Merge pull request #5281 from rokups/rk/helpers

A decorator for easy creation of informative pairs
This commit is contained in:
Matthias 2021-09-18 15:30:20 +02:00 committed by GitHub
commit 73f044d1e2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
15 changed files with 539 additions and 20 deletions

View File

@ -288,6 +288,12 @@ Stoploss values returned from `custom_stoploss()` always specify a percentage re
The helper function [`stoploss_from_open()`](strategy-customization.md#stoploss_from_open) can be used to convert from an open price relative stop, to a current price relative stop which can be returned from `custom_stoploss()`. The helper function [`stoploss_from_open()`](strategy-customization.md#stoploss_from_open) can be used to convert from an open price relative stop, to a current price relative stop which can be returned from `custom_stoploss()`.
### Calculating stoploss percentage from absolute price
Stoploss values returned from `custom_stoploss()` always specify a percentage relative to `current_rate`. In order to set a stoploss at specified absolute price level, we need to use `stop_rate` to calculate what percentage relative to the `current_rate` will give you the same result as if the percentage was specified from the open price.
The helper function [`stoploss_from_absolute()`](strategy-customization.md#stoploss_from_absolute) can be used to convert from an absolute price, to a current price relative stop which can be returned from `custom_stoploss()`.
#### Stepped stoploss #### Stepped stoploss
Instead of continuously trailing behind the current price, this example sets fixed stoploss price levels based on the current profit. Instead of continuously trailing behind the current price, this example sets fixed stoploss price levels based on the current profit.

