
||||
"trade_source", "ticker_interval"]
|
||||
|
||||
ARGS_SHOW_TRADES = ["db_url", "trade_ids", "print_json"]
|
||||
|
||||
ARGS_HYPEROPT_LIST = ["hyperopt_list_best", "hyperopt_list_profitable",
|
||||
"hyperopt_list_min_trades", "hyperopt_list_max_trades",
|
||||
"hyperopt_list_min_avg_time", "hyperopt_list_max_avg_time",
|
||||
@@ -78,7 +80,7 @@ ARGS_HYPEROPT_SHOW = ["hyperopt_list_best", "hyperopt_list_profitable", "hyperop
|
||||
NO_CONF_REQURIED = ["convert-data", "convert-trade-data", "download-data", "list-timeframes",
|
||||
"list-markets", "list-pairs", "list-strategies",
|
||||
"list-hyperopts", "hyperopt-list", "hyperopt-show",
|
||||
"plot-dataframe", "plot-profit"]
|
||||
"plot-dataframe", "plot-profit", "show-trades"]
|
||||
|
||||
NO_CONF_ALLOWED = ["create-userdir", "list-exchanges", "new-hyperopt", "new-strategy"]
|
||||
|
||||
@@ -163,7 +165,7 @@ class Arguments:
|
||||
start_list_markets, start_list_strategies,
|
||||
start_list_timeframes, start_new_config,
|
||||
start_new_hyperopt, start_new_strategy,
|
||||
start_plot_dataframe, start_plot_profit,
|
||||
start_plot_dataframe, start_plot_profit, start_show_trades,
|
||||
start_backtesting, start_hyperopt, start_edge,
|
||||
start_test_pairlist, start_trading)
|
||||
|
||||
@@ -297,7 +299,7 @@ class Arguments:
|
||||
# Add convert-data subcommand
|
||||
convert_data_cmd = subparsers.add_parser(
|
||||
'convert-data',
|
||||
help='Convert OHLCV data from one format to another.',
|
||||
help='Convert candle (OHLCV) data from one format to another.',
|
||||
parents=[_common_parser],
|
||||
)
|
||||
convert_data_cmd.set_defaults(func=partial(start_convert_data, ohlcv=True))
|
||||
@@ -306,7 +308,7 @@ class Arguments:
|
||||
# Add convert-trade-data subcommand
|
||||
convert_trade_data_cmd = subparsers.add_parser(
|
||||
'convert-trade-data',
|
||||
help='Convert trade-data from one format to another.',
|
||||
help='Convert trade data from one format to another.',
|
||||
parents=[_common_parser],
|
||||
)
|
||||
convert_trade_data_cmd.set_defaults(func=partial(start_convert_data, ohlcv=False))
|
||||
@@ -330,6 +332,15 @@ class Arguments:
|
||||
plot_profit_cmd.set_defaults(func=start_plot_profit)
|
||||
self._build_args(optionlist=ARGS_PLOT_PROFIT, parser=plot_profit_cmd)
|
||||
|
||||
# Add show-trades subcommand
|
||||
show_trades = subparsers.add_parser(
|
||||
'show-trades',
|
||||
help='Show trades.',
|
||||
parents=[_common_parser],
|
||||
)
|
||||
show_trades.set_defaults(func=start_show_trades)
|
||||
self._build_args(optionlist=ARGS_SHOW_TRADES, parser=show_trades)
|
||||
|
||||
# Add hyperopt-list subcommand
|
||||
hyperopt_list_cmd = subparsers.add_parser(
|
||||
'hyperopt-list',
|
||||
|
@@ -76,7 +76,7 @@ def ask_user_config() -> Dict[str, Any]:
|
||||
{
|
||||
"type": "text",
|
||||
"name": "ticker_interval",
|
||||
"message": "Please insert your ticker interval:",
|
||||
"message": "Please insert your timeframe (ticker interval):",
|
||||
"default": "5m",
|
||||
},
|
||||
{
|
||||
@@ -163,7 +163,7 @@ def deploy_new_config(config_path: Path, selections: Dict[str, Any]) -> None:
|
||||
)
|
||||
except TemplateNotFound:
|
||||
selections['exchange'] = render_template(
|
||||
templatefile=f"subtemplates/exchange_generic.j2",
|
||||
templatefile="subtemplates/exchange_generic.j2",
|
||||
arguments=selections
|
||||
)
|
||||
|
||||
|
@@ -217,7 +217,7 @@ AVAILABLE_CLI_OPTIONS = {
|
||||
),
|
||||
"print_json": Arg(
|
||||
'--print-json',
|
||||
help='Print best result detailization in JSON format.',
|
||||
help='Print output in JSON format.',
|
||||
action='store_true',
|
||||
default=False,
|
||||
),
|
||||
@@ -355,7 +355,7 @@ AVAILABLE_CLI_OPTIONS = {
|
||||
),
|
||||
"dataformat_ohlcv": Arg(
|
||||
'--data-format-ohlcv',
|
||||
help='Storage format for downloaded ohlcv data. (default: `%(default)s`).',
|
||||
help='Storage format for downloaded candle (OHLCV) data. (default: `%(default)s`).',
|
||||
choices=constants.AVAILABLE_DATAHANDLERS,
|
||||
default='json'
|
||||
),
|
||||
@@ -372,8 +372,8 @@ AVAILABLE_CLI_OPTIONS = {
|
||||
),
|
||||
"timeframes": Arg(
|
||||
'-t', '--timeframes',
|
||||
help=f'Specify which tickers to download. Space-separated list. '
|
||||
f'Default: `1m 5m`.',
|
||||
help='Specify which tickers to download. Space-separated list. '
|
||||
'Default: `1m 5m`.',
|
||||
choices=['1m', '3m', '5m', '15m', '30m', '1h', '2h', '4h',
|
||||
'6h', '8h', '12h', '1d', '3d', '1w'],
|
||||
default=['1m', '5m'],
|
||||
@@ -387,9 +387,9 @@ AVAILABLE_CLI_OPTIONS = {
|
||||
# Templating options
|
||||
"template": Arg(
|
||||
'--template',
|
||||
help='Use a template which is either `minimal` or '
|
||||
'`full` (containing multiple sample indicators). Default: `%(default)s`.',
|
||||
choices=['full', 'minimal'],
|
||||
help='Use a template which is either `minimal`, '
|
||||
'`full` (containing multiple sample indicators) or `advanced`. Default: `%(default)s`.',
|
||||
choices=['full', 'minimal', 'advanced'],
|
||||
default='full',
|
||||
),
|
||||
# Plot dataframe
|
||||
@@ -413,6 +413,11 @@ AVAILABLE_CLI_OPTIONS = {
|
||||
metavar='INT',
|
||||
default=750,
|
||||
),
|
||||
"no_trades": Arg(
|
||||
'--no-trades',
|
||||
help='Skip using trades from backtesting file and DB.',
|
||||
action='store_true',
|
||||
),
|
||||
"trade_source": Arg(
|
||||
'--trade-source',
|
||||
help='Specify the source for trades (Can be DB or file (backtest file)) '
|
||||
@@ -420,6 +425,11 @@ AVAILABLE_CLI_OPTIONS = {
|
||||
choices=["DB", "file"],
|
||||
default="file",
|
||||
),
|
||||
"trade_ids": Arg(
|
||||
'--trade-ids',
|
||||
help='Specify the list of trade ids.',
|
||||
nargs='+',
|
||||
),
|
||||
# hyperopt-list, hyperopt-show
|
||||
"hyperopt_list_profitable": Arg(
|
||||
'--profitable',
|
||||
|
@@ -8,7 +8,7 @@ from freqtrade.configuration.directory_operations import (copy_sample_files,
|
||||
create_userdata_dir)
|
||||
from freqtrade.constants import USERPATH_HYPEROPTS, USERPATH_STRATEGIES
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.misc import render_template
|
||||
from freqtrade.misc import render_template, render_template_with_fallback
|
||||
from freqtrade.state import RunMode
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -32,10 +32,27 @@ def deploy_new_strategy(strategy_name: str, strategy_path: Path, subtemplate: st
|
||||
"""
|
||||
Deploy new strategy from template to strategy_path
|
||||
"""
|
||||
indicators = render_template(templatefile=f"subtemplates/indicators_{subtemplate}.j2",)
|
||||
buy_trend = render_template(templatefile=f"subtemplates/buy_trend_{subtemplate}.j2",)
|
||||
sell_trend = render_template(templatefile=f"subtemplates/sell_trend_{subtemplate}.j2",)
|
||||
plot_config = render_template(templatefile=f"subtemplates/plot_config_{subtemplate}.j2",)
|
||||
fallback = 'full'
|
||||
indicators = render_template_with_fallback(
|
||||
templatefile=f"subtemplates/indicators_{subtemplate}.j2",
|
||||
templatefallbackfile=f"subtemplates/indicators_{fallback}.j2",
|
||||
)
|
||||
buy_trend = render_template_with_fallback(
|
||||
templatefile=f"subtemplates/buy_trend_{subtemplate}.j2",
|
||||
templatefallbackfile=f"subtemplates/buy_trend_{fallback}.j2",
|
||||
)
|
||||
sell_trend = render_template_with_fallback(
|
||||
templatefile=f"subtemplates/sell_trend_{subtemplate}.j2",
|
||||
templatefallbackfile=f"subtemplates/sell_trend_{fallback}.j2",
|
||||
)
|
||||
plot_config = render_template_with_fallback(
|
||||
templatefile=f"subtemplates/plot_config_{subtemplate}.j2",
|
||||
templatefallbackfile=f"subtemplates/plot_config_{fallback}.j2",
|
||||
)
|
||||
additional_methods = render_template_with_fallback(
|
||||
templatefile=f"subtemplates/strategy_methods_{subtemplate}.j2",
|
||||
templatefallbackfile="subtemplates/strategy_methods_empty.j2",
|
||||
)
|
||||
|
||||
strategy_text = render_template(templatefile='base_strategy.py.j2',
|
||||
arguments={"strategy": strategy_name,
|
||||
@@ -43,6 +60,7 @@ def deploy_new_strategy(strategy_name: str, strategy_path: Path, subtemplate: st
|
||||
"buy_trend": buy_trend,
|
||||
"sell_trend": sell_trend,
|
||||
"plot_config": plot_config,
|
||||
"additional_methods": additional_methods,
|
||||
})
|
||||
|
||||
logger.info(f"Writing strategy to `{strategy_path}`.")
|
||||
@@ -73,14 +91,23 @@ def deploy_new_hyperopt(hyperopt_name: str, hyperopt_path: Path, subtemplate: st
|
||||
"""
|
||||
Deploys a new hyperopt template to hyperopt_path
|
||||
"""
|
||||
buy_guards = render_template(
|
||||
templatefile=f"subtemplates/hyperopt_buy_guards_{subtemplate}.j2",)
|
||||
sell_guards = render_template(
|
||||
templatefile=f"subtemplates/hyperopt_sell_guards_{subtemplate}.j2",)
|
||||
buy_space = render_template(
|
||||
templatefile=f"subtemplates/hyperopt_buy_space_{subtemplate}.j2",)
|
||||
sell_space = render_template(
|
||||
templatefile=f"subtemplates/hyperopt_sell_space_{subtemplate}.j2",)
|
||||
fallback = 'full'
|
||||
buy_guards = render_template_with_fallback(
|
||||
templatefile=f"subtemplates/hyperopt_buy_guards_{subtemplate}.j2",
|
||||
templatefallbackfile=f"subtemplates/hyperopt_buy_guards_{fallback}.j2",
|
||||
)
|
||||
sell_guards = render_template_with_fallback(
|
||||
templatefile=f"subtemplates/hyperopt_sell_guards_{subtemplate}.j2",
|
||||
templatefallbackfile=f"subtemplates/hyperopt_sell_guards_{fallback}.j2",
|
||||
)
|
||||
buy_space = render_template_with_fallback(
|
||||
templatefile=f"subtemplates/hyperopt_buy_space_{subtemplate}.j2",
|
||||
templatefallbackfile=f"subtemplates/hyperopt_buy_space_{fallback}.j2",
|
||||
)
|
||||
sell_space = render_template_with_fallback(
|
||||
templatefile=f"subtemplates/hyperopt_sell_space_{subtemplate}.j2",
|
||||
templatefallbackfile=f"subtemplates/hyperopt_sell_space_{fallback}.j2",
|
||||
)
|
||||
|
||||
strategy_text = render_template(templatefile='base_hyperopt.py.j2',
|
||||
arguments={"hyperopt": hyperopt_name,
|
||||
|
@@ -38,33 +38,33 @@ def start_hyperopt_list(args: Dict[str, Any]) -> None:
|
||||
'filter_max_total_profit': config.get('hyperopt_list_max_total_profit', None)
|
||||
}
|
||||
|
||||
trials_file = (config['user_data_dir'] /
|
||||
'hyperopt_results' / 'hyperopt_results.pickle')
|
||||
results_file = (config['user_data_dir'] /
|
||||
'hyperopt_results' / 'hyperopt_results.pickle')
|
||||
|
||||
# Previous evaluations
|
||||
trials = Hyperopt.load_previous_results(trials_file)
|
||||
total_epochs = len(trials)
|
||||
epochs = Hyperopt.load_previous_results(results_file)
|
||||
total_epochs = len(epochs)
|
||||
|
||||
trials = _hyperopt_filter_trials(trials, filteroptions)
|
||||
epochs = _hyperopt_filter_epochs(epochs, filteroptions)
|
||||
|
||||
if print_colorized:
|
||||
colorama_init(autoreset=True)
|
||||
|
||||
if not export_csv:
|
||||
try:
|
||||
Hyperopt.print_result_table(config, trials, total_epochs,
|
||||
not filteroptions['only_best'], print_colorized, 0)
|
||||
print(Hyperopt.get_result_table(config, epochs, total_epochs,
|
||||
not filteroptions['only_best'], print_colorized, 0))
|
||||
except KeyboardInterrupt:
|
||||
print('User interrupted..')
|
||||
|
||||
if trials and not no_details:
|
||||
sorted_trials = sorted(trials, key=itemgetter('loss'))
|
||||
results = sorted_trials[0]
|
||||
if epochs and not no_details:
|
||||
sorted_epochs = sorted(epochs, key=itemgetter('loss'))
|
||||
results = sorted_epochs[0]
|
||||
Hyperopt.print_epoch_details(results, total_epochs, print_json, no_header)
|
||||
|
||||
if trials and export_csv:
|
||||
if epochs and export_csv:
|
||||
Hyperopt.export_csv_file(
|
||||
config, trials, total_epochs, not filteroptions['only_best'], export_csv
|
||||
config, epochs, total_epochs, not filteroptions['only_best'], export_csv
|
||||
)
|
||||
|
||||
|
||||
@@ -78,8 +78,8 @@ def start_hyperopt_show(args: Dict[str, Any]) -> None:
|
||||
|
||||
print_json = config.get('print_json', False)
|
||||
no_header = config.get('hyperopt_show_no_header', False)
|
||||
trials_file = (config['user_data_dir'] /
|
||||
'hyperopt_results' / 'hyperopt_results.pickle')
|
||||
results_file = (config['user_data_dir'] /
|
||||
'hyperopt_results' / 'hyperopt_results.pickle')
|
||||
n = config.get('hyperopt_show_index', -1)
|
||||
|
||||
filteroptions = {
|
||||
@@ -96,89 +96,87 @@ def start_hyperopt_show(args: Dict[str, Any]) -> None:
|
||||
}
|
||||
|
||||
# Previous evaluations
|
||||
trials = Hyperopt.load_previous_results(trials_file)
|
||||
total_epochs = len(trials)
|
||||
epochs = Hyperopt.load_previous_results(results_file)
|
||||
total_epochs = len(epochs)
|
||||
|
||||
trials = _hyperopt_filter_trials(trials, filteroptions)
|
||||
trials_epochs = len(trials)
|
||||
epochs = _hyperopt_filter_epochs(epochs, filteroptions)
|
||||
filtered_epochs = len(epochs)
|
||||
|
||||
if n > trials_epochs:
|
||||
if n > filtered_epochs:
|
||||
raise OperationalException(
|
||||
f"The index of the epoch to show should be less than {trials_epochs + 1}.")
|
||||
if n < -trials_epochs:
|
||||
f"The index of the epoch to show should be less than {filtered_epochs + 1}.")
|
||||
if n < -filtered_epochs:
|
||||
raise OperationalException(
|
||||
f"The index of the epoch to show should be greater than {-trials_epochs - 1}.")
|
||||
f"The index of the epoch to show should be greater than {-filtered_epochs - 1}.")
|
||||
|
||||
# Translate epoch index from human-readable format to pythonic
|
||||
if n > 0:
|
||||
n -= 1
|
||||
|
||||
if trials:
|
||||
val = trials[n]
|
||||
if epochs:
|
||||
val = epochs[n]
|
||||
Hyperopt.print_epoch_details(val, total_epochs, print_json, no_header,
|
||||
header_str="Epoch details")
|
||||
|
||||
|
||||
def _hyperopt_filter_trials(trials: List, filteroptions: dict) -> List:
|
||||
def _hyperopt_filter_epochs(epochs: List, filteroptions: dict) -> List:
|
||||
"""
|
||||
Filter our items from the list of hyperopt results
|
||||
"""
|
||||
if filteroptions['only_best']:
|
||||
trials = [x for x in trials if x['is_best']]
|
||||
epochs = [x for x in epochs if x['is_best']]
|
||||
if filteroptions['only_profitable']:
|
||||
trials = [x for x in trials if x['results_metrics']['profit'] > 0]
|
||||
epochs = [x for x in epochs if x['results_metrics']['profit'] > 0]
|
||||
if filteroptions['filter_min_trades'] > 0:
|
||||
trials = [
|
||||
x for x in trials
|
||||
epochs = [
|
||||
x for x in epochs
|
||||
if x['results_metrics']['trade_count'] > filteroptions['filter_min_trades']
|
||||
]
|
||||
if filteroptions['filter_max_trades'] > 0:
|
||||
trials = [
|
||||
x for x in trials
|
||||
epochs = [
|
||||
x for x in epochs
|
||||
if x['results_metrics']['trade_count'] < filteroptions['filter_max_trades']
|
||||
]
|
||||
if filteroptions['filter_min_avg_time'] is not None:
|
||||
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
|
||||
trials = [
|
||||
x for x in trials
|
||||
epochs = [x for x in epochs if x['results_metrics']['trade_count'] > 0]
|
||||
epochs = [
|
||||
x for x in epochs
|
||||
if x['results_metrics']['duration'] > filteroptions['filter_min_avg_time']
|
||||
]
|
||||
if filteroptions['filter_max_avg_time'] is not None:
|
||||
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
|
||||
trials = [
|
||||
x for x in trials
|
||||
epochs = [x for x in epochs if x['results_metrics']['trade_count'] > 0]
|
||||
epochs = [
|
||||
x for x in epochs
|
||||
if x['results_metrics']['duration'] < filteroptions['filter_max_avg_time']
|
||||
]
|
||||
if filteroptions['filter_min_avg_profit'] is not None:
|
||||
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
|
||||
trials = [
|
||||
x for x in trials
|
||||
if x['results_metrics']['avg_profit']
|
||||
> filteroptions['filter_min_avg_profit']
|
||||
epochs = [x for x in epochs if x['results_metrics']['trade_count'] > 0]
|
||||
epochs = [
|
||||
x for x in epochs
|
||||
if x['results_metrics']['avg_profit'] > filteroptions['filter_min_avg_profit']
|
||||
]
|
||||
if filteroptions['filter_max_avg_profit'] is not None:
|
||||
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
|
||||
trials = [
|
||||
x for x in trials
|
||||
if x['results_metrics']['avg_profit']
|
||||
< filteroptions['filter_max_avg_profit']
|
||||
epochs = [x for x in epochs if x['results_metrics']['trade_count'] > 0]
|
||||
epochs = [
|
||||
x for x in epochs
|
||||
if x['results_metrics']['avg_profit'] < filteroptions['filter_max_avg_profit']
|
||||
]
|
||||
if filteroptions['filter_min_total_profit'] is not None:
|
||||
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
|
||||
trials = [
|
||||
x for x in trials
|
||||
epochs = [x for x in epochs if x['results_metrics']['trade_count'] > 0]
|
||||
epochs = [
|
||||
x for x in epochs
|
||||
if x['results_metrics']['profit'] > filteroptions['filter_min_total_profit']
|
||||
]
|
||||
if filteroptions['filter_max_total_profit'] is not None:
|
||||
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
|
||||
trials = [
|
||||
x for x in trials
|
||||
epochs = [x for x in epochs if x['results_metrics']['trade_count'] > 0]
|
||||
epochs = [
|
||||
x for x in epochs
|
||||
if x['results_metrics']['profit'] < filteroptions['filter_max_total_profit']
|
||||
]
|
||||
|
||||
logger.info(f"{len(trials)} " +
|
||||
logger.info(f"{len(epochs)} " +
|
||||
("best " if filteroptions['only_best'] else "") +
|
||||
("profitable " if filteroptions['only_profitable'] else "") +
|
||||
"epochs found.")
|
||||
|
||||
return trials
|
||||
return epochs
|
||||
|
@@ -197,3 +197,30 @@ def start_list_markets(args: Dict[str, Any], pairs_only: bool = False) -> None:
|
||||
args.get('list_pairs_print_json', False) or
|
||||
args.get('print_csv', False)):
|
||||
print(f"{summary_str}.")
|
||||
|
||||
|
||||
def start_show_trades(args: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Show trades
|
||||
"""
|
||||
from freqtrade.persistence import init, Trade
|
||||
import json
|
||||
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
|
||||
|
||||
if 'db_url' not in config:
|
||||
raise OperationalException("--db-url is required for this command.")
|
||||
|
||||
logger.info(f'Using DB: "{config["db_url"]}"')
|
||||
init(config['db_url'], clean_open_orders=False)
|
||||
tfilter = []
|
||||
|
||||
if config.get('trade_ids'):
|
||||
tfilter.append(Trade.id.in_(config['trade_ids']))
|
||||
|
||||
trades = Trade.get_trades(tfilter).all()
|
||||
logger.info(f"Printing {len(trades)} Trades: ")
|
||||
if config.get('print_json', False):
|
||||
print(json.dumps([trade.to_json() for trade in trades], indent=4))
|
||||
else:
|
||||
for trade in trades:
|
||||
print(trade)
|
||||
|
@@ -18,6 +18,9 @@ def start_trading(args: Dict[str, Any]) -> int:
|
||||
try:
|
||||
worker = Worker(args)
|
||||
worker.run()
|
||||
except Exception as e:
|
||||
logger.error(str(e))
|
||||
logger.exception("Fatal exception!")
|
||||
except KeyboardInterrupt:
|
||||
logger.info('SIGINT received, aborting ...')
|
||||
finally:
|
||||
|
@@ -196,6 +196,7 @@ class Configuration:
|
||||
if self.args.get('exportfilename'):
|
||||
self._args_to_config(config, argname='exportfilename',
|
||||
logstring='Storing backtest results to {} ...')
|
||||
config['exportfilename'] = Path(config['exportfilename'])
|
||||
else:
|
||||
config['exportfilename'] = (config['user_data_dir']
|
||||
/ 'backtest_results/backtest-result.json')
|
||||
@@ -350,14 +351,21 @@ class Configuration:
|
||||
self._args_to_config(config, argname='indicators2',
|
||||
logstring='Using indicators2: {}')
|
||||
|
||||
self._args_to_config(config, argname='trade_ids',
|
||||
logstring='Filtering on trade_ids: {}')
|
||||
|
||||
self._args_to_config(config, argname='plot_limit',
|
||||
logstring='Limiting plot to: {}')
|
||||
|
||||
self._args_to_config(config, argname='trade_source',
|
||||
logstring='Using trades from: {}')
|
||||
|
||||
self._args_to_config(config, argname='erase',
|
||||
logstring='Erase detected. Deleting existing data.')
|
||||
|
||||
self._args_to_config(config, argname='no_trades',
|
||||
logstring='Parameter --no-trades detected.')
|
||||
|
||||
self._args_to_config(config, argname='timeframes',
|
||||
logstring='timeframes --timeframes: {}')
|
||||
|
||||
|
@@ -58,29 +58,6 @@ def process_temporary_deprecated_settings(config: Dict[str, Any]) -> None:
|
||||
process_deprecated_setting(config, 'ask_strategy', 'ignore_roi_if_buy_signal',
|
||||
'experimental', 'ignore_roi_if_buy_signal')
|
||||
|
||||
if not config.get('pairlists') and not config.get('pairlists'):
|
||||
config['pairlists'] = [{'method': 'StaticPairList'}]
|
||||
logger.warning(
|
||||
"DEPRECATED: "
|
||||
"Pairlists must be defined explicitly in the future."
|
||||
"Defaulting to StaticPairList for now.")
|
||||
|
||||
if config.get('pairlist', {}).get("method") == 'VolumePairList':
|
||||
logger.warning(
|
||||
"DEPRECATED: "
|
||||
f"Using VolumePairList in pairlist is deprecated and must be moved to pairlists. "
|
||||
"Please refer to the docs on configuration details")
|
||||
pl = {'method': 'VolumePairList'}
|
||||
pl.update(config.get('pairlist', {}).get('config'))
|
||||
config['pairlists'].append(pl)
|
||||
|
||||
if config.get('pairlist', {}).get('config', {}).get('precision_filter'):
|
||||
logger.warning(
|
||||
"DEPRECATED: "
|
||||
f"Using precision_filter setting is deprecated and has been replaced by"
|
||||
"PrecisionFilter. Please refer to the docs on configuration details")
|
||||
config['pairlists'].append({'method': 'PrecisionFilter'})
|
||||
|
||||
if (config.get('edge', {}).get('enabled', False)
|
||||
and 'capital_available_percentage' in config.get('edge', {})):
|
||||
logger.warning(
|
||||
|
@@ -33,8 +33,8 @@ def create_userdata_dir(directory: str, create_dir: bool = False) -> Path:
|
||||
:param create_dir: Create directory if it does not exist.
|
||||
:return: Path object containing the directory
|
||||
"""
|
||||
sub_dirs = ["backtest_results", "data", "hyperopts", "hyperopt_results", "notebooks",
|
||||
"plot", "strategies", ]
|
||||
sub_dirs = ["backtest_results", "data", "hyperopts", "hyperopt_results", "logs",
|
||||
"notebooks", "plot", "strategies", ]
|
||||
folder = Path(directory)
|
||||
if not folder.is_dir():
|
||||
if create_dir:
|
||||
|
@@ -1,13 +1,15 @@
|
||||
"""
|
||||
This module contain functions to load the configuration file
|
||||
"""
|
||||
import rapidjson
|
||||
import logging
|
||||
import re
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict
|
||||
|
||||
from freqtrade.exceptions import OperationalException
|
||||
import rapidjson
|
||||
|
||||
from freqtrade.exceptions import OperationalException
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -15,6 +17,26 @@ logger = logging.getLogger(__name__)
|
||||
CONFIG_PARSE_MODE = rapidjson.PM_COMMENTS | rapidjson.PM_TRAILING_COMMAS
|
||||
|
||||
|
||||
def log_config_error_range(path: str, errmsg: str) -> str:
|
||||
"""
|
||||
Parses configuration file and prints range around error
|
||||
"""
|
||||
if path != '-':
|
||||
offsetlist = re.findall(r'(?<=Parse\serror\sat\soffset\s)\d+', errmsg)
|
||||
if offsetlist:
|
||||
offset = int(offsetlist[0])
|
||||
text = Path(path).read_text()
|
||||
# Fetch an offset of 80 characters around the error line
|
||||
subtext = text[offset-min(80, offset):offset+80]
|
||||
segments = subtext.split('\n')
|
||||
if len(segments) > 3:
|
||||
# Remove first and last lines, to avoid odd truncations
|
||||
return '\n'.join(segments[1:-1])
|
||||
else:
|
||||
return subtext
|
||||
return ''
|
||||
|
||||
|
||||
def load_config_file(path: str) -> Dict[str, Any]:
|
||||
"""
|
||||
Loads a config file from the given path
|
||||
@@ -29,5 +51,12 @@ def load_config_file(path: str) -> Dict[str, Any]:
|
||||
raise OperationalException(
|
||||
f'Config file "{path}" not found!'
|
||||
' Please create a config file or check whether it exists.')
|
||||
except rapidjson.JSONDecodeError as e:
|
||||
err_range = log_config_error_range(path, str(e))
|
||||
raise OperationalException(
|
||||
f'{e}\n'
|
||||
f'Please verify the following segment of your configuration:\n{err_range}'
|
||||
if err_range else 'Please verify your configuration file for syntax errors.'
|
||||
)
|
||||
|
||||
return config
|
||||
|
@@ -45,7 +45,7 @@ class TimeRange:
|
||||
"""
|
||||
Adjust startts by <startup_candles> candles.
|
||||
Applies only if no startup-candles have been available.
|
||||
:param timeframe_secs: Ticker timeframe in seconds e.g. `timeframe_to_seconds('5m')`
|
||||
:param timeframe_secs: Timeframe in seconds e.g. `timeframe_to_seconds('5m')`
|
||||
:param startup_candles: Number of candles to move start-date forward
|
||||
:param min_date: Minimum data date loaded. Key kriterium to decide if start-time
|
||||
has to be moved
|
||||
|
@@ -19,11 +19,14 @@ ORDERBOOK_SIDES = ['ask', 'bid']
|
||||
ORDERTYPE_POSSIBILITIES = ['limit', 'market']
|
||||
ORDERTIF_POSSIBILITIES = ['gtc', 'fok', 'ioc']
|
||||
AVAILABLE_PAIRLISTS = ['StaticPairList', 'VolumePairList',
|
||||
'PrecisionFilter', 'PriceFilter', 'SpreadFilter']
|
||||
'PrecisionFilter', 'PriceFilter', 'ShuffleFilter', 'SpreadFilter']
|
||||
AVAILABLE_DATAHANDLERS = ['json', 'jsongz']
|
||||
DRY_RUN_WALLET = 1000
|
||||
MATH_CLOSE_PREC = 1e-14 # Precision used for float comparisons
|
||||
DEFAULT_DATAFRAME_COLUMNS = ['date', 'open', 'high', 'low', 'close', 'volume']
|
||||
# Don't modify sequence of DEFAULT_TRADES_COLUMNS
|
||||
# it has wide consequences for stored trades files
|
||||
DEFAULT_TRADES_COLUMNS = ['timestamp', 'id', 'type', 'side', 'price', 'amount', 'cost']
|
||||
|
||||
USERPATH_HYPEROPTS = 'hyperopts'
|
||||
USERPATH_STRATEGIES = 'strategies'
|
||||
@@ -85,6 +88,7 @@ CONF_SCHEMA = {
|
||||
'fiat_display_currency': {'type': 'string', 'enum': SUPPORTED_FIAT},
|
||||
'dry_run': {'type': 'boolean'},
|
||||
'dry_run_wallet': {'type': 'number', 'default': DRY_RUN_WALLET},
|
||||
'cancel_open_orders_on_exit': {'type': 'boolean', 'default': False},
|
||||
'process_only_new_candles': {'type': 'boolean'},
|
||||
'minimal_roi': {
|
||||
'type': 'object',
|
||||
@@ -318,3 +322,10 @@ SCHEMA_MINIMAL_REQUIRED = [
|
||||
'dataformat_ohlcv',
|
||||
'dataformat_trades',
|
||||
]
|
||||
|
||||
CANCEL_REASON = {
|
||||
"TIMEOUT": "cancelled due to timeout",
|
||||
"PARTIALLY_FILLED": "partially filled - keeping order open",
|
||||
"ALL_CANCELLED": "cancelled (all unfilled and partially filled open orders cancelled)",
|
||||
"CANCELLED_ON_EXCHANGE": "cancelled on exchange",
|
||||
}
|
||||
|
@@ -111,7 +111,7 @@ def load_trades_from_db(db_url: str) -> pd.DataFrame:
|
||||
t.calc_profit(), t.calc_profit_ratio(),
|
||||
t.open_rate, t.close_rate, t.amount,
|
||||
(round((t.close_date.timestamp() - t.open_date.timestamp()) / 60, 2)
|
||||
if t.close_date else None),
|
||||
if t.close_date else None),
|
||||
t.sell_reason,
|
||||
t.fee_open, t.fee_close,
|
||||
t.open_rate_requested,
|
||||
@@ -129,39 +129,56 @@ def load_trades_from_db(db_url: str) -> pd.DataFrame:
|
||||
return trades
|
||||
|
||||
|
||||
def load_trades(source: str, db_url: str, exportfilename: str) -> pd.DataFrame:
|
||||
def load_trades(source: str, db_url: str, exportfilename: Path,
|
||||
no_trades: bool = False) -> pd.DataFrame:
|
||||
"""
|
||||
Based on configuration option "trade_source":
|
||||
* loads data from DB (using `db_url`)
|
||||
* loads data from backtestfile (using `exportfilename`)
|
||||
:param source: "DB" or "file" - specify source to load from
|
||||
:param db_url: sqlalchemy formatted url to a database
|
||||
:param exportfilename: Json file generated by backtesting
|
||||
:param no_trades: Skip using trades, only return backtesting data columns
|
||||
:return: DataFrame containing trades
|
||||
"""
|
||||
if no_trades:
|
||||
df = pd.DataFrame(columns=BT_DATA_COLUMNS)
|
||||
return df
|
||||
|
||||
if source == "DB":
|
||||
return load_trades_from_db(db_url)
|
||||
elif source == "file":
|
||||
return load_backtest_data(Path(exportfilename))
|
||||
return load_backtest_data(exportfilename)
|
||||
|
||||
|
||||
def extract_trades_of_period(dataframe: pd.DataFrame, trades: pd.DataFrame) -> pd.DataFrame:
|
||||
def extract_trades_of_period(dataframe: pd.DataFrame, trades: pd.DataFrame,
|
||||
date_index=False) -> pd.DataFrame:
|
||||
"""
|
||||
Compare trades and backtested pair DataFrames to get trades performed on backtested period
|
||||
:return: the DataFrame of a trades of period
|
||||
"""
|
||||
trades = trades.loc[(trades['open_time'] >= dataframe.iloc[0]['date']) &
|
||||
(trades['close_time'] <= dataframe.iloc[-1]['date'])]
|
||||
if date_index:
|
||||
trades_start = dataframe.index[0]
|
||||
trades_stop = dataframe.index[-1]
|
||||
else:
|
||||
trades_start = dataframe.iloc[0]['date']
|
||||
trades_stop = dataframe.iloc[-1]['date']
|
||||
trades = trades.loc[(trades['open_time'] >= trades_start) &
|
||||
(trades['close_time'] <= trades_stop)]
|
||||
return trades
|
||||
|
||||
|
||||
def combine_tickers_with_mean(tickers: Dict[str, pd.DataFrame],
|
||||
column: str = "close") -> pd.DataFrame:
|
||||
def combine_dataframes_with_mean(data: Dict[str, pd.DataFrame],
|
||||
column: str = "close") -> pd.DataFrame:
|
||||
"""
|
||||
Combine multiple dataframes "column"
|
||||
:param tickers: Dict of Dataframes, dict key should be pair.
