Merge pull request #5281 from rokups/rk/helpers
A decorator for easy creation of informative pairs
This commit is contained in:
		| @@ -288,6 +288,12 @@ Stoploss values returned from `custom_stoploss()` always specify a percentage re | |||||||
|  |  | ||||||
| The helper function [`stoploss_from_open()`](strategy-customization.md#stoploss_from_open) can be used to convert from an open price relative stop, to a current price relative stop which can be returned from `custom_stoploss()`. | The helper function [`stoploss_from_open()`](strategy-customization.md#stoploss_from_open) can be used to convert from an open price relative stop, to a current price relative stop which can be returned from `custom_stoploss()`. | ||||||
|  |  | ||||||
|  | ### Calculating stoploss percentage from absolute price | ||||||
|  |  | ||||||
|  | Stoploss values returned from `custom_stoploss()` always specify a percentage relative to `current_rate`. In order to set a stoploss at specified absolute price level, we need to use `stop_rate` to calculate what percentage relative to the `current_rate` will give you the same result as if the percentage was specified from the open price. | ||||||
|  |  | ||||||
|  | The helper function [`stoploss_from_absolute()`](strategy-customization.md#stoploss_from_absolute) can be used to convert from an absolute price, to a current price relative stop which can be returned from `custom_stoploss()`. | ||||||
|  |  | ||||||
| #### Stepped stoploss | #### Stepped stoploss | ||||||
|  |  | ||||||
| Instead of continuously trailing behind the current price, this example sets fixed stoploss price levels based on the current profit. | Instead of continuously trailing behind the current price, this example sets fixed stoploss price levels based on the current profit. | ||||||
|   | |||||||
| @@ -639,6 +639,170 @@ Stoploss values returned from `custom_stoploss` must specify a percentage relati | |||||||
|  |  | ||||||
|     Full examples can be found in the [Custom stoploss](strategy-advanced.md#custom-stoploss) section of the Documentation. |     Full examples can be found in the [Custom stoploss](strategy-advanced.md#custom-stoploss) section of the Documentation. | ||||||
|  |  | ||||||
|  | !!! Note | ||||||
|  |     Providing invalid input to `stoploss_from_open()` may produce "CustomStoploss function did not return valid stoploss" warnings. | ||||||
|  |     This may happen if `current_profit` parameter is below specified `open_relative_stop`. Such situations may arise when closing trade | ||||||
|  |     is blocked by `confirm_trade_exit()` method. Warnings can be solved by never blocking stop loss sells by checking `sell_reason` in | ||||||
|  |     `confirm_trade_exit()`, or by using `return stoploss_from_open(...) or 1` idiom, which will request to not change stop loss when | ||||||
|  |     `current_profit < open_relative_stop`. | ||||||
|  |  | ||||||
|  | ### *stoploss_from_absolute()* | ||||||
|  |  | ||||||
|  | In some situations it may be confusing to deal with stops relative to current rate. Instead, you may define a stoploss level using an absolute price. | ||||||
|  |  | ||||||
|  | ??? Example "Returning a stoploss using absolute price from the custom stoploss function" | ||||||
|  |  | ||||||
|  |     If we want to trail a stop price at 2xATR below current proce we can call `stoploss_from_absolute(current_rate - (candle['atr'] * 2), current_rate)`. | ||||||
|  |  | ||||||
|  |     ``` python | ||||||
|  |  | ||||||
|  |     from datetime import datetime | ||||||
|  |     from freqtrade.persistence import Trade | ||||||
|  |     from freqtrade.strategy import IStrategy, stoploss_from_open | ||||||
|  |  | ||||||
|  |     class AwesomeStrategy(IStrategy): | ||||||
|  |  | ||||||
|  |         use_custom_stoploss = True | ||||||
|  |  | ||||||
|  |         def populate_indicators_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame: | ||||||
|  |             dataframe['atr'] = ta.ATR(dataframe, timeperiod=14) | ||||||
|  |             return dataframe | ||||||
|  |  | ||||||
|  |         def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime, | ||||||
|  |                             current_rate: float, current_profit: float, **kwargs) -> float: | ||||||
|  |             dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe) | ||||||
|  |             candle = dataframe.iloc[-1].squeeze() | ||||||
|  |             return stoploss_from_absolute(current_rate - (candle['atr'] * 2), current_rate) | ||||||
|  |  | ||||||
|  |     ``` | ||||||
|  |  | ||||||
|  | ### *@informative()* | ||||||
|  |  | ||||||
|  | ``` python | ||||||
|  | def informative(timeframe: str, asset: str = '', | ||||||
|  |                 fmt: Optional[Union[str, Callable[[KwArg(str)], str]]] = None, | ||||||
|  |                 ffill: bool = True) -> Callable[[PopulateIndicators], PopulateIndicators]: | ||||||
|  |     """ | ||||||