View File

@ -639,6 +639,170 @@ Stoploss values returned from `custom_stoploss` must specify a percentage relati
Full examples can be found in the [Custom stoploss](strategy-advanced.md#custom-stoploss) section of the Documentation. Full examples can be found in the [Custom stoploss](strategy-advanced.md#custom-stoploss) section of the Documentation.
!!! Note
Providing invalid input to `stoploss_from_open()` may produce "CustomStoploss function did not return valid stoploss" warnings.
This may happen if `current_profit` parameter is below specified `open_relative_stop`. Such situations may arise when closing trade
is blocked by `confirm_trade_exit()` method. Warnings can be solved by never blocking stop loss sells by checking `sell_reason` in
`confirm_trade_exit()`, or by using `return stoploss_from_open(...) or 1` idiom, which will request to not change stop loss when
`current_profit < open_relative_stop`.
### *stoploss_from_absolute()*
In some situations it may be confusing to deal with stops relative to current rate. Instead, you may define a stoploss level using an absolute price.
??? Example "Returning a stoploss using absolute price from the custom stoploss function"
If we want to trail a stop price at 2xATR below current proce we can call `stoploss_from_absolute(current_rate - (candle['atr'] * 2), current_rate)`.
``` python
from datetime import datetime
from freqtrade.persistence import Trade
from freqtrade.strategy import IStrategy, stoploss_from_open
class AwesomeStrategy(IStrategy):
use_custom_stoploss = True
def populate_indicators_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['atr'] = ta.ATR(dataframe, timeperiod=14)
return dataframe
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
current_rate: float, current_profit: float, **kwargs) -> float:
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
candle = dataframe.iloc[-1].squeeze()
return stoploss_from_absolute(current_rate - (candle['atr'] * 2), current_rate)
```
### *@informative()*
``` python
def informative(timeframe: str, asset: str = '',
fmt: Optional[Union[str, Callable[[KwArg(str)], str]]] = None,
ffill: bool = True) -> Callable[[PopulateIndicators], PopulateIndicators]:
"""
A decorator for populate_indicators_Nn(self, dataframe, metadata), allowing these functions to
define informative indicators.
Example usage:
@informative('1h')
def populate_indicators_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
return dataframe
:param timeframe: Informative timeframe. Must always be equal or higher than strategy timeframe.
:param asset: Informative asset, for example BTC, BTC/USDT, ETH/BTC. Do not specify to use
current pair.
:param fmt: Column format (str) or column formatter (callable(name, asset, timeframe)). When not
specified, defaults to:
* {base}_{quote}_{column}_{timeframe} if asset is specified.
* {column}_{timeframe} if asset is not specified.
Format string supports these format variables:
* {asset} - full name of the asset, for example 'BTC/USDT'.
* {base} - base currency in lower case, for example 'eth'.
* {BASE} - same as {base}, except in upper case.
* {quote} - quote currency in lower case, for example 'usdt'.
* {QUOTE} - same as {quote}, except in upper case.
* {column} - name of dataframe column.
* {timeframe} - timeframe of informative dataframe.
:param ffill: ffill dataframe after merging informative pair.
"""
```
In most common case it is possible to easily define informative pairs by using a decorator. All decorated `populate_indicators_*` methods run in isolation,
not having access to data from other informative pairs, in the end all informative dataframes are merged and passed to main `populate_indicators()` method.
When hyperopting, use of hyperoptable parameter `.value` attribute is not supported. Please use `.range` attribute. See [optimizing an indicator parameter](hyperopt.md#optimizing-an-indicator-parameter)
for more information.
??? Example "Fast and easy way to define informative pairs"
Most of the time we do not need power and flexibility offered by `merge_informative_pair()`, therefore we can use a decorator to quickly define informative pairs.
``` python
from datetime import datetime
from freqtrade.persistence import Trade
from freqtrade.strategy import IStrategy, informative
class AwesomeStrategy(IStrategy):
# This method is not required.
# def informative_pairs(self): ...
# Define informative upper timeframe for each pair. Decorators can be stacked on same
# method. Available in populate_indicators as 'rsi_30m' and 'rsi_1h'.
@informative('30m')
@informative('1h')
def populate_indicators_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
return dataframe
# Define BTC/STAKE informative pair. Available in populate_indicators and other methods as
# 'btc_rsi_1h'. Current stake currency should be specified as {stake} format variable
# instead of hardcoding actual stake currency. Available in populate_indicators and other
# methods as 'btc_usdt_rsi_1h' (when stake currency is USDT).
@informative('1h', 'BTC/{stake}')
def populate_indicators_btc_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
return dataframe
# Define BTC/ETH informative pair. You must specify quote currency if it is different from
# stake currency. Available in populate_indicators and other methods as 'eth_btc_rsi_1h'.
@informative('1h', 'ETH/BTC')
def populate_indicators_eth_btc_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
return dataframe
# Define BTC/STAKE informative pair. A custom formatter may be specified for formatting
# column names. A callable `fmt(**kwargs) -> str` may be specified, to implement custom
# formatting. Available in populate_indicators and other methods as 'rsi_upper'.
@informative('1h', 'BTC/{stake}', '{column}')
def populate_indicators_btc_1h_2(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi_upper'] = ta.RSI(dataframe, timeperiod=14)
return dataframe
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# Strategy timeframe indicators for current pair.
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
# Informative pairs are available in this method.
dataframe['rsi_less'] = dataframe['rsi'] < dataframe['rsi_1h']
return dataframe
```
!!! Note
Do not use `@informative` decorator if you need to use data of one informative pair when generating another informative pair. Instead, define informative pairs
manually as described [in the DataProvider section](#complete-data-provider-sample).
!!! Note
Use string formatting when accessing informative dataframes of other pairs. This will allow easily changing stake currency in config without having to adjust strategy code.
``` python
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
stake = self.config['stake_currency']
dataframe.loc[
(
(dataframe[f'btc_{stake}_rsi_1h'] < 35)
&
(dataframe['volume'] > 0)
),
['buy', 'buy_tag']] = (1, 'buy_signal_rsi')
return dataframe
```
Alternatively column renaming may be used to remove stake currency from column names: `@informative('1h', 'BTC/{stake}', fmt='{base}_{column}_{timeframe}')`.
!!! Warning "Duplicate method names"
Methods tagged with `@informative()` decorator must always have unique names! Re-using same name (for example when copy-pasting already defined informative method)
will overwrite previously defined method and not produce any errors due to limitations of Python programming language. In such cases you will find that indicators
created in earlier-defined methods are not available in the dataframe. Carefully review method names and make sure they are unique!
!!! Warning
When using a legacy hyperopt implementation informative pairs defined with a decorator will not be executed. Please update your strategy if necessary.
## Additional data (Wallets) ## Additional data (Wallets)

View File

@ -119,7 +119,7 @@ class Edge:
) )
# Download informative pairs too # Download informative pairs too
res = defaultdict(list) res = defaultdict(list)
for p, t in self.strategy.informative_pairs(): for p, t in self.strategy.gather_informative_pairs():
res[t].append(p) res[t].append(p)
for timeframe, inf_pairs in res.items(): for timeframe, inf_pairs in res.items():
timerange_startup = deepcopy(self._timerange) timerange_startup = deepcopy(self._timerange)