|
||||
:param data: Dict of Dataframes, dict key should be pair.
|
||||
:param column: Column in the original dataframes to use
|
||||
:return: DataFrame with the column renamed to the dict key, and a column
|
||||
named mean, containing the mean of all pairs.
|
||||
"""
|
||||
df_comb = pd.concat([tickers[pair].set_index('date').rename(
|
||||
{column: pair}, axis=1)[pair] for pair in tickers], axis=1)
|
||||
df_comb = pd.concat([data[pair].set_index('date').rename(
|
||||
{column: pair}, axis=1)[pair] for pair in data], axis=1)
|
||||
|
||||
df_comb['mean'] = df_comb.mean(axis=1)
|
||||
|
||||
@@ -203,13 +220,15 @@ def calculate_max_drawdown(trades: pd.DataFrame, *, date_col: str = 'close_time'
|
||||
"""
|
||||
if len(trades) == 0:
|
||||
raise ValueError("Trade dataframe empty.")
|
||||
profit_results = trades.sort_values(date_col)
|
||||
profit_results = trades.sort_values(date_col).reset_index(drop=True)
|
||||
max_drawdown_df = pd.DataFrame()
|
||||
max_drawdown_df['cumulative'] = profit_results[value_col].cumsum()
|
||||
max_drawdown_df['high_value'] = max_drawdown_df['cumulative'].cummax()
|
||||
max_drawdown_df['drawdown'] = max_drawdown_df['cumulative'] - max_drawdown_df['high_value']
|
||||
|
||||
high_date = profit_results.loc[max_drawdown_df['high_value'].idxmax(), date_col]
|
||||
low_date = profit_results.loc[max_drawdown_df['drawdown'].idxmin(), date_col]
|
||||
|
||||
idxmin = max_drawdown_df['drawdown'].idxmin()
|
||||
if idxmin == 0:
|
||||
raise ValueError("No losing trade, therefore no drawdown.")
|
||||
high_date = profit_results.loc[max_drawdown_df.iloc[:idxmin]['high_value'].idxmax(), date_col]
|
||||
low_date = profit_results.loc[idxmin, date_col]
|
||||
return abs(min(max_drawdown_df['drawdown'])), high_date, low_date
|
||||
|
@@ -1,24 +1,27 @@
|
||||
"""
|
||||
Functions to convert data from one format to another
|
||||
"""
|
||||
import itertools
|
||||
import logging
|
||||
from datetime import datetime, timezone
|
||||
from typing import Any, Dict
|
||||
from operator import itemgetter
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import pandas as pd
|
||||
from pandas import DataFrame, to_datetime
|
||||
|
||||
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS
|
||||
from freqtrade.constants import (DEFAULT_DATAFRAME_COLUMNS,
|
||||
DEFAULT_TRADES_COLUMNS)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def parse_ticker_dataframe(ticker: list, timeframe: str, pair: str, *,
|
||||
fill_missing: bool = True,
|
||||
drop_incomplete: bool = True) -> DataFrame:
|
||||
def ohlcv_to_dataframe(ohlcv: list, timeframe: str, pair: str, *,
|
||||
fill_missing: bool = True, drop_incomplete: bool = True) -> DataFrame:
|
||||
"""
|
||||
Converts a ticker-list (format ccxt.fetch_ohlcv) to a Dataframe
|
||||
:param ticker: ticker list, as returned by exchange.async_get_candle_history
|
||||
Converts a list with candle (OHLCV) data (in format returned by ccxt.fetch_ohlcv)
|
||||
to a Dataframe
|
||||
:param ohlcv: list with candle (OHLCV) data, as returned by exchange.async_get_candle_history
|
||||
:param timeframe: timeframe (e.g. 5m). Used to fill up eventual missing data
|
||||
:param pair: Pair this data is for (used to warn if fillup was necessary)
|
||||
:param fill_missing: fill up missing candles with 0 candles
|
||||
@@ -26,21 +29,18 @@ def parse_ticker_dataframe(ticker: list, timeframe: str, pair: str, *,
|
||||
:param drop_incomplete: Drop the last candle of the dataframe, assuming it's incomplete
|
||||
:return: DataFrame
|
||||
"""
|
||||
logger.debug("Parsing tickerlist to dataframe")
|
||||
logger.debug(f"Converting candle (OHLCV) data to dataframe for pair {pair}.")
|
||||
cols = DEFAULT_DATAFRAME_COLUMNS
|
||||
frame = DataFrame(ticker, columns=cols)
|
||||
df = DataFrame(ohlcv, columns=cols)
|
||||
|
||||
frame['date'] = to_datetime(frame['date'],
|
||||
unit='ms',
|
||||
utc=True,
|
||||
infer_datetime_format=True)
|
||||
df['date'] = to_datetime(df['date'], unit='ms', utc=True, infer_datetime_format=True)
|
||||
|
||||
# Some exchanges return int values for volume and even for ohlc.
|
||||
# Some exchanges return int values for Volume and even for OHLC.
|
||||
# Convert them since TA-LIB indicators used in the strategy assume floats
|
||||
# and fail with exception...
|
||||
frame = frame.astype(dtype={'open': 'float', 'high': 'float', 'low': 'float', 'close': 'float',
|
||||
'volume': 'float'})
|
||||
return clean_ohlcv_dataframe(frame, timeframe, pair,
|
||||
df = df.astype(dtype={'open': 'float', 'high': 'float', 'low': 'float', 'close': 'float',
|
||||
'volume': 'float'})
|
||||
return clean_ohlcv_dataframe(df, timeframe, pair,
|
||||
fill_missing=fill_missing,
|
||||
drop_incomplete=drop_incomplete)
|
||||
|
||||
@@ -49,11 +49,11 @@ def clean_ohlcv_dataframe(data: DataFrame, timeframe: str, pair: str, *,
|
||||
fill_missing: bool = True,
|
||||
drop_incomplete: bool = True) -> DataFrame:
|
||||
"""
|
||||
Clense a ohlcv dataframe by
|
||||
Clense a OHLCV dataframe by
|
||||
* Grouping it by date (removes duplicate tics)
|
||||
* dropping last candles if requested
|
||||
* Filling up missing data (if requested)
|
||||
:param data: DataFrame containing ohlcv data.
|
||||
:param data: DataFrame containing candle (OHLCV) data.
|
||||
:param timeframe: timeframe (e.g. 5m). Used to fill up eventual missing data
|
||||
:param pair: Pair this data is for (used to warn if fillup was necessary)
|
||||
:param fill_missing: fill up missing candles with 0 candles
|
||||
@@ -88,16 +88,16 @@ def ohlcv_fill_up_missing_data(dataframe: DataFrame, timeframe: str, pair: str)
|
||||
"""
|
||||
from freqtrade.exchange import timeframe_to_minutes
|
||||
|
||||
ohlc_dict = {
|
||||
ohlcv_dict = {
|
||||
'open': 'first',
|
||||
'high': 'max',
|
||||
'low': 'min',
|
||||
'close': 'last',
|
||||
'volume': 'sum'
|
||||
}
|
||||
ticker_minutes = timeframe_to_minutes(timeframe)
|
||||
timeframe_minutes = timeframe_to_minutes(timeframe)
|
||||
# Resample to create "NAN" values
|
||||
df = dataframe.resample(f'{ticker_minutes}min', on='date').agg(ohlc_dict)
|
||||
df = dataframe.resample(f'{timeframe_minutes}min', on='date').agg(ohlcv_dict)
|
||||
|
||||
# Forwardfill close for missing columns
|
||||
df['close'] = df['close'].fillna(method='ffill')
|
||||
@@ -157,22 +157,43 @@ def order_book_to_dataframe(bids: list, asks: list) -> DataFrame:
|
||||
return frame
|
||||
|
||||
|
||||
def trades_to_ohlcv(trades: list, timeframe: str) -> DataFrame:
|
||||
def trades_remove_duplicates(trades: List[List]) -> List[List]:
|
||||
"""
|
||||
Converts trades list to ohlcv list
|
||||
Removes duplicates from the trades list.
|
||||
Uses itertools.groupby to avoid converting to pandas.
|
||||
Tests show it as being pretty efficient on lists of 4M Lists.
|
||||
:param trades: List of Lists with constants.DEFAULT_TRADES_COLUMNS as columns
|
||||
:return: same format as above, but with duplicates removed
|
||||
"""
|
||||
return [i for i, _ in itertools.groupby(sorted(trades, key=itemgetter(0)))]
|
||||
|
||||
|
||||
def trades_dict_to_list(trades: List[Dict]) -> List[List]:
|
||||
"""
|
||||
Convert fetch_trades result into a List (to be more memory efficient).
|
||||
:param trades: List of trades, as returned by ccxt.fetch_trades.
|
||||
:return: List of Lists, with constants.DEFAULT_TRADES_COLUMNS as columns
|
||||
"""
|
||||
return [[t[col] for col in DEFAULT_TRADES_COLUMNS] for t in trades]
|
||||
|
||||
|
||||
def trades_to_ohlcv(trades: List, timeframe: str) -> DataFrame:
|
||||
"""
|
||||
Converts trades list to OHLCV list
|
||||
TODO: This should get a dedicated test
|
||||
:param trades: List of trades, as returned by ccxt.fetch_trades.
|
||||
:param timeframe: Ticker timeframe to resample data to
|
||||
:return: ohlcv Dataframe.
|
||||
:param timeframe: Timeframe to resample data to
|
||||
:return: OHLCV Dataframe.
|
||||
"""
|
||||
from freqtrade.exchange import timeframe_to_minutes
|
||||
ticker_minutes = timeframe_to_minutes(timeframe)
|
||||
df = pd.DataFrame(trades)
|
||||
df['datetime'] = pd.to_datetime(df['datetime'])
|
||||
df = df.set_index('datetime')
|
||||
timeframe_minutes = timeframe_to_minutes(timeframe)
|
||||
df = pd.DataFrame(trades, columns=DEFAULT_TRADES_COLUMNS)
|
||||
df['timestamp'] = pd.to_datetime(df['timestamp'], unit='ms',
|
||||
utc=True,)
|
||||
df = df.set_index('timestamp')
|
||||
|
||||
df_new = df['price'].resample(f'{ticker_minutes}min').ohlc()
|
||||
df_new['volume'] = df['amount'].resample(f'{ticker_minutes}min').sum()
|
||||
df_new = df['price'].resample(f'{timeframe_minutes}min').ohlc()
|
||||
df_new['volume'] = df['amount'].resample(f'{timeframe_minutes}min').sum()
|
||||
df_new['date'] = df_new.index
|
||||
# Drop 0 volume rows
|
||||
df_new = df_new.dropna()
|
||||
@@ -206,7 +227,7 @@ def convert_trades_format(config: Dict[str, Any], convert_from: str, convert_to:
|
||||
|
||||
def convert_ohlcv_format(config: Dict[str, Any], convert_from: str, convert_to: str, erase: bool):
|
||||
"""
|
||||
Convert ohlcv from one format to another format.
|
||||
Convert OHLCV from one format to another
|
||||
:param config: Config dictionary
|
||||
:param convert_from: Source format
|
||||
:param convert_to: Target format
|
||||
@@ -216,7 +237,7 @@ def convert_ohlcv_format(config: Dict[str, Any], convert_from: str, convert_to:
|
||||
src = get_datahandler(config['datadir'], convert_from)
|
||||
trg = get_datahandler(config['datadir'], convert_to)
|
||||
timeframes = config.get('timeframes', [config.get('ticker_interval')])
|
||||
logger.info(f"Converting OHLCV for timeframe {timeframes}")
|
||||
logger.info(f"Converting candle (OHLCV) for timeframe {timeframes}")
|
||||
|
||||
if 'pairs' not in config:
|
||||
config['pairs'] = []
|
||||
@@ -224,7 +245,7 @@ def convert_ohlcv_format(config: Dict[str, Any], convert_from: str, convert_to:
|
||||
for timeframe in timeframes:
|
||||
config['pairs'].extend(src.ohlcv_get_pairs(config['datadir'],
|
||||
timeframe))
|
||||
logger.info(f"Converting OHLCV for {config['pairs']}")
|
||||
logger.info(f"Converting candle (OHLCV) data for {config['pairs']}")
|
||||
|
||||
for timeframe in timeframes:
|
||||
for pair in config['pairs']:
|
||||
|
@@ -1,30 +1,34 @@
|
||||
"""
|
||||
Dataprovider
|
||||
Responsible to provide data to the bot
|
||||
including Klines, tickers, historic data
|
||||
including ticker and orderbook data, live and historical candle (OHLCV) data
|
||||
Common Interface for bot and strategy to access data.
|
||||
"""
|
||||
import logging
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.data.history import load_pair_history
|
||||
from freqtrade.exceptions import DependencyException, OperationalException
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.state import RunMode
|
||||
from freqtrade.typing import ListPairsWithTimeframes
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class DataProvider:
|
||||
|
||||
def __init__(self, config: dict, exchange: Exchange) -> None:
|
||||
def __init__(self, config: dict, exchange: Exchange, pairlists=None) -> None:
|
||||
self._config = config
|
||||
self._exchange = exchange
|
||||
self._pairlists = pairlists
|
||||
|
||||
def refresh(self,
|
||||
pairlist: List[Tuple[str, str]],
|
||||
helping_pairs: List[Tuple[str, str]] = None) -> None:
|
||||
pairlist: ListPairsWithTimeframes,
|
||||
helping_pairs: ListPairsWithTimeframes = None) -> None:
|
||||
"""
|
||||
Refresh data, called with each cycle
|
||||
"""
|
||||
@@ -34,7 +38,7 @@ class DataProvider:
|
||||
self._exchange.refresh_latest_ohlcv(pairlist)
|
||||
|
||||
@property
|
||||
def available_pairs(self) -> List[Tuple[str, str]]:
|
||||
def available_pairs(self) -> ListPairsWithTimeframes:
|
||||
"""
|
||||
Return a list of tuples containing (pair, timeframe) for which data is currently cached.
|
||||
Should be whitelist + open trades.
|
||||
@@ -43,10 +47,10 @@ class DataProvider:
|
||||
|
||||
def ohlcv(self, pair: str, timeframe: str = None, copy: bool = True) -> DataFrame:
|
||||
"""
|
||||
Get ohlcv data for the given pair as DataFrame
|
||||
Get candle (OHLCV) data for the given pair as DataFrame
|
||||
Please use the `available_pairs` method to verify which pairs are currently cached.
|
||||
:param pair: pair to get the data for
|
||||
:param timeframe: Ticker timeframe to get data for
|
||||
:param timeframe: Timeframe to get data for
|
||||
:param copy: copy dataframe before returning if True.
|
||||
Use False only for read-only operations (where the dataframe is not modified)
|
||||
"""
|
||||
@@ -58,7 +62,7 @@ class DataProvider:
|
||||
|
||||
def historic_ohlcv(self, pair: str, timeframe: str = None) -> DataFrame:
|
||||
"""
|
||||
Get stored historic ohlcv data
|
||||
Get stored historical candle (OHLCV) data
|
||||
:param pair: pair to get the data for
|
||||
:param timeframe: timeframe to get data for
|
||||
"""
|
||||
@@ -69,17 +73,17 @@ class DataProvider:
|
||||
|
||||
def get_pair_dataframe(self, pair: str, timeframe: str = None) -> DataFrame:
|
||||
"""
|
||||
Return pair ohlcv data, either live or cached historical -- depending
|
||||
Return pair candle (OHLCV) data, either live or cached historical -- depending
|
||||
on the runmode.
|
||||
:param pair: pair to get the data for
|
||||
:param timeframe: timeframe to get data for
|
||||
:return: Dataframe for this pair
|
||||
"""
|
||||
if self.runmode in (RunMode.DRY_RUN, RunMode.LIVE):
|
||||
# Get live ohlcv data.
|
||||
# Get live OHLCV data.
|
||||
data = self.ohlcv(pair=pair, timeframe=timeframe)
|
||||
else:
|
||||
# Get historic ohlcv data (cached on disk).
|
||||
# Get historical OHLCV data (cached on disk).
|
||||
data = self.historic_ohlcv(pair=pair, timeframe=timeframe)
|
||||
if len(data) == 0:
|
||||
logger.warning(f"No data found for ({pair}, {timeframe}).")
|
||||
@@ -95,10 +99,14 @@ class DataProvider:
|
||||
|
||||
def ticker(self, pair: str):
|
||||
"""
|
||||
Return last ticker data
|
||||
Return last ticker data from exchange
|
||||
:param pair: Pair to get the data for
|
||||
:return: Ticker dict from exchange or empty dict if ticker is not available for the pair
|
||||
"""
|
||||
# TODO: Implement me
|
||||
pass
|
||||
try:
|
||||
return self._exchange.fetch_ticker(pair)
|
||||
except DependencyException:
|
||||
return {}
|
||||
|
||||
def orderbook(self, pair: str, maximum: int) -> Dict[str, List]:
|
||||
"""
|
||||
@@ -116,3 +124,17 @@ class DataProvider:
|
||||
can be "live", "dry-run", "backtest", "edgecli", "hyperopt" or "other".
|
||||
"""
|
||||
return RunMode(self._config.get('runmode', RunMode.OTHER))
|
||||
|
||||
def current_whitelist(self) -> List[str]:
|
||||
"""
|
||||
fetch latest available whitelist.
|
||||
|
||||
Useful when you have a large whitelist and need to call each pair as an informative pair.
|
||||
As available pairs does not show whitelist until after informative pairs have been cached.
|
||||
:return: list of pairs in whitelist
|
||||
"""
|
||||
|
||||
if self._pairlists:
|
||||
return self._pairlists.whitelist
|
||||
else:
|
||||
raise OperationalException("Dataprovider was not initialized with a pairlist provider.")
|
||||
|
@@ -9,10 +9,13 @@ from pandas import DataFrame
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS
|
||||
from freqtrade.data.converter import parse_ticker_dataframe, trades_to_ohlcv
|
||||
from freqtrade.data.converter import (ohlcv_to_dataframe,
|
||||
trades_remove_duplicates,
|
||||
trades_to_ohlcv)
|
||||
from freqtrade.data.history.idatahandler import IDataHandler, get_datahandler
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.misc import format_ms_time
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -28,10 +31,10 @@ def load_pair_history(pair: str,
|
||||
data_handler: IDataHandler = None,
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Load cached ticker history for the given pair.
|
||||
Load cached ohlcv history for the given pair.
|
||||
|
||||
:param pair: Pair to load data for
|
||||
:param timeframe: Ticker timeframe (e.g. "5m")
|
||||
:param timeframe: Timeframe (e.g. "5m")
|
||||
:param datadir: Path to the data storage location.
|
||||
:param data_format: Format of the data. Ignored if data_handler is set.
|
||||
:param timerange: Limit data to be loaded to this timerange
|
||||
@@ -63,10 +66,10 @@ def load_data(datadir: Path,
|
||||
data_format: str = 'json',
|
||||
) -> Dict[str, DataFrame]:
|
||||
"""
|
||||
Load ticker history data for a list of pairs.
|
||||
Load ohlcv history data for a list of pairs.
|
||||
|
||||
:param datadir: Path to the data storage location.
|
||||
:param timeframe: Ticker Timeframe (e.g. "5m")
|
||||
:param timeframe: Timeframe (e.g. "5m")
|
||||
:param pairs: List of pairs to load
|
||||
:param timerange: Limit data to be loaded to this timerange
|
||||
:param fill_up_missing: Fill missing values with "No action"-candles
|
||||
@@ -104,10 +107,10 @@ def refresh_data(datadir: Path,
|
||||
timerange: Optional[TimeRange] = None,
|
||||
) -> None:
|
||||
"""
|
||||
Refresh ticker history data for a list of pairs.
|
||||
Refresh ohlcv history data for a list of pairs.
|
||||
|
||||
:param datadir: Path to the data storage location.
|
||||
:param timeframe: Ticker Timeframe (e.g. "5m")
|
||||
:param timeframe: Timeframe (e.g. "5m")
|
||||
:param pairs: List of pairs to load
|
||||
:param exchange: Exchange object
|
||||
:param timerange: Limit data to be loaded to this timerange
|
||||
@@ -165,7 +168,7 @@ def _download_pair_history(datadir: Path,
|
||||
Based on @Rybolov work: https://github.com/rybolov/freqtrade-data
|
||||
|
||||
:param pair: pair to download
|
||||
:param timeframe: Ticker Timeframe (e.g 5m)
|
||||
:param timeframe: Timeframe (e.g "5m")
|
||||
:param timerange: range of time to download
|
||||
:return: bool with success state
|
||||
"""
|
||||
@@ -194,8 +197,8 @@ def _download_pair_history(datadir: Path,
|
||||
days=-30).float_timestamp) * 1000
|
||||
)
|
||||
# TODO: Maybe move parsing to exchange class (?)
|
||||
new_dataframe = parse_ticker_dataframe(new_data, timeframe, pair,
|
||||
fill_missing=False, drop_incomplete=True)
|
||||
new_dataframe = ohlcv_to_dataframe(new_data, timeframe, pair,
|
||||
fill_missing=False, drop_incomplete=True)
|
||||
if data.empty:
|
||||
data = new_dataframe
|
||||
else:
|
||||
@@ -257,27 +260,40 @@ def _download_trades_history(exchange: Exchange,
|
||||
"""
|
||||
try:
|
||||
|
||||
since = timerange.startts * 1000 if timerange and timerange.starttype == 'date' else None
|
||||
since = timerange.startts * 1000 if \
|
||||
(timerange and timerange.starttype == 'date') else int(arrow.utcnow().shift(
|
||||
days=-30).float_timestamp) * 1000
|
||||
|
||||
trades = data_handler.trades_load(pair)
|
||||
|
||||
from_id = trades[-1]['id'] if trades else None
|
||||
# TradesList columns are defined in constants.DEFAULT_TRADES_COLUMNS
|
||||
# DEFAULT_TRADES_COLUMNS: 0 -> timestamp
|
||||
# DEFAULT_TRADES_COLUMNS: 1 -> id
|
||||
|
||||
logger.debug("Current Start: %s", trades[0]['datetime'] if trades else 'None')
|
||||
logger.debug("Current End: %s", trades[-1]['datetime'] if trades else 'None')
|
||||
from_id = trades[-1][1] if trades else None
|
||||
if trades and since < trades[-1][0]:
|
||||
# Reset since to the last available point
|
||||
# - 5 seconds (to ensure we're getting all trades)
|
||||
since = trades[-1][0] - (5 * 1000)
|
||||
logger.info(f"Using last trade date -5s - Downloading trades for {pair} "
|
||||
f"since: {format_ms_time(since)}.")
|
||||
|
||||
logger.debug(f"Current Start: {format_ms_time(trades[0][0]) if trades else 'None'}")
|
||||
logger.debug(f"Current End: {format_ms_time(trades[-1][0]) if trades else 'None'}")
|
||||
logger.info(f"Current Amount of trades: {len(trades)}")
|
||||
|
||||
# Default since_ms to 30 days if nothing is given
|
||||
new_trades = exchange.get_historic_trades(pair=pair,
|
||||
since=since if since else
|
||||
int(arrow.utcnow().shift(
|
||||
days=-30).float_timestamp) * 1000,
|
||||
since=since,
|
||||
from_id=from_id,
|
||||
)
|
||||
trades.extend(new_trades[1])
|
||||
# Remove duplicates to make sure we're not storing data we don't need
|
||||
trades = trades_remove_duplicates(trades)
|
||||
data_handler.trades_store(pair, data=trades)
|
||||
|
||||
logger.debug("New Start: %s", trades[0]['datetime'])
|
||||
logger.debug("New End: %s", trades[-1]['datetime'])
|
||||
logger.debug(f"New Start: {format_ms_time(trades[0][0])}")
|
||||
logger.debug(f"New End: {format_ms_time(trades[-1][0])}")
|
||||
logger.info(f"New Amount of trades: {len(trades)}")
|
||||
return True
|
||||
|
||||
@@ -362,7 +378,7 @@ def validate_backtest_data(data: DataFrame, pair: str, min_date: datetime,
|
||||
:param pair: pair used for log output.
|
||||
:param min_date: start-date of the data
|
||||
:param max_date: end-date of the data
|
||||
:param timeframe_min: ticker Timeframe in minutes
|
||||
:param timeframe_min: Timeframe in minutes
|
||||
"""
|
||||
# total difference in minutes / timeframe-minutes
|
||||
expected_frames = int((max_date - min_date).total_seconds() // 60 // timeframe_min)
|
||||
|
@@ -8,16 +8,20 @@ from abc import ABC, abstractclassmethod, abstractmethod
|
||||
from copy import deepcopy
|
||||
from datetime import datetime, timezone
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Type
|
||||
from typing import List, Optional, Type
|
||||
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.data.converter import clean_ohlcv_dataframe, trim_dataframe
|
||||
from freqtrade.data.converter import (clean_ohlcv_dataframe,
|
||||
trades_remove_duplicates, trim_dataframe)
|
||||
from freqtrade.exchange import timeframe_to_seconds
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Type for trades list
|
||||
TradeList = List[List]
|
||||
|
||||
|
||||
class IDataHandler(ABC):
|
||||
|
||||
@@ -55,7 +59,7 @@ class IDataHandler(ABC):
|
||||
Implements the loading and conversion to a Pandas dataframe.
|
||||
Timerange trimming and dataframe validation happens outside of this method.
|
||||
:param pair: Pair to load data
|
||||
:param timeframe: Ticker timeframe (e.g. "5m")
|
||||
:param timeframe: Timeframe (e.g. "5m")
|
||||
:param timerange: Limit data to be loaded to this timerange.
|
||||
Optionally implemented by subclasses to avoid loading
|
||||
all data where possible.
|
||||
@@ -67,7 +71,7 @@ class IDataHandler(ABC):
|
||||
"""
|
||||
Remove data for this pair
|
||||
:param pair: Delete data for this pair.
|
||||
:param timeframe: Ticker timeframe (e.g. "5m")
|
||||
:param timeframe: Timeframe (e.g. "5m")
|
||||
:return: True when deleted, false if file did not exist.
|
||||
"""
|
||||
|
||||
@@ -89,23 +93,25 @@ class IDataHandler(ABC):
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def trades_store(self, pair: str, data: List[Dict]) -> None:
|
||||
def trades_store(self, pair: str, data: TradeList) -> None:
|
||||
"""
|
||||
Store trades data (list of Dicts) to file
|
||||
:param pair: Pair - used for filename
|
||||
:param data: List of Dicts containing trade data
|
||||
:param data: List of Lists containing trade data,
|
||||
column sequence as in DEFAULT_TRADES_COLUMNS
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def trades_append(self, pair: str, data: List[Dict]):
|
||||
def trades_append(self, pair: str, data: TradeList):
|
||||
"""
|
||||
Append data to existing files
|
||||
:param pair: Pair - used for filename
|
||||
:param data: List of Dicts containing trade data
|
||||
:param data: List of Lists containing trade data,
|
||||
column sequence as in DEFAULT_TRADES_COLUMNS
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def trades_load(self, pair: str, timerange: Optional[TimeRange] = None) -> List[Dict]:
|
||||
def _trades_load(self, pair: str, timerange: Optional[TimeRange] = None) -> TradeList:
|
||||
"""
|
||||
Load a pair from file, either .json.gz or .json
|
||||
:param pair: Load trades for this pair
|
||||
@@ -121,6 +127,16 @@ class IDataHandler(ABC):
|
||||
:return: True when deleted, false if file did not exist.
|
||||
"""
|
||||
|
||||
def trades_load(self, pair: str, timerange: Optional[TimeRange] = None) -> TradeList:
|
||||
"""
|
||||
Load a pair from file, either .json.gz or .json
|
||||
Removes duplicates in the process.
|
||||
:param pair: Load trades for this pair
|
||||
:param timerange: Timerange to load trades for - currently not implemented
|
||||
:return: List of trades
|
||||
"""
|
||||
return trades_remove_duplicates(self._trades_load(pair, timerange=timerange))
|
||||
|
||||
def ohlcv_load(self, pair, timeframe: str,
|
||||
timerange: Optional[TimeRange] = None,
|
||||
fill_missing: bool = True,
|
||||
@@ -129,10 +145,10 @@ class IDataHandler(ABC):
|
||||
warn_no_data: bool = True
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Load cached ticker history for the given pair.
|
||||
Load cached candle (OHLCV) data for the given pair.
|
||||
|
||||
:param pair: Pair to load data for
|
||||
:param timeframe: Ticker timeframe (e.g. "5m")
|
||||
:param timeframe: Timeframe (e.g. "5m")
|
||||
:param timerange: Limit data to be loaded to this timerange
|
||||
:param fill_missing: Fill missing values with "No action"-candles
|
||||
:param drop_incomplete: Drop last candle assuming it may be incomplete.
|
||||
@@ -147,12 +163,7 @@ class IDataHandler(ABC):
|
||||
|
||||
pairdf = self._ohlcv_load(pair, timeframe,
|
||||
timerange=timerange_startup)
|
||||
if pairdf.empty:
|
||||
if warn_no_data:
|
||||
logger.warning(
|
||||
f'No history data for pair: "{pair}", timeframe: {timeframe}. '
|
||||
'Use `freqtrade download-data` to download the data'
|
||||
)
|
||||
if self._check_empty_df(pairdf, pair, timeframe, warn_no_data):
|
||||
return pairdf
|
||||
else:
|
||||
enddate = pairdf.iloc[-1]['date']
|
||||
@@ -160,13 +171,30 @@ class IDataHandler(ABC):
|
||||
if timerange_startup:
|
||||
self._validate_pairdata(pair, pairdf, timerange_startup)
|
||||
pairdf = trim_dataframe(pairdf, timerange_startup)
|
||||
if self._check_empty_df(pairdf, pair, timeframe, warn_no_data):
|
||||
return pairdf
|
||||
|
||||
# incomplete candles should only be dropped if we didn't trim the end beforehand.
|
||||
return clean_ohlcv_dataframe(pairdf, timeframe,
|
||||
pair=pair,
|
||||
fill_missing=fill_missing,
|
||||
drop_incomplete=(drop_incomplete and
|
||||
enddate == pairdf.iloc[-1]['date']))
|
||||
pairdf = clean_ohlcv_dataframe(pairdf, timeframe,
|
||||
pair=pair,
|
||||
fill_missing=fill_missing,
|
||||
drop_incomplete=(drop_incomplete and
|
||||
enddate == pairdf.iloc[-1]['date']))
|
||||
self._check_empty_df(pairdf, pair, timeframe, warn_no_data)
|
||||
return pairdf
|
||||
|
||||
def _check_empty_df(self, pairdf: DataFrame, pair: str, timeframe: str, warn_no_data: bool):
|
||||
"""
|
||||
Warn on empty dataframe
|
||||
"""
|
||||
if pairdf.empty:
|
||||
if warn_no_data:
|
||||
logger.warning(
|
||||
f'No history data for pair: "{pair}", timeframe: {timeframe}. '
|
||||
'Use `freqtrade download-data` to download the data'
|
||||
)
|
||||
return True
|
||||
return False
|
||||
|
||||
def _validate_pairdata(self, pair, pairdata: DataFrame, timerange: TimeRange):
|
||||
"""
|
||||
|
@@ -1,6 +1,7 @@
|
||||
import logging
|
||||
import re
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional
|
||||
from typing import List, Optional
|
||||
|
||||
import numpy as np
|
||||
from pandas import DataFrame, read_json, to_datetime
|
||||
@@ -8,8 +9,11 @@ from pandas import DataFrame, read_json, to_datetime
|
||||
from freqtrade import misc
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS
|
||||
from freqtrade.data.converter import trades_dict_to_list
|
||||
|
||||
from .idatahandler import IDataHandler
|
||||
from .idatahandler import IDataHandler, TradeList
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class JsonDataHandler(IDataHandler):
|
||||
@@ -60,7 +64,7 @@ class JsonDataHandler(IDataHandler):
|
||||
Implements the loading and conversion to a Pandas dataframe.
