automatically detect maximum required data based on user fed indicators (to avoid NaNs in dataset for rolling indicators), add new config parameter for backtesting to let users increase their startup_candles to accommodate high timeframe indicators, add docs to explain all. Add new feature for automatic indicator duplication according to user defined intervals (exhibited in example strat and configs now).
This commit is contained in:
@@ -1,4 +1,5 @@
|
||||
# import contextlib
|
||||
import datetime
|
||||
import gc
|
||||
import logging
|
||||
# import sys
|
||||
@@ -149,8 +150,15 @@ class IFreqaiModel(ABC):
|
||||
# self.training_timerange_timerange = tr_train
|
||||
dataframe_train = dh.slice_dataframe(tr_train, dataframe)
|
||||
dataframe_backtest = dh.slice_dataframe(tr_backtest, dataframe)
|
||||
logger.info("training %s for %s", metadata["pair"], tr_train)
|
||||
|
||||
trained_timestamp = tr_train # TimeRange.parse_timerange(tr_train)
|
||||
tr_train_startts_str = datetime.datetime.utcfromtimestamp(
|
||||
tr_train.startts).strftime('%Y-%m-%d %H:%M:%S')
|
||||
tr_train_stopts_str = datetime.datetime.utcfromtimestamp(
|
||||
tr_train.stopts).strftime('%Y-%m-%d %H:%M:%S')
|
||||
logger.info("Training %s", metadata["pair"])
|
||||
logger.info(f'Training {tr_train_startts_str} to {tr_train_stopts_str}')
|
||||
|
||||
dh.data_path = Path(dh.full_path /
|
||||
str("sub-train" + "-" + metadata['pair'].split("/")[0] +
|
||||
str(int(trained_timestamp.stopts))))
|
||||
@@ -218,16 +226,19 @@ class IFreqaiModel(ABC):
|
||||
model_filename=model_filename)
|
||||
|
||||
(self.retrain,
|
||||
new_trained_timerange) = dh.check_if_new_training_required(trained_timestamp)
|
||||
new_trained_timerange,
|
||||
data_load_timerange) = dh.check_if_new_training_required(trained_timestamp)
|
||||
dh.set_paths(metadata, new_trained_timerange.stopts)
|
||||
|
||||
if self.retrain or not file_exists:
|
||||
if coin_first:
|
||||
self.train_model_in_series(new_trained_timerange, metadata, strategy, dh)
|
||||
self.train_model_in_series(new_trained_timerange, metadata,
|
||||
strategy, dh, data_load_timerange)
|
||||
else:
|
||||
self.training_on_separate_thread = True # acts like a lock
|
||||
self.retrain_model_on_separate_thread(new_trained_timerange,
|
||||
metadata, strategy, dh)
|
||||
metadata, strategy,
|
||||
dh, data_load_timerange)
|
||||
|
||||
elif self.training_on_separate_thread and not self.follow_mode:
|
||||
logger.info("FreqAI training a new model on background thread.")
|
||||
@@ -342,11 +353,12 @@ class IFreqaiModel(ABC):
|
||||
|
||||
@threaded
|
||||
def retrain_model_on_separate_thread(self, new_trained_timerange: TimeRange, metadata: dict,
|
||||
strategy: IStrategy, dh: FreqaiDataKitchen):
|
||||
strategy: IStrategy, dh: FreqaiDataKitchen,
|
||||
data_load_timerange: TimeRange):
|
||||
|
||||
# with nostdout():
|
||||
dh.download_new_data_for_retraining(new_trained_timerange, metadata, strategy)
|
||||
corr_dataframes, base_dataframes = dh.load_pairs_histories(new_trained_timerange,
|
||||
dh.download_new_data_for_retraining(data_load_timerange, metadata, strategy)
|
||||
corr_dataframes, base_dataframes = dh.load_pairs_histories(data_load_timerange,
|
||||
metadata)
|
||||
|
||||
# protecting from common benign errors associated with grabbing new data from exchange:
|
||||
@@ -355,6 +367,8 @@ class IFreqaiModel(ABC):
|
||||
corr_dataframes,
|
||||
base_dataframes,
|
||||
metadata)
|
||||
unfiltered_dataframe = dh.slice_dataframe(new_trained_timerange, unfiltered_dataframe)
|
||||
|
||||
except Exception:
|
||||
logger.warning('Mismatched sizes encountered in strategy')
|
||||
# self.data_drawer.pair_to_end_of_training_queue(metadata['pair'])
|
||||
@@ -390,10 +404,11 @@ class IFreqaiModel(ABC):
|
||||
return
|
||||
|
||||
def train_model_in_series(self, new_trained_timerange: TimeRange, metadata: dict,
|
||||
strategy: IStrategy, dh: FreqaiDataKitchen):
|
||||
strategy: IStrategy, dh: FreqaiDataKitchen,
|
||||
data_load_timerange: TimeRange):
|
||||
|
||||
dh.download_new_data_for_retraining(new_trained_timerange, metadata, strategy)
|
||||
corr_dataframes, base_dataframes = dh.load_pairs_histories(new_trained_timerange,
|
||||
dh.download_new_data_for_retraining(data_load_timerange, metadata, strategy)
|
||||
corr_dataframes, base_dataframes = dh.load_pairs_histories(data_load_timerange,
|
||||
metadata)
|
||||
|
||||
unfiltered_dataframe = dh.use_strategy_to_populate_indicators(strategy,
|
||||
@@ -401,6 +416,8 @@ class IFreqaiModel(ABC):
|
||||
base_dataframes,
|
||||
metadata)
|
||||
|
||||
unfiltered_dataframe = dh.slice_dataframe(new_trained_timerange, unfiltered_dataframe)
|
||||
|
||||
model = self.train(unfiltered_dataframe, metadata, dh)
|
||||
|
||||
self.data_drawer.pair_dict[metadata['pair']][
|
||||
|
Reference in New Issue
Block a user