View File

@ -83,10 +83,10 @@ class FreqtradeBot(LoggingMixin):
self.dataprovider = DataProvider(self.config, self.exchange, self.pairlists) self.dataprovider = DataProvider(self.config, self.exchange, self.pairlists)
# Attach Dataprovider to Strategy baseclass # Attach Dataprovider to strategy instance
IStrategy.dp = self.dataprovider self.strategy.dp = self.dataprovider
# Attach Wallets to Strategy baseclass # Attach Wallets to strategy instance
IStrategy.wallets = self.wallets self.strategy.wallets = self.wallets
# Initializing Edge only if enabled # Initializing Edge only if enabled
self.edge = Edge(self.config, self.exchange, self.strategy) if \ self.edge = Edge(self.config, self.exchange, self.strategy) if \
@ -160,7 +160,7 @@ class FreqtradeBot(LoggingMixin):
# Refreshing candles # Refreshing candles
self.dataprovider.refresh(self.pairlists.create_pair_list(self.active_pair_whitelist), self.dataprovider.refresh(self.pairlists.create_pair_list(self.active_pair_whitelist),
self.strategy.informative_pairs()) self.strategy.gather_informative_pairs())
strategy_safe_wrapper(self.strategy.bot_loop_start, supress_error=True)() strategy_safe_wrapper(self.strategy.bot_loop_start, supress_error=True)()

View File

@ -154,7 +154,7 @@ class Backtesting:
self.strategy: IStrategy = strategy self.strategy: IStrategy = strategy
strategy.dp = self.dataprovider strategy.dp = self.dataprovider
# Attach Wallets to Strategy baseclass # Attach Wallets to Strategy baseclass
IStrategy.wallets = self.wallets strategy.wallets = self.wallets
# Set stoploss_on_exchange to false for backtesting, # Set stoploss_on_exchange to false for backtesting,
# since a "perfect" stoploss-sell is assumed anyway # since a "perfect" stoploss-sell is assumed anyway
# And the regular "stoploss" function would not apply to that case # And the regular "stoploss" function would not apply to that case

View File

@ -8,6 +8,7 @@ from typing import Any, Dict
from freqtrade import constants from freqtrade import constants
from freqtrade.configuration import TimeRange, validate_config_consistency from freqtrade.configuration import TimeRange, validate_config_consistency
from freqtrade.data.dataprovider import DataProvider
from freqtrade.edge import Edge from freqtrade.edge import Edge
from freqtrade.optimize.optimize_reports import generate_edge_table from freqtrade.optimize.optimize_reports import generate_edge_table
from freqtrade.resolvers import ExchangeResolver, StrategyResolver from freqtrade.resolvers import ExchangeResolver, StrategyResolver
@ -33,6 +34,7 @@ class EdgeCli:
self.config['stake_amount'] = constants.UNLIMITED_STAKE_AMOUNT self.config['stake_amount'] = constants.UNLIMITED_STAKE_AMOUNT
self.exchange = ExchangeResolver.load_exchange(self.config['exchange']['name'], self.config) self.exchange = ExchangeResolver.load_exchange(self.config['exchange']['name'], self.config)
self.strategy = StrategyResolver.load_strategy(self.config) self.strategy = StrategyResolver.load_strategy(self.config)
self.strategy.dp = DataProvider(config, None)
validate_config_consistency(self.config) validate_config_consistency(self.config)

View File

@ -3,5 +3,7 @@ from freqtrade.exchange import (timeframe_to_minutes, timeframe_to_msecs, timefr
timeframe_to_prev_date, timeframe_to_seconds) timeframe_to_prev_date, timeframe_to_seconds)
from freqtrade.strategy.hyper import (BooleanParameter, CategoricalParameter, DecimalParameter, from freqtrade.strategy.hyper import (BooleanParameter, CategoricalParameter, DecimalParameter,
IntParameter, RealParameter) IntParameter, RealParameter)
from freqtrade.strategy.informative_decorator import informative
from freqtrade.strategy.interface import IStrategy from freqtrade.strategy.interface import IStrategy
from freqtrade.strategy.strategy_helper import merge_informative_pair, stoploss_from_open from freqtrade.strategy.strategy_helper import (merge_informative_pair, stoploss_from_absolute,
stoploss_from_open)