|
||||
Timerange trimming and dataframe validation happens outside of this method.
|
||||
:param pair: Pair to load data
|
||||
:param timeframe: Ticker timeframe (e.g. "5m")
|
||||
:param timeframe: Timeframe (e.g. "5m")
|
||||
:param timerange: Limit data to be loaded to this timerange.
|
||||
Optionally implemented by subclasses to avoid loading
|
||||
all data where possible.
|
||||
@@ -83,7 +87,7 @@ class JsonDataHandler(IDataHandler):
|
||||
"""
|
||||
Remove data for this pair
|
||||
:param pair: Delete data for this pair.
|
||||
:param timeframe: Ticker timeframe (e.g. "5m")
|
||||
:param timeframe: Timeframe (e.g. "5m")
|
||||
:return: True when deleted, false if file did not exist.
|
||||
"""
|
||||
filename = self._pair_data_filename(self._datadir, pair, timeframe)
|
||||
@@ -113,24 +117,26 @@ class JsonDataHandler(IDataHandler):
|
||||
# Check if regex found something and only return these results to avoid exceptions.
|
||||
return [match[0].replace('_', '/') for match in _tmp if match]
|
||||
|
||||
def trades_store(self, pair: str, data: List[Dict]) -> None:
|
||||
def trades_store(self, pair: str, data: TradeList) -> None:
|
||||
"""
|
||||
Store trades data (list of Dicts) to file
|
||||
:param pair: Pair - used for filename
|
||||
:param data: List of Dicts containing trade data
|
||||
:param data: List of Lists containing trade data,
|
||||
column sequence as in DEFAULT_TRADES_COLUMNS
|
||||
"""
|
||||
filename = self._pair_trades_filename(self._datadir, pair)
|
||||
misc.file_dump_json(filename, data, is_zip=self._use_zip)
|
||||
|
||||
def trades_append(self, pair: str, data: List[Dict]):
|
||||
def trades_append(self, pair: str, data: TradeList):
|
||||
"""
|
||||
Append data to existing files
|
||||
:param pair: Pair - used for filename
|
||||
:param data: List of Dicts containing trade data
|
||||
:param data: List of Lists containing trade data,
|
||||
column sequence as in DEFAULT_TRADES_COLUMNS
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def trades_load(self, pair: str, timerange: Optional[TimeRange] = None) -> List[Dict]:
|
||||
def _trades_load(self, pair: str, timerange: Optional[TimeRange] = None) -> TradeList:
|
||||
"""
|
||||
Load a pair from file, either .json.gz or .json
|
||||
# TODO: respect timerange ...
|
||||
@@ -140,9 +146,15 @@ class JsonDataHandler(IDataHandler):
|
||||
"""
|
||||
filename = self._pair_trades_filename(self._datadir, pair)
|
||||
tradesdata = misc.file_load_json(filename)
|
||||
|
||||
if not tradesdata:
|
||||
return []
|
||||
|
||||
if isinstance(tradesdata[0], dict):
|
||||
# Convert trades dict to list
|
||||
logger.info("Old trades format detected - converting")
|
||||
tradesdata = trades_dict_to_list(tradesdata)
|
||||
pass
|
||||
return tradesdata
|
||||
|
||||
def trades_purge(self, pair: str) -> bool:
|
||||
|
@@ -8,10 +8,10 @@ import numpy as np
|
||||
import utils_find_1st as utf1st
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade import constants
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.data import history
|
||||
from freqtrade.constants import UNLIMITED_STAKE_AMOUNT
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.data.history import get_timerange, load_data, refresh_data
|
||||
from freqtrade.strategy.interface import SellType
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -54,7 +54,7 @@ class Edge:
|
||||
if self.config['max_open_trades'] != float('inf'):
|
||||
logger.critical('max_open_trades should be -1 in config !')
|
||||
|
||||
if self.config['stake_amount'] != constants.UNLIMITED_STAKE_AMOUNT:
|
||||
if self.config['stake_amount'] != UNLIMITED_STAKE_AMOUNT:
|
||||
raise OperationalException('Edge works only with unlimited stake amount')
|
||||
|
||||
# Deprecated capital_available_percentage. Will use tradable_balance_ratio in the future.
|
||||
@@ -96,7 +96,7 @@ class Edge:
|
||||
logger.info('Using local backtesting data (using whitelist in given config) ...')
|
||||
|
||||
if self._refresh_pairs:
|
||||
history.refresh_data(
|
||||
refresh_data(
|
||||
datadir=self.config['datadir'],
|
||||
pairs=pairs,
|
||||
exchange=self.exchange,
|
||||
@@ -104,7 +104,7 @@ class Edge:
|
||||
timerange=self._timerange,
|
||||
)
|
||||
|
||||
data = history.load_data(
|
||||
data = load_data(
|
||||
datadir=self.config['datadir'],
|
||||
pairs=pairs,
|
||||
timeframe=self.strategy.ticker_interval,
|
||||
@@ -119,10 +119,10 @@ class Edge:
|
||||
logger.critical("No data found. Edge is stopped ...")
|
||||
return False
|
||||
|
||||
preprocessed = self.strategy.tickerdata_to_dataframe(data)
|
||||
preprocessed = self.strategy.ohlcvdata_to_dataframe(data)
|
||||
|
||||
# Print timeframe
|
||||
min_date, max_date = history.get_timerange(preprocessed)
|
||||
min_date, max_date = get_timerange(preprocessed)
|
||||
logger.info(
|
||||
'Measuring data from %s up to %s (%s days) ...',
|
||||
min_date.isoformat(),
|
||||
@@ -137,10 +137,10 @@ class Edge:
|
||||
pair_data = pair_data.sort_values(by=['date'])
|
||||
pair_data = pair_data.reset_index(drop=True)
|
||||
|
||||
ticker_data = self.strategy.advise_sell(
|
||||
df_analyzed = self.strategy.advise_sell(
|
||||
self.strategy.advise_buy(pair_data, {'pair': pair}), {'pair': pair})[headers].copy()
|
||||
|
||||
trades += self._find_trades_for_stoploss_range(ticker_data, pair, self._stoploss_range)
|
||||
trades += self._find_trades_for_stoploss_range(df_analyzed, pair, self._stoploss_range)
|
||||
|
||||
# If no trade found then exit
|
||||
if len(trades) == 0:
|
||||
@@ -238,20 +238,9 @@ class Edge:
|
||||
:param result Dataframe
|
||||
:return: result Dataframe
|
||||
"""
|
||||
|
||||
# stake and fees
|
||||
# stake = 0.015
|
||||
# 0.05% is 0.0005
|
||||
# fee = 0.001
|
||||
|
||||
# we set stake amount to an arbitrary amount.
|
||||
# as it doesn't change the calculation.
|
||||
# all returned values are relative.
|
||||
# they are defined as ratios.
|
||||
# We set stake amount to an arbitrary amount, as it doesn't change the calculation.
|
||||
# All returned values are relative, they are defined as ratios.
|
||||
stake = 0.015
|
||||
fee = self.fee
|
||||
open_fee = fee / 2
|
||||
close_fee = fee / 2
|
||||
|
||||
result['trade_duration'] = result['close_time'] - result['open_time']
|
||||
|
||||
@@ -262,12 +251,12 @@ class Edge:
|
||||
|
||||
# Buy Price
|
||||
result['buy_vol'] = stake / result['open_rate'] # How many target are we buying
|
||||
result['buy_fee'] = stake * open_fee
|
||||
result['buy_fee'] = stake * self.fee
|
||||
result['buy_spend'] = stake + result['buy_fee'] # How much we're spending
|
||||
|
||||
# Sell price
|
||||
result['sell_sum'] = result['buy_vol'] * result['close_rate']
|
||||
result['sell_fee'] = result['sell_sum'] * close_fee
|
||||
result['sell_fee'] = result['sell_sum'] * self.fee
|
||||
result['sell_take'] = result['sell_sum'] - result['sell_fee']
|
||||
|
||||
# profit_ratio
|
||||
@@ -317,7 +306,7 @@ class Edge:
|
||||
}
|
||||
|
||||
# Group by (pair and stoploss) by applying above aggregator
|
||||
df = results.groupby(['pair', 'stoploss'])['profit_abs', 'trade_duration'].agg(
|
||||
df = results.groupby(['pair', 'stoploss'])[['profit_abs', 'trade_duration']].agg(
|
||||
groupby_aggregator).reset_index(col_level=1)
|
||||
|
||||
# Dropping level 0 as we don't need it
|
||||
@@ -359,11 +348,11 @@ class Edge:
|
||||
# Returning a list of pairs in order of "expectancy"
|
||||
return final
|
||||
|
||||
def _find_trades_for_stoploss_range(self, ticker_data, pair, stoploss_range):
|
||||
buy_column = ticker_data['buy'].values
|
||||
sell_column = ticker_data['sell'].values
|
||||
date_column = ticker_data['date'].values
|
||||
ohlc_columns = ticker_data[['open', 'high', 'low', 'close']].values
|
||||
def _find_trades_for_stoploss_range(self, df, pair, stoploss_range):
|
||||
buy_column = df['buy'].values
|
||||
sell_column = df['sell'].values
|
||||
date_column = df['date'].values
|
||||
ohlc_columns = df[['open', 'high', 'low', 'close']].values
|
||||
|
||||
result: list = []
|
||||
for stoploss in stoploss_range:
|
||||
|
@@ -35,3 +35,10 @@ class TemporaryError(FreqtradeException):
|
||||
This could happen when an exchange is congested, unavailable, or the user
|
||||
has networking problems. Usually resolves itself after a time.
|
||||
"""
|
||||
|
||||
|
||||
class StrategyError(FreqtradeException):
|
||||
"""
|
||||
Errors with custom user-code deteced.
|
||||
Usually caused by errors in the strategy.
|
||||
"""
|
||||
|
@@ -72,7 +72,7 @@ class Binance(Exchange):
|
||||
rate = self.price_to_precision(pair, rate)
|
||||
|
||||
order = self._api.create_order(symbol=pair, type=ordertype, side='sell',
|
||||
amount=amount, price=stop_price, params=params)
|
||||
amount=amount, price=rate, params=params)
|
||||
logger.info('stoploss limit order added for %s. '
|
||||
'stop price: %s. limit: %s', pair, stop_price, rate)
|
||||
return order
|
||||
|
@@ -1,6 +1,6 @@
|
||||
import logging
|
||||
|
||||
from freqtrade.exceptions import DependencyException, TemporaryError
|
||||
from freqtrade.exceptions import TemporaryError
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -93,7 +93,7 @@ def retrier_async(f):
|
||||
count = kwargs.pop('count', API_RETRY_COUNT)
|
||||
try:
|
||||
return await f(*args, **kwargs)
|
||||
except (TemporaryError, DependencyException) as ex:
|
||||
except TemporaryError as ex:
|
||||
logger.warning('%s() returned exception: "%s"', f.__name__, ex)
|
||||
if count > 0:
|
||||
count -= 1
|
||||
@@ -111,7 +111,7 @@ def retrier(f):
|
||||
count = kwargs.pop('count', API_RETRY_COUNT)
|
||||
try:
|
||||
return f(*args, **kwargs)
|
||||
except (TemporaryError, DependencyException) as ex:
|
||||
except TemporaryError as ex:
|
||||
logger.warning('%s() returned exception: "%s"', f.__name__, ex)
|
||||
if count > 0:
|
||||
count -= 1
|
||||
|
@@ -18,12 +18,12 @@ from ccxt.base.decimal_to_precision import (ROUND_DOWN, ROUND_UP, TICK_SIZE,
|
||||
TRUNCATE, decimal_to_precision)
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.data.converter import parse_ticker_dataframe
|
||||
from freqtrade.data.converter import ohlcv_to_dataframe, trades_dict_to_list
|
||||
from freqtrade.exceptions import (DependencyException, InvalidOrderException,
|
||||
OperationalException, TemporaryError)
|
||||
from freqtrade.exchange.common import BAD_EXCHANGES, retrier, retrier_async
|
||||
from freqtrade.misc import deep_merge_dicts
|
||||
|
||||
from freqtrade.misc import deep_merge_dicts, safe_value_fallback
|
||||
from freqtrade.typing import ListPairsWithTimeframes
|
||||
|
||||
CcxtModuleType = Any
|
||||
|
||||
@@ -351,7 +351,7 @@ class Exchange:
|
||||
|
||||
def validate_timeframes(self, timeframe: Optional[str]) -> None:
|
||||
"""
|
||||
Checks if ticker interval from config is a supported timeframe on the exchange
|
||||
Check if timeframe from config is a supported timeframe on the exchange
|
||||
"""
|
||||
if not hasattr(self._api, "timeframes") or self._api.timeframes is None:
|
||||
# If timeframes attribute is missing (or is None), the exchange probably
|
||||
@@ -364,11 +364,10 @@ class Exchange:
|
||||
|
||||
if timeframe and (timeframe not in self.timeframes):
|
||||
raise OperationalException(
|
||||
f"Invalid ticker interval '{timeframe}'. This exchange supports: {self.timeframes}")
|
||||
f"Invalid timeframe '{timeframe}'. This exchange supports: {self.timeframes}")
|
||||
|
||||
if timeframe and timeframe_to_minutes(timeframe) < 1:
|
||||
raise OperationalException(
|
||||
f"Timeframes < 1m are currently not supported by Freqtrade.")
|
||||
raise OperationalException("Timeframes < 1m are currently not supported by Freqtrade.")
|
||||
|
||||
def validate_ordertypes(self, order_types: Dict) -> None:
|
||||
"""
|
||||
@@ -452,6 +451,17 @@ class Exchange:
|
||||
price = ceil(big_price) / pow(10, symbol_prec)
|
||||
return price
|
||||
|
||||
def price_get_one_pip(self, pair: str, price: float) -> float:
|
||||
"""
|
||||
Get's the "1 pip" value for this pair.
|
||||
Used in PriceFilter to calculate the 1pip movements.
|
||||
"""
|
||||
precision = self.markets[pair]['precision']['price']
|
||||
if self.precisionMode == TICK_SIZE:
|
||||
return precision
|
||||
else:
|
||||
return 1 / pow(10, precision)
|
||||
|
||||
def dry_run_order(self, pair: str, ordertype: str, side: str, amount: float,
|
||||
rate: float, params: Dict = {}) -> Dict[str, Any]:
|
||||
order_id = f'dry_run_{side}_{randint(0, 10**6)}'
|
||||
@@ -461,26 +471,31 @@ class Exchange:
|
||||
'pair': pair,
|
||||
'price': rate,
|
||||
'amount': _amount,
|
||||
"cost": _amount * rate,
|
||||
'cost': _amount * rate,
|
||||
'type': ordertype,
|
||||
'side': side,
|
||||
'remaining': _amount,
|
||||
'datetime': arrow.utcnow().isoformat(),
|
||||
'status': "closed" if ordertype == "market" else "open",
|
||||
'fee': None,
|
||||
"info": {}
|
||||
'info': {}
|
||||
}
|
||||
self._store_dry_order(dry_order)
|
||||
self._store_dry_order(dry_order, pair)
|
||||
# Copy order and close it - so the returned order is open unless it's a market order
|
||||
return dry_order
|
||||
|
||||
def _store_dry_order(self, dry_order: Dict) -> None:
|
||||
def _store_dry_order(self, dry_order: Dict, pair: str) -> None:
|
||||
closed_order = dry_order.copy()
|
||||
if closed_order["type"] in ["market", "limit"]:
|
||||
if closed_order['type'] in ["market", "limit"]:
|
||||
closed_order.update({
|
||||
"status": "closed",
|
||||
"filled": closed_order["amount"],
|
||||
"remaining": 0
|
||||
'status': 'closed',
|
||||
'filled': closed_order['amount'],
|
||||
'remaining': 0,
|
||||
'fee': {
|
||||
'currency': self.get_pair_quote_currency(pair),
|
||||
'cost': dry_order['cost'] * self.get_fee(pair),
|
||||
'rate': self.get_fee(pair)
|
||||
}
|
||||
})
|
||||
if closed_order["type"] in ["stop_loss_limit"]:
|
||||
closed_order["info"].update({"stopPrice": closed_order["price"]})
|
||||
@@ -599,7 +614,7 @@ class Exchange:
|
||||
return self._api.fetch_tickers()
|
||||
except ccxt.NotSupported as e:
|
||||
raise OperationalException(
|
||||
f'Exchange {self._api.name} does not support fetching tickers in batch.'
|
||||
f'Exchange {self._api.name} does not support fetching tickers in batch. '
|
||||
f'Message: {e}') from e
|
||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(
|
||||
@@ -623,13 +638,13 @@ class Exchange:
|
||||
def get_historic_ohlcv(self, pair: str, timeframe: str,
|
||||
since_ms: int) -> List:
|
||||
"""
|
||||
Gets candle history using asyncio and returns the list of candles.
|
||||
Handles all async doing.
|
||||
Async over one pair, assuming we get `_ohlcv_candle_limit` candles per call.
|
||||
Get candle history using asyncio and returns the list of candles.
|
||||
Handles all async work for this.
|
||||
Async over one pair, assuming we get `self._ohlcv_candle_limit` candles per call.
|
||||
:param pair: Pair to download
|
||||
:param timeframe: Ticker Timeframe to get
|
||||
:param timeframe: Timeframe to get data for
|
||||
:param since_ms: Timestamp in milliseconds to get history from
|
||||
:returns List of tickers
|
||||
:returns List with candle (OHLCV) data
|
||||
"""
|
||||
return asyncio.get_event_loop().run_until_complete(
|
||||
self._async_get_historic_ohlcv(pair=pair, timeframe=timeframe,
|
||||
@@ -649,26 +664,27 @@ class Exchange:
|
||||
pair, timeframe, since) for since in
|
||||
range(since_ms, arrow.utcnow().timestamp * 1000, one_call)]
|
||||
|
||||
tickers = await asyncio.gather(*input_coroutines, return_exceptions=True)
|
||||
results = await asyncio.gather(*input_coroutines, return_exceptions=True)
|
||||
|
||||
# Combine tickers
|
||||
# Combine gathered results
|
||||
data: List = []
|
||||
for p, timeframe, ticker in tickers:
|
||||
for p, timeframe, res in results:
|
||||
if p == pair:
|
||||
data.extend(ticker)
|
||||
data.extend(res)
|
||||
# Sort data again after extending the result - above calls return in "async order"
|
||||
data = sorted(data, key=lambda x: x[0])
|
||||
logger.info("downloaded %s with length %s.", pair, len(data))
|
||||
logger.info("Downloaded data for %s with length %s.", pair, len(data))
|
||||
return data
|
||||
|
||||
def refresh_latest_ohlcv(self, pair_list: List[Tuple[str, str]]) -> List[Tuple[str, List]]:
|
||||
def refresh_latest_ohlcv(self, pair_list: ListPairsWithTimeframes) -> List[Tuple[str, List]]:
|
||||
"""
|
||||
Refresh in-memory ohlcv asynchronously and set `_klines` with the result
|
||||
Refresh in-memory OHLCV asynchronously and set `_klines` with the result
|
||||
Loops asynchronously over pair_list and downloads all pairs async (semi-parallel).
|
||||
Only used in the dataprovider.refresh() method.
|
||||
:param pair_list: List of 2 element tuples containing pair, interval to refresh
|
||||
:return: Returns a List of ticker-dataframes.
|
||||
:return: TODO: return value is only used in the tests, get rid of it
|
||||
"""
|
||||
logger.debug("Refreshing ohlcv data for %d pairs", len(pair_list))
|
||||
logger.debug("Refreshing candle (OHLCV) data for %d pairs", len(pair_list))
|
||||
|
||||
input_coroutines = []
|
||||
|
||||
@@ -679,15 +695,15 @@ class Exchange:
|
||||
input_coroutines.append(self._async_get_candle_history(pair, timeframe))
|
||||
else:
|
||||
logger.debug(
|
||||
"Using cached ohlcv data for pair %s, timeframe %s ...",
|
||||
"Using cached candle (OHLCV) data for pair %s, timeframe %s ...",
|
||||
pair, timeframe
|
||||
)
|
||||
|
||||
tickers = asyncio.get_event_loop().run_until_complete(
|
||||
results = asyncio.get_event_loop().run_until_complete(
|
||||
asyncio.gather(*input_coroutines, return_exceptions=True))
|
||||
|
||||
# handle caching
|
||||
for res in tickers:
|
||||
for res in results:
|
||||
if isinstance(res, Exception):
|
||||
logger.warning("Async code raised an exception: %s", res.__class__.__name__)
|
||||
continue
|
||||
@@ -698,13 +714,14 @@ class Exchange:
|
||||
if ticks:
|
||||
self._pairs_last_refresh_time[(pair, timeframe)] = ticks[-1][0] // 1000
|
||||
# keeping parsed dataframe in cache
|
||||
self._klines[(pair, timeframe)] = parse_ticker_dataframe(
|
||||
self._klines[(pair, timeframe)] = ohlcv_to_dataframe(
|
||||
ticks, timeframe, pair=pair, fill_missing=True,
|
||||
drop_incomplete=self._ohlcv_partial_candle)
|
||||
return tickers
|
||||
|
||||
return results
|
||||
|
||||
def _now_is_time_to_refresh(self, pair: str, timeframe: str) -> bool:
|
||||
# Calculating ticker interval in seconds
|
||||
# Timeframe in seconds
|
||||
interval_in_sec = timeframe_to_seconds(timeframe)
|
||||
|
||||
return not ((self._pairs_last_refresh_time.get((pair, timeframe), 0)
|
||||
@@ -714,11 +731,11 @@ class Exchange:
|
||||
async def _async_get_candle_history(self, pair: str, timeframe: str,
|
||||
since_ms: Optional[int] = None) -> Tuple[str, str, List]:
|
||||
"""
|
||||
Asynchronously gets candle histories using fetch_ohlcv
|
||||
Asynchronously get candle history data using fetch_ohlcv
|
||||
returns tuple: (pair, timeframe, ohlcv_list)
|
||||
"""
|
||||
try:
|
||||
# fetch ohlcv asynchronously
|
||||
# Fetch OHLCV asynchronously
|
||||
s = '(' + arrow.get(since_ms // 1000).isoformat() + ') ' if since_ms is not None else ''
|
||||
logger.debug(
|
||||
"Fetching pair %s, interval %s, since %s %s...",
|
||||
@@ -728,9 +745,9 @@ class Exchange:
|
||||
data = await self._api_async.fetch_ohlcv(pair, timeframe=timeframe,
|
||||
since=since_ms)
|
||||
|
||||
# Because some exchange sort Tickers ASC and other DESC.
|
||||
# Ex: Bittrex returns a list of tickers ASC (oldest first, newest last)
|
||||
# when GDAX returns a list of tickers DESC (newest first, oldest last)
|
||||
# Some exchanges sort OHLCV in ASC order and others in DESC.
|
||||
# Ex: Bittrex returns the list of OHLCV in ASC order (oldest first, newest last)
|
||||
# while GDAX returns the list of OHLCV in DESC order (newest first, oldest last)
|
||||
# Only sort if necessary to save computing time
|
||||
try:
|
||||
if data and data[0][0] > data[-1][0]:
|
||||
@@ -743,19 +760,20 @@ class Exchange:
|
||||
|
||||
except ccxt.NotSupported as e:
|
||||
raise OperationalException(
|
||||
f'Exchange {self._api.name} does not support fetching historical candlestick data.'
|
||||
f'Message: {e}') from e
|
||||
f'Exchange {self._api.name} does not support fetching historical '
|
||||
f'candle (OHLCV) data. Message: {e}') from e
|
||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(f'Could not load ticker history for pair {pair} due to '
|
||||
f'{e.__class__.__name__}. Message: {e}') from e
|
||||
raise TemporaryError(f'Could not fetch historical candle (OHLCV) data '
|
||||
f'for pair {pair} due to {e.__class__.__name__}. '
|
||||
f'Message: {e}') from e
|
||||
except ccxt.BaseError as e:
|
||||
raise OperationalException(f'Could not fetch ticker data for pair {pair}. '
|
||||
f'Msg: {e}') from e
|
||||
raise OperationalException(f'Could not fetch historical candle (OHLCV) data '
|
||||
f'for pair {pair}. Message: {e}') from e
|
||||
|
||||
@retrier_async
|
||||
async def _async_fetch_trades(self, pair: str,
|
||||
since: Optional[int] = None,
|
||||
params: Optional[dict] = None) -> List[Dict]:
|
||||
params: Optional[dict] = None) -> List[List]:
|
||||
"""
|
||||
Asyncronously gets trade history using fetch_trades.
|
||||
Handles exchange errors, does one call to the exchange.
|
||||
@@ -775,7 +793,7 @@ class Exchange:
|
||||
'(' + arrow.get(since // 1000).isoformat() + ') ' if since is not None else ''
|
||||
)
|
||||
trades = await self._api_async.fetch_trades(pair, since=since, limit=1000)
|
||||
return trades
|
||||
return trades_dict_to_list(trades)
|
||||
except ccxt.NotSupported as e:
|
||||
raise OperationalException(
|
||||
f'Exchange {self._api.name} does not support fetching historical trade data.'
|
||||
@@ -789,7 +807,7 @@ class Exchange:
|
||||
async def _async_get_trade_history_id(self, pair: str,
|
||||
until: int,
|
||||
since: Optional[int] = None,
|
||||
from_id: Optional[str] = None) -> Tuple[str, List[Dict]]:
|
||||
from_id: Optional[str] = None) -> Tuple[str, List[List]]:
|
||||
"""
|
||||
Asyncronously gets trade history using fetch_trades
|
||||
use this when exchange uses id-based iteration (check `self._trades_pagination`)
|
||||
@@ -800,7 +818,7 @@ class Exchange:
|
||||
returns tuple: (pair, trades-list)
|
||||
"""
|
||||
|
||||
trades: List[Dict] = []
|
||||
trades: List[List] = []
|
||||
|
||||
if not from_id:
|
||||
# Fetch first elements using timebased method to get an ID to paginate on
|
||||
@@ -809,7 +827,9 @@ class Exchange:
|
||||
# e.g. Binance returns the "last 1000" candles within a 1h time interval
|
||||
# - so we will miss the first trades.
|
||||
t = await self._async_fetch_trades(pair, since=since)
|
||||
from_id = t[-1]['id']
|
||||
# DEFAULT_TRADES_COLUMNS: 0 -> timestamp
|
||||
# DEFAULT_TRADES_COLUMNS: 1 -> id
|
||||
from_id = t[-1][1]
|
||||
trades.extend(t[:-1])
|
||||
while True:
|
||||
t = await self._async_fetch_trades(pair,
|
||||
@@ -817,21 +837,21 @@ class Exchange:
|
||||
if len(t):
|
||||
# Skip last id since its the key for the next call
|
||||
trades.extend(t[:-1])
|
||||
if from_id == t[-1]['id'] or t[-1]['timestamp'] > until:
|
||||
if from_id == t[-1][1] or t[-1][0] > until:
|
||||
logger.debug(f"Stopping because from_id did not change. "
|
||||
f"Reached {t[-1]['timestamp']} > {until}")
|
||||
f"Reached {t[-1][0]} > {until}")
|
||||
# Reached the end of the defined-download period - add last trade as well.
|
||||
trades.extend(t[-1:])
|
||||
break
|
||||
|
||||
from_id = t[-1]['id']
|
||||
from_id = t[-1][1]
|
||||
else:
|
||||
break
|
||||
|
||||
return (pair, trades)
|
||||
|
||||
async def _async_get_trade_history_time(self, pair: str, until: int,
|
||||
since: Optional[int] = None) -> Tuple[str, List]:
|
||||
since: Optional[int] = None) -> Tuple[str, List[List]]:
|
||||
"""
|
||||
Asyncronously gets trade history using fetch_trades,
|
||||
when the exchange uses time-based iteration (check `self._trades_pagination`)
|
||||
@@ -841,16 +861,18 @@ class Exchange:
|
||||
returns tuple: (pair, trades-list)
|
||||
"""
|
||||
|
||||
trades: List[Dict] = []
|
||||
trades: List[List] = []
|
||||
# DEFAULT_TRADES_COLUMNS: 0 -> timestamp
|
||||
# DEFAULT_TRADES_COLUMNS: 1 -> id
|
||||
while True:
|
||||
t = await self._async_fetch_trades(pair, since=since)
|
||||
if len(t):
|
||||
since = t[-1]['timestamp']
|
||||
since = t[-1][1]
|
||||
trades.extend(t)
|
||||
# Reached the end of the defined-download period
|
||||
if until and t[-1]['timestamp'] > until:
|
||||
if until and t[-1][0] > until:
|
||||
logger.debug(
|
||||
f"Stopping because until was reached. {t[-1]['timestamp']} > {until}")
|
||||
f"Stopping because until was reached. {t[-1][0]} > {until}")
|
||||
break
|
||||
else:
|
||||
break
|
||||
@@ -860,7 +882,7 @@ class Exchange:
|
||||
async def _async_get_trade_history(self, pair: str,
|
||||
since: Optional[int] = None,
|
||||
until: Optional[int] = None,
|
||||
from_id: Optional[str] = None) -> Tuple[str, List[Dict]]:
|
||||
from_id: Optional[str] = None) -> Tuple[str, List[List]]:
|
||||
"""
|
||||
Async wrapper handling downloading trades using either time or id based methods.
|
||||
"""
|
||||
@@ -883,14 +905,14 @@ class Exchange:
|
||||
until: Optional[int] = None,
|
||||
from_id: Optional[str] = None) -> Tuple[str, List]:
|
||||
"""
|
||||
Gets candle history using asyncio and returns the list of candles.
|
||||
Handles all async doing.
|
||||
Async over one pair, assuming we get `_ohlcv_candle_limit` candles per call.
|
||||
Get trade history data using asyncio.
|
||||
Handles all async work and returns the list of candles.
|
||||
Async over one pair, assuming we get `self._ohlcv_candle_limit` candles per call.
|
||||
:param pair: Pair to download
|
||||
:param since: Timestamp in milliseconds to get history from
|
||||
:param until: Timestamp in milliseconds. Defaults to current timestamp if not defined.
|
||||
:param from_id: Download data starting with ID (if id is known)
|
||||
:returns List of tickers
|
||||
:returns List of trade data
|
||||
"""
|
||||
if not self.exchange_has("fetchTrades"):
|
||||
raise OperationalException("This exchange does not suport downloading Trades.")
|
||||
@@ -899,10 +921,18 @@ class Exchange:
|
||||
self._async_get_trade_history(pair=pair, since=since,
|
||||
until=until, from_id=from_id))
|
||||
|
||||
def check_order_canceled_empty(self, order: Dict) -> bool:
|
||||
"""
|
||||
Verify if an order has been cancelled without being partially filled
|
||||
:param order: Order dict as returned from get_order()
|
||||
:return: True if order has been cancelled without being filled, False otherwise.
