ad multiclass target names encoder to ints
This commit is contained in:
parent
4241bff32a
commit
76fbec0c17
@ -79,7 +79,8 @@
|
|||||||
"test_size": 0.33,
|
"test_size": 0.33,
|
||||||
"random_state": 1
|
"random_state": 1
|
||||||
},
|
},
|
||||||
"model_training_parameters": {}
|
"model_training_parameters": {},
|
||||||
|
"multiclass_target_names": ["down", "neither", "up"]
|
||||||
},
|
},
|
||||||
"bot_name": "",
|
"bot_name": "",
|
||||||
"force_entry_enable": true,
|
"force_entry_enable": true,
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
import logging
|
import logging
|
||||||
|
|
||||||
from typing import Any, Dict, Tuple
|
from typing import Any, Dict, Tuple, List
|
||||||
import numpy.typing as npt
|
import numpy.typing as npt
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@ -9,6 +9,7 @@ import torch
|
|||||||
from pandas import DataFrame
|
from pandas import DataFrame
|
||||||
from torch.nn import functional as F
|
from torch.nn import functional as F
|
||||||
|
|
||||||
|
from freqtrade.exceptions import OperationalException
|
||||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||||
|
|
||||||
from freqtrade.freqai.base_models.BasePyTorchModel import BasePyTorchModel
|
from freqtrade.freqai.base_models.BasePyTorchModel import BasePyTorchModel
|
||||||
@ -23,13 +24,23 @@ class PyTorchClassifierMultiTarget(BasePyTorchModel):
|
|||||||
|
|
||||||
def __init__(self, **kwargs):
|
def __init__(self, **kwargs):
|
||||||
super().__init__(**kwargs)
|
super().__init__(**kwargs)
|
||||||
# todo move to config
|
self.multiclass_names = self.freqai_info["multiclass_target_names"]
|
||||||
self.labels = ['0.0', '1.0', '2.0']
|
if not self.multiclass_names:
|
||||||
self.n_hidden = 1024
|
raise OperationalException(
|
||||||
self.max_iters = 100
|
"Missing 'multiclass_names' in freqai_info,"
|
||||||
self.batch_size = 64
|
" multi class pytorch model requires predefined list of"
|
||||||
self.learning_rate = 3e-4
|
" class names matching the strategy being used"
|
||||||
self.eval_iters = 10
|
)
|
||||||
|
|
||||||
|
self.class_name_to_index = {s: i for i, s in enumerate(self.multiclass_names)}
|
||||||
|
self.index_to_class_name = {i: s for i, s in enumerate(self.multiclass_names)}
|
||||||
|
|
||||||
|
model_training_parameters = self.freqai_info["model_training_parameters"]
|
||||||
|
self.n_hidden = model_training_parameters.get("n_hidden", 1024)
|
||||||
|
self.max_iters = model_training_parameters.get("max_iters", 100)
|
||||||
|
self.batch_size = model_training_parameters.get("batch_size", 64)
|
||||||
|
self.learning_rate = model_training_parameters.get("learning_rate", 3e-4)
|
||||||
|
self.eval_iters = model_training_parameters.get("eval_iters", 10)
|
||||||
|
|
||||||
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
|
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
|
||||||
"""
|
"""
|
||||||
@ -37,12 +48,13 @@ class PyTorchClassifierMultiTarget(BasePyTorchModel):
|
|||||||
:param tensor_dictionary: the dictionary constructed by DataHandler to hold
|
:param tensor_dictionary: the dictionary constructed by DataHandler to hold
|
||||||
all the training and test data/labels.
|
all the training and test data/labels.
|
||||||
"""
|
"""
|
||||||
n_features = data_dictionary['train_features'].shape[-1]
|
|
||||||
|
|
||||||
|
self.encode_classes_name(data_dictionary, dk)
|
||||||
|
n_features = data_dictionary['train_features'].shape[-1]
|
||||||
model = PyTorchMLPModel(
|
model = PyTorchMLPModel(
|
||||||
input_dim=n_features,
|
input_dim=n_features,
|
||||||
hidden_dim=self.n_hidden,
|
hidden_dim=self.n_hidden,
|
||||||
output_dim=len(self.labels)
|
output_dim=len(self.multiclass_names)
|
||||||
)
|
)
|
||||||
model.to(self.device)
|
model.to(self.device)
|
||||||
optimizer = torch.optim.AdamW(model.parameters(), lr=self.learning_rate)
|
optimizer = torch.optim.AdamW(model.parameters(), lr=self.learning_rate)
|
||||||
@ -87,9 +99,34 @@ class PyTorchClassifierMultiTarget(BasePyTorchModel):
|
|||||||
|
|
||||||
logits = self.model.model(dk.data_dictionary["prediction_features"])
|
logits = self.model.model(dk.data_dictionary["prediction_features"])
|
||||||
probs = F.softmax(logits, dim=-1)
|
probs = F.softmax(logits, dim=-1)
|
||||||
label_ints = torch.argmax(probs, dim=-1)
|
predicted_classes = torch.argmax(probs, dim=-1)
|
||||||
|
predicted_classes_str = self.decode_classes_name(predicted_classes)
|
||||||
|
|
||||||
pred_df_prob = DataFrame(probs.detach().numpy(), columns=self.labels)
|
pred_df_prob = DataFrame(probs.detach().numpy(), columns=self.multiclass_names)
|
||||||
pred_df = DataFrame(label_ints, columns=dk.label_list).astype(float).astype(str)
|
pred_df = DataFrame(predicted_classes_str, columns=[dk.label_list[0]])
|
||||||
pred_df = pd.concat([pred_df, pred_df_prob], axis=1)
|
pred_df = pd.concat([pred_df, pred_df_prob], axis=1)
|
||||||
return (pred_df, dk.do_predict)
|
return (pred_df, dk.do_predict)
|
||||||
|
|
||||||
|
def encode_classes_name(self, data_dictionary: Dict[str, pd.DataFrame], dk: FreqaiDataKitchen):
|
||||||
|
"""
|
||||||
|
encode class name str -> int
|
||||||
|
assuming first column of *_labels data frame to contain class names
|
||||||
|
"""
|
||||||
|
target_column_name = dk.label_list[0]
|
||||||
|
for split in ["train", "test"]:
|
||||||
|
label_df = data_dictionary[f"{split}_labels"]
|
||||||
|
self.assert_valid_class_names(label_df[target_column_name])
|
||||||
|
label_df[target_column_name] = list(
|
||||||
|
map(lambda x: self.class_name_to_index[x], label_df[target_column_name])
|
||||||
|
)
|
||||||
|
|
||||||
|
def assert_valid_class_names(self, labels: pd.Series):
|
||||||
|
non_defined_labels = set(labels) - set(self.multiclass_names)
|
||||||
|
if len(non_defined_labels) != 0:
|
||||||
|
raise OperationalException(
|
||||||
|
f"Found non defined labels {non_defined_labels} ",
|
||||||
|
f"expecting labels {self.multiclass_names}"
|
||||||
|
)
|
||||||
|
|
||||||
|
def decode_classes_name(self, classes: List[int]) -> List[str]:
|
||||||
|
return list(map(lambda x: self.index_to_class_name[x], classes))
|
Loading…
Reference in New Issue
Block a user