View File

@ -0,0 +1,128 @@
from typing import Any, Callable, NamedTuple, Optional, Union
from pandas import DataFrame
from freqtrade.exceptions import OperationalException
from freqtrade.strategy.strategy_helper import merge_informative_pair
PopulateIndicators = Callable[[Any, DataFrame, dict], DataFrame]
class InformativeData(NamedTuple):
asset: Optional[str]
timeframe: str
fmt: Union[str, Callable[[Any], str], None]
ffill: bool
def informative(timeframe: str, asset: str = '',
fmt: Optional[Union[str, Callable[[Any], str]]] = None,
ffill: bool = True) -> Callable[[PopulateIndicators], PopulateIndicators]:
"""
A decorator for populate_indicators_Nn(self, dataframe, metadata), allowing these functions to
define informative indicators.
Example usage:
@informative('1h')
def populate_indicators_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
return dataframe
:param timeframe: Informative timeframe. Must always be equal or higher than strategy timeframe.
:param asset: Informative asset, for example BTC, BTC/USDT, ETH/BTC. Do not specify to use
current pair.
:param fmt: Column format (str) or column formatter (callable(name, asset, timeframe)). When not
specified, defaults to:
* {base}_{quote}_{column}_{timeframe} if asset is specified.
* {column}_{timeframe} if asset is not specified.
Format string supports these format variables:
* {asset} - full name of the asset, for example 'BTC/USDT'.
* {base} - base currency in lower case, for example 'eth'.
* {BASE} - same as {base}, except in upper case.
* {quote} - quote currency in lower case, for example 'usdt'.
* {QUOTE} - same as {quote}, except in upper case.
* {column} - name of dataframe column.
* {timeframe} - timeframe of informative dataframe.
:param ffill: ffill dataframe after merging informative pair.
"""
_asset = asset
_timeframe = timeframe
_fmt = fmt
_ffill = ffill
def decorator(fn: PopulateIndicators):
informative_pairs = getattr(fn, '_ft_informative', [])
informative_pairs.append(InformativeData(_asset, _timeframe, _fmt, _ffill))
setattr(fn, '_ft_informative', informative_pairs)
return fn
return decorator
def _format_pair_name(config, pair: str) -> str:
return pair.format(stake_currency=config['stake_currency'],
stake=config['stake_currency']).upper()
def _create_and_merge_informative_pair(strategy, dataframe: DataFrame, metadata: dict,
inf_data: InformativeData,
populate_indicators: PopulateIndicators):
asset = inf_data.asset or ''
timeframe = inf_data.timeframe
fmt = inf_data.fmt
config = strategy.config
if asset:
# Insert stake currency if needed.
asset = _format_pair_name(config, asset)
else:
# Not specifying an asset will define informative dataframe for current pair.
asset = metadata['pair']
if '/' in asset:
base, quote = asset.split('/')
else:
# When futures are supported this may need reevaluation.
# base, quote = asset, ''
raise OperationalException('Not implemented.')
# Default format. This optimizes for the common case: informative pairs using same stake
# currency. When quote currency matches stake currency, column name will omit base currency.
# This allows easily reconfiguring strategy to use different base currency. In a rare case
# where it is desired to keep quote currency in column name at all times user should specify
# fmt='{base}_{quote}_{column}_{timeframe}' format or similar.
if not fmt:
fmt = '{column}_{timeframe}' # Informatives of current pair
if inf_data.asset:
fmt = '{base}_{quote}_' + fmt # Informatives of other pairs
inf_metadata = {'pair': asset, 'timeframe': timeframe}
inf_dataframe = strategy.dp.get_pair_dataframe(asset, timeframe)
inf_dataframe = populate_indicators(strategy, inf_dataframe, inf_metadata)
formatter: Any = None
if callable(fmt):
formatter = fmt # A custom user-specified formatter function.
else:
formatter = fmt.format # A default string formatter.
fmt_args = {
'BASE': base.upper(),
'QUOTE': quote.upper(),
'base': base.lower(),
'quote': quote.lower(),
'asset': asset,
'timeframe': timeframe,
}
inf_dataframe.rename(columns=lambda column: formatter(column=column, **fmt_args),
inplace=True)
date_column = formatter(column='date', **fmt_args)
if date_column in dataframe.columns:
raise OperationalException(f'Duplicate column name {date_column} exists in '
f'dataframe! Ensure column names are unique!')
dataframe = merge_informative_pair(dataframe, inf_dataframe, strategy.timeframe, timeframe,
ffill=inf_data.ffill, append_timeframe=False,
date_column=date_column)
return dataframe