|
||||
"""
|
||||
return order.get('status') in ('closed', 'canceled') and order.get('filled') == 0.0
|
||||
|
||||
@retrier
|
||||
def cancel_order(self, order_id: str, pair: str) -> None:
|
||||
def cancel_order(self, order_id: str, pair: str) -> Dict:
|
||||
if self._config['dry_run']:
|
||||
return
|
||||
return {}
|
||||
|
||||
try:
|
||||
return self._api.cancel_order(order_id, pair)
|
||||
@@ -915,6 +945,37 @@ class Exchange:
|
||||
except ccxt.BaseError as e:
|
||||
raise OperationalException(e) from e
|
||||
|
||||
def is_cancel_order_result_suitable(self, corder) -> bool:
|
||||
if not isinstance(corder, dict):
|
||||
return False
|
||||
|
||||
required = ('fee', 'status', 'amount')
|
||||
return all(k in corder for k in required)
|
||||
|
||||
def cancel_order_with_result(self, order_id: str, pair: str, amount: float) -> Dict:
|
||||
"""
|
||||
Cancel order returning a result.
|
||||
Creates a fake result if cancel order returns a non-usable result
|
||||
and get_order does not work (certain exchanges don't return cancelled orders)
|
||||
:param order_id: Orderid to cancel
|
||||
:param pair: Pair corresponding to order_id
|
||||
:param amount: Amount to use for fake response
|
||||
:return: Result from either cancel_order if usable, or fetch_order
|
||||
"""
|
||||
try:
|
||||
corder = self.cancel_order(order_id, pair)
|
||||
if self.is_cancel_order_result_suitable(corder):
|
||||
return corder
|
||||
except InvalidOrderException:
|
||||
logger.warning(f"Could not cancel order {order_id}.")
|
||||
try:
|
||||
order = self.get_order(order_id, pair)
|
||||
except InvalidOrderException:
|
||||
logger.warning(f"Could not fetch cancelled order {order_id}.")
|
||||
order = {'fee': {}, 'status': 'canceled', 'amount': amount, 'info': {}}
|
||||
|
||||
return order
|
||||
|
||||
@retrier
|
||||
def get_order(self, order_id: str, pair: str) -> Dict:
|
||||
if self._config['dry_run']:
|
||||
@@ -988,9 +1049,9 @@ class Exchange:
|
||||
|
||||
return matched_trades
|
||||
|
||||
except ccxt.NetworkError as e:
|
||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(
|
||||
f'Could not get trades due to networking error. Message: {e}') from e
|
||||
f'Could not get trades due to {e.__class__.__name__}. Message: {e}') from e
|
||||
except ccxt.BaseError as e:
|
||||
raise OperationalException(e) from e
|
||||
|
||||
@@ -1010,6 +1071,61 @@ class Exchange:
|
||||
except ccxt.BaseError as e:
|
||||
raise OperationalException(e) from e
|
||||
|
||||
@staticmethod
|
||||
def order_has_fee(order: Dict) -> bool:
|
||||
"""
|
||||
Verifies if the passed in order dict has the needed keys to extract fees,
|
||||
and that these keys (currency, cost) are not empty.
|
||||
:param order: Order or trade (one trade) dict
|
||||
:return: True if the fee substructure contains currency and cost, false otherwise
|
||||
"""
|
||||
if not isinstance(order, dict):
|
||||
return False
|
||||
return ('fee' in order and order['fee'] is not None
|
||||
and (order['fee'].keys() >= {'currency', 'cost'})
|
||||
and order['fee']['currency'] is not None
|
||||
and order['fee']['cost'] is not None
|
||||
)
|
||||
|
||||
def calculate_fee_rate(self, order: Dict) -> Optional[float]:
|
||||
"""
|
||||
Calculate fee rate if it's not given by the exchange.
|
||||
:param order: Order or trade (one trade) dict
|
||||
"""
|
||||
if order['fee'].get('rate') is not None:
|
||||
return order['fee'].get('rate')
|
||||
fee_curr = order['fee']['currency']
|
||||
# Calculate fee based on order details
|
||||
if fee_curr in self.get_pair_base_currency(order['symbol']):
|
||||
# Base currency - divide by amount
|
||||
return round(
|
||||
order['fee']['cost'] / safe_value_fallback(order, order, 'filled', 'amount'), 8)
|
||||
elif fee_curr in self.get_pair_quote_currency(order['symbol']):
|
||||
# Quote currency - divide by cost
|
||||
return round(order['fee']['cost'] / order['cost'], 8)
|
||||
else:
|
||||
# If Fee currency is a different currency
|
||||
try:
|
||||
comb = self.get_valid_pair_combination(fee_curr, self._config['stake_currency'])
|
||||
tick = self.fetch_ticker(comb)
|
||||
|
||||
fee_to_quote_rate = safe_value_fallback(tick, tick, 'last', 'ask')
|
||||
return round((order['fee']['cost'] * fee_to_quote_rate) / order['cost'], 8)
|
||||
except DependencyException:
|
||||
return None
|
||||
|
||||
def extract_cost_curr_rate(self, order: Dict) -> Tuple[float, str, Optional[float]]:
|
||||
"""
|
||||
Extract tuple of cost, currency, rate.
|
||||
Requires order_has_fee to run first!
|
||||
:param order: Order or trade (one trade) dict
|
||||
:return: Tuple with cost, currency, rate of the given fee dict
|
||||
"""
|
||||
return (order['fee']['cost'],
|
||||
order['fee']['currency'],
|
||||
self.calculate_fee_rate(order))
|
||||
# calculate rate ? (order['fee']['cost'] / (order['amount'] * order['price']))
|
||||
|
||||
|
||||
def is_exchange_bad(exchange_name: str) -> bool:
|
||||
return exchange_name in BAD_EXCHANGES
|
||||
|
@@ -7,7 +7,7 @@ import ccxt
|
||||
from freqtrade.exceptions import (DependencyException, InvalidOrderException,
|
||||
OperationalException, TemporaryError)
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.exchange.exchange import retrier
|
||||
from freqtrade.exchange.common import retrier
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
@@ -7,7 +7,7 @@ import traceback
|
||||
from datetime import datetime
|
||||
from math import isclose
|
||||
from threading import Lock
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
import arrow
|
||||
from cachetools import TTLCache
|
||||
@@ -20,12 +20,14 @@ from freqtrade.data.dataprovider import DataProvider
|
||||
from freqtrade.edge import Edge
|
||||
from freqtrade.exceptions import DependencyException, InvalidOrderException
|
||||
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_next_date
|
||||
from freqtrade.misc import safe_value_fallback
|
||||
from freqtrade.pairlist.pairlistmanager import PairListManager
|
||||
from freqtrade.persistence import Trade
|
||||
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
|
||||
from freqtrade.rpc import RPCManager, RPCMessageType
|
||||
from freqtrade.state import State
|
||||
from freqtrade.strategy.interface import IStrategy, SellType
|
||||
from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper
|
||||
from freqtrade.wallets import Wallets
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -52,8 +54,11 @@ class FreqtradeBot:
|
||||
# Init objects
|
||||
self.config = config
|
||||
|
||||
self._sell_rate_cache = TTLCache(maxsize=100, ttl=5)
|
||||
self._buy_rate_cache = TTLCache(maxsize=100, ttl=5)
|
||||
# Cache values for 1800 to avoid frequent polling of the exchange for prices
|
||||
# Caching only applies to RPC methods, so prices for open trades are still
|
||||
# refreshed once every iteration.
|
||||
self._sell_rate_cache = TTLCache(maxsize=100, ttl=1800)
|
||||
self._buy_rate_cache = TTLCache(maxsize=100, ttl=1800)
|
||||
|
||||
self.strategy: IStrategy = StrategyResolver.load_strategy(self.config)
|
||||
|
||||
@@ -66,20 +71,20 @@ class FreqtradeBot:
|
||||
|
||||
self.wallets = Wallets(self.config, self.exchange)
|
||||
|
||||
self.dataprovider = DataProvider(self.config, self.exchange)
|
||||
self.pairlists = PairListManager(self.exchange, self.config)
|
||||
|
||||
self.dataprovider = DataProvider(self.config, self.exchange, self.pairlists)
|
||||
|
||||
# Attach Dataprovider to Strategy baseclass
|
||||
IStrategy.dp = self.dataprovider
|
||||
# Attach Wallets to Strategy baseclass
|
||||
IStrategy.wallets = self.wallets
|
||||
|
||||
self.pairlists = PairListManager(self.exchange, self.config)
|
||||
|
||||
# Initializing Edge only if enabled
|
||||
self.edge = Edge(self.config, self.exchange, self.strategy) if \
|
||||
self.config.get('edge', {}).get('enabled', False) else None
|
||||
|
||||
self.active_pair_whitelist = self._refresh_whitelist()
|
||||
self.active_pair_whitelist = self._refresh_active_whitelist()
|
||||
|
||||
# Set initial bot state from config
|
||||
initial_state = self.config.get('initial_state')
|
||||
@@ -111,6 +116,9 @@ class FreqtradeBot:
|
||||
"""
|
||||
logger.info('Cleaning up modules ...')
|
||||
|
||||
if self.config['cancel_open_orders_on_exit']:
|
||||
self.cancel_all_open_orders()
|
||||
|
||||
self.rpc.cleanup()
|
||||
persistence.cleanup()
|
||||
|
||||
@@ -137,12 +145,16 @@ class FreqtradeBot:
|
||||
# Query trades from persistence layer
|
||||
trades = Trade.get_open_trades()
|
||||
|
||||
self.active_pair_whitelist = self._refresh_whitelist(trades)
|
||||
self.active_pair_whitelist = self._refresh_active_whitelist(trades)
|
||||
|
||||
# Refreshing candles
|
||||
self.dataprovider.refresh(self._create_pair_whitelist(self.active_pair_whitelist),
|
||||
self.dataprovider.refresh(self.pairlists.create_pair_list(self.active_pair_whitelist),
|
||||
self.strategy.informative_pairs())
|
||||
|
||||
with self._sell_lock:
|
||||
# Check and handle any timed out open orders
|
||||
self.check_handle_timedout()
|
||||
|
||||
# Protect from collisions with forcesell.
|
||||
# Without this, freqtrade my try to recreate stoploss_on_exchange orders
|
||||
# while selling is in process, since telegram messages arrive in an different thread.
|
||||
@@ -154,13 +166,19 @@ class FreqtradeBot:
|
||||
if self.get_free_open_trades():
|
||||
self.enter_positions()
|
||||
|
||||
# Check and handle any timed out open orders
|
||||
self.check_handle_timedout()
|
||||
Trade.session.flush()
|
||||
|
||||
def _refresh_whitelist(self, trades: List[Trade] = []) -> List[str]:
|
||||
def process_stopped(self) -> None:
|
||||
"""
|
||||
Refresh whitelist from pairlist or edge and extend it with trades.
|
||||
Close all orders that were left open
|
||||
"""
|
||||
if self.config['cancel_open_orders_on_exit']:
|
||||
self.cancel_all_open_orders()
|
||||
|
||||
def _refresh_active_whitelist(self, trades: List[Trade] = []) -> List[str]:
|
||||
"""
|
||||
Refresh active whitelist from pairlist or edge and extend it with
|
||||
pairs that have open trades.
|
||||
"""
|
||||
# Refresh whitelist
|
||||
self.pairlists.refresh_pairlist()
|
||||
@@ -172,17 +190,11 @@ class FreqtradeBot:
|
||||
_whitelist = self.edge.adjust(_whitelist)
|
||||
|
||||
if trades:
|
||||
# Extend active-pair whitelist with pairs from open trades
|
||||
# It ensures that tickers are downloaded for open trades
|
||||
# Extend active-pair whitelist with pairs of open trades
|
||||
# It ensures that candle (OHLCV) data are downloaded for open trades as well
|
||||
_whitelist.extend([trade.pair for trade in trades if trade.pair not in _whitelist])
|
||||
return _whitelist
|
||||
|
||||
def _create_pair_whitelist(self, pairs: List[str]) -> List[Tuple[str, str]]:
|
||||
"""
|
||||
Create pair-whitelist tuple with (pair, ticker_interval)
|
||||
"""
|
||||
return [(pair, self.config['ticker_interval']) for pair in pairs]
|
||||
|
||||
def get_free_open_trades(self):
|
||||
"""
|
||||
Return the number of free open trades slots or 0 if
|
||||
@@ -395,15 +407,17 @@ class FreqtradeBot:
|
||||
logger.info(f"Pair {pair} is currently locked.")
|
||||
return False
|
||||
|
||||
# get_free_open_trades is checked before create_trade is called
|
||||
# but it is still used here to prevent opening too many trades within one iteration
|
||||
if not self.get_free_open_trades():
|
||||
logger.debug(f"Can't open a new trade for {pair}: max number of trades is reached.")
|
||||
return False
|
||||
|
||||
# running get_signal on historical data fetched
|
||||
dataframe = self.dataprovider.ohlcv(pair, self.strategy.ticker_interval)
|
||||
(buy, sell) = self.strategy.get_signal(pair, self.strategy.ticker_interval, dataframe)
|
||||
|
||||
if buy and not sell:
|
||||
if not self.get_free_open_trades():
|
||||
logger.debug("Can't open a new trade: max number of trades is reached.")
|
||||
return False
|
||||
|
||||
stake_amount = self.get_trade_stake_amount(pair)
|
||||
if not stake_amount:
|
||||
logger.debug(f"Stake amount is 0, ignoring possible trade for {pair}.")
|
||||
@@ -598,14 +612,13 @@ class FreqtradeBot:
|
||||
trades_closed = 0
|
||||
for trade in trades:
|
||||
try:
|
||||
self.update_trade_state(trade)
|
||||
|
||||
if (self.strategy.order_types.get('stoploss_on_exchange') and
|
||||
self.handle_stoploss_on_exchange(trade)):
|
||||
trades_closed += 1
|
||||
continue
|
||||
# Check if we can sell our current pair
|
||||
if trade.open_order_id is None and self.handle_trade(trade):
|
||||
if trade.open_order_id is None and trade.is_open and self.handle_trade(trade):
|
||||
trades_closed += 1
|
||||
|
||||
except DependencyException as exception:
|
||||
@@ -628,7 +641,7 @@ class FreqtradeBot:
|
||||
|
||||
def get_sell_rate(self, pair: str, refresh: bool) -> float:
|
||||
"""
|
||||
Get sell rate - either using get-ticker bid or first bid based on orderbook
|
||||
Get sell rate - either using ticker bid or first bid based on orderbook
|
||||
The orderbook portion is only used for rpc messaging, which would otherwise fail
|
||||
for BitMex (has no bid/ask in fetch_ticker)
|
||||
or remain static in any other case since it's not updating.
|
||||
@@ -747,7 +760,7 @@ class FreqtradeBot:
|
||||
# We check if stoploss order is fulfilled
|
||||
if stoploss_order and stoploss_order['status'] == 'closed':
|
||||
trade.sell_reason = SellType.STOPLOSS_ON_EXCHANGE.value
|
||||
trade.update(stoploss_order)
|
||||
self.update_trade_state(trade, stoploss_order, sl_order=True)
|
||||
# Lock pair for one candle to prevent immediate rebuys
|
||||
self.strategy.lock_pair(trade.pair,
|
||||
timeframe_to_next_date(self.config['ticker_interval']))
|
||||
@@ -858,105 +871,134 @@ class FreqtradeBot:
|
||||
continue
|
||||
order = self.exchange.get_order(trade.open_order_id, trade.pair)
|
||||
except (RequestException, DependencyException, InvalidOrderException):
|
||||
logger.info(
|
||||
'Cannot query order for %s due to %s',
|
||||
trade,
|
||||
traceback.format_exc())
|
||||
logger.info('Cannot query order for %s due to %s', trade, traceback.format_exc())
|
||||
continue
|
||||
|
||||
# Check if trade is still actually open
|
||||
if float(order.get('remaining', 0.0)) == 0.0:
|
||||
self.wallets.update()
|
||||
continue
|
||||
fully_cancelled = self.update_trade_state(trade, order)
|
||||
|
||||
if ((order['side'] == 'buy' and order['status'] == 'canceled')
|
||||
or (self._check_timed_out('buy', order))):
|
||||
self.handle_timedout_limit_buy(trade, order)
|
||||
self.wallets.update()
|
||||
order_type = self.strategy.order_types['buy']
|
||||
self._notify_buy_cancel(trade, order_type)
|
||||
if (order['side'] == 'buy' and (order['status'] == 'open' or fully_cancelled) and (
|
||||
fully_cancelled
|
||||
or self._check_timed_out('buy', order)
|
||||
or strategy_safe_wrapper(self.strategy.check_buy_timeout,
|
||||
default_retval=False)(pair=trade.pair,
|
||||
trade=trade,
|
||||
order=order))):
|
||||
self.handle_cancel_buy(trade, order, constants.CANCEL_REASON['TIMEOUT'])
|
||||
|
||||
elif ((order['side'] == 'sell' and order['status'] == 'canceled')
|
||||
or (self._check_timed_out('sell', order))):
|
||||
self.handle_timedout_limit_sell(trade, order)
|
||||
self.wallets.update()
|
||||
order_type = self.strategy.order_types['sell']
|
||||
self._notify_sell_cancel(trade, order_type)
|
||||
elif (order['side'] == 'sell' and (order['status'] == 'open' or fully_cancelled) and (
|
||||
fully_cancelled
|
||||
or self._check_timed_out('sell', order)
|
||||
or strategy_safe_wrapper(self.strategy.check_sell_timeout,
|
||||
default_retval=False)(pair=trade.pair,
|
||||
trade=trade,
|
||||
order=order))):
|
||||
self.handle_cancel_sell(trade, order, constants.CANCEL_REASON['TIMEOUT'])
|
||||
|
||||
def handle_timedout_limit_buy(self, trade: Trade, order: Dict) -> bool:
|
||||
def cancel_all_open_orders(self) -> None:
|
||||
"""
|
||||
Buy timeout - cancel order
|
||||
Cancel all orders that are currently open
|
||||
:return: None
|
||||
"""
|
||||
|
||||
for trade in Trade.get_open_order_trades():
|
||||
try:
|
||||
order = self.exchange.get_order(trade.open_order_id, trade.pair)
|
||||
except (DependencyException, InvalidOrderException):
|
||||
logger.info('Cannot query order for %s due to %s', trade, traceback.format_exc())
|
||||
continue
|
||||
|
||||
if order['side'] == 'buy':
|
||||
self.handle_cancel_buy(trade, order, constants.CANCEL_REASON['ALL_CANCELLED'])
|
||||
|
||||
elif order['side'] == 'sell':
|
||||
self.handle_cancel_sell(trade, order, constants.CANCEL_REASON['ALL_CANCELLED'])
|
||||
|
||||
def handle_cancel_buy(self, trade: Trade, order: Dict, reason: str) -> bool:
|
||||
"""
|
||||
Buy cancel - cancel order
|
||||
:return: True if order was fully cancelled
|
||||
"""
|
||||
if order['status'] != 'canceled':
|
||||
reason = "cancelled due to timeout"
|
||||
corder = self.exchange.cancel_order(trade.open_order_id, trade.pair)
|
||||
logger.info('Buy order %s for %s.', reason, trade)
|
||||
was_trade_fully_canceled = False
|
||||
|
||||
# Cancelled orders may have the status of 'canceled' or 'closed'
|
||||
if order['status'] not in ('canceled', 'closed'):
|
||||
reason = constants.CANCEL_REASON['TIMEOUT']
|
||||
corder = self.exchange.cancel_order_with_result(trade.open_order_id, trade.pair,
|
||||
trade.amount)
|
||||
else:
|
||||
# Order was cancelled already, so we can reuse the existing dict
|
||||
corder = order
|
||||
reason = "cancelled on exchange"
|
||||
logger.info('Buy order %s for %s.', reason, trade)
|
||||
reason = constants.CANCEL_REASON['CANCELLED_ON_EXCHANGE']
|
||||
|
||||
if corder.get('remaining', order['remaining']) == order['amount']:
|
||||
logger.info('Buy order %s for %s.', reason, trade)
|
||||
|
||||
# Using filled to determine the filled amount
|
||||
filled_amount = safe_value_fallback(corder, order, 'filled', 'filled')
|
||||
|
||||
if isclose(filled_amount, 0.0, abs_tol=constants.MATH_CLOSE_PREC):
|
||||
logger.info('Buy order fully cancelled. Removing %s from database.', trade)
|
||||
# if trade is not partially completed, just delete the trade
|
||||
Trade.session.delete(trade)
|
||||
Trade.session.flush()
|
||||
return True
|
||||
was_trade_fully_canceled = True
|
||||
else:
|
||||
# if trade is partially complete, edit the stake details for the trade
|
||||
# and close the order
|
||||
# cancel_order may not contain the full order dict, so we need to fallback
|
||||
# to the order dict aquired before cancelling.
|
||||
# we need to fall back to the values from order if corder does not contain these keys.
|
||||
trade.amount = filled_amount
|
||||
trade.stake_amount = trade.amount * trade.open_rate
|
||||
self.update_trade_state(trade, corder, trade.amount)
|
||||
|
||||
# if trade is partially complete, edit the stake details for the trade
|
||||
# and close the order
|
||||
# cancel_order may not contain the full order dict, so we need to fallback
|
||||
# to the order dict aquired before cancelling.
|
||||
# we need to fall back to the values from order if corder does not contain these keys.
|
||||
trade.amount = order['amount'] - corder.get('remaining', order['remaining'])
|
||||
trade.stake_amount = trade.amount * trade.open_rate
|
||||
# verify if fees were taken from amount to avoid problems during selling
|
||||
try:
|
||||
new_amount = self.get_real_amount(trade, corder if 'fee' in corder else order,
|
||||
trade.amount)
|
||||
if not isclose(order['amount'], new_amount, abs_tol=constants.MATH_CLOSE_PREC):
|
||||
trade.amount = new_amount
|
||||
# Fee was applied, so set to 0
|
||||
trade.fee_open = 0
|
||||
trade.recalc_open_trade_price()
|
||||
except DependencyException as e:
|
||||
logger.warning("Could not update trade amount: %s", e)
|
||||
trade.open_order_id = None
|
||||
logger.info('Partial buy order timeout for %s.', trade)
|
||||
self.rpc.send_msg({
|
||||
'type': RPCMessageType.STATUS_NOTIFICATION,
|
||||
'status': f'Remaining buy order for {trade.pair} cancelled due to timeout'
|
||||
})
|
||||
|
||||
trade.open_order_id = None
|
||||
logger.info('Partial buy order timeout for %s.', trade)
|
||||
self.rpc.send_msg({
|
||||
'type': RPCMessageType.STATUS_NOTIFICATION,
|
||||
'status': f'Remaining buy order for {trade.pair} cancelled due to timeout'
|
||||
})
|
||||
return False
|
||||
self.wallets.update()
|
||||
self._notify_buy_cancel(trade, order_type=self.strategy.order_types['buy'])
|
||||
return was_trade_fully_canceled
|
||||
|
||||
def handle_timedout_limit_sell(self, trade: Trade, order: Dict) -> bool:
|
||||
def handle_cancel_sell(self, trade: Trade, order: Dict, reason: str) -> str:
|
||||
"""
|
||||
Sell timeout - cancel order and update trade
|
||||
:return: True if order was fully cancelled
|
||||
Sell cancel - cancel order and update trade
|
||||
:return: Reason for cancel
|
||||
"""
|
||||
# if trade is not partially completed, just cancel the trade
|
||||
if order['remaining'] == order['amount']:
|
||||
if order["status"] != "canceled":
|
||||
reason = "cancelled due to timeout"
|
||||
# if trade is not partially completed, just delete the trade
|
||||
self.exchange.cancel_order(trade.open_order_id, trade.pair)
|
||||
# if trade is not partially completed, just cancel the order
|
||||
if order['remaining'] == order['amount'] or order.get('filled') == 0.0:
|
||||
if not self.exchange.check_order_canceled_empty(order):
|
||||
try:
|
||||
# if trade is not partially completed, just delete the order
|
||||
self.exchange.cancel_order(trade.open_order_id, trade.pair)
|
||||
except InvalidOrderException:
|
||||
logger.exception(f"Could not cancel sell order {trade.open_order_id}")
|
||||
return 'error cancelling order'
|
||||
logger.info('Sell order %s for %s.', reason, trade)
|
||||
else:
|
||||
reason = "cancelled on exchange"
|
||||
reason = constants.CANCEL_REASON['CANCELLED_ON_EXCHANGE']
|
||||
logger.info('Sell order %s for %s.', reason, trade)
|
||||
|
||||
trade.close_rate = None
|
||||
trade.close_rate_requested = None
|
||||
trade.close_profit = None
|
||||
trade.close_profit_abs = None
|
||||
trade.close_date = None
|
||||
trade.is_open = True
|
||||
trade.open_order_id = None
|
||||
else:
|
||||
# TODO: figure out how to handle partially complete sell orders
|
||||
reason = constants.CANCEL_REASON['PARTIALLY_FILLED']
|
||||
|
||||
return True
|
||||
|
||||
# TODO: figure out how to handle partially complete sell orders
|
||||
return False
|
||||
self.wallets.update()
|
||||
self._notify_sell_cancel(
|
||||
trade,
|
||||
order_type=self.strategy.order_types['sell'],
|
||||
reason=reason
|
||||
)
|
||||
return reason
|
||||
|
||||
def _safe_sell_amount(self, pair: str, amount: float) -> float:
|
||||
"""
|
||||
@@ -977,7 +1019,7 @@ class FreqtradeBot:
|
||||
if wallet_amount >= amount:
|
||||
return amount
|
||||
elif wallet_amount > amount * 0.98:
|
||||
logger.info(f"{pair} - Falling back to wallet-amount.")
|
||||
logger.info(f"{pair} - Falling back to wallet-amount {wallet_amount} -> {amount}.")
|
||||
return wallet_amount
|
||||
else:
|
||||
raise DependencyException(
|
||||
@@ -1027,7 +1069,7 @@ class FreqtradeBot:
|
||||
trade.sell_reason = sell_reason.value
|
||||
# In case of market sell orders the order can be closed immediately
|
||||
if order.get('status', 'unknown') == 'closed':
|
||||
trade.update(order)
|
||||
self.update_trade_state(trade, order)
|
||||
Trade.session.flush()
|
||||
|
||||
# Lock pair for one candle to prevent immediate rebuys
|
||||
@@ -1043,7 +1085,7 @@ class FreqtradeBot:
|
||||
"""
|
||||
profit_rate = trade.close_rate if trade.close_rate else trade.close_rate_requested
|
||||
profit_trade = trade.calc_profit(rate=profit_rate)
|
||||
# Use cached ticker here - it was updated seconds ago.
|
||||
# Use cached rates here - it was updated seconds ago.
|
||||
current_rate = self.get_sell_rate(trade.pair, False)
|
||||
profit_ratio = trade.calc_profit_ratio(profit_rate)
|
||||
gain = "profit" if profit_ratio > 0 else "loss"
|
||||
@@ -1075,10 +1117,15 @@ class FreqtradeBot:
|
||||
# Send the message
|
||||
self.rpc.send_msg(msg)
|
||||
|
||||
def _notify_sell_cancel(self, trade: Trade, order_type: str) -> None:
|
||||
def _notify_sell_cancel(self, trade: Trade, order_type: str, reason: str) -> None:
|
||||
"""
|
||||
Sends rpc notification when a sell cancel occured.
|
||||
"""
|
||||
if trade.sell_order_status == reason:
|
||||
return
|
||||
else:
|
||||
trade.sell_order_status = reason
|
||||
|
||||
profit_rate = trade.close_rate if trade.close_rate else trade.close_rate_requested
|
||||
profit_trade = trade.calc_profit(rate=profit_rate)
|
||||
current_rate = self.get_sell_rate(trade.pair, False)
|
||||
@@ -1102,6 +1149,7 @@ class FreqtradeBot:
|
||||
'close_date': trade.close_date,
|
||||
'stake_currency': self.config['stake_currency'],
|
||||
'fiat_currency': self.config.get('fiat_display_currency', None),
|
||||
'reason': reason,
|
||||
}
|
||||
|
||||
if 'fiat_display_currency' in self.config:
|
||||
@@ -1116,84 +1164,134 @@ class FreqtradeBot:
|
||||
# Common update trade state methods
|
||||
#
|
||||
|
||||
def update_trade_state(self, trade: Trade, action_order: dict = None) -> None:
|
||||
def update_trade_state(self, trade: Trade, action_order: dict = None,
|
||||
order_amount: float = None, sl_order: bool = False) -> bool:
|
||||
"""
|
||||
Checks trades with open orders and updates the amount if necessary
|
||||
Handles closing both buy and sell orders.
|
||||
:return: True if order has been cancelled without being filled partially, False otherwise
|
||||
"""
|
||||
# Get order details for actual price per unit
|
||||
if trade.open_order_id:
|
||||
# Update trade with order values
|
||||
logger.info('Found open order for %s', trade)
|
||||
try:
|
||||
order = action_order or self.exchange.get_order(trade.open_order_id, trade.pair)
|
||||
except InvalidOrderException as exception:
|
||||
logger.warning('Unable to fetch order %s: %s', trade.open_order_id, exception)
|
||||
return
|
||||
# Try update amount (binance-fix)
|
||||
try:
|
||||
new_amount = self.get_real_amount(trade, order)
|
||||
if not isclose(order['amount'], new_amount, abs_tol=constants.MATH_CLOSE_PREC):
|
||||
order['amount'] = new_amount
|
||||
# Fee was applied, so set to 0
|
||||
trade.fee_open = 0
|
||||
trade.recalc_open_trade_price()
|
||||
order_id = trade.open_order_id
|
||||
elif trade.stoploss_order_id and sl_order:
|
||||
order_id = trade.stoploss_order_id
|
||||
else:
|
||||
return False
|
||||
# Update trade with order values
|
||||
logger.info('Found open order for %s', trade)
|
||||
try:
|
||||
order = action_order or self.exchange.get_order(order_id, trade.pair)
|
||||
except InvalidOrderException as exception:
|
||||
logger.warning('Unable to fetch order %s: %s', order_id, exception)
|
||||
return False
|
||||
# Try update amount (binance-fix)
|
||||
try:
|
||||
new_amount = self.get_real_amount(trade, order, order_amount)
|
||||
if not isclose(order['amount'], new_amount, abs_tol=constants.MATH_CLOSE_PREC):
|
||||
order['amount'] = new_amount
|
||||
order.pop('filled', None)
|
||||
trade.recalc_open_trade_price()
|
||||
except DependencyException as exception:
|
||||
logger.warning("Could not update trade amount: %s", exception)
|
||||
|
||||
except DependencyException as exception:
|
||||
logger.warning("Could not update trade amount: %s", exception)
|
||||
if self.exchange.check_order_canceled_empty(order):
|
||||
# Trade has been cancelled on exchange
|
||||
# Handling of this will happen in check_handle_timeout.
|
||||
return True
|
||||
trade.update(order)
|
||||
|
||||
trade.update(order)
|
||||
# Updating wallets when order is closed
|
||||
if not trade.is_open:
|
||||
self.wallets.update()
|
||||
return False
|
||||
|
||||
# Updating wallets when order is closed
|
||||
if not trade.is_open:
|
||||
self.wallets.update()
|
||||
def apply_fee_conditional(self, trade: Trade, trade_base_currency: str,
|
||||
amount: float, fee_abs: float) -> float:
|
||||
"""
|
||||
Applies the fee to amount (either from Order or from Trades).
|
||||
Can eat into dust if more than the required asset is available.
|
||||
"""
|
||||
self.wallets.update()
|
||||
if fee_abs != 0 and self.wallets.get_free(trade_base_currency) >= amount:
|
||||
# Eat into dust if we own more than base currency
|
||||
logger.info(f"Fee amount for {trade} was in base currency - "
|
||||
f"Eating Fee {fee_abs} into dust.")
|
||||
elif fee_abs != 0:
|
||||
real_amount = self.exchange.amount_to_precision(trade.pair, amount - fee_abs)
|
||||
logger.info(f"Applying fee on amount for {trade} "
|
||||
f"(from {amount} to {real_amount}).")
|
||||
return real_amount
|
||||
return amount
|
||||
|
||||
def get_real_amount(self, trade: Trade, order: Dict, order_amount: float = None) -> float:
|
||||
"""
|
||||
Get real amount for the trade
|
||||
Detect and update trade fee.
|
||||
Calls trade.update_fee() uppon correct detection.
|
||||
Returns modified amount if the fee was taken from the destination currency.