View File

@ -19,6 +19,9 @@ from freqtrade.exchange import timeframe_to_minutes, timeframe_to_seconds
from freqtrade.exchange.exchange import timeframe_to_next_date from freqtrade.exchange.exchange import timeframe_to_next_date
from freqtrade.persistence import PairLocks, Trade from freqtrade.persistence import PairLocks, Trade
from freqtrade.strategy.hyper import HyperStrategyMixin from freqtrade.strategy.hyper import HyperStrategyMixin
from freqtrade.strategy.informative_decorator import (InformativeData, PopulateIndicators,
_create_and_merge_informative_pair,
_format_pair_name)
from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper
from freqtrade.wallets import Wallets from freqtrade.wallets import Wallets
@ -118,7 +121,7 @@ class IStrategy(ABC, HyperStrategyMixin):
# Class level variables (intentional) containing # Class level variables (intentional) containing
# the dataprovider (dp) (access to other candles, historic data, ...) # the dataprovider (dp) (access to other candles, historic data, ...)
# and wallets - access to the current balance. # and wallets - access to the current balance.
dp: Optional[DataProvider] = None dp: Optional[DataProvider]
wallets: Optional[Wallets] = None wallets: Optional[Wallets] = None
# Filled from configuration # Filled from configuration
stake_currency: str stake_currency: str
@ -134,6 +137,24 @@ class IStrategy(ABC, HyperStrategyMixin):
self._last_candle_seen_per_pair: Dict[str, datetime] = {} self._last_candle_seen_per_pair: Dict[str, datetime] = {}
super().__init__(config) super().__init__(config)
# Gather informative pairs from @informative-decorated methods.
self._ft_informative: List[Tuple[InformativeData, PopulateIndicators]] = []
for attr_name in dir(self.__class__):
cls_method = getattr(self.__class__, attr_name)
if not callable(cls_method):
continue
informative_data_list = getattr(cls_method, '_ft_informative', None)
if not isinstance(informative_data_list, list):
# Type check is required because mocker would return a mock object that evaluates to
# True, confusing this code.
continue
strategy_timeframe_minutes = timeframe_to_minutes(self.timeframe)
for informative_data in informative_data_list:
if timeframe_to_minutes(informative_data.timeframe) < strategy_timeframe_minutes:
raise OperationalException('Informative timeframe must be equal or higher than '
'strategy timeframe!')
self._ft_informative.append((informative_data, cls_method))
@abstractmethod @abstractmethod
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame: def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
""" """
@ -377,6 +398,23 @@ class IStrategy(ABC, HyperStrategyMixin):
# END - Intended to be overridden by strategy # END - Intended to be overridden by strategy
### ###
def gather_informative_pairs(self) -> ListPairsWithTimeframes:
"""
Internal method which gathers all informative pairs (user or automatically defined).
"""
informative_pairs = self.informative_pairs()
for inf_data, _ in self._ft_informative:
if inf_data.asset:
pair_tf = (_format_pair_name(self.config, inf_data.asset), inf_data.timeframe)
informative_pairs.append(pair_tf)
else:
if not self.dp:
raise OperationalException('@informative decorator with unspecified asset '
'requires DataProvider instance.')
for pair in self.dp.current_whitelist():
informative_pairs.append((pair, inf_data.timeframe))
return list(set(informative_pairs))
def get_strategy_name(self) -> str: def get_strategy_name(self) -> str:
""" """
Returns strategy class name Returns strategy class name
@ -793,6 +831,12 @@ class IStrategy(ABC, HyperStrategyMixin):
:return: a Dataframe with all mandatory indicators for the strategies :return: a Dataframe with all mandatory indicators for the strategies
""" """
logger.debug(f"Populating indicators for pair {metadata.get('pair')}.") logger.debug(f"Populating indicators for pair {metadata.get('pair')}.")
# call populate_indicators_Nm() which were tagged with @informative decorator.
for inf_data, populate_fn in self._ft_informative:
dataframe = _create_and_merge_informative_pair(
self, dataframe, metadata, inf_data, populate_fn)
if self._populate_fun_len == 2: if self._populate_fun_len == 2:
warnings.warn("deprecated - check out the Sample strategy to see " warnings.warn("deprecated - check out the Sample strategy to see "
"the current function headers!", DeprecationWarning) "the current function headers!", DeprecationWarning)