|
||||
Necessary for exchanges which charge fees in base currency (e.g. binance)
|
||||
:return: identical (or new) amount for the trade
|
||||
"""
|
||||
# Init variables
|
||||
if order_amount is None:
|
||||
order_amount = order['amount']
|
||||
# Only run for closed orders
|
||||
if trade.fee_open == 0 or order['status'] == 'open':
|
||||
if trade.fee_updated(order.get('side', '')) or order['status'] == 'open':
|
||||
return order_amount
|
||||
|
||||
trade_base_currency = self.exchange.get_pair_base_currency(trade.pair)
|
||||
# use fee from order-dict if possible
|
||||
if ('fee' in order and order['fee'] is not None and
|
||||
(order['fee'].keys() >= {'currency', 'cost'})):
|
||||
if (order['fee']['currency'] is not None and
|
||||
order['fee']['cost'] is not None and
|
||||
trade_base_currency == order['fee']['currency']):
|
||||
new_amount = order_amount - order['fee']['cost']
|
||||
logger.info("Applying fee on amount for %s (from %s to %s) from Order",
|
||||
trade, order['amount'], new_amount)
|
||||
return new_amount
|
||||
if self.exchange.order_has_fee(order):
|
||||
fee_cost, fee_currency, fee_rate = self.exchange.extract_cost_curr_rate(order)
|
||||
logger.info(f"Fee for Trade {trade} [{order.get('side')}]: "
|
||||
f"{fee_cost:.8g} {fee_currency} - rate: {fee_rate}")
|
||||
|
||||
# Fallback to Trades
|
||||
trade.update_fee(fee_cost, fee_currency, fee_rate, order.get('side', ''))
|
||||
if trade_base_currency == fee_currency:
|
||||
# Apply fee to amount
|
||||
return self.apply_fee_conditional(trade, trade_base_currency,
|
||||
amount=order_amount, fee_abs=fee_cost)
|
||||
return order_amount
|
||||
return self.fee_detection_from_trades(trade, order, order_amount)
|
||||
|
||||
def fee_detection_from_trades(self, trade: Trade, order: Dict, order_amount: float) -> float:
|
||||
"""
|
||||
fee-detection fallback to Trades. Parses result of fetch_my_trades to get correct fee.
|
||||
"""
|
||||
trades = self.exchange.get_trades_for_order(trade.open_order_id, trade.pair,
|
||||
trade.open_date)
|
||||
|
||||
if len(trades) == 0:
|
||||
logger.info("Applying fee on amount for %s failed: myTrade-Dict empty found", trade)
|
||||
return order_amount
|
||||
fee_currency = None
|
||||
amount = 0
|
||||
fee_abs = 0
|
||||
fee_abs = 0.0
|
||||
fee_cost = 0.0
|
||||
trade_base_currency = self.exchange.get_pair_base_currency(trade.pair)
|
||||
fee_rate_array: List[float] = []
|
||||
for exectrade in trades:
|
||||
amount += exectrade['amount']
|
||||
if ("fee" in exectrade and exectrade['fee'] is not None and
|
||||
(exectrade['fee'].keys() >= {'currency', 'cost'})):
|
||||
if self.exchange.order_has_fee(exectrade):
|
||||
fee_cost_, fee_currency, fee_rate_ = self.exchange.extract_cost_curr_rate(exectrade)
|
||||
fee_cost += fee_cost_
|
||||
if fee_rate_ is not None:
|
||||
fee_rate_array.append(fee_rate_)
|
||||
# only applies if fee is in quote currency!
|
||||
if (exectrade['fee']['currency'] is not None and
|
||||
exectrade['fee']['cost'] is not None and
|
||||
trade_base_currency == exectrade['fee']['currency']):
|
||||
fee_abs += exectrade['fee']['cost']
|
||||
if trade_base_currency == fee_currency:
|
||||
fee_abs += fee_cost_
|
||||
# Ensure at least one trade was found:
|
||||
if fee_currency:
|
||||
# fee_rate should use mean
|
||||
fee_rate = sum(fee_rate_array) / float(len(fee_rate_array)) if fee_rate_array else None
|
||||
trade.update_fee(fee_cost, fee_currency, fee_rate, order.get('side', ''))
|
||||
|
||||
if not isclose(amount, order_amount, abs_tol=constants.MATH_CLOSE_PREC):
|
||||
logger.warning(f"Amount {amount} does not match amount {trade.amount}")
|
||||
raise DependencyException("Half bought? Amounts don't match")
|
||||
real_amount = amount - fee_abs
|
||||
|
||||
if fee_abs != 0:
|
||||
logger.info(f"Applying fee on amount for {trade} "
|
||||
f"(from {order_amount} to {real_amount}) from Trades")
|
||||
return real_amount
|
||||
return self.apply_fee_conditional(trade, trade_base_currency,
|
||||
amount=amount, fee_abs=fee_abs)
|
||||
else:
|
||||
return amount
|
||||
|
@@ -18,13 +18,13 @@ def _set_loggers(verbosity: int = 0) -> None:
|
||||
"""
|
||||
|
||||
logging.getLogger('requests').setLevel(
|
||||
logging.INFO if verbosity <= 1 else logging.DEBUG
|
||||
logging.INFO if verbosity <= 1 else logging.DEBUG
|
||||
)
|
||||
logging.getLogger("urllib3").setLevel(
|
||||
logging.INFO if verbosity <= 1 else logging.DEBUG
|
||||
logging.INFO if verbosity <= 1 else logging.DEBUG
|
||||
)
|
||||
logging.getLogger('ccxt.base.exchange').setLevel(
|
||||
logging.INFO if verbosity <= 2 else logging.DEBUG
|
||||
logging.INFO if verbosity <= 2 else logging.DEBUG
|
||||
)
|
||||
logging.getLogger('telegram').setLevel(logging.INFO)
|
||||
|
||||
|
@@ -81,13 +81,13 @@ def file_load_json(file):
|
||||
gzipfile = file
|
||||
# Try gzip file first, otherwise regular json file.
|
||||
if gzipfile.is_file():
|
||||
logger.debug('Loading ticker data from file %s', gzipfile)
|
||||
with gzip.open(gzipfile) as tickerdata:
|
||||
pairdata = json_load(tickerdata)
|
||||
logger.debug(f"Loading historical data from file {gzipfile}")
|
||||
with gzip.open(gzipfile) as datafile:
|
||||
pairdata = json_load(datafile)
|
||||
elif file.is_file():
|
||||
logger.debug('Loading ticker data from file %s', file)
|
||||
with open(file) as tickerdata:
|
||||
pairdata = json_load(tickerdata)
|
||||
logger.debug(f"Loading historical data from file {file}")
|
||||
with open(file) as datafile:
|
||||
pairdata = json_load(datafile)
|
||||
else:
|
||||
return None
|
||||
return pairdata
|
||||
@@ -134,6 +134,21 @@ def round_dict(d, n):
|
||||
return {k: (round(v, n) if isinstance(v, float) else v) for k, v in d.items()}
|
||||
|
||||
|
||||
def safe_value_fallback(dict1: dict, dict2: dict, key1: str, key2: str, default_value=None):
|
||||
"""
|
||||
Search a value in dict1, return this if it's not None.
|
||||
Fall back to dict2 - return key2 from dict2 if it's not None.
|
||||
Else falls back to None.
|
||||
|
||||
"""
|
||||
if key1 in dict1 and dict1[key1] is not None:
|
||||
return dict1[key1]
|
||||
else:
|
||||
if key2 in dict2 and dict2[key2] is not None:
|
||||
return dict2[key2]
|
||||
return default_value
|
||||
|
||||
|
||||
def plural(num: float, singular: str, plural: str = None) -> str:
|
||||
return singular if (num == 1 or num == -1) else plural or singular + 's'
|
||||
|
||||
@@ -148,3 +163,15 @@ def render_template(templatefile: str, arguments: dict = {}) -> str:
|
||||
)
|
||||
template = env.get_template(templatefile)
|
||||
return template.render(**arguments)
|
||||
|
||||
|
||||
def render_template_with_fallback(templatefile: str, templatefallbackfile: str,
|
||||
arguments: dict = {}) -> str:
|
||||
"""
|
||||
Use templatefile if possible, otherwise fall back to templatefallbackfile
|
||||
"""
|
||||
from jinja2.exceptions import TemplateNotFound
|
||||
try:
|
||||
return render_template(templatefile, arguments)
|
||||
except TemplateNotFound:
|
||||
return render_template(templatefallbackfile, arguments)
|
||||
|
@@ -6,8 +6,7 @@ This module contains the backtesting logic
|
||||
import logging
|
||||
from copy import deepcopy
|
||||
from datetime import datetime, timedelta
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, NamedTuple, Optional
|
||||
from typing import Any, Dict, List, NamedTuple, Optional, Tuple
|
||||
|
||||
import arrow
|
||||
from pandas import DataFrame
|
||||
@@ -19,10 +18,9 @@ from freqtrade.data.converter import trim_dataframe
|
||||
from freqtrade.data.dataprovider import DataProvider
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_seconds
|
||||
from freqtrade.misc import file_dump_json
|
||||
from freqtrade.optimize.optimize_reports import (
|
||||
generate_text_table, generate_text_table_sell_reason,
|
||||
generate_text_table_strategy)
|
||||
from freqtrade.optimize.optimize_reports import (show_backtest_results,
|
||||
store_backtest_result)
|
||||
from freqtrade.pairlist.pairlistmanager import PairListManager
|
||||
from freqtrade.persistence import Trade
|
||||
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
|
||||
from freqtrade.state import RunMode
|
||||
@@ -66,10 +64,19 @@ class Backtesting:
|
||||
self.strategylist: List[IStrategy] = []
|
||||
self.exchange = ExchangeResolver.load_exchange(self.config['exchange']['name'], self.config)
|
||||
|
||||
self.pairlists = PairListManager(self.exchange, self.config)
|
||||
if 'VolumePairList' in self.pairlists.name_list:
|
||||
raise OperationalException("VolumePairList not allowed for backtesting.")
|
||||
|
||||
self.pairlists.refresh_pairlist()
|
||||
|
||||
if len(self.pairlists.whitelist) == 0:
|
||||
raise OperationalException("No pair in whitelist.")
|
||||
|
||||
if config.get('fee'):
|
||||
self.fee = config['fee']
|
||||
else:
|
||||
self.fee = self.exchange.get_fee(symbol=self.config['exchange']['pair_whitelist'][0])
|
||||
self.fee = self.exchange.get_fee(symbol=self.pairlists.whitelist[0])
|
||||
|
||||
if self.config.get('runmode') != RunMode.HYPEROPT:
|
||||
self.dataprovider = DataProvider(self.config, self.exchange)
|
||||
@@ -88,8 +95,8 @@ class Backtesting:
|
||||
validate_config_consistency(self.config)
|
||||
|
||||
if "ticker_interval" not in self.config:
|
||||
raise OperationalException("Ticker-interval needs to be set in either configuration "
|
||||
"or as cli argument `--ticker-interval 5m`")
|
||||
raise OperationalException("Timeframe (ticker interval) needs to be set in either "
|
||||
"configuration or as cli argument `--ticker-interval 5m`")
|
||||
self.timeframe = str(self.config.get('ticker_interval'))
|
||||
self.timeframe_min = timeframe_to_minutes(self.timeframe)
|
||||
|
||||
@@ -108,13 +115,13 @@ class Backtesting:
|
||||
# And the regular "stoploss" function would not apply to that case
|
||||
self.strategy.order_types['stoploss_on_exchange'] = False
|
||||
|
||||
def load_bt_data(self):
|
||||
def load_bt_data(self) -> Tuple[Dict[str, DataFrame], TimeRange]:
|
||||
timerange = TimeRange.parse_timerange(None if self.config.get(
|
||||
'timerange') is None else str(self.config.get('timerange')))
|
||||
|
||||
data = history.load_data(
|
||||
datadir=self.config['datadir'],
|
||||
pairs=self.config['exchange']['pair_whitelist'],
|
||||
pairs=self.pairlists.whitelist,
|
||||
timeframe=self.timeframe,
|
||||
timerange=timerange,
|
||||
startup_candles=self.required_startup,
|
||||
@@ -134,49 +141,33 @@ class Backtesting:
|
||||
|
||||
return data, timerange
|
||||
|
||||
def _store_backtest_result(self, recordfilename: Path, results: DataFrame,
|
||||
strategyname: Optional[str] = None) -> None:
|
||||
|
||||
records = [(t.pair, t.profit_percent, t.open_time.timestamp(),
|
||||
t.close_time.timestamp(), t.open_index - 1, t.trade_duration,
|
||||
t.open_rate, t.close_rate, t.open_at_end, t.sell_reason.value)
|
||||
for index, t in results.iterrows()]
|
||||
|
||||
if records:
|
||||
if strategyname:
|
||||
# Inject strategyname to filename
|
||||
recordfilename = Path.joinpath(
|
||||
recordfilename.parent,
|
||||
f'{recordfilename.stem}-{strategyname}').with_suffix(recordfilename.suffix)
|
||||
logger.info(f'Dumping backtest results to {recordfilename}')
|
||||
file_dump_json(recordfilename, records)
|
||||
|
||||
def _get_ticker_list(self, processed: Dict) -> Dict[str, DataFrame]:
|
||||
def _get_ohlcv_as_lists(self, processed: Dict) -> Dict[str, DataFrame]:
|
||||
"""
|
||||
Helper function to convert a processed tickerlist into a list for performance reasons.
|
||||
Helper function to convert a processed dataframes into lists for performance reasons.
|
||||
|
||||
Used by backtest() - so keep this optimized for performance.
|
||||
"""
|
||||
headers = ['date', 'buy', 'open', 'close', 'sell', 'low', 'high']
|
||||
ticker: Dict = {}
|
||||
# Create ticker dict
|
||||
data: Dict = {}
|
||||
# Create dict with data
|
||||
for pair, pair_data in processed.items():
|
||||
pair_data.loc[:, 'buy'] = 0 # cleanup from previous run
|
||||
pair_data.loc[:, 'sell'] = 0 # cleanup from previous run
|
||||
|
||||
ticker_data = self.strategy.advise_sell(
|
||||
df_analyzed = self.strategy.advise_sell(
|
||||
self.strategy.advise_buy(pair_data, {'pair': pair}), {'pair': pair})[headers].copy()
|
||||
|
||||
# to avoid using data from future, we buy/sell with signal from previous candle
|
||||
ticker_data.loc[:, 'buy'] = ticker_data['buy'].shift(1)
|
||||
ticker_data.loc[:, 'sell'] = ticker_data['sell'].shift(1)
|
||||
# To avoid using data from future, we use buy/sell signals shifted
|
||||
# from the previous candle
|
||||
df_analyzed.loc[:, 'buy'] = df_analyzed.loc[:, 'buy'].shift(1)
|
||||
df_analyzed.loc[:, 'sell'] = df_analyzed.loc[:, 'sell'].shift(1)
|
||||
|
||||
ticker_data.drop(ticker_data.head(1).index, inplace=True)
|
||||
df_analyzed.drop(df_analyzed.head(1).index, inplace=True)
|
||||
|
||||
# Convert from Pandas to list for performance reasons
|
||||
# (Looping Pandas is slow.)
|
||||
ticker[pair] = [x for x in ticker_data.itertuples()]
|
||||
return ticker
|
||||
data[pair] = [x for x in df_analyzed.itertuples()]
|
||||
return data
|
||||
|
||||
def _get_close_rate(self, sell_row, trade: Trade, sell: SellCheckTuple,
|
||||
trade_dur: int) -> float:
|
||||
@@ -220,7 +211,7 @@ class Backtesting:
|
||||
|
||||
def _get_sell_trade_entry(
|
||||
self, pair: str, buy_row: DataFrame,
|
||||
partial_ticker: List, trade_count_lock: Dict,
|
||||
partial_ohlcv: List, trade_count_lock: Dict,
|
||||
stake_amount: float, max_open_trades: int) -> Optional[BacktestResult]:
|
||||
|
||||
trade = Trade(
|
||||
@@ -235,7 +226,7 @@ class Backtesting:
|
||||
)
|
||||
logger.debug(f"{pair} - Backtesting emulates creation of new trade: {trade}.")
|
||||
# calculate win/lose forwards from buy point
|
||||
for sell_row in partial_ticker:
|
||||
for sell_row in partial_ohlcv:
|
||||
if max_open_trades > 0:
|
||||
# Increase trade_count_lock for every iteration
|
||||
trade_count_lock[sell_row.date] = trade_count_lock.get(sell_row.date, 0) + 1
|
||||
@@ -259,9 +250,9 @@ class Backtesting:
|
||||
close_rate=closerate,
|
||||
sell_reason=sell.sell_type
|
||||
)
|
||||
if partial_ticker:
|
||||
if partial_ohlcv:
|
||||
# no sell condition found - trade stil open at end of backtest period
|
||||
sell_row = partial_ticker[-1]
|
||||
sell_row = partial_ohlcv[-1]
|
||||
bt_res = BacktestResult(pair=pair,
|
||||
profit_percent=trade.calc_profit_ratio(rate=sell_row.open),
|
||||
profit_abs=trade.calc_profit(rate=sell_row.open),
|
||||
@@ -308,8 +299,9 @@ class Backtesting:
|
||||
trades = []
|
||||
trade_count_lock: Dict = {}
|
||||
|
||||
# Dict of ticker-lists for performance (looping lists is a lot faster than dataframes)
|
||||
ticker: Dict = self._get_ticker_list(processed)
|
||||
# Use dict of lists with data for performance
|
||||
# (looping lists is a lot faster than pandas DataFrames)
|
||||
data: Dict = self._get_ohlcv_as_lists(processed)
|
||||
|
||||
lock_pair_until: Dict = {}
|
||||
# Indexes per pair, so some pairs are allowed to have a missing start.
|
||||
@@ -319,12 +311,12 @@ class Backtesting:
|
||||
# Loop timerange and get candle for each pair at that point in time
|
||||
while tmp < end_date:
|
||||
|
||||
for i, pair in enumerate(ticker):
|
||||
for i, pair in enumerate(data):
|
||||
if pair not in indexes:
|
||||
indexes[pair] = 0
|
||||
|
||||
try:
|
||||
row = ticker[pair][indexes[pair]]
|
||||
row = data[pair][indexes[pair]]
|
||||
except IndexError:
|
||||
# missing Data for one pair at the end.
|
||||
# Warnings for this are shown during data loading
|
||||
@@ -352,7 +344,7 @@ class Backtesting:
|
||||
|
||||
# since indexes has been incremented before, we need to go one step back to
|
||||
# also check the buying candle for sell conditions.
|
||||
trade_entry = self._get_sell_trade_entry(pair, row, ticker[pair][indexes[pair]-1:],
|
||||
trade_entry = self._get_sell_trade_entry(pair, row, data[pair][indexes[pair]-1:],
|
||||
trade_count_lock, stake_amount,
|
||||
max_open_trades)
|
||||
|
||||
@@ -395,7 +387,7 @@ class Backtesting:
|
||||
self._set_strategy(strat)
|
||||
|
||||
# need to reprocess data every time to populate signals
|
||||
preprocessed = self.strategy.tickerdata_to_dataframe(data)
|
||||
preprocessed = self.strategy.ohlcvdata_to_dataframe(data)
|
||||
|
||||
# Trim startup period from analyzed dataframe
|
||||
for pair, df in preprocessed.items():
|
||||
@@ -416,44 +408,7 @@ class Backtesting:
|
||||
position_stacking=position_stacking,
|
||||
)
|
||||
|
||||
for strategy, results in all_results.items():
|
||||
|
||||
if self.config.get('export', False):
|
||||
self._store_backtest_result(Path(self.config['exportfilename']), results,
|
||||
strategy if len(self.strategylist) > 1 else None)
|
||||
|
||||
print(f"Result for strategy {strategy}")
|
||||
table = generate_text_table(data, stake_currency=self.config['stake_currency'],
|
||||
max_open_trades=self.config['max_open_trades'],
|
||||
results=results)
|
||||
if isinstance(table, str):
|
||||
print(' BACKTESTING REPORT '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
|
||||
table = generate_text_table_sell_reason(data,
|
||||
stake_currency=self.config['stake_currency'],
|
||||
max_open_trades=self.config['max_open_trades'],
|
||||
results=results)
|
||||
if isinstance(table, str):
|
||||
print(' SELL REASON STATS '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
|
||||
table = generate_text_table(data,
|
||||
stake_currency=self.config['stake_currency'],
|
||||
max_open_trades=self.config['max_open_trades'],
|
||||
results=results.loc[results.open_at_end], skip_nan=True)
|
||||
if isinstance(table, str):
|
||||
print(' LEFT OPEN TRADES REPORT '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
if isinstance(table, str):
|
||||
print('=' * len(table.splitlines()[0]))
|
||||
print()
|
||||
if len(all_results) > 1:
|
||||
# Print Strategy summary table
|
||||
table = generate_text_table_strategy(self.config['stake_currency'],
|
||||
self.config['max_open_trades'],
|
||||
all_results=all_results)
|
||||
print(' STRATEGY SUMMARY '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
print('=' * len(table.splitlines()[0]))
|
||||
print('\nFor more details, please look at the detail tables above')
|
||||
if self.config.get('export', False):
|
||||
store_backtest_result(self.config['exportfilename'], all_results)
|
||||
# Show backtest results
|
||||
show_backtest_results(self.config, data, all_results)
|
||||
|
@@ -7,7 +7,6 @@ This module contains the hyperopt logic
|
||||
import locale
|
||||
import logging
|
||||
import random
|
||||
import sys
|
||||
import warnings
|
||||
from math import ceil
|
||||
from collections import OrderedDict
|
||||
@@ -18,10 +17,10 @@ from typing import Any, Dict, List, Optional
|
||||
|
||||
import rapidjson
|
||||
from colorama import Fore, Style
|
||||
from colorama import init as colorama_init
|
||||
from joblib import (Parallel, cpu_count, delayed, dump, load,
|
||||
wrap_non_picklable_objects)
|
||||
from pandas import DataFrame, json_normalize, isna
|
||||
import progressbar
|
||||
import tabulate
|
||||
from os import path
|
||||
import io
|
||||
@@ -43,15 +42,16 @@ with warnings.catch_warnings():
|
||||
from skopt import Optimizer
|
||||
from skopt.space import Dimension
|
||||
|
||||
|
||||
progressbar.streams.wrap_stderr()
|
||||
progressbar.streams.wrap_stdout()
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
INITIAL_POINTS = 30
|
||||
|
||||
# Keep no more than 2*SKOPT_MODELS_MAX_NUM models
|
||||
# in the skopt models list
|
||||
SKOPT_MODELS_MAX_NUM = 10
|
||||
# Keep no more than SKOPT_MODEL_QUEUE_SIZE models
|
||||
# in the skopt model queue, to optimize memory consumption
|
||||
SKOPT_MODEL_QUEUE_SIZE = 10
|
||||
|
||||
MAX_LOSS = 100000 # just a big enough number to be bad result in loss optimization
|
||||
|
||||
@@ -75,10 +75,10 @@ class Hyperopt:
|
||||
self.custom_hyperoptloss = HyperOptLossResolver.load_hyperoptloss(self.config)
|
||||
self.calculate_loss = self.custom_hyperoptloss.hyperopt_loss_function
|
||||
|
||||
self.trials_file = (self.config['user_data_dir'] /
|
||||
'hyperopt_results' / 'hyperopt_results.pickle')
|
||||
self.tickerdata_pickle = (self.config['user_data_dir'] /
|
||||
'hyperopt_results' / 'hyperopt_tickerdata.pkl')
|
||||
self.results_file = (self.config['user_data_dir'] /
|
||||
'hyperopt_results' / 'hyperopt_results.pickle')
|
||||
self.data_pickle_file = (self.config['user_data_dir'] /
|
||||
'hyperopt_results' / 'hyperopt_tickerdata.pkl')
|
||||
self.total_epochs = config.get('epochs', 0)
|
||||
|
||||
self.current_best_loss = 100
|
||||
@@ -88,10 +88,10 @@ class Hyperopt:
|
||||
else:
|
||||
logger.info("Continuing on previous hyperopt results.")
|
||||
|
||||
self.num_trials_saved = 0
|
||||
self.num_epochs_saved = 0
|
||||
|
||||
# Previous evaluations
|
||||
self.trials: List = []
|
||||
self.epochs: List = []
|
||||
|
||||
# Populate functions here (hasattr is slow so should not be run during "regular" operations)
|
||||
if hasattr(self.custom_hyperopt, 'populate_indicators'):
|
||||
@@ -132,7 +132,7 @@ class Hyperopt:
|
||||
"""
|
||||
Remove hyperopt pickle files to restart hyperopt.
|
||||
"""
|
||||
for f in [self.tickerdata_pickle, self.trials_file]:
|
||||
for f in [self.data_pickle_file, self.results_file]:
|
||||
p = Path(f)
|
||||
if p.is_file():
|
||||
logger.info(f"Removing `{p}`.")
|
||||
@@ -151,27 +151,26 @@ class Hyperopt:
|
||||
# and the values are taken from the list of parameters.
|
||||
return {d.name: v for d, v in zip(dimensions, raw_params)}
|
||||
|
||||
def save_trials(self, final: bool = False) -> None:
|
||||
def _save_results(self) -> None:
|
||||
"""
|
||||
Save hyperopt trials to file
|
||||
Save hyperopt results to file
|
||||
"""
|
||||
num_trials = len(self.trials)
|
||||
if num_trials > self.num_trials_saved:
|
||||
logger.debug(f"Saving {num_trials} {plural(num_trials, 'epoch')}.")
|
||||
dump(self.trials, self.trials_file)
|
||||
self.num_trials_saved = num_trials
|
||||
if final:
|
||||
logger.info(f"{num_trials} {plural(num_trials, 'epoch')} "
|
||||
f"saved to '{self.trials_file}'.")
|
||||
num_epochs = len(self.epochs)
|
||||
if num_epochs > self.num_epochs_saved:
|
||||
logger.debug(f"Saving {num_epochs} {plural(num_epochs, 'epoch')}.")
|
||||
dump(self.epochs, self.results_file)
|
||||
self.num_epochs_saved = num_epochs
|
||||
logger.debug(f"{self.num_epochs_saved} {plural(self.num_epochs_saved, 'epoch')} "
|
||||
f"saved to '{self.results_file}'.")
|
||||
|
||||
@staticmethod
|
||||
def _read_trials(trials_file: Path) -> List:
|
||||
def _read_results(results_file: Path) -> List:
|
||||
"""
|
||||
Read hyperopt trials file
|
||||
Read hyperopt results from file
|
||||
"""
|
||||
logger.info("Reading Trials from '%s'", trials_file)
|
||||
trials = load(trials_file)
|
||||
return trials
|
||||
logger.info("Reading epochs from '%s'", results_file)
|
||||
data = load(results_file)
|
||||
return data
|
||||
|
||||
def _get_params_details(self, params: Dict) -> Dict:
|
||||
"""
|
||||
@@ -266,36 +265,17 @@ class Hyperopt:
|
||||
Log results if it is better than any previous evaluation
|
||||
"""
|
||||
is_best = results['is_best']
|
||||
if not self.print_all:
|
||||
# Print '\n' after each 100th epoch to separate dots from the log messages.
|
||||
# Otherwise output is messy on a terminal.
|
||||
print('.', end='' if results['current_epoch'] % 100 != 0 else None) # type: ignore
|
||||
sys.stdout.flush()
|
||||
|
||||
if self.print_all or is_best:
|
||||
if not self.print_all:
|
||||
# Separate the results explanation string from dots
|
||||
print("\n")
|
||||
self.print_result_table(self.config, results, self.total_epochs,
|
||||
self.print_all, self.print_colorized,
|
||||
self.hyperopt_table_header)
|
||||
print(
|
||||
self.get_result_table(
|
||||
self.config, results, self.total_epochs,
|
||||
self.print_all, self.print_colorized,
|
||||
self.hyperopt_table_header
|
||||
)
|
||||
)
|
||||
self.hyperopt_table_header = 2
|
||||
|
||||
@staticmethod
|
||||
def print_results_explanation(results, total_epochs, highlight_best: bool,
|
||||
print_colorized: bool) -> None:
|
||||
"""
|
||||
Log results explanation string
|
||||
"""
|
||||
explanation_str = Hyperopt._format_explanation_string(results, total_epochs)
|
||||
# Colorize output
|
||||
if print_colorized:
|
||||
if results['total_profit'] > 0:
|
||||
explanation_str = Fore.GREEN + explanation_str
|
||||
if highlight_best and results['is_best']:
|
||||
explanation_str = Style.BRIGHT + explanation_str
|
||||
print(explanation_str)
|
||||
|
||||
@staticmethod
|
||||
def _format_explanation_string(results, total_epochs) -> str:
|
||||
return (("*" if results['is_initial_point'] else " ") +
|
||||
@@ -304,13 +284,13 @@ class Hyperopt:
|
||||
f"Objective: {results['loss']:.5f}")
|
||||
|
||||
@staticmethod
|
||||
def print_result_table(config: dict, results: list, total_epochs: int, highlight_best: bool,
|
||||
print_colorized: bool, remove_header: int) -> None:
|
||||
def get_result_table(config: dict, results: list, total_epochs: int, highlight_best: bool,
|
||||
print_colorized: bool, remove_header: int) -> str:
|
||||
"""
|
||||
Log result table
|
||||
"""
|
||||
if not results:
|
||||
return
|
||||
return ''
|
||||
|
||||
tabulate.PRESERVE_WHITESPACE = True
|
||||
|
||||
@@ -323,8 +303,9 @@ class Hyperopt:
|
||||
trials.columns = ['Best', 'Epoch', 'Trades', 'Avg profit', 'Total profit',
|
||||
'Profit', 'Avg duration', 'Objective', 'is_initial_point', 'is_best']
|
||||
trials['is_profit'] = False
|
||||
trials.loc[trials['is_initial_point'], 'Best'] = '*'
|
||||
trials.loc[trials['is_initial_point'], 'Best'] = '* '
|
||||
trials.loc[trials['is_best'], 'Best'] = 'Best'
|
||||
trials.loc[trials['is_initial_point'] & trials['is_best'], 'Best'] = '* Best'
|
||||
trials.loc[trials['Total profit'] > 0, 'is_profit'] = True
|
||||
trials['Trades'] = trials['Trades'].astype(str)
|
||||
|
||||
@@ -381,7 +362,7 @@ class Hyperopt:
|
||||
trials.to_dict(orient='list'), tablefmt='psql',
|
||||
headers='keys', stralign="right"
|
||||
)
|
||||
print(table)
|
||||
return table
|
||||
|
||||
@staticmethod
|
||||
def export_csv_file(config: dict, results: list, total_epochs: int, highlight_best: bool,
|
||||
@@ -394,27 +375,35 @@ class Hyperopt:
|
||||
|
||||
# Verification for overwrite
|
||||
if path.isfile(csv_file):
|
||||
logger.error("CSV-File already exists!")
|
||||
logger.error(f"CSV file already exists: {csv_file}")
|
||||
return
|
||||
|
||||
try:
|
||||
io.open(csv_file, 'w+').close()
|
||||
except IOError:
|
||||
logger.error("Filed to create CSV-File!")
|
||||
logger.error(f"Failed to create CSV file: {csv_file}")
|
||||
return
|
||||
|
||||
trials = json_normalize(results, max_level=1)
|
||||
trials['Best'] = ''
|
||||
trials['Stake currency'] = config['stake_currency']
|
||||
trials = trials[['Best', 'current_epoch', 'results_metrics.trade_count',
|
||||
'results_metrics.avg_profit', 'results_metrics.total_profit',
|
||||
'Stake currency', 'results_metrics.profit', 'results_metrics.duration',
|
||||
'loss', 'is_initial_point', 'is_best']]
|
||||
trials.columns = ['Best', 'Epoch', 'Trades', 'Avg profit', 'Total profit', 'Stake currency',
|
||||
'Profit', 'Avg duration', 'Objective', 'is_initial_point', 'is_best']
|
||||
|
||||
base_metrics = ['Best', 'current_epoch', 'results_metrics.trade_count',
|
||||
'results_metrics.avg_profit', 'results_metrics.total_profit',
|
||||
'Stake currency', 'results_metrics.profit', 'results_metrics.duration',
|
||||
'loss', 'is_initial_point', 'is_best']
|
||||
param_metrics = [("params_dict."+param) for param in results[0]['params_dict'].keys()]
|
||||
trials = trials[base_metrics + param_metrics]
|
||||
|
||||
base_columns = ['Best', 'Epoch', 'Trades', 'Avg profit', 'Total profit', 'Stake currency',
|
||||
'Profit', 'Avg duration', 'Objective', 'is_initial_point', 'is_best']
|
||||
param_columns = list(results[0]['params_dict'].keys())
|
||||
trials.columns = base_columns + param_columns
|
||||
|
||||
trials['is_profit'] = False
|
||||
trials.loc[trials['is_initial_point'], 'Best'] = '*'
|
||||
trials.loc[trials['is_best'], 'Best'] = 'Best'
|
||||
trials.loc[trials['is_initial_point'] & trials['is_best'], 'Best'] = '* Best'
|
||||
trials.loc[trials['Total profit'] > 0, 'is_profit'] = True
|
||||
trials['Epoch'] = trials['Epoch'].astype(str)
|
||||
trials['Trades'] = trials['Trades'].astype(str)
|
||||
@@ -437,7 +426,7 @@ class Hyperopt:
|
||||
|
||||
trials = trials.drop(columns=['is_initial_point', 'is_best', 'is_profit'])
|
||||
trials.to_csv(csv_file, index=False, header=True, mode='w', encoding='UTF-8')
|
||||
print("CSV-File created!")
|
||||
logger.info(f"CSV file created: {csv_file}")
|
||||
|
||||
def has_space(self, space: str) -> bool:
|
||||
"""
|
||||
@@ -512,7 +501,7 @@ class Hyperopt:
|
||||
self.backtesting.strategy.trailing_only_offset_is_reached = \
|
||||
d['trailing_only_offset_is_reached']
|
||||
|
||||
processed = load(self.tickerdata_pickle)
|
||||
processed = load(self.data_pickle_file)
|
||||
|
||||
min_date, max_date = get_timerange(processed)
|
||||
|
||||
@@ -581,43 +570,28 @@ class Hyperopt:
|
||||
n_initial_points=INITIAL_POINTS,
|
||||
acq_optimizer_kwargs={'n_jobs': cpu_count},
|
||||
random_state=self.random_state,
|
||||
model_queue_size=SKOPT_MODEL_QUEUE_SIZE,
|
||||
)
|
||||
|
||||
def fix_optimizer_models_list(self) -> None:
|
||||
"""
|
||||
WORKAROUND: Since skopt is not actively supported, this resolves problems with skopt
|
||||
memory usage, see also: https://github.com/scikit-optimize/scikit-optimize/pull/746
|
||||
|
||||
This may cease working when skopt updates if implementation of this intrinsic
|
||||
part changes.
|
||||
"""
|
||||
n = len(self.opt.models) - SKOPT_MODELS_MAX_NUM
|
||||
# Keep no more than 2*SKOPT_MODELS_MAX_NUM models in the skopt models list,
|
||||
# remove the old ones. These are actually of no use, the current model
|
||||
# from the estimator is the only one used in the skopt optimizer.
|
||||
# Freqtrade code also does not inspect details of the models.
|
||||
if n >= SKOPT_MODELS_MAX_NUM:
|
||||
logger.debug(f"Fixing skopt models list, removing {n} old items...")
|
||||
del self.opt.models[0:n]
|
||||
|
||||
def run_optimizer_parallel(self, parallel, asked, i) -> List:
|
||||
return parallel(delayed(
|
||||
wrap_non_picklable_objects(self.generate_optimizer))(v, i) for v in asked)
|
||||
|
||||
@staticmethod
|
||||
def load_previous_results(trials_file: Path) -> List:
|
||||
def load_previous_results(results_file: Path) -> List:
|
||||
"""
|
||||
Load data for epochs from the file if we have one
|
||||
"""
|
||||
trials: List = []
|
||||
if trials_file.is_file() and trials_file.stat().st_size > 0:
|
||||
trials = Hyperopt._read_trials(trials_file)
|
||||
if trials[0].get('is_best') is None:
|
||||
epochs: List = []
|
||||
if results_file.is_file() and results_file.stat().st_size > 0:
|
||||
epochs = Hyperopt._read_results(results_file)
|
||||
# Detection of some old format, without 'is_best' field saved
|
||||
if epochs[0].get('is_best') is None:
|
||||
raise OperationalException(
|
||||
"The file with Hyperopt results is incompatible with this version "
|
||||
"of Freqtrade and cannot be loaded.")
|
||||
logger.info(f"Loaded {len(trials)} previous evaluations from disk.")
|
||||
return trials
|
||||
logger.info(f"Loaded {len(epochs)} previous evaluations from disk.")
|
||||
return epochs
|
||||
|
||||
def _set_random_state(self, random_state: Optional[int]) -> int:
|
||||
return random_state or random.randint(1, 2**16 - 1)
|
||||
@@ -628,7 +602,7 @@ class Hyperopt:
|
||||
self.hyperopt_table_header = -1
|
||||
data, timerange = self.backtesting.load_bt_data()
|
||||
|
||||
preprocessed = self.backtesting.strategy.tickerdata_to_dataframe(data)
|
||||
preprocessed = self.backtesting.strategy.ohlcvdata_to_dataframe(data)
|
||||
|
||||
# Trim startup period from analyzed dataframe
|
||||
for pair, df in preprocessed.items():
|
||||
@@ -639,12 +613,13 @@ class Hyperopt:
|
||||
'Hyperopting with data from %s up to %s (%s days)..',
|
||||
min_date.isoformat(), max_date.isoformat(), (max_date - min_date).days
|
||||
)
|
||||
dump(preprocessed, self.tickerdata_pickle)
|
||||
dump(preprocessed, self.data_pickle_file)
|
||||
|
||||
# We don't need exchange instance anymore while running hyperopt
|
||||
self.backtesting.exchange = None # type: ignore
|
||||
self.backtesting.pairlists = None # type: ignore
|
||||
|
||||
self.trials = self.load_previous_results(self.trials_file)
|
||||
self.epochs = self.load_previous_results(self.results_file)
|
||||
|
||||
cpus = cpu_count()
|
||||
logger.info(f"Found {cpus} CPU cores. Let's make them scream!")
|
||||
@@ -653,57 +628,85 @@ class Hyperopt:
|
||||
|
||||
self.dimensions: List[Dimension] = self.hyperopt_space()
|
||||
self.opt = self.get_optimizer(self.dimensions, config_jobs)
|
||||
|
||||
if self.print_colorized:
|
||||
colorama_init(autoreset=True)
|
||||
|
||||
try:
|
||||
with Parallel(n_jobs=config_jobs) as parallel:
|
||||
jobs = parallel._effective_n_jobs()
|
||||
logger.info(f'Effective number of parallel workers used: {jobs}')
|
||||
EVALS = ceil(self.total_epochs / jobs)
|
||||
for i in range(EVALS):
|
||||
# Correct the number of epochs to be processed for the last
|
||||
# iteration (should not exceed self.total_epochs in total)
|
||||
n_rest = (i + 1) * jobs - self.total_epochs
|
||||
current_jobs = jobs - n_rest if n_rest > 0 else jobs
|
||||
|
||||
asked = self.opt.ask(n_points=current_jobs)
|
||||
f_val = self.run_optimizer_parallel(parallel, asked, i)
|
||||
self.opt.tell(asked, [v['loss'] for v in f_val])
|
||||
self.fix_optimizer_models_list()
|
||||
# Define progressbar
|
||||
if self.print_colorized:
|
||||
widgets = [
|
||||
' [Epoch ', progressbar.Counter(), ' of ', str(self.total_epochs),
|
||||
' (', progressbar.Percentage(), ')] ',
|
||||
progressbar.Bar(marker=progressbar.AnimatedMarker(
|
||||
fill='\N{FULL BLOCK}',
|
||||
fill_wrap=Fore.GREEN + '{}' + Fore.RESET,
|
||||
marker_wrap=Style.BRIGHT + '{}' + Style.RESET_ALL,
|
||||
)),
|
||||
' [', progressbar.ETA(), ', ', progressbar.Timer(), ']',
|
||||
]
|
||||
else:
|
||||
widgets = [
|
||||
' [Epoch ', progressbar.Counter(), ' of ', str(self.total_epochs),
|
||||
' (', progressbar.Percentage(), ')] ',
|
||||
progressbar.Bar(marker=progressbar.AnimatedMarker(
|
||||
fill='\N{FULL BLOCK}',
|
||||
)),
|
||||
' [', progressbar.ETA(), ', ', progressbar.Timer(), ']',
|
||||
]
|
||||
with progressbar.ProgressBar(
|
||||
max_value=self.total_epochs, redirect_stdout=False, redirect_stderr=False,
|
||||
widgets=widgets
|
||||
) as pbar:
|
||||
EVALS = ceil(self.total_epochs / jobs)
|
||||
for i in range(EVALS):
|
||||
# Correct the number of epochs to be processed for the last
|
||||
# iteration (should not exceed self.total_epochs in total)
|
||||
n_rest = (i + 1) * jobs - self.total_epochs
|
||||
current_jobs = jobs - n_rest if n_rest > 0 else jobs
|
||||
|
||||
for j, val in enumerate(f_val):
|
||||
# Use human-friendly indexes here (starting from 1)
|
||||
current = i * jobs + j + 1
|
||||
val['current_epoch'] = current
|
||||
val['is_initial_point'] = current <= INITIAL_POINTS
|
||||
logger.debug(f"Optimizer epoch evaluated: {val}")
|
||||
asked = self.opt.ask(n_points=current_jobs)
|
||||
f_val = self.run_optimizer_parallel(parallel, asked, i)
|
||||
self.opt.tell(asked, [v['loss'] for v in f_val])
|
||||
|
||||
is_best = self.is_best_loss(val, self.current_best_loss)
|
||||
# This value is assigned here and not in the optimization method
|
||||
# to keep proper order in the list of results. That's because
|
||||
# evaluations can take different time. Here they are aligned in the
|
||||
# order they will be shown to the user.
|
||||
val['is_best'] = is_best
|
||||
# Calculate progressbar outputs
|
||||
for j, val in enumerate(f_val):
|
||||
# Use human-friendly indexes here (starting from 1)
|
||||
current = i * jobs + j + 1
|
||||
val['current_epoch'] = current
|
||||
val['is_initial_point'] = current <= INITIAL_POINTS
|
||||
|
||||
self.print_results(val)
|
||||
logger.debug(f"Optimizer epoch evaluated: {val}")
|
||||
|
||||
is_best = self.is_best_loss(val, self.current_best_loss)
|
||||
# This value is assigned here and not in the optimization method
|
||||
# to keep proper order in the list of results. That's because
|
||||
# evaluations can take different time. Here they are aligned in the
|
||||
# order they will be shown to the user.
|
||||
val['is_best'] = is_best
|
||||
self.print_results(val)
|
||||
|
||||
if is_best:
|
||||
self.current_best_loss = val['loss']
|
||||
self.epochs.append(val)
|
||||
|
||||
# Save results after each best epoch and every 100 epochs
|
||||
if is_best or current % 100 == 0:
|
||||
self._save_results()
|
||||
|
||||
pbar.update(current)
|
||||
|
||||
if is_best:
|
||||
self.current_best_loss = val['loss']
|
||||
self.trials.append(val)
|
||||
# Save results after each best epoch and every 100 epochs
|
||||
if is_best or current % 100 == 0:
|
||||
self.save_trials()
|
||||
except KeyboardInterrupt:
|
||||
print('User interrupted..')
|
||||
|
||||
self.save_trials(final=True)
|
||||
self._save_results()
|
||||
logger.info(f"{self.num_epochs_saved} {plural(self.num_epochs_saved, 'epoch')} "
|
||||
f"saved to '{self.results_file}'.")
|
||||
|
||||
if self.trials:
|
||||
sorted_trials = sorted(self.trials, key=itemgetter('loss'))
|
||||
results = sorted_trials[0]
|
||||
self.print_epoch_details(results, self.total_epochs, self.print_json)
|
||||
if self.epochs:
|
||||
sorted_epochs = sorted(self.epochs, key=itemgetter('loss'))
|
||||
best_epoch = sorted_epochs[0]
|
||||
self.print_epoch_details(best_epoch, self.total_epochs, self.print_json)
|
||||
else:
|
||||
# This is printed when Ctrl+C is pressed quickly, before first epochs have
|
||||
# a chance to be evaluated.
|
||||
|
@@ -1,9 +1,38 @@
|
||||
import logging
|
||||
from datetime import timedelta
|
||||
from pathlib import Path
|
||||
from typing import Dict
|
||||
|
||||
from pandas import DataFrame
|
||||
from tabulate import tabulate
|
||||
|
||||
from freqtrade.misc import file_dump_json
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def store_backtest_result(recordfilename: Path, all_results: Dict[str, DataFrame]) -> None:
|
||||
"""
|
||||
Stores backtest results to file (one file per strategy)
|
||||
:param recordfilename: Destination filename
|
||||
:param all_results: Dict of Dataframes, one results dataframe per strategy
|
||||
"""
|
||||
for strategy, results in all_results.items():
|
||||
records = [(t.pair, t.profit_percent, t.open_time.timestamp(),
|
||||
t.close_time.timestamp(), t.open_index - 1, t.trade_duration,
|
||||
t.open_rate, t.close_rate, t.open_at_end, t.sell_reason.value)
|
||||
for index, t in results.iterrows()]
|
||||
|
||||
if records:
|
||||
filename = recordfilename
|
||||
if len(all_results) > 1:
|
||||
# Inject strategy to filename
|
||||
filename = Path.joinpath(
|
||||
recordfilename.parent,
|
||||
f'{recordfilename.stem}-{strategy}').with_suffix(recordfilename.suffix)
|
||||
logger.info(f'Dumping backtest results to {filename}')
|
||||
file_dump_json(filename, records)
|
||||
|
||||
|
||||
def generate_text_table(data: Dict[str, Dict], stake_currency: str, max_open_trades: int,
|
||||
results: DataFrame, skip_nan: bool = False) -> str:
|
||||
@@ -69,12 +98,12 @@ def generate_text_table(data: Dict[str, Dict], stake_currency: str, max_open_tra
|
||||
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right") # type: ignore
|
||||
|
||||
|
||||
def generate_text_table_sell_reason(
|
||||
data: Dict[str, Dict], stake_currency: str, max_open_trades: int, results: DataFrame
|
||||
) -> str:
|
||||
def generate_text_table_sell_reason(stake_currency: str, max_open_trades: int,
|
||||
results: DataFrame) -> str:
|
||||
"""
|
||||
Generate small table outlining Backtest results
|
||||
:param data: Dict of <pair: dataframe> containing data that was used during backtesting.
|
||||
:param stake_currency: Stakecurrency used
|
||||
:param max_open_trades: Max_open_trades parameter
|
||||
:param results: Dataframe containing the backtest results
|
||||
:return: pretty printed table with tabulate as string
|
||||
"""
|
||||
@@ -173,3 +202,43 @@ def generate_edge_table(results: dict) -> str:
|
||||
# Ignore type as floatfmt does allow tuples but mypy does not know that
|
||||
return tabulate(tabular_data, headers=headers,
|
||||
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right") # type: ignore
|
||||
|
||||
|
||||
def show_backtest_results(config: Dict, btdata: Dict[str, DataFrame],
|
||||
all_results: Dict[str, DataFrame]):
|
||||
for strategy, results in all_results.items():
|
||||
|
||||
print(f"Result for strategy {strategy}")
|
||||
table = generate_text_table(btdata, stake_currency=config['stake_currency'],
|
||||
max_open_trades=config['max_open_trades'],
|
||||
results=results)
|
||||
if isinstance(table, str):
|
||||
print(' BACKTESTING REPORT '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
|
||||
table = generate_text_table_sell_reason(stake_currency=config['stake_currency'],
|
||||
max_open_trades=config['max_open_trades'],
|
||||
results=results)
|
||||
if isinstance(table, str):
|
||||
print(' SELL REASON STATS '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
|
||||
table = generate_text_table(btdata,
|
||||
stake_currency=config['stake_currency'],
|
||||
max_open_trades=config['max_open_trades'],
|
||||
results=results.loc[results.open_at_end], skip_nan=True)
|
||||
if isinstance(table, str):
|
||||
print(' LEFT OPEN TRADES REPORT '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
if isinstance(table, str):
|
||||
print('=' * len(table.splitlines()[0]))
|
||||
print()
|
||||
if len(all_results) > 1:
|
||||
# Print Strategy summary table
|
||||
table = generate_text_table_strategy(config['stake_currency'],
|
||||
config['max_open_trades'],
|
||||
all_results=all_results)
|
||||
print(' STRATEGY SUMMARY '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
print('=' * len(table.splitlines()[0]))
|
||||
print('\nFor more details, please look at the detail tables above')
|
||||
|
@@ -1,16 +1,16 @@
|
||||
"""
|
||||
Static List provider
|
||||
|
||||
Provides lists as configured in config.json
|
||||
|
||||
"""
|
||||
PairList Handler base class
|
||||
"""
|
||||
import logging
|
||||
from abc import ABC, abstractmethod, abstractproperty
|
||||
from copy import deepcopy
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from cachetools import TTLCache, cached
|
||||
|
||||
from freqtrade.exchange import market_is_active
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@@ -21,16 +21,19 @@ class IPairList(ABC):
|
||||
pairlist_pos: int) -> None:
|
||||
"""
|
||||
:param exchange: Exchange instance
|
||||
:param pairlistmanager: Instanciating Pairlist manager
|
||||
:param pairlistmanager: Instantiated Pairlist manager
|
||||
:param config: Global bot configuration
|
||||
:param pairlistconfig: Configuration for this pairlist - can be empty.
|
||||
:param pairlist_pos: Position of the filter in the pairlist-filter-list
|
||||
:param pairlistconfig: Configuration for this Pairlist Handler - can be empty.
|
||||
:param pairlist_pos: Position of the Pairlist Handler in the chain
|
||||
"""
|
||||
self._exchange = exchange
|
||||
self._pairlistmanager = pairlistmanager
|
||||
self._config = config
|
||||
self._pairlistconfig = pairlistconfig
|
||||
self._pairlist_pos = pairlist_pos
|
||||
self.refresh_period = self._pairlistconfig.get('refresh_period', 1800)
|
||||
self._last_refresh = 0
|
||||
self._log_cache = TTLCache(maxsize=1024, ttl=self.refresh_period)
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
@@ -40,6 +43,24 @@ class IPairList(ABC):
|
||||
"""
|
||||
return self.__class__.__name__
|
||||
|
||||
def log_on_refresh(self, logmethod, message: str) -> None:
|
||||
"""
|
||||
Logs message - not more often than "refresh_period" to avoid log spamming
|
||||
Logs the log-message as debug as well to simplify debugging.
|
||||
:param logmethod: Function that'll be called. Most likely `logger.info`.
|
||||
:param message: String containing the message to be sent to the function.
|
||||
:return: None.
|
||||
"""
|
||||
|
||||
@cached(cache=self._log_cache)
|
||||
def _log_on_refresh(message: str):
|
||||
logmethod(message)
|
||||
|
||||
# Log as debug first
|
||||
logger.debug(message)
|
||||
# Call hidden function.
|
||||
_log_on_refresh(message)
|
||||
|
||||
@abstractproperty
|
||||
def needstickers(self) -> bool:
|
||||
"""
|
||||
@@ -72,10 +93,10 @@ class IPairList(ABC):
|
||||
"""
|
||||
Verify and remove items from pairlist - returning a filtered pairlist.
|
||||
Logs a warning or info depending on `aswarning`.
|
||||
Pairlists explicitly using this method shall use `aswarning=False`!
|
||||
Pairlist Handlers explicitly using this method shall use `aswarning=False`!
|
||||
:param pairlist: Pairlist to validate
|
||||
:param blacklist: Blacklist to validate pairlist against
|
||||
:param aswarning: Log message as Warning or info
|
||||
:param aswarning: Log message as Warning or Info
|
||||
:return: pairlist - blacklisted pairs
|
||||
"""
|
||||
for pair in deepcopy(pairlist):
|
||||
|
@@ -1,14 +1,26 @@
|
||||
"""
|
||||
Precision pair list filter
|
||||
"""
|
||||
import logging
|
||||
from copy import deepcopy
|
||||
from typing import Dict, List
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from freqtrade.pairlist.IPairList import IPairList
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class PrecisionFilter(IPairList):
|
||||
|
||||
def __init__(self, exchange, pairlistmanager,
|
||||
config: Dict[str, Any], pairlistconfig: Dict[str, Any],
|
||||
pairlist_pos: int) -> None:
|
||||
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
|
||||
|
||||
# Precalculate sanitized stoploss value to avoid recalculation for every pair
|
||||
self._stoploss = 1 - abs(self._config['stoploss'])
|
||||
|
||||
@property
|
||||
def needstickers(self) -> bool:
|
||||
"""
|
||||
@@ -31,33 +43,32 @@ class PrecisionFilter(IPairList):
|
||||
:param ticker: ticker dict as returned from ccxt.load_markets()
|
||||
:param stoploss: stoploss value as set in the configuration
|
||||
(already cleaned to be 1 - stoploss)
|
||||
:return: True if the pair can stay, false if it should be removed
|
||||
:return: True if the pair can stay, False if it should be removed
|
||||
"""
|
||||
stop_price = ticker['ask'] * stoploss
|
||||
|
||||
# Adjust stop-prices to precision
|
||||
sp = self._exchange.price_to_precision(ticker["symbol"], stop_price)
|
||||
|
||||
stop_gap_price = self._exchange.price_to_precision(ticker["symbol"], stop_price * 0.99)
|
||||
logger.debug(f"{ticker['symbol']} - {sp} : {stop_gap_price}")
|
||||
|
||||
if sp <= stop_gap_price:
|
||||
logger.info(f"Removed {ticker['symbol']} from whitelist, "
|
||||
f"because stop price {sp} would be <= stop limit {stop_gap_price}")
|
||||
self.log_on_refresh(logger.info,
|
||||
f"Removed {ticker['symbol']} from whitelist, "
|
||||
f"because stop price {sp} would be <= stop limit {stop_gap_price}")
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]:
|
||||
"""
|
||||
Filters and sorts pairlists and assigns and returns them again.
|
||||
"""
|
||||
stoploss = self._config.get('stoploss')
|
||||
if stoploss is not None:
|
||||
# Precalculate sanitized stoploss value to avoid recalculation for every pair
|
||||
stoploss = 1 - abs(stoploss)
|
||||
# Copy list since we're modifying this list
|
||||
for p in deepcopy(pairlist):
|
||||
ticker = tickers.get(p)
|
||||
# Filter out assets which would not allow setting a stoploss
|
||||
if not ticker or (stoploss and not self._validate_precision_filter(ticker, stoploss)):
|
||||
if not self._validate_precision_filter(tickers[p], self._stoploss):
|
||||
pairlist.remove(p)
|
||||
continue
|
||||
|
||||
return pairlist
|
||||
|
@@ -1,9 +1,13 @@
|
||||
"""
|
||||
Price pair list filter
|
||||
"""
|
||||
import logging
|
||||
from copy import deepcopy
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from freqtrade.pairlist.IPairList import IPairList
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@@ -35,21 +39,22 @@ class PriceFilter(IPairList):
|
||||
"""
|
||||
Check if if one price-step (pip) is > than a certain barrier.
|
||||
:param ticker: ticker dict as returned from ccxt.load_markets()
|
||||
:param precision: Precision
|
||||
:return: True if the pair can stay, false if it should be removed
|
||||
"""
|
||||
precision = self._exchange.markets[ticker['symbol']]['precision']['price']
|
||||
|
||||
compare = ticker['last'] + 1 / pow(10, precision)
|
||||
changeperc = (compare - ticker['last']) / ticker['last']
|
||||
if ticker['last'] is None:
|
||||
self.log_on_refresh(logger.info,
|
||||
f"Removed {ticker['symbol']} from whitelist, because "
|
||||
"ticker['last'] is empty (Usually no trade in the last 24h).")
|
||||
return False
|
||||
compare = self._exchange.price_get_one_pip(ticker['symbol'], ticker['last'])
|
||||
changeperc = compare / ticker['last']
|
||||
if changeperc > self._low_price_ratio:
|
||||
logger.info(f"Removed {ticker['symbol']} from whitelist, "
|
||||
f"because 1 unit is {changeperc * 100:.3f}%")
|
||||
self.log_on_refresh(logger.info, f"Removed {ticker['symbol']} from whitelist, "
|
||||
f"because 1 unit is {changeperc * 100:.3f}%")
|
||||
return False
|
||||
return True
|
||||
|
||||
def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]:
|
||||
|
||||
"""
|
||||
Filters and sorts pairlist and returns the whitelist again.
|
||||
Called on each bot iteration - please use internal caching if necessary
|
||||
@@ -57,14 +62,11 @@ class PriceFilter(IPairList):
|
||||
:param tickers: Tickers (from exchange.get_tickers()). May be cached.
|
||||
:return: new whitelist
|
||||
"""
|
||||
# Copy list since we're modifying this list
|
||||
for p in deepcopy(pairlist):
|
||||
ticker = tickers.get(p)
|
||||
if not ticker:
|
||||
pairlist.remove(p)
|
||||
|
||||
# Filter out assets which would not allow setting a stoploss
|
||||
if self._low_price_ratio and not self._validate_ticker_lowprice(ticker):
|
||||
pairlist.remove(p)
|
||||
if self._low_price_ratio:
|
||||
# Copy list since we're modifying this list
|
||||
for p in deepcopy(pairlist):
|
||||
# Filter out assets which would not allow setting a stoploss
|
||||
if not self._validate_ticker_lowprice(tickers[p]):
|
||||
pairlist.remove(p)
|
||||
|
||||
return pairlist
|
||||
|
50
freqtrade/pairlist/ShuffleFilter.py
Normal file
50
freqtrade/pairlist/ShuffleFilter.py
Normal file
@@ -0,0 +1,50 @@
|
||||
"""
|
||||
Shuffle pair list filter
|
||||
"""
|
||||
import logging
|
||||
import random
|
||||
from typing import Dict, List
|
||||
|
||||
from freqtrade.pairlist.IPairList import IPairList
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ShuffleFilter(IPairList):
|
||||
|
||||
def __init__(self, exchange, pairlistmanager, config, pairlistconfig: dict,
|
||||
pairlist_pos: int) -> None:
|
||||
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
|
||||
|
||||
self._seed = pairlistconfig.get('seed')
|
||||
self._random = random.Random(self._seed)
|
||||
|
||||
@property
|
||||
def needstickers(self) -> bool:
|
||||
"""
|
||||
Boolean property defining if tickers are necessary.
|
||||
If no Pairlist requries tickers, an empty List is passed
|
||||
as tickers argument to filter_pairlist
|
||||
"""
|
||||
return False
|
||||
|
||||
def short_desc(self) -> str:
|
||||
"""
|
||||
Short whitelist method description - used for startup-messages
|
||||
"""
|
||||
return (f"{self.name} - Shuffling pairs" +
|
||||
(f", seed = {self._seed}." if self._seed is not None else "."))
|
||||
|
||||
def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]:
|
||||
"""
|
||||
Filters and sorts pairlist and returns the whitelist again.
|
||||
Called on each bot iteration - please use internal caching if necessary
|
||||
:param pairlist: pairlist to filter or sort
|
||||
:param tickers: Tickers (from exchange.get_tickers()). May be cached.
|
||||
:return: new whitelist
|
||||
"""
|
||||
# Shuffle is done inplace
|
||||
self._random.shuffle(pairlist)
|
||||
|
||||
return pairlist
|
@@ -1,9 +1,13 @@
|
||||
"""
|
||||
Spread pair list filter
|
||||
"""
|
||||
import logging
|
||||
from copy import deepcopy
|
||||
from typing import Dict, List
|
||||
|
||||
from freqtrade.pairlist.IPairList import IPairList
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@@ -31,8 +35,24 @@ class SpreadFilter(IPairList):
|
||||
return (f"{self.name} - Filtering pairs with ask/bid diff above "
|
||||
f"{self._max_spread_ratio * 100}%.")
|
||||
|
||||
def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]:
|
||||
def _validate_spread(self, ticker: dict) -> bool:
|
||||
"""
|
||||
Validate spread for the ticker
|
||||
:param ticker: ticker dict as returned from ccxt.load_markets()
|
||||
:return: True if the pair can stay, False if it should be removed
|
||||
"""
|
||||
if 'bid' in ticker and 'ask' in ticker:
|
||||
spread = 1 - ticker['bid'] / ticker['ask']
|
||||
if spread > self._max_spread_ratio:
|
||||
self.log_on_refresh(logger.info, f"Removed {ticker['symbol']} from whitelist, "
|
||||
f"because spread {spread * 100:.3f}% >"
|
||||
f"{self._max_spread_ratio * 100}%")
|
||||
return False
|
||||
else:
|
||||
return True
|
||||
return False
|
||||
|
||||
def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]:
|
||||
"""
|
||||
Filters and sorts pairlist and returns the whitelist again.
|
||||
Called on each bot iteration - please use internal caching if necessary
|
||||
@@ -41,19 +61,10 @@ class SpreadFilter(IPairList):
|
||||
:return: new whitelist
|
||||
"""
|
||||
# Copy list since we're modifying this list
|
||||
|
||||
spread = None
|
||||
for p in deepcopy(pairlist):
|
||||
ticker = tickers.get(p)
|
||||
assert ticker is not None
|
||||
if 'bid' in ticker and 'ask' in ticker:
|
||||
spread = 1 - ticker['bid'] / ticker['ask']
|
||||
if not ticker or spread > self._max_spread_ratio:
|
||||
logger.info(f"Removed {ticker['symbol']} from whitelist, "
|
||||
f"because spread {spread * 100:.3f}% >"
|
||||
f"{self._max_spread_ratio * 100}%")
|
||||
pairlist.remove(p)
|
||||
else:
|
||||
ticker = tickers[p]
|
||||
# Filter out assets
|
||||
if not self._validate_spread(ticker):
|
||||
pairlist.remove(p)
|
||||
|
||||
return pairlist
|
||||
|
@@ -1,14 +1,14 @@
|
||||
"""
|
||||
Static List provider
|
||||
Static Pair List provider
|
||||
|
||||
Provides lists as configured in config.json
|
||||
|
||||
"""
|
||||
Provides pair white list as it configured in config
|
||||
"""
|
||||
import logging
|
||||
from typing import Dict, List
|
||||
|
||||
from freqtrade.pairlist.IPairList import IPairList
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
|
@@ -1,9 +1,8 @@
|
||||
"""
|
||||
Volume PairList provider
|
||||
|
||||
Provides lists as configured in config.json
|
||||
|
||||
"""
|
||||
Provides dynamic pair list based on trade volumes
|
||||
"""
|
||||
import logging
|
||||
from datetime import datetime
|
||||
from typing import Any, Dict, List
|
||||
@@ -11,8 +10,10 @@ from typing import Any, Dict, List
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.pairlist.IPairList import IPairList
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
SORT_VALUES = ['askVolume', 'bidVolume', 'quoteVolume']
|
||||
|
||||
|
||||
@@ -24,8 +25,10 @@ class VolumePairList(IPairList):
|
||||
|
||||
if 'number_assets' not in self._pairlistconfig:
|
||||
raise OperationalException(
|
||||
f'`number_assets` not specified. Please check your configuration '
|
||||
'`number_assets` not specified. Please check your configuration '
|
||||
'for "pairlist.config.number_assets"')
|
||||
|
||||
self._stake_currency = config['stake_currency']
|
||||
self._number_pairs = self._pairlistconfig['number_assets']
|
||||
self._sort_key = self._pairlistconfig.get('sort_key', 'quoteVolume')
|
||||
self._min_value = self._pairlistconfig.get('min_value', 0)
|
||||
@@ -36,10 +39,15 @@ class VolumePairList(IPairList):
|
||||
'Exchange does not support dynamic whitelist.'
|
||||
'Please edit your config and restart the bot'
|
||||
)
|
||||
|
||||
if not self._validate_keys(self._sort_key):
|
||||
raise OperationalException(
|
||||
f'key {self._sort_key} not in {SORT_VALUES}')
|
||||
self._last_refresh = 0
|
||||
|
||||
if self._sort_key != 'quoteVolume':
|
||||
logger.warning(
|
||||
"DEPRECATED: using any key other than quoteVolume for VolumePairList is deprecated."
|
||||
)
|
||||
|
||||
@property
|
||||
def needstickers(self) -> bool:
|
||||
@@ -68,47 +76,47 @@ class VolumePairList(IPairList):
|
||||
:return: new whitelist
|
||||
"""
|
||||
# Generate dynamic whitelist
|
||||
if self._last_refresh + self.refresh_period < datetime.now().timestamp():
|
||||
self._last_refresh = int(datetime.now().timestamp())
|
||||
return self._gen_pair_whitelist(pairlist,
|
||||
tickers,
|
||||
self._config['stake_currency'],
|
||||
self._sort_key,
|
||||
self._min_value
|
||||
)
|
||||
else:
|
||||
return pairlist
|
||||
# Must always run if this pairlist is not the first in the list.
|
||||
if (self._pairlist_pos != 0 or
|
||||
(self._last_refresh + self.refresh_period < datetime.now().timestamp())):
|
||||
|
||||
def _gen_pair_whitelist(self, pairlist: List[str], tickers: Dict,
|
||||
base_currency: str, key: str, min_val: int) -> List[str]:
|
||||
self._last_refresh = int(datetime.now().timestamp())
|
||||
pairs = self._gen_pair_whitelist(pairlist, tickers)
|
||||
else:
|
||||
pairs = pairlist
|
||||
|
||||
self.log_on_refresh(logger.info, f"Searching {self._number_pairs} pairs: {pairs}")
|
||||
|
||||
return pairs
|
||||
|
||||
def _gen_pair_whitelist(self, pairlist: List[str], tickers: Dict) -> List[str]:
|
||||
"""
|
||||
Updates the whitelist with with a dynamically generated list
|
||||
:param base_currency: base currency as str
|
||||
:param key: sort key (defaults to 'quoteVolume')
|
||||
:param pairlist: pairlist to filter or sort
|
||||
:param tickers: Tickers (from exchange.get_tickers()).