View File

@ -4,7 +4,9 @@ from freqtrade.exchange import timeframe_to_minutes
def merge_informative_pair(dataframe: pd.DataFrame, informative: pd.DataFrame, def merge_informative_pair(dataframe: pd.DataFrame, informative: pd.DataFrame,
timeframe: str, timeframe_inf: str, ffill: bool = True) -> pd.DataFrame: timeframe: str, timeframe_inf: str, ffill: bool = True,
append_timeframe: bool = True,
date_column: str = 'date') -> pd.DataFrame:
""" """
Correctly merge informative samples to the original dataframe, avoiding lookahead bias. Correctly merge informative samples to the original dataframe, avoiding lookahead bias.
@ -24,6 +26,8 @@ def merge_informative_pair(dataframe: pd.DataFrame, informative: pd.DataFrame,
:param timeframe: Timeframe of the original pair sample. :param timeframe: Timeframe of the original pair sample.
:param timeframe_inf: Timeframe of the informative pair sample. :param timeframe_inf: Timeframe of the informative pair sample.
:param ffill: Forwardfill missing values - optional but usually required :param ffill: Forwardfill missing values - optional but usually required
:param append_timeframe: Rename columns by appending timeframe.
:param date_column: A custom date column name.
:return: Merged dataframe :return: Merged dataframe
:raise: ValueError if the secondary timeframe is shorter than the dataframe timeframe :raise: ValueError if the secondary timeframe is shorter than the dataframe timeframe
""" """
@ -32,25 +36,29 @@ def merge_informative_pair(dataframe: pd.DataFrame, informative: pd.DataFrame,
minutes = timeframe_to_minutes(timeframe) minutes = timeframe_to_minutes(timeframe)
if minutes == minutes_inf: if minutes == minutes_inf:
# No need to forwardshift if the timeframes are identical # No need to forwardshift if the timeframes are identical
informative['date_merge'] = informative["date"] informative['date_merge'] = informative[date_column]
elif minutes < minutes_inf: elif minutes < minutes_inf:
# Subtract "small" timeframe so merging is not delayed by 1 small candle # Subtract "small" timeframe so merging is not delayed by 1 small candle
# Detailed explanation in https://github.com/freqtrade/freqtrade/issues/4073 # Detailed explanation in https://github.com/freqtrade/freqtrade/issues/4073
informative['date_merge'] = ( informative['date_merge'] = (
informative["date"] + pd.to_timedelta(minutes_inf, 'm') - pd.to_timedelta(minutes, 'm') informative[date_column] + pd.to_timedelta(minutes_inf, 'm') -
pd.to_timedelta(minutes, 'm')
) )
else: else:
raise ValueError("Tried to merge a faster timeframe to a slower timeframe." raise ValueError("Tried to merge a faster timeframe to a slower timeframe."
"This would create new rows, and can throw off your regular indicators.") "This would create new rows, and can throw off your regular indicators.")
# Rename columns to be unique # Rename columns to be unique
date_merge = 'date_merge'
if append_timeframe:
date_merge = f'date_merge_{timeframe_inf}'
informative.columns = [f"{col}_{timeframe_inf}" for col in informative.columns] informative.columns = [f"{col}_{timeframe_inf}" for col in informative.columns]
# Combine the 2 dataframes # Combine the 2 dataframes
# all indicators on the informative sample MUST be calculated before this point # all indicators on the informative sample MUST be calculated before this point
dataframe = pd.merge(dataframe, informative, left_on='date', dataframe = pd.merge(dataframe, informative, left_on='date',
right_on=f'date_merge_{timeframe_inf}', how='left') right_on=date_merge, how='left')
dataframe = dataframe.drop(f'date_merge_{timeframe_inf}', axis=1) dataframe = dataframe.drop(date_merge, axis=1)
if ffill: if ffill:
dataframe = dataframe.ffill() dataframe = dataframe.ffill()
@ -83,3 +91,28 @@ def stoploss_from_open(open_relative_stop: float, current_profit: float) -> floa
# negative stoploss values indicate the requested stop price is higher than the current price # negative stoploss values indicate the requested stop price is higher than the current price
return max(stoploss, 0.0) return max(stoploss, 0.0)
def stoploss_from_absolute(stop_rate: float, current_rate: float) -> float:
"""
Given current price and desired stop price, return a stop loss value that is relative to current
price.
The requested stop can be positive for a stop above the open price, or negative for
a stop below the open price. The return value is always >= 0.
Returns 0 if the resulting stop price would be above the current price.
:param stop_rate: Stop loss price.
:param current_rate: Current asset price.
:return: Positive stop loss value relative to current price
"""
# formula is undefined for current_rate 0, return maximum value
if current_rate == 0:
return 1
stoploss = 1 - (stop_rate / current_rate)
# negative stoploss values indicate the requested stop price is higher than the current price
return max(stoploss, 0.0)