|
||||
:return: List of pairs
|
||||
"""
|
||||
|
||||
if self._pairlist_pos == 0:
|
||||
# If VolumePairList is the first in the list, use fresh pairlist
|
||||
# Check if pair quote currency equals to the stake currency.
|
||||
filtered_tickers = [v for k, v in tickers.items()
|
||||
if (self._exchange.get_pair_quote_currency(k) == base_currency
|
||||
and v[key] is not None)]
|
||||
filtered_tickers = [
|
||||
v for k, v in tickers.items()
|
||||
if (self._exchange.get_pair_quote_currency(k) == self._stake_currency
|
||||
and v[self._sort_key] is not None)]
|
||||
else:
|
||||
# If other pairlist is in front, use the incomming pairlist.
|
||||
# If other pairlist is in front, use the incoming pairlist.
|
||||
filtered_tickers = [v for k, v in tickers.items() if k in pairlist]
|
||||
|
||||
if min_val > 0:
|
||||
filtered_tickers = list(filter(lambda t: t[key] > min_val, filtered_tickers))
|
||||
if self._min_value > 0:
|
||||
filtered_tickers = [
|
||||
v for v in filtered_tickers if v[self._sort_key] > self._min_value]
|
||||
|
||||
sorted_tickers = sorted(filtered_tickers, reverse=True, key=lambda t: t[key])
|
||||
sorted_tickers = sorted(filtered_tickers, reverse=True, key=lambda t: t[self._sort_key])
|
||||
|
||||
# Validate whitelist to only have active market pairs
|
||||
pairs = self._whitelist_for_active_markets([s['symbol'] for s in sorted_tickers])
|
||||
pairs = self._verify_blacklist(pairs, aswarning=False)
|
||||
# Limit to X number of pairs
|
||||
# Limit pairlist to the requested number of pairs
|
||||
pairs = pairs[:self._number_pairs]
|
||||
logger.info(f"Searching {self._number_pairs} pairs: {pairs}")
|
||||
|
||||
return pairs
|
||||
|
@@ -1,10 +1,8 @@
|
||||
"""
|
||||
Static List provider
|
||||
|
||||
Provides lists as configured in config.json
|
||||
|
||||
"""
|
||||
PairList manager class
|
||||
"""
|
||||
import logging
|
||||
from copy import deepcopy
|
||||
from typing import Dict, List
|
||||
|
||||
from cachetools import TTLCache, cached
|
||||
@@ -12,6 +10,8 @@ from cachetools import TTLCache, cached
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.pairlist.IPairList import IPairList
|
||||
from freqtrade.resolvers import PairListResolver
|
||||
from freqtrade.typing import ListPairsWithTimeframes
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -23,24 +23,25 @@ class PairListManager():
|
||||
self._config = config
|
||||
self._whitelist = self._config['exchange'].get('pair_whitelist')
|
||||
self._blacklist = self._config['exchange'].get('pair_blacklist', [])
|
||||
self._pairlists: List[IPairList] = []
|
||||
self._pairlist_handlers: List[IPairList] = []
|
||||
self._tickers_needed = False
|
||||
for pl in self._config.get('pairlists', None):
|
||||
if 'method' not in pl:
|
||||
logger.warning(f"No method in {pl}")
|
||||
for pairlist_handler_config in self._config.get('pairlists', None):
|
||||
if 'method' not in pairlist_handler_config:
|
||||
logger.warning(f"No method found in {pairlist_handler_config}, ignoring.")
|
||||
continue
|
||||
pairl = PairListResolver.load_pairlist(pl.get('method'),
|
||||
exchange=exchange,
|
||||
pairlistmanager=self,
|
||||
config=config,
|
||||
pairlistconfig=pl,
|
||||
pairlist_pos=len(self._pairlists)
|
||||
)
|
||||
self._tickers_needed = pairl.needstickers or self._tickers_needed
|
||||
self._pairlists.append(pairl)
|
||||
pairlist_handler = PairListResolver.load_pairlist(
|
||||
pairlist_handler_config['method'],
|
||||
exchange=exchange,
|
||||
pairlistmanager=self,
|
||||
config=config,
|
||||
pairlistconfig=pairlist_handler_config,
|
||||
pairlist_pos=len(self._pairlist_handlers)
|
||||
)
|
||||
self._tickers_needed |= pairlist_handler.needstickers
|
||||
self._pairlist_handlers.append(pairlist_handler)
|
||||
|
||||
if not self._pairlists:
|
||||
raise OperationalException("No Pairlist defined!")
|
||||
if not self._pairlist_handlers:
|
||||
raise OperationalException("No Pairlist Handlers defined")
|
||||
|
||||
@property
|
||||
def whitelist(self) -> List[str]:
|
||||
@@ -60,15 +61,15 @@ class PairListManager():
|
||||
@property
|
||||
def name_list(self) -> List[str]:
|
||||
"""
|
||||
Get list of loaded pairlists names
|
||||
Get list of loaded Pairlist Handler names
|
||||
"""
|
||||
return [p.name for p in self._pairlists]
|
||||
return [p.name for p in self._pairlist_handlers]
|
||||
|
||||
def short_desc(self) -> List[Dict]:
|
||||
"""
|
||||
List of short_desc for each pairlist
|
||||
List of short_desc for each Pairlist Handler
|
||||
"""
|
||||
return [{p.name: p.short_desc()} for p in self._pairlists]
|
||||
return [{p.name: p.short_desc()} for p in self._pairlist_handlers]
|
||||
|
||||
@cached(TTLCache(maxsize=1, ttl=1800))
|
||||
def _get_cached_tickers(self):
|
||||
@@ -76,21 +77,41 @@ class PairListManager():
|
||||
|
||||
def refresh_pairlist(self) -> None:
|
||||
"""
|
||||
Run pairlist through all configured pairlists.
|
||||
Run pairlist through all configured Pairlist Handlers.
|
||||
"""
|
||||
|
||||
pairlist = self._whitelist.copy()
|
||||
|
||||
# tickers should be cached to avoid calling the exchange on each call.
|
||||
# Tickers should be cached to avoid calling the exchange on each call.
|
||||
tickers: Dict = {}
|
||||
if self._tickers_needed:
|
||||
tickers = self._get_cached_tickers()
|
||||
|
||||
# Process all pairlists in chain
|
||||
for pl in self._pairlists:
|
||||
pairlist = pl.filter_pairlist(pairlist, tickers)
|
||||
# Adjust whitelist if filters are using tickers
|
||||
pairlist = self._prepare_whitelist(self._whitelist.copy(), tickers)
|
||||
|
||||
# Validation against blacklist happens after the pairlists to ensure blacklist is respected.
|
||||
# Process all Pairlist Handlers in the chain
|
||||
for pairlist_handler in self._pairlist_handlers:
|
||||
pairlist = pairlist_handler.filter_pairlist(pairlist, tickers)
|
||||
|
||||
# Validation against blacklist happens after the chain of Pairlist Handlers
|
||||
# to ensure blacklist is respected.
|
||||
pairlist = IPairList.verify_blacklist(pairlist, self.blacklist, True)
|
||||
|
||||
self._whitelist = pairlist
|
||||
|
||||
def _prepare_whitelist(self, pairlist: List[str], tickers) -> List[str]:
|
||||
"""
|
||||
Prepare sanitized pairlist for Pairlist Handlers that use tickers data - remove
|
||||
pairs that do not have ticker available
|
||||
"""
|
||||
if self._tickers_needed:
|
||||
# Copy list since we're modifying this list
|
||||
for p in deepcopy(pairlist):
|
||||
if p not in tickers:
|
||||
pairlist.remove(p)
|
||||
|
||||
return pairlist
|
||||
|
||||
def create_pair_list(self, pairs: List[str], timeframe: str = None) -> ListPairsWithTimeframes:
|
||||
"""
|
||||
Create list of pair tuples with (pair, ticker_interval)
|
||||
"""
|
||||
return [(pair, timeframe or self._config['ticker_interval']) for pair in pairs]
|
||||
|
@@ -86,11 +86,15 @@ def check_migrate(engine) -> None:
|
||||
logger.debug(f'trying {table_back_name}')
|
||||
|
||||
# Check for latest column
|
||||
if not has_column(cols, 'open_trade_price'):
|
||||
if not has_column(cols, 'sell_order_status'):
|
||||
logger.info(f'Running database migration - backup available as {table_back_name}')
|
||||
|
||||
fee_open = get_column_def(cols, 'fee_open', 'fee')
|
||||
fee_open_cost = get_column_def(cols, 'fee_open_cost', 'null')
|
||||
fee_open_currency = get_column_def(cols, 'fee_open_currency', 'null')
|
||||
fee_close = get_column_def(cols, 'fee_close', 'fee')
|
||||
fee_close_cost = get_column_def(cols, 'fee_close_cost', 'null')
|
||||
fee_close_currency = get_column_def(cols, 'fee_close_currency', 'null')
|
||||
open_rate_requested = get_column_def(cols, 'open_rate_requested', 'null')
|
||||
close_rate_requested = get_column_def(cols, 'close_rate_requested', 'null')
|
||||
stop_loss = get_column_def(cols, 'stop_loss', '0.0')
|
||||
@@ -106,6 +110,10 @@ def check_migrate(engine) -> None:
|
||||
ticker_interval = get_column_def(cols, 'ticker_interval', 'null')
|
||||
open_trade_price = get_column_def(cols, 'open_trade_price',
|
||||
f'amount * open_rate * (1 + {fee_open})')
|
||||
close_profit_abs = get_column_def(
|
||||
cols, 'close_profit_abs',
|
||||
f"(amount * close_rate * (1 - {fee_close})) - {open_trade_price}")
|
||||
sell_order_status = get_column_def(cols, 'sell_order_status', 'null')
|
||||
|
||||
# Schema migration necessary
|
||||
engine.execute(f"alter table trades rename to {table_back_name}")
|
||||
@@ -117,13 +125,15 @@ def check_migrate(engine) -> None:
|
||||
|
||||
# Copy data back - following the correct schema
|
||||
engine.execute(f"""insert into trades
|
||||
(id, exchange, pair, is_open, fee_open, fee_close, open_rate,
|
||||
(id, exchange, pair, is_open,
|
||||
fee_open, fee_open_cost, fee_open_currency,
|
||||
fee_close, fee_close_cost, fee_open_currency, open_rate,
|
||||
open_rate_requested, close_rate, close_rate_requested, close_profit,
|
||||
stake_amount, amount, open_date, close_date, open_order_id,
|
||||
stop_loss, stop_loss_pct, initial_stop_loss, initial_stop_loss_pct,
|
||||
stoploss_order_id, stoploss_last_update,
|
||||
max_rate, min_rate, sell_reason, strategy,
|
||||
ticker_interval, open_trade_price
|
||||
max_rate, min_rate, sell_reason, sell_order_status, strategy,
|
||||
ticker_interval, open_trade_price, close_profit_abs
|
||||
)
|
||||
select id, lower(exchange),
|
||||
case
|
||||
@@ -133,7 +143,9 @@ def check_migrate(engine) -> None:
|
||||
else pair
|
||||
end
|
||||
pair,
|
||||
is_open, {fee_open} fee_open, {fee_close} fee_close,
|
||||
is_open, {fee_open} fee_open, {fee_open_cost} fee_open_cost,
|
||||
{fee_open_currency} fee_open_currency, {fee_close} fee_close,
|
||||
{fee_close_cost} fee_close_cost, {fee_close_currency} fee_close_currency,
|
||||
open_rate, {open_rate_requested} open_rate_requested, close_rate,
|
||||
{close_rate_requested} close_rate_requested, close_profit,
|
||||
stake_amount, amount, open_date, close_date, open_order_id,
|
||||
@@ -142,8 +154,9 @@ def check_migrate(engine) -> None:
|
||||
{initial_stop_loss_pct} initial_stop_loss_pct,
|
||||
{stoploss_order_id} stoploss_order_id, {stoploss_last_update} stoploss_last_update,
|
||||
{max_rate} max_rate, {min_rate} min_rate, {sell_reason} sell_reason,
|
||||
{sell_order_status} sell_order_status,
|
||||
{strategy} strategy, {ticker_interval} ticker_interval,
|
||||
{open_trade_price} open_trade_price
|
||||
{open_trade_price} open_trade_price, {close_profit_abs} close_profit_abs
|
||||
from {table_back_name}
|
||||
""")
|
||||
|
||||
@@ -182,14 +195,19 @@ class Trade(_DECL_BASE):
|
||||
pair = Column(String, nullable=False, index=True)
|
||||
is_open = Column(Boolean, nullable=False, default=True, index=True)
|
||||
fee_open = Column(Float, nullable=False, default=0.0)
|
||||
fee_open_cost = Column(Float, nullable=True)
|
||||
fee_open_currency = Column(String, nullable=True)
|
||||
fee_close = Column(Float, nullable=False, default=0.0)
|
||||
fee_close_cost = Column(Float, nullable=True)
|
||||
fee_close_currency = Column(String, nullable=True)
|
||||
open_rate = Column(Float)
|
||||
open_rate_requested = Column(Float)
|
||||
# open_trade_price - calcuated via _calc_open_trade_price
|
||||
# open_trade_price - calculated via _calc_open_trade_price
|
||||
open_trade_price = Column(Float)
|
||||
close_rate = Column(Float)
|
||||
close_rate_requested = Column(Float)
|
||||
close_profit = Column(Float)
|
||||
close_profit_abs = Column(Float)
|
||||
stake_amount = Column(Float, nullable=False)
|
||||
amount = Column(Float)
|
||||
open_date = Column(DateTime, nullable=False, default=datetime.utcnow)
|
||||
@@ -212,6 +230,7 @@ class Trade(_DECL_BASE):
|
||||
# Lowest price reached
|
||||
min_rate = Column(Float, nullable=True)
|
||||
sell_reason = Column(String, nullable=True)
|
||||
sell_order_status = Column(String, nullable=True)
|
||||
strategy = Column(String, nullable=True)
|
||||
ticker_interval = Column(Integer, nullable=True)
|
||||
|
||||
@@ -229,6 +248,13 @@ class Trade(_DECL_BASE):
|
||||
return {
|
||||
'trade_id': self.id,
|
||||
'pair': self.pair,
|
||||
'is_open': self.is_open,
|
||||
'fee_open': self.fee_open,
|
||||
'fee_open_cost': self.fee_open_cost,
|
||||
'fee_open_currency': self.fee_open_currency,
|
||||
'fee_close': self.fee_close,
|
||||
'fee_close_cost': self.fee_close_cost,
|
||||
'fee_close_currency': self.fee_close_currency,
|
||||
'open_date_hum': arrow.get(self.open_date).humanize(),
|
||||
'open_date': self.open_date.strftime("%Y-%m-%d %H:%M:%S"),
|
||||
'close_date_hum': (arrow.get(self.close_date).humanize()
|
||||
@@ -236,14 +262,25 @@ class Trade(_DECL_BASE):
|
||||
'close_date': (self.close_date.strftime("%Y-%m-%d %H:%M:%S")
|
||||
if self.close_date else None),
|
||||
'open_rate': self.open_rate,
|
||||
'open_rate_requested': self.open_rate_requested,
|
||||
'open_trade_price': self.open_trade_price,
|
||||
'close_rate': self.close_rate,
|
||||
'close_rate_requested': self.close_rate_requested,
|
||||
'amount': round(self.amount, 8),
|
||||
'stake_amount': round(self.stake_amount, 8),
|
||||
'close_profit': self.close_profit,
|
||||
'sell_reason': self.sell_reason,
|
||||
'sell_order_status': self.sell_order_status,
|
||||
'stop_loss': self.stop_loss,
|
||||
'stop_loss_pct': (self.stop_loss_pct * 100) if self.stop_loss_pct else None,
|
||||
'initial_stop_loss': self.initial_stop_loss,
|
||||
'initial_stop_loss_pct': (self.initial_stop_loss_pct * 100
|
||||
if self.initial_stop_loss_pct else None),
|
||||
'min_rate': self.min_rate,
|
||||
'max_rate': self.max_rate,
|
||||
'strategy': self.strategy,
|
||||
'ticker_interval': self.ticker_interval,
|
||||
'open_order_id': self.open_order_id,
|
||||
}
|
||||
|
||||
def adjust_min_max_rates(self, current_price: float) -> None:
|
||||
@@ -311,7 +348,7 @@ class Trade(_DECL_BASE):
|
||||
if order_type in ('market', 'limit') and order['side'] == 'buy':
|
||||
# Update open rate and actual amount
|
||||
self.open_rate = Decimal(order['price'])
|
||||
self.amount = Decimal(order['amount'])
|
||||
self.amount = Decimal(order.get('filled', order['amount']))
|
||||
self.recalc_open_trade_price()
|
||||
logger.info('%s_BUY has been fulfilled for %s.', order_type.upper(), self)
|
||||
self.open_order_id = None
|
||||
@@ -334,14 +371,45 @@ class Trade(_DECL_BASE):
|
||||
"""
|
||||
self.close_rate = Decimal(rate)
|
||||
self.close_profit = self.calc_profit_ratio()
|
||||
self.close_profit_abs = self.calc_profit()
|
||||
self.close_date = datetime.utcnow()
|
||||
self.is_open = False
|
||||
self.sell_order_status = 'closed'
|
||||
self.open_order_id = None
|
||||
logger.info(
|
||||
'Marking %s as closed as the trade is fulfilled and found no open orders for it.',
|
||||
self
|
||||
)
|
||||
|
||||
def update_fee(self, fee_cost: float, fee_currency: Optional[str], fee_rate: Optional[float],
|
||||
side: str) -> None:
|
||||
"""
|
||||
Update Fee parameters. Only acts once per side
|
||||
"""
|
||||
if side == 'buy' and self.fee_open_currency is None:
|
||||
self.fee_open_cost = fee_cost
|
||||
self.fee_open_currency = fee_currency
|
||||
if fee_rate is not None:
|
||||
self.fee_open = fee_rate
|
||||
# Assume close-fee will fall into the same fee category and take an educated guess
|
||||
self.fee_close = fee_rate
|
||||
elif side == 'sell' and self.fee_close_currency is None:
|
||||
self.fee_close_cost = fee_cost
|
||||
self.fee_close_currency = fee_currency
|
||||
if fee_rate is not None:
|
||||
self.fee_close = fee_rate
|
||||
|
||||
def fee_updated(self, side: str) -> bool:
|
||||
"""
|
||||
Verify if this side (buy / sell) has already been updated
|
||||
"""
|
||||
if side == 'buy':
|
||||
return self.fee_open_currency is not None
|
||||
elif side == 'sell':
|
||||
return self.fee_close_currency is not None
|
||||
else:
|
||||
return False
|
||||
|
||||
def _calc_open_trade_price(self) -> float:
|
||||
"""
|
||||
Calculate the open_rate including open_fee.
|
||||
|
@@ -6,10 +6,11 @@ import pandas as pd
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.data.btanalysis import (calculate_max_drawdown,
|
||||
combine_tickers_with_mean,
|
||||
combine_dataframes_with_mean,
|
||||
create_cum_profit,
|
||||
extract_trades_of_period, load_trades)
|
||||
from freqtrade.data.converter import trim_dataframe
|
||||
from freqtrade.exchange import timeframe_to_prev_date
|
||||
from freqtrade.data.history import load_data
|
||||
from freqtrade.misc import pair_to_filename
|
||||
from freqtrade.resolvers import StrategyResolver
|
||||
@@ -29,7 +30,7 @@ except ImportError:
|
||||
def init_plotscript(config):
|
||||
"""
|
||||
Initialize objects needed for plotting
|
||||
:return: Dict with tickers, trades and pairs
|
||||
:return: Dict with candle (OHLCV) data, trades and pairs
|
||||
"""
|
||||
|
||||
if "pairs" in config:
|
||||
@@ -40,7 +41,7 @@ def init_plotscript(config):
|
||||
# Set timerange to use
|
||||
timerange = TimeRange.parse_timerange(config.get("timerange"))
|
||||
|
||||
tickers = load_data(
|
||||
data = load_data(
|
||||
datadir=config.get("datadir"),
|
||||
pairs=pairs,
|
||||
timeframe=config.get('ticker_interval', '5m'),
|
||||
@@ -48,12 +49,22 @@ def init_plotscript(config):
|
||||
data_format=config.get('dataformat_ohlcv', 'json'),
|
||||
)
|
||||
|
||||
trades = load_trades(config['trade_source'],
|
||||
db_url=config.get('db_url'),
|
||||
exportfilename=config.get('exportfilename'),
|
||||
)
|
||||
no_trades = False
|
||||
if config.get('no_trades', False):
|
||||
no_trades = True
|
||||
elif not config['exportfilename'].is_file() and config['trade_source'] == 'file':
|
||||
logger.warning("Backtest file is missing skipping trades.")
|
||||
no_trades = True
|
||||
|
||||
trades = load_trades(
|
||||
config['trade_source'],
|
||||
db_url=config.get('db_url'),
|
||||
exportfilename=config.get('exportfilename'),
|
||||
no_trades=no_trades
|
||||
)
|
||||
trades = trim_dataframe(trades, timerange, 'open_time')
|
||||
return {"tickers": tickers,
|
||||
|
||||
return {"ohlcv": data,
|
||||
"trades": trades,
|
||||
"pairs": pairs,
|
||||
}
|
||||
@@ -112,7 +123,8 @@ def add_profit(fig, row, data: pd.DataFrame, column: str, name: str) -> make_sub
|
||||
return fig
|
||||
|
||||
|
||||
def add_max_drawdown(fig, row, trades: pd.DataFrame, df_comb: pd.DataFrame) -> make_subplots:
|
||||
def add_max_drawdown(fig, row, trades: pd.DataFrame, df_comb: pd.DataFrame,
|
||||
timeframe: str) -> make_subplots:
|
||||
"""
|
||||
Add scatter points indicating max drawdown
|
||||
"""
|
||||
@@ -122,12 +134,12 @@ def add_max_drawdown(fig, row, trades: pd.DataFrame, df_comb: pd.DataFrame) -> m
|
||||
drawdown = go.Scatter(
|
||||
x=[highdate, lowdate],
|
||||
y=[
|
||||
df_comb.loc[highdate, 'cum_profit'],
|
||||
df_comb.loc[lowdate, 'cum_profit'],
|
||||
df_comb.loc[timeframe_to_prev_date(timeframe, highdate), 'cum_profit'],
|
||||
df_comb.loc[timeframe_to_prev_date(timeframe, lowdate), 'cum_profit'],
|
||||
],
|
||||
mode='markers',
|
||||
name=f"Max drawdown {max_drawdown:.2f}%",
|
||||
text=f"Max drawdown {max_drawdown:.2f}%",
|
||||
name=f"Max drawdown {max_drawdown * 100:.2f}%",
|
||||
text=f"Max drawdown {max_drawdown * 100:.2f}%",
|
||||
marker=dict(
|
||||
symbol='square-open',
|
||||
size=9,
|
||||
@@ -368,10 +380,13 @@ def generate_candlestick_graph(pair: str, data: pd.DataFrame, trades: pd.DataFra
|
||||
return fig
|
||||
|
||||
|
||||
def generate_profit_graph(pairs: str, tickers: Dict[str, pd.DataFrame],
|
||||
def generate_profit_graph(pairs: str, data: Dict[str, pd.DataFrame],
|
||||
trades: pd.DataFrame, timeframe: str) -> go.Figure:
|
||||
# Combine close-values for all pairs, rename columns to "pair"
|
||||
df_comb = combine_tickers_with_mean(tickers, "close")
|
||||
df_comb = combine_dataframes_with_mean(data, "close")
|
||||
|
||||
# Trim trades to available OHLCV data
|
||||
trades = extract_trades_of_period(df_comb, trades, date_index=True)
|
||||
|
||||
# Add combined cumulative profit
|
||||
df_comb = create_cum_profit(df_comb, trades, 'cum_profit', timeframe)
|
||||
@@ -395,7 +410,7 @@ def generate_profit_graph(pairs: str, tickers: Dict[str, pd.DataFrame],
|
||||
|
||||
fig.add_trace(avgclose, 1, 1)
|
||||
fig = add_profit(fig, 2, df_comb, 'cum_profit', 'Profit')
|
||||
fig = add_max_drawdown(fig, 2, trades, df_comb)
|
||||
fig = add_max_drawdown(fig, 2, trades, df_comb, timeframe)
|
||||
|
||||
for pair in pairs:
|
||||
profit_col = f'cum_profit_{pair}'
|
||||
@@ -439,7 +454,7 @@ def load_and_plot_trades(config: Dict[str, Any]):
|
||||
"""
|
||||
From configuration provided
|
||||
- Initializes plot-script
|
||||
- Get tickers data
|
||||
- Get candle (OHLCV) data
|
||||
- Generate Dafaframes populated with indicators and signals based on configured strategy
|
||||
- Load trades excecuted during the selected period
|
||||
- Generate Plotly plot objects
|
||||
@@ -451,19 +466,17 @@ def load_and_plot_trades(config: Dict[str, Any]):
|
||||
plot_elements = init_plotscript(config)
|
||||
trades = plot_elements['trades']
|
||||
pair_counter = 0
|
||||
for pair, data in plot_elements["tickers"].items():
|
||||
for pair, data in plot_elements["ohlcv"].items():
|
||||
pair_counter += 1
|
||||
logger.info("analyse pair %s", pair)
|
||||
tickers = {}
|
||||
tickers[pair] = data
|
||||
|
||||
dataframe = strategy.analyze_ticker(tickers[pair], {'pair': pair})
|
||||
df_analyzed = strategy.analyze_ticker(data, {'pair': pair})
|
||||
trades_pair = trades.loc[trades['pair'] == pair]
|
||||
trades_pair = extract_trades_of_period(dataframe, trades_pair)
|
||||
trades_pair = extract_trades_of_period(df_analyzed, trades_pair)
|
||||
|
||||
fig = generate_candlestick_graph(
|
||||
pair=pair,
|
||||
data=dataframe,
|
||||
data=df_analyzed,
|
||||
trades=trades_pair,
|
||||
indicators1=config.get("indicators1", []),
|
||||
indicators2=config.get("indicators2", []),
|
||||
@@ -494,7 +507,7 @@ def plot_profit(config: Dict[str, Any]) -> None:
|
||||
|
||||
# Create an average close price of all the pairs that were involved.
|
||||
# this could be useful to gauge the overall market trend
|
||||
fig = generate_profit_graph(plot_elements["pairs"], plot_elements["tickers"],
|
||||
fig = generate_profit_graph(plot_elements["pairs"], plot_elements["ohlcv"],
|
||||
trades, config.get('ticker_interval', '5m'))
|
||||
store_plot_file(fig, filename='freqtrade-profit-plot.html',
|
||||
directory=config['user_data_dir'] / "plot", auto_open=True)
|
||||
|
@@ -2,11 +2,17 @@ import logging
|
||||
import threading
|
||||
from datetime import date, datetime
|
||||
from ipaddress import IPv4Address
|
||||
from typing import Dict, Callable, Any
|
||||
from typing import Any, Callable, Dict
|
||||
|
||||
from arrow import Arrow
|
||||
from flask import Flask, jsonify, request
|
||||
from flask.json import JSONEncoder
|
||||
from flask_cors import CORS
|
||||
from flask_jwt_extended import (JWTManager, create_access_token,
|
||||
create_refresh_token, get_jwt_identity,
|
||||
jwt_refresh_token_required,
|
||||
verify_jwt_in_request_optional)
|
||||
from werkzeug.security import safe_str_cmp
|
||||
from werkzeug.serving import make_server
|
||||
|
||||
from freqtrade.__init__ import __version__
|
||||
@@ -38,9 +44,9 @@ class ArrowJSONEncoder(JSONEncoder):
|
||||
def require_login(func: Callable[[Any, Any], Any]):
|
||||
|
||||
def func_wrapper(obj, *args, **kwargs):
|
||||
|
||||
verify_jwt_in_request_optional()
|
||||
auth = request.authorization
|
||||
if auth and obj.check_auth(auth.username, auth.password):
|
||||
if get_jwt_identity() or auth and obj.check_auth(auth.username, auth.password):
|
||||
return func(obj, *args, **kwargs)
|
||||
else:
|
||||
return jsonify({"error": "Unauthorized"}), 401
|
||||
@@ -70,8 +76,8 @@ class ApiServer(RPC):
|
||||
"""
|
||||
|
||||
def check_auth(self, username, password):
|
||||
return (username == self._config['api_server'].get('username') and
|
||||
password == self._config['api_server'].get('password'))
|
||||
return (safe_str_cmp(username, self._config['api_server'].get('username')) and
|
||||
safe_str_cmp(password, self._config['api_server'].get('password')))
|
||||
|
||||
def __init__(self, freqtrade) -> None:
|
||||
"""
|
||||
@@ -83,6 +89,13 @@ class ApiServer(RPC):
|
||||
|
||||
self._config = freqtrade.config
|
||||
self.app = Flask(__name__)
|
||||
self._cors = CORS(self.app, resources={r"/api/*": {"origins": "*"}})
|
||||
|
||||
# Setup the Flask-JWT-Extended extension
|
||||
self.app.config['JWT_SECRET_KEY'] = self._config['api_server'].get(
|
||||
'jwt_secret_key', 'super-secret')
|
||||
|
||||
self.jwt = JWTManager(self.app)
|
||||
self.app.json_encoder = ArrowJSONEncoder
|
||||
|
||||
# Register application handling
|
||||
@@ -148,6 +161,10 @@ class ApiServer(RPC):
|
||||
self.app.register_error_handler(404, self.page_not_found)
|
||||
|
||||
# Actions to control the bot
|
||||
self.app.add_url_rule(f'{BASE_URI}/token/login', 'login',
|
||||
view_func=self._token_login, methods=['POST'])
|
||||
self.app.add_url_rule(f'{BASE_URI}/token/refresh', 'token_refresh',
|
||||
view_func=self._token_refresh, methods=['POST'])
|
||||
self.app.add_url_rule(f'{BASE_URI}/start', 'start',
|
||||
view_func=self._start, methods=['POST'])
|
||||
self.app.add_url_rule(f'{BASE_URI}/stop', 'stop', view_func=self._stop, methods=['POST'])
|
||||
@@ -173,7 +190,8 @@ class ApiServer(RPC):
|
||||
view_func=self._show_config, methods=['GET'])
|
||||
self.app.add_url_rule(f'{BASE_URI}/ping', 'ping',
|
||||
view_func=self._ping, methods=['GET'])
|
||||
|
||||
self.app.add_url_rule(f'{BASE_URI}/trades', 'trades',
|
||||
view_func=self._trades, methods=['GET'])
|
||||
# Combined actions and infos
|
||||
self.app.add_url_rule(f'{BASE_URI}/blacklist', 'blacklist', view_func=self._blacklist,
|
||||
methods=['GET', 'POST'])
|
||||
@@ -198,6 +216,37 @@ class ApiServer(RPC):
|
||||
'code': 404
|
||||
}), 404
|
||||
|
||||
@require_login
|
||||
@rpc_catch_errors
|
||||
def _token_login(self):
|
||||
"""
|
||||
Handler for /token/login
|
||||
Returns a JWT token
|
||||
"""
|
||||
auth = request.authorization
|
||||
if auth and self.check_auth(auth.username, auth.password):
|
||||
keystuff = {'u': auth.username}
|
||||
ret = {
|
||||
'access_token': create_access_token(identity=keystuff),
|
||||
'refresh_token': create_refresh_token(identity=keystuff),
|
||||
}
|
||||
return self.rest_dump(ret)
|
||||
|
||||
return jsonify({"error": "Unauthorized"}), 401
|
||||
|
||||
@jwt_refresh_token_required
|
||||
@rpc_catch_errors
|
||||
def _token_refresh(self):
|
||||
"""
|
||||
Handler for /token/refresh
|
||||
Returns a JWT token based on a JWT refresh token
|
||||
"""
|
||||
current_user = get_jwt_identity()
|
||||
new_token = create_access_token(identity=current_user, fresh=False)
|
||||
|
||||
ret = {'access_token': new_token}
|
||||
return self.rest_dump(ret)
|
||||
|
||||
@require_login
|
||||
@rpc_catch_errors
|
||||
def _start(self):
|
||||
@@ -358,6 +407,18 @@ class ApiServer(RPC):
|
||||
self._config.get('fiat_display_currency', ''))
|
||||
return self.rest_dump(results)
|
||||
|
||||
@require_login
|
||||
@rpc_catch_errors
|
||||
def _trades(self):
|
||||
"""
|
||||
Handler for /trades.