View File

@ -1218,6 +1218,7 @@ def test_api_strategies(botclient):
assert_response(rc) assert_response(rc)
assert rc.json() == {'strategies': [ assert rc.json() == {'strategies': [
'HyperoptableStrategy', 'HyperoptableStrategy',
'InformativeDecoratorTest',
'StrategyTestV2', 'StrategyTestV2',
'TestStrategyLegacyV1' 'TestStrategyLegacyV1'
]} ]}

View File

@ -0,0 +1,75 @@
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
from pandas import DataFrame
from freqtrade.strategy import informative, merge_informative_pair
from freqtrade.strategy.interface import IStrategy
class InformativeDecoratorTest(IStrategy):
"""
Strategy used by tests freqtrade bot.
Please do not modify this strategy, it's intended for internal use only.
Please look at the SampleStrategy in the user_data/strategy directory
or strategy repository https://github.com/freqtrade/freqtrade-strategies
for samples and inspiration.
"""
INTERFACE_VERSION = 2
stoploss = -0.10
timeframe = '5m'
startup_candle_count: int = 20
def informative_pairs(self):
return [('BTC/USDT', '5m')]
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['buy'] = 0
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['sell'] = 0
return dataframe
# Decorator stacking test.
@informative('30m')
@informative('1h')
def populate_indicators_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi'] = 14
return dataframe
# Simple informative test.
@informative('1h', 'BTC/{stake}')
def populate_indicators_btc_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi'] = 14
return dataframe
# Quote currency different from stake currency test.
@informative('1h', 'ETH/BTC')
def populate_indicators_eth_btc_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi'] = 14
return dataframe
# Formatting test.
@informative('30m', 'BTC/{stake}', '{column}_{BASE}_{QUOTE}_{base}_{quote}_{asset}_{timeframe}')
def populate_indicators_btc_1h_2(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi'] = 14
return dataframe
# Custom formatter test
@informative('30m', 'ETH/{stake}', fmt=lambda column, **kwargs: column + '_from_callable')
def populate_indicators_eth_30m(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe['rsi'] = 14
return dataframe
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# Strategy timeframe indicators for current pair.
dataframe['rsi'] = 14
# Informative pairs are available in this method.
dataframe['rsi_less'] = dataframe['rsi'] < dataframe['rsi_1h']
# Mixing manual informative pairs with decorators.
informative = self.dp.get_pair_dataframe('BTC/USDT', '5m')
informative['rsi'] = 14
dataframe = merge_informative_pair(dataframe, informative, self.timeframe, '5m', ffill=True)
return dataframe

View File

@ -607,7 +607,7 @@ def test_is_informative_pairs_callback(default_conf):
strategy = StrategyResolver.load_strategy(default_conf) strategy = StrategyResolver.load_strategy(default_conf)
# Should return empty # Should return empty
# Uses fallback to base implementation # Uses fallback to base implementation
assert [] == strategy.informative_pairs() assert [] == strategy.gather_informative_pairs()
@pytest.mark.parametrize('error', [ @pytest.mark.parametrize('error', [

View File

@ -4,7 +4,9 @@ import numpy as np
import pandas as pd import pandas as pd
import pytest import pytest
from freqtrade.strategy import merge_informative_pair, stoploss_from_open, timeframe_to_minutes from freqtrade.data.dataprovider import DataProvider
from freqtrade.strategy import (merge_informative_pair, stoploss_from_absolute, stoploss_from_open,
timeframe_to_minutes)
def generate_test_data(timeframe: str, size: int): def generate_test_data(timeframe: str, size: int):
@ -132,3 +134,65 @@ def test_stoploss_from_open():
assert stoploss == 0 assert stoploss == 0
else: else:
assert isclose(stop_price, expected_stop_price, rel_tol=0.00001) assert isclose(stop_price, expected_stop_price, rel_tol=0.00001)
def test_stoploss_from_absolute():
assert stoploss_from_absolute(90, 100) == 1 - (90 / 100)
assert stoploss_from_absolute(100, 100) == 0
assert stoploss_from_absolute(110, 100) == 0
assert stoploss_from_absolute(100, 0) == 1
assert stoploss_from_absolute(0, 100) == 1
def test_informative_decorator(mocker, default_conf):
test_data_5m = generate_test_data('5m', 40)
test_data_30m = generate_test_data('30m', 40)
test_data_1h = generate_test_data('1h', 40)
data = {
('XRP/USDT', '5m'): test_data_5m,
('XRP/USDT', '30m'): test_data_30m,
('XRP/USDT', '1h'): test_data_1h,
('LTC/USDT', '5m'): test_data_5m,
('LTC/USDT', '30m'): test_data_30m,
('LTC/USDT', '1h'): test_data_1h,
('BTC/USDT', '30m'): test_data_30m,
('BTC/USDT', '5m'): test_data_5m,
('BTC/USDT', '1h'): test_data_1h,
('ETH/USDT', '1h'): test_data_1h,
('ETH/USDT', '30m'): test_data_30m,
('ETH/BTC', '1h'): test_data_1h,
}
from .strats.informative_decorator_strategy import InformativeDecoratorTest
default_conf['stake_currency'] = 'USDT'
strategy = InformativeDecoratorTest(config=default_conf)
strategy.dp = DataProvider({}, None, None)
mocker.patch.object(strategy.dp, 'current_whitelist', return_value=[
'XRP/USDT', 'LTC/USDT', 'BTC/USDT'
])
assert len(strategy._ft_informative) == 6 # Equal to number of decorators used
informative_pairs = [('XRP/USDT', '1h'), ('LTC/USDT', '1h'), ('XRP/USDT', '30m'),
('LTC/USDT', '30m'), ('BTC/USDT', '1h'), ('BTC/USDT', '30m'),
('BTC/USDT', '5m'), ('ETH/BTC', '1h'), ('ETH/USDT', '30m')]
for inf_pair in informative_pairs:
assert inf_pair in strategy.gather_informative_pairs()
def test_historic_ohlcv(pair, timeframe):
return data[(pair, timeframe or strategy.timeframe)].copy()
mocker.patch('freqtrade.data.dataprovider.DataProvider.historic_ohlcv',
side_effect=test_historic_ohlcv)
analyzed = strategy.advise_all_indicators(
{p: data[(p, strategy.timeframe)] for p in ('XRP/USDT', 'LTC/USDT')})
expected_columns = [
'rsi_1h', 'rsi_30m', # Stacked informative decorators
'btc_usdt_rsi_1h', # BTC 1h informative
'rsi_BTC_USDT_btc_usdt_BTC/USDT_30m', # Column formatting
'rsi_from_callable', # Custom column formatter
'eth_btc_rsi_1h', # Quote currency not matching stake currency
'rsi', 'rsi_less', # Non-informative columns
'rsi_5m', # Manual informative dataframe
]
for _, dataframe in analyzed.items():
for col in expected_columns:
assert col in dataframe.columns

View File

@ -35,7 +35,7 @@ def test_search_all_strategies_no_failed():
directory = Path(__file__).parent / "strats" directory = Path(__file__).parent / "strats"
strategies = StrategyResolver.search_all_objects(directory, enum_failed=False) strategies = StrategyResolver.search_all_objects(directory, enum_failed=False)
assert isinstance(strategies, list) assert isinstance(strategies, list)
assert len(strategies) == 3 assert len(strategies) == 4
assert isinstance(strategies[0], dict) assert isinstance(strategies[0], dict)
@ -43,10 +43,10 @@ def test_search_all_strategies_with_failed():
directory = Path(__file__).parent / "strats" directory = Path(__file__).parent / "strats"
strategies = StrategyResolver.search_all_objects(directory, enum_failed=True) strategies = StrategyResolver.search_all_objects(directory, enum_failed=True)
assert isinstance(strategies, list) assert isinstance(strategies, list)
assert len(strategies) == 4 assert len(strategies) == 5
# with enum_failed=True search_all_objects() shall find 2 good strategies # with enum_failed=True search_all_objects() shall find 2 good strategies
# and 1 which fails to load # and 1 which fails to load
assert len([x for x in strategies if x['class'] is not None]) == 3 assert len([x for x in strategies if x['class'] is not None]) == 4
assert len([x for x in strategies if x['class'] is None]) == 1 assert len([x for x in strategies if x['class'] is None]) == 1