|
||||
|
||||
Returns the X last trades in json format
|
||||
"""
|
||||
limit = int(request.args.get('limit', 0))
|
||||
results = self._rpc_trade_history(limit)
|
||||
return self.rest_dump(results)
|
||||
|
||||
@require_login
|
||||
@rpc_catch_errors
|
||||
def _whitelist(self):
|
||||
|
@@ -94,6 +94,7 @@ class RPC:
|
||||
'dry_run': config['dry_run'],
|
||||
'stake_currency': config['stake_currency'],
|
||||
'stake_amount': config['stake_amount'],
|
||||
'max_open_trades': config['max_open_trades'],
|
||||
'minimal_roi': config['minimal_roi'].copy(),
|
||||
'stoploss': config['stoploss'],
|
||||
'trailing_stop': config['trailing_stop'],
|
||||
@@ -103,6 +104,8 @@ class RPC:
|
||||
'ticker_interval': config['ticker_interval'],
|
||||
'exchange': config['exchange']['name'],
|
||||
'strategy': config['strategy'],
|
||||
'forcebuy_enabled': config.get('forcebuy_enable', False),
|
||||
'state': str(self._freqtrade.state)
|
||||
}
|
||||
return val
|
||||
|
||||
@@ -183,7 +186,7 @@ class RPC:
|
||||
|
||||
def _rpc_daily_profit(
|
||||
self, timescale: int,
|
||||
stake_currency: str, fiat_display_currency: str) -> List[List[Any]]:
|
||||
stake_currency: str, fiat_display_currency: str) -> Dict[str, Any]:
|
||||
today = datetime.utcnow().date()
|
||||
profit_days: Dict[date, Dict] = {}
|
||||
|
||||
@@ -197,34 +200,46 @@ class RPC:
|
||||
Trade.close_date >= profitday,
|
||||
Trade.close_date < (profitday + timedelta(days=1))
|
||||
]).order_by(Trade.close_date).all()
|
||||
curdayprofit = sum(trade.calc_profit() for trade in trades)
|
||||
curdayprofit = sum(trade.close_profit_abs for trade in trades)
|
||||
profit_days[profitday] = {
|
||||
'amount': f'{curdayprofit:.8f}',
|
||||
'trades': len(trades)
|
||||
}
|
||||
|
||||
return [
|
||||
[
|
||||
key,
|
||||
'{value:.8f} {symbol}'.format(
|
||||
value=float(value['amount']),
|
||||
symbol=stake_currency
|
||||
),
|
||||
'{value:.3f} {symbol}'.format(
|
||||
data = [
|
||||
{
|
||||
'date': key,
|
||||
'abs_profit': f'{float(value["amount"]):.8f}',
|
||||
'fiat_value': '{value:.3f}'.format(
|
||||
value=self._fiat_converter.convert_amount(
|
||||
value['amount'],
|
||||
stake_currency,
|
||||
fiat_display_currency
|
||||
) if self._fiat_converter else 0,
|
||||
symbol=fiat_display_currency
|
||||
),
|
||||
'{value} trade{s}'.format(
|
||||
value=value['trades'],
|
||||
s='' if value['trades'] < 2 else 's'
|
||||
),
|
||||
]
|
||||
'trade_count': f'{value["trades"]}',
|
||||
}
|
||||
for key, value in profit_days.items()
|
||||
]
|
||||
return {
|
||||
'stake_currency': stake_currency,
|
||||
'fiat_display_currency': fiat_display_currency,
|
||||
'data': data
|
||||
}
|
||||
|
||||
def _rpc_trade_history(self, limit: int) -> Dict:
|
||||
""" Returns the X last trades """
|
||||
if limit > 0:
|
||||
trades = Trade.get_trades().order_by(Trade.id.desc()).limit(limit)
|
||||
else:
|
||||
trades = Trade.get_trades().order_by(Trade.id.desc()).all()
|
||||
|
||||
output = [trade.to_json() for trade in trades]
|
||||
|
||||
return {
|
||||
"trades": output,
|
||||
"trades_count": len(output)
|
||||
}
|
||||
|
||||
def _rpc_trade_statistics(
|
||||
self, stake_currency: str, fiat_display_currency: str) -> Dict[str, Any]:
|
||||
@@ -246,8 +261,8 @@ class RPC:
|
||||
durations.append((trade.close_date - trade.open_date).total_seconds())
|
||||
|
||||
if not trade.is_open:
|
||||
profit_ratio = trade.calc_profit_ratio()
|
||||
profit_closed_coin.append(trade.calc_profit())
|
||||
profit_ratio = trade.close_profit
|
||||
profit_closed_coin.append(trade.close_profit_abs)
|
||||
profit_closed_ratio.append(profit_ratio)
|
||||
else:
|
||||
# Get current rate
|
||||
@@ -530,5 +545,5 @@ class RPC:
|
||||
def _rpc_edge(self) -> List[Dict[str, Any]]:
|
||||
""" Returns information related to Edge """
|
||||
if not self._freqtrade.edge:
|
||||
raise RPCException(f'Edge is not enabled.')
|
||||
raise RPCException('Edge is not enabled.')
|
||||
return self._freqtrade.edge.accepted_pairs()
|
||||
|
@@ -172,7 +172,8 @@ class Telegram(RPC):
|
||||
' / {profit_fiat:.3f} {fiat_currency})`').format(**msg)
|
||||
|
||||
elif msg['type'] == RPCMessageType.SELL_CANCEL_NOTIFICATION:
|
||||
message = "*{exchange}:* Cancelling Open Sell Order for {pair}".format(**msg)
|
||||
message = ("*{exchange}:* Cancelling Open Sell Order "
|
||||
"for {pair}. Reason: {reason}").format(**msg)
|
||||
|
||||
elif msg['type'] == RPCMessageType.STATUS_NOTIFICATION:
|
||||
message = '*Status:* `{status}`'.format(**msg)
|
||||
@@ -225,11 +226,15 @@ class Telegram(RPC):
|
||||
# Adding stoploss and stoploss percentage only if it is not None
|
||||
"*Stoploss:* `{stop_loss:.8f}` " +
|
||||
("`({stop_loss_pct:.2f}%)`" if r['stop_loss_pct'] else ""),
|
||||
|
||||
"*Open Order:* `{open_order}`" if r['open_order'] else ""
|
||||
]
|
||||
if r['open_order']:
|
||||
if r['sell_order_status']:
|
||||
lines.append("*Open Order:* `{open_order}` - `{sell_order_status}`")
|
||||
else:
|
||||
lines.append("*Open Order:* `{open_order}`")
|
||||
|
||||
# Filter empty lines using list-comprehension
|
||||
messages.append("\n".join([l for l in lines if l]).format(**r))
|
||||
messages.append("\n".join([line for line in lines if line]).format(**r))
|
||||
|
||||
for msg in messages:
|
||||
self._send_msg(msg)
|
||||
@@ -275,14 +280,18 @@ class Telegram(RPC):
|
||||
stake_cur,
|
||||
fiat_disp_cur
|
||||
)
|
||||
stats_tab = tabulate(stats,
|
||||
headers=[
|
||||
'Day',
|
||||
f'Profit {stake_cur}',
|
||||
f'Profit {fiat_disp_cur}',
|
||||
f'Trades'
|
||||
],
|
||||
tablefmt='simple')
|
||||
stats_tab = tabulate(
|
||||
[[day['date'],
|
||||
f"{day['abs_profit']} {stats['stake_currency']}",
|
||||
f"{day['fiat_value']} {stats['fiat_display_currency']}",
|
||||
f"{day['trade_count']} trades"] for day in stats['data']],
|
||||
headers=[
|
||||
'Day',
|
||||
f'Profit {stake_cur}',
|
||||
f'Profit {fiat_disp_cur}',
|
||||
'Trades',
|
||||
],
|
||||
tablefmt='simple')
|
||||
message = f'<b>Daily Profit over the last {timescale} days</b>:\n<pre>{stats_tab}</pre>'
|
||||
self._send_msg(message, parse_mode=ParseMode.HTML)
|
||||
except RPCException as e:
|
||||
@@ -578,7 +587,7 @@ class Telegram(RPC):
|
||||
"*/whitelist:* `Show current whitelist` \n" \
|
||||
"*/blacklist [pair]:* `Show current blacklist, or adds one or more pairs " \
|
||||
"to the blacklist.` \n" \
|
||||
"*/edge:* `Shows validated pairs by Edge if it is enabeld` \n" \
|
||||
"*/edge:* `Shows validated pairs by Edge if it is enabled` \n" \
|
||||
"*/help:* `This help message`\n" \
|
||||
"*/version:* `Show version`"
|
||||
|
||||
@@ -620,10 +629,12 @@ class Telegram(RPC):
|
||||
f"*Mode:* `{'Dry-run' if val['dry_run'] else 'Live'}`\n"
|
||||
f"*Exchange:* `{val['exchange']}`\n"
|
||||
f"*Stake per trade:* `{val['stake_amount']} {val['stake_currency']}`\n"
|
||||
f"*Max open Trades:* `{val['max_open_trades']}`\n"
|
||||
f"*Minimum ROI:* `{val['minimal_roi']}`\n"
|
||||
f"{sl_info}"
|
||||
f"*Ticker Interval:* `{val['ticker_interval']}`\n"
|
||||
f"*Strategy:* `{val['strategy']}`"
|
||||
f"*Strategy:* `{val['strategy']}`\n"
|
||||
f"*Current state:* `{val['state']}`"
|
||||
)
|
||||
|
||||
def _send_msg(self, msg: str, parse_mode: ParseMode = ParseMode.MARKDOWN) -> None:
|
||||
|
@@ -47,9 +47,9 @@ class Webhook(RPC):
|
||||
valuedict = self._config['webhook'].get('webhooksell', None)
|
||||
elif msg['type'] == RPCMessageType.SELL_CANCEL_NOTIFICATION:
|
||||
valuedict = self._config['webhook'].get('webhooksellcancel', None)
|
||||
elif msg['type'] in(RPCMessageType.STATUS_NOTIFICATION,
|
||||
RPCMessageType.CUSTOM_NOTIFICATION,
|
||||
RPCMessageType.WARNING_NOTIFICATION):
|
||||
elif msg['type'] in (RPCMessageType.STATUS_NOTIFICATION,
|
||||
RPCMessageType.CUSTOM_NOTIFICATION,
|
||||
RPCMessageType.WARNING_NOTIFICATION):
|
||||
valuedict = self._config['webhook'].get('webhookstatus', None)
|
||||
else:
|
||||
raise NotImplementedError('Unknown message type: {}'.format(msg['type']))
|
||||
|
@@ -14,6 +14,9 @@ class State(Enum):
|
||||
STOPPED = 2
|
||||
RELOAD_CONF = 3
|
||||
|
||||
def __str__(self):
|
||||
return f"{self.name.lower()}"
|
||||
|
||||
|
||||
class RunMode(Enum):
|
||||
"""
|
||||
|
@@ -3,18 +3,21 @@ IStrategy interface
|
||||
This module defines the interface to apply for strategies
|
||||
"""
|
||||
import logging
|
||||
import warnings
|
||||
from abc import ABC, abstractmethod
|
||||
from datetime import datetime, timezone
|
||||
from enum import Enum
|
||||
from typing import Dict, List, NamedTuple, Optional, Tuple
|
||||
import warnings
|
||||
from typing import Dict, NamedTuple, Optional, Tuple
|
||||
|
||||
import arrow
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.data.dataprovider import DataProvider
|
||||
from freqtrade.exceptions import StrategyError
|
||||
from freqtrade.exchange import timeframe_to_minutes
|
||||
from freqtrade.persistence import Trade
|
||||
from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper
|
||||
from freqtrade.typing import ListPairsWithTimeframes
|
||||
from freqtrade.wallets import Wallets
|
||||
|
||||
|
||||
@@ -59,7 +62,7 @@ class IStrategy(ABC):
|
||||
Attributes you can use:
|
||||
minimal_roi -> Dict: Minimal ROI designed for the strategy
|
||||
stoploss -> float: optimal stoploss designed for the strategy
|
||||
ticker_interval -> str: value of the ticker interval to use for the strategy
|
||||
ticker_interval -> str: value of the timeframe (ticker interval) to use with the strategy
|
||||
"""
|
||||
# Strategy interface version
|
||||
# Default to version 2
|
||||
@@ -125,7 +128,7 @@ class IStrategy(ABC):
|
||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Populate indicators that will be used in the Buy and Sell strategy
|
||||
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
|
||||
:param dataframe: DataFrame with data from the exchange
|
||||
:param metadata: Additional information, like the currently traded pair
|
||||
:return: a Dataframe with all mandatory indicators for the strategies
|
||||
"""
|
||||
@@ -148,7 +151,43 @@ class IStrategy(ABC):
|
||||
:return: DataFrame with sell column
|
||||
"""
|
||||
|
||||
def informative_pairs(self) -> List[Tuple[str, str]]:
|
||||
def check_buy_timeout(self, pair: str, trade: Trade, order: dict, **kwargs) -> bool:
|
||||
"""
|
||||
Check buy timeout function callback.
|
||||
This method can be used to override the buy-timeout.
|
||||
It is called whenever a limit buy order has been created,
|
||||
and is not yet fully filled.
|
||||
Configuration options in `unfilledtimeout` will be verified before this,
|
||||
so ensure to set these timeouts high enough.
|
||||
|
||||
When not implemented by a strategy, this simply returns False.
|
||||
:param pair: Pair the trade is for
|
||||
:param trade: trade object.
|
||||
:param order: Order dictionary as returned from CCXT.
|
||||
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
|
||||
:return bool: When True is returned, then the buy-order is cancelled.
|
||||
"""
|
||||
return False
|
||||
|
||||
def check_sell_timeout(self, pair: str, trade: Trade, order: dict, **kwargs) -> bool:
|
||||
"""
|
||||
Check sell timeout function callback.
|
||||
This method can be used to override the sell-timeout.
|
||||
It is called whenever a limit sell order has been created,
|
||||
and is not yet fully filled.
|
||||
Configuration options in `unfilledtimeout` will be verified before this,
|
||||
so ensure to set these timeouts high enough.
|
||||
|
||||
When not implemented by a strategy, this simply returns False.
|
||||
:param pair: Pair the trade is for
|
||||
:param trade: trade object.
|
||||
:param order: Order dictionary as returned from CCXT.
|
||||
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
|
||||
:return bool: When True is returned, then the sell-order is cancelled.
|
||||
"""
|
||||
return False
|
||||
|
||||
def informative_pairs(self) -> ListPairsWithTimeframes:
|
||||
"""
|
||||
Define additional, informative pair/interval combinations to be cached from the exchange.
|
||||
These pair/interval combinations are non-tradeable, unless they are part
|
||||
@@ -200,11 +239,11 @@ class IStrategy(ABC):
|
||||
|
||||
def analyze_ticker(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Parses the given ticker history and returns a populated DataFrame
|
||||
Parses the given candle (OHLCV) data and returns a populated DataFrame
|
||||
add several TA indicators and buy signal to it
|
||||
:param dataframe: Dataframe containing ticker data
|
||||
:param dataframe: Dataframe containing data from exchange
|
||||
:param metadata: Metadata dictionary with additional data (e.g. 'pair')
|
||||
:return: DataFrame with ticker data and indicator data
|
||||
:return: DataFrame of candle (OHLCV) data with indicator data and signals added
|
||||
"""
|
||||
logger.debug("TA Analysis Launched")
|
||||
dataframe = self.advise_indicators(dataframe, metadata)
|
||||
@@ -214,12 +253,12 @@ class IStrategy(ABC):
|
||||
|
||||
def _analyze_ticker_internal(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Parses the given ticker history and returns a populated DataFrame
|
||||
Parses the given candle (OHLCV) data and returns a populated DataFrame
|
||||
add several TA indicators and buy signal to it
|
||||
WARNING: Used internally only, may skip analysis if `process_only_new_candles` is set.
|
||||
:param dataframe: Dataframe containing ticker data
|
||||
:param dataframe: Dataframe containing data from exchange
|
||||
:param metadata: Metadata dictionary with additional data (e.g. 'pair')
|
||||
:return: DataFrame with ticker data and indicator data
|
||||
:return: DataFrame of candle (OHLCV) data with indicator data and signals added
|
||||
"""
|
||||
pair = str(metadata.get('pair'))
|
||||
|
||||
@@ -241,8 +280,25 @@ class IStrategy(ABC):
|
||||
|
||||
return dataframe
|
||||
|
||||
def get_signal(self, pair: str, interval: str,
|
||||
dataframe: DataFrame) -> Tuple[bool, bool]:
|
||||
@staticmethod
|
||||
def preserve_df(dataframe: DataFrame) -> Tuple[int, float, datetime]:
|
||||
""" keep some data for dataframes """
|
||||
return len(dataframe), dataframe["close"].iloc[-1], dataframe["date"].iloc[-1]
|
||||
|
||||
@staticmethod
|
||||
def assert_df(dataframe: DataFrame, df_len: int, df_close: float, df_date: datetime):
|
||||
""" make sure data is unmodified """
|
||||
message = ""
|
||||
if df_len != len(dataframe):
|
||||
message = "length"
|
||||
elif df_close != dataframe["close"].iloc[-1]:
|
||||
message = "last close price"
|
||||
elif df_date != dataframe["date"].iloc[-1]:
|
||||
message = "last date"
|
||||
if message:
|
||||
raise StrategyError(f"Dataframe returned from strategy has mismatching {message}.")
|
||||
|
||||
def get_signal(self, pair: str, interval: str, dataframe: DataFrame) -> Tuple[bool, bool]:
|
||||
"""
|
||||
Calculates current signal based several technical analysis indicators
|
||||
:param pair: pair in format ANT/BTC
|
||||
@@ -251,31 +307,27 @@ class IStrategy(ABC):
|
||||
:return: (Buy, Sell) A bool-tuple indicating buy/sell signal
|
||||
"""
|
||||
if not isinstance(dataframe, DataFrame) or dataframe.empty:
|
||||
logger.warning('Empty ticker history for pair %s', pair)
|
||||
logger.warning('Empty candle (OHLCV) data for pair %s', pair)
|
||||
return False, False
|
||||
|
||||
latest_date = dataframe['date'].max()
|
||||
try:
|
||||
dataframe = self._analyze_ticker_internal(dataframe, {'pair': pair})
|
||||
except ValueError as error:
|
||||
logger.warning(
|
||||
'Unable to analyze ticker for pair %s: %s',
|
||||
pair,
|
||||
str(error)
|
||||
)
|
||||
return False, False
|
||||
except Exception as error:
|
||||
logger.exception(
|
||||
'Unexpected error when analyzing ticker for pair %s: %s',
|
||||
pair,
|
||||
str(error)
|
||||
)
|
||||
df_len, df_close, df_date = self.preserve_df(dataframe)
|
||||
dataframe = strategy_safe_wrapper(
|
||||
self._analyze_ticker_internal, message=""
|
||||
)(dataframe, {'pair': pair})
|
||||
self.assert_df(dataframe, df_len, df_close, df_date)
|
||||
except StrategyError as error:
|
||||
logger.warning(f"Unable to analyze candle (OHLCV) data for pair {pair}: {error}")
|
||||
|
||||
return False, False
|
||||
|
||||
if dataframe.empty:
|
||||
logger.warning('Empty dataframe for pair %s', pair)
|
||||
return False, False
|
||||
|
||||
latest = dataframe.iloc[-1]
|
||||
latest = dataframe.loc[dataframe['date'] == latest_date].iloc[-1]
|
||||
|
||||
signal_date = arrow.get(latest['date'])
|
||||
interval_minutes = timeframe_to_minutes(interval)
|
||||
|
||||
@@ -446,19 +498,22 @@ class IStrategy(ABC):
|
||||
else:
|
||||
return current_profit > roi
|
||||
|
||||
def tickerdata_to_dataframe(self, tickerdata: Dict[str, DataFrame]) -> Dict[str, DataFrame]:
|
||||
def ohlcvdata_to_dataframe(self, data: Dict[str, DataFrame]) -> Dict[str, DataFrame]:
|
||||
"""
|
||||
Creates a dataframe and populates indicators for given ticker data
|
||||
Creates a dataframe and populates indicators for given candle (OHLCV) data
|
||||
Used by optimize operations only, not during dry / live runs.
|
||||
Using .copy() to get a fresh copy of the dataframe for every strategy run.
|
||||
Has positive effects on memory usage for whatever reason - also when
|
||||
using only one strategy.
|
||||
"""
|
||||
return {pair: self.advise_indicators(pair_data, {'pair': pair})
|
||||
for pair, pair_data in tickerdata.items()}
|
||||
return {pair: self.advise_indicators(pair_data.copy(), {'pair': pair})
|
||||
for pair, pair_data in data.items()}
|
||||
|
||||
def advise_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Populate indicators that will be used in the Buy and Sell strategy
|
||||
This method should not be overridden.
|
||||
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
|
||||
:param dataframe: Dataframe with data from the exchange
|
||||
:param metadata: Additional information, like the currently traded pair
|
||||
:return: a Dataframe with all mandatory indicators for the strategies
|
||||
"""
|
||||
|
35
freqtrade/strategy/strategy_wrapper.py
Normal file
35
freqtrade/strategy/strategy_wrapper.py
Normal file
@@ -0,0 +1,35 @@
|
||||
import logging
|
||||
|
||||
from freqtrade.exceptions import StrategyError
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def strategy_safe_wrapper(f, message: str = "", default_retval=None):
|
||||
"""
|
||||
Wrapper around user-provided methods and functions.
|
||||
Caches all exceptions and returns either the default_retval (if it's not None) or raises
|
||||
a StrategyError exception, which then needs to be handled by the calling method.
|
||||
"""
|
||||
def wrapper(*args, **kwargs):
|
||||
try:
|
||||
return f(*args, **kwargs)
|
||||
except ValueError as error:
|
||||
logger.warning(
|
||||
f"{message}"
|
||||
f"Strategy caused the following exception: {error}"
|
||||
f"{f}"
|
||||
)
|
||||
if default_retval is None:
|
||||
raise StrategyError(str(error)) from error
|
||||
return default_retval
|
||||
except Exception as error:
|
||||
logger.exception(
|
||||
f"{message}"
|
||||
f"Unexpected error {error} calling {f}"
|
||||
)
|
||||
if default_retval is None:
|
||||
raise StrategyError(str(error)) from error
|
||||
return default_retval
|
||||
|
||||
return wrapper
|
@@ -6,6 +6,7 @@
|
||||
"fiat_display_currency": "{{ fiat_display_currency }}",
|
||||
"ticker_interval": "{{ ticker_interval }}",
|
||||
"dry_run": {{ dry_run | lower }},
|
||||
"cancel_open_orders_on_exit": false,
|
||||
"unfilledtimeout": {
|
||||
"buy": 10,
|
||||
"sell": 30
|
||||
|
@@ -66,6 +66,9 @@ class {{ hyperopt }}(IHyperOpt):
|
||||
dataframe['close'], dataframe['sar']
|
||||
))
|
||||
|
||||
# Check that the candle had volume
|
||||
conditions.append(dataframe['volume'] > 0)
|
||||
|
||||
if conditions:
|
||||
dataframe.loc[
|
||||
reduce(lambda x, y: x & y, conditions),
|
||||
@@ -111,6 +114,9 @@ class {{ hyperopt }}(IHyperOpt):
|
||||
dataframe['sar'], dataframe['close']
|
||||
))
|
||||
|
||||
# Check that the candle had volume
|
||||
conditions.append(dataframe['volume'] > 0)
|
||||
|
||||
if conditions:
|
||||
dataframe.loc[
|
||||
reduce(lambda x, y: x & y, conditions),
|
||||
|
@@ -99,7 +99,7 @@ class {{ strategy }}(IStrategy):
|
||||
Performance Note: For the best performance be frugal on the number of indicators
|
||||
you are using. Let uncomment only the indicator you are using in your strategies
|
||||
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
|
||||
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
|
||||
:param dataframe: Dataframe with data from the exchange
|
||||
:param metadata: Additional information, like the currently traded pair
|
||||
:return: a Dataframe with all mandatory indicators for the strategies
|
||||
"""
|
||||
@@ -137,3 +137,4 @@ class {{ strategy }}(IStrategy):
|
||||
),
|
||||
'sell'] = 1
|
||||
return dataframe
|
||||
{{ additional_methods | indent(4) }}
|
||||
|
@@ -78,6 +78,9 @@ class SampleHyperOpt(IHyperOpt):
|
||||
dataframe['close'], dataframe['sar']
|
||||
))
|
||||
|
||||
# Check that volume is not 0
|
||||
conditions.append(dataframe['volume'] > 0)
|
||||
|
||||
if conditions:
|
||||
dataframe.loc[
|
||||
reduce(lambda x, y: x & y, conditions),
|
||||
@@ -138,6 +141,9 @@ class SampleHyperOpt(IHyperOpt):
|
||||
dataframe['sar'], dataframe['close']
|
||||
))
|
||||
|
||||
# Check that volume is not 0
|
||||
conditions.append(dataframe['volume'] > 0)
|
||||
|
||||
if conditions:
|
||||
dataframe.loc[
|
||||
reduce(lambda x, y: x & y, conditions),
|
||||
|
@@ -93,6 +93,9 @@ class AdvancedSampleHyperOpt(IHyperOpt):
|
||||
dataframe['close'], dataframe['sar']
|
||||
))
|
||||
|
||||
# Check that volume is not 0
|
||||
conditions.append(dataframe['volume'] > 0)
|
||||
|
||||
if conditions:
|
||||
dataframe.loc[
|
||||
reduce(lambda x, y: x & y, conditions),
|
||||
@@ -153,6 +156,9 @@ class AdvancedSampleHyperOpt(IHyperOpt):
|
||||
dataframe['sar'], dataframe['close']
|
||||
))
|
||||
|
||||
# Check that volume is not 0
|
||||
conditions.append(dataframe['volume'] > 0)
|
||||
|
||||
if conditions:
|
||||
dataframe.loc[
|
||||
reduce(lambda x, y: x & y, conditions),
|
||||
|
@@ -116,7 +116,7 @@ class SampleStrategy(IStrategy):
|
||||
Performance Note: For the best performance be frugal on the number of indicators
|
||||
you are using. Let uncomment only the indicator you are using in your strategies
|
||||
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
|
||||
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
|
||||
:param dataframe: Dataframe with data from the exchange
|
||||
:param metadata: Additional information, like the currently traded pair
|
||||
:return: a Dataframe with all mandatory indicators for the strategies
|
||||
"""
|
||||
|
@@ -0,0 +1,40 @@
|
||||
|
||||
def check_buy_timeout(self, pair: str, trade: 'Trade', order: dict, **kwargs) -> bool:
|
||||
"""
|
||||
Check buy timeout function callback.
|
||||
This method can be used to override the buy-timeout.
|
||||
It is called whenever a limit buy order has been created,
|
||||
and is not yet fully filled.
|
||||
Configuration options in `unfilledtimeout` will be verified before this,
|
||||
so ensure to set these timeouts high enough.
|
||||
|
||||
For full documentation please go to https://www.freqtrade.io/en/latest/strategy-advanced/
|
||||
|
||||
When not implemented by a strategy, this simply returns False.
|
||||
:param pair: Pair the trade is for
|
||||
:param trade: trade object.
|
||||
:param order: Order dictionary as returned from CCXT.
|
||||
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
|
||||
:return bool: When True is returned, then the buy-order is cancelled.
|
||||
"""
|
||||
return False
|
||||
|
||||
def check_sell_timeout(self, pair: str, trade: 'Trade', order: dict, **kwargs) -> bool:
|
||||
"""
|
||||
Check sell timeout function callback.
|
||||
This method can be used to override the sell-timeout.
|
||||
It is called whenever a limit sell order has been created,
|
||||
and is not yet fully filled.
|
||||
Configuration options in `unfilledtimeout` will be verified before this,
|
||||
so ensure to set these timeouts high enough.
|
||||
|
||||
For full documentation please go to https://www.freqtrade.io/en/latest/strategy-advanced/
|
||||
|
||||
When not implemented by a strategy, this simply returns False.
|
||||
:param pair: Pair the trade is for
|
||||
:param trade: trade object.
|
||||
:param order: Order dictionary as returned from CCXT.
|
||||
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
|
||||
:return bool: When True is returned, then the sell-order is cancelled.
|
||||
"""
|
||||
return False
|
8
freqtrade/typing.py
Normal file
8
freqtrade/typing.py
Normal file
@@ -0,0 +1,8 @@
|
||||
"""
|
||||
Common Freqtrade types
|
||||
"""
|
||||
|
||||
from typing import List, Tuple
|
||||
|
||||
# List of pairs with their timeframes
|
||||
ListPairsWithTimeframes = List[Tuple[str, str]]
|
@@ -37,9 +37,7 @@ class Worker:
|
||||
self._heartbeat_msg: float = 0
|
||||
|
||||
# Tell systemd that we completed initialization phase
|
||||
if self._sd_notify:
|
||||
logger.debug("sd_notify: READY=1")
|
||||
self._sd_notify.notify("READY=1")
|
||||
self._notify("READY=1")
|
||||
|
||||
def _init(self, reconfig: bool) -> None:
|
||||
"""
|
||||
@@ -60,6 +58,15 @@ class Worker:
|
||||
self._sd_notify = sdnotify.SystemdNotifier() if \
|
||||
self._config.get('internals', {}).get('sd_notify', False) else None
|
||||
|
||||
def _notify(self, message: str) -> None:
|
||||
"""
|
||||
Removes the need to verify in all occurances if sd_notify is enabled
|
||||
:param message: Message to send to systemd if it's enabled.
|
||||
"""
|
||||
if self._sd_notify:
|
||||
logger.debug(f"sd_notify: {message}")
|
||||
self._sd_notify.notify(message)
|
||||
|
||||
def run(self) -> None:
|
||||
state = None
|
||||
while True:
|
||||
@@ -89,17 +96,13 @@ class Worker:
|
||||
|
||||
if state == State.STOPPED:
|
||||
# Ping systemd watchdog before sleeping in the stopped state
|
||||
if self._sd_notify:
|
||||
logger.debug("sd_notify: WATCHDOG=1\\nSTATUS=State: STOPPED.")
|
||||
self._sd_notify.notify("WATCHDOG=1\nSTATUS=State: STOPPED.")
|
||||
self._notify("WATCHDOG=1\nSTATUS=State: STOPPED.")
|
||||
|
||||
self._throttle(func=self._process_stopped, throttle_secs=self._throttle_secs)
|
||||
|
||||
elif state == State.RUNNING:
|
||||
# Ping systemd watchdog before throttling
|
||||
if self._sd_notify:
|
||||
logger.debug("sd_notify: WATCHDOG=1\\nSTATUS=State: RUNNING.")
|
||||
self._sd_notify.notify("WATCHDOG=1\nSTATUS=State: RUNNING.")
|
||||
self._notify("WATCHDOG=1\nSTATUS=State: RUNNING.")
|
||||
|
||||
self._throttle(func=self._process_running, throttle_secs=self._throttle_secs)
|
||||
|
||||
@@ -131,8 +134,7 @@ class Worker:
|
||||
return result
|
||||
|
||||
def _process_stopped(self) -> None:
|
||||
# Maybe do here something in the future...
|
||||
pass
|
||||
self.freqtrade.process_stopped()
|
||||
|
||||
def _process_running(self) -> None:
|
||||
try:
|
||||
@@ -155,9 +157,7 @@ class Worker:
|
||||
replaces it with the new instance
|
||||
"""
|
||||
# Tell systemd that we initiated reconfiguration
|
||||
if self._sd_notify:
|
||||
logger.debug("sd_notify: RELOADING=1")
|
||||
self._sd_notify.notify("RELOADING=1")
|
||||
self._notify("RELOADING=1")
|
||||
|
||||
# Clean up current freqtrade modules
|
||||
self.freqtrade.cleanup()
|
||||
@@ -168,15 +168,11 @@ class Worker:
|
||||
self.freqtrade.notify_status('config reloaded')
|
||||
|
||||
# Tell systemd that we completed reconfiguration
|
||||
if self._sd_notify:
|
||||
logger.debug("sd_notify: READY=1")
|
||||
self._sd_notify.notify("READY=1")
|
||||
self._notify("READY=1")
|
||||
|
||||
def exit(self) -> None:
|
||||
# Tell systemd that we are exiting now
|
||||
if self._sd_notify:
|
||||
logger.debug("sd_notify: STOPPING=1")
|
||||
self._sd_notify.notify("STOPPING=1")
|
||||
self._notify("STOPPING=1")
|
||||
|
||||
if self.freqtrade:
|
||||
self.freqtrade.notify_status('process died')
|
||||
|
Reference in New Issue
Block a user