|  |     A decorator for populate_indicators_Nn(self, dataframe, metadata), allowing these functions to | ||||||
|  |     define informative indicators. | ||||||
|  |  | ||||||
|  |     Example usage: | ||||||
|  |  | ||||||
|  |         @informative('1h') | ||||||
|  |         def populate_indicators_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame: | ||||||
|  |             dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14) | ||||||
|  |             return dataframe | ||||||
|  |  | ||||||
|  |     :param timeframe: Informative timeframe. Must always be equal or higher than strategy timeframe. | ||||||
|  |     :param asset: Informative asset, for example BTC, BTC/USDT, ETH/BTC. Do not specify to use | ||||||
|  |     current pair. | ||||||
|  |     :param fmt: Column format (str) or column formatter (callable(name, asset, timeframe)). When not | ||||||
|  |     specified, defaults to: | ||||||
|  |     * {base}_{quote}_{column}_{timeframe} if asset is specified.  | ||||||
|  |     * {column}_{timeframe} if asset is not specified. | ||||||
|  |     Format string supports these format variables: | ||||||
|  |     * {asset} - full name of the asset, for example 'BTC/USDT'. | ||||||
|  |     * {base} - base currency in lower case, for example 'eth'. | ||||||
|  |     * {BASE} - same as {base}, except in upper case. | ||||||
|  |     * {quote} - quote currency in lower case, for example 'usdt'. | ||||||
|  |     * {QUOTE} - same as {quote}, except in upper case. | ||||||
|  |     * {column} - name of dataframe column. | ||||||
|  |     * {timeframe} - timeframe of informative dataframe. | ||||||
|  |     :param ffill: ffill dataframe after merging informative pair. | ||||||
|  |     """ | ||||||
|  | ``` | ||||||
|  |  | ||||||
|  | In most common case it is possible to easily define informative pairs by using a decorator. All decorated `populate_indicators_*` methods run in isolation, | ||||||
|  | not having access to data from other informative pairs, in the end all informative dataframes are merged and passed to main `populate_indicators()` method. | ||||||
|  | When hyperopting, use of hyperoptable parameter `.value` attribute is not supported. Please use `.range` attribute. See [optimizing an indicator parameter](hyperopt.md#optimizing-an-indicator-parameter) | ||||||
|  | for more information. | ||||||
|  |  | ||||||
|  | ??? Example "Fast and easy way to define informative pairs" | ||||||
|  |  | ||||||
|  |     Most of the time we do not need power and flexibility offered by `merge_informative_pair()`, therefore we can use a decorator to quickly define informative pairs. | ||||||
|  |  | ||||||
|  |     ``` python | ||||||
|  |  | ||||||
|  |     from datetime import datetime | ||||||
|  |     from freqtrade.persistence import Trade | ||||||
|  |     from freqtrade.strategy import IStrategy, informative | ||||||
|  |  | ||||||
|  |     class AwesomeStrategy(IStrategy): | ||||||
|  |          | ||||||
|  |         # This method is not required.  | ||||||
|  |         # def informative_pairs(self): ... | ||||||
|  |  | ||||||
|  |         # Define informative upper timeframe for each pair. Decorators can be stacked on same  | ||||||
|  |         # method. Available in populate_indicators as 'rsi_30m' and 'rsi_1h'. | ||||||
|  |         @informative('30m') | ||||||
|  |         @informative('1h') | ||||||
|  |         def populate_indicators_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame: | ||||||
|  |             dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14) | ||||||
|  |             return dataframe | ||||||
|  |  | ||||||
|  |         # Define BTC/STAKE informative pair. Available in populate_indicators and other methods as | ||||||
|  |         # 'btc_rsi_1h'. Current stake currency should be specified as {stake} format variable  | ||||||
|  |         # instead of hardcoding actual stake currency. Available in populate_indicators and other  | ||||||
|  |         # methods as 'btc_usdt_rsi_1h' (when stake currency is USDT). | ||||||
|  |         @informative('1h', 'BTC/{stake}') | ||||||
|  |         def populate_indicators_btc_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame: | ||||||
|  |             dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14) | ||||||
|  |             return dataframe | ||||||
|  |  | ||||||
|  |         # Define BTC/ETH informative pair. You must specify quote currency if it is different from | ||||||
|  |         # stake currency. Available in populate_indicators and other methods as 'eth_btc_rsi_1h'. | ||||||
|  |         @informative('1h', 'ETH/BTC') | ||||||
|  |         def populate_indicators_eth_btc_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame: | ||||||
|  |             dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14) | ||||||
|  |             return dataframe | ||||||
|  |      | ||||||
|  |         # Define BTC/STAKE informative pair. A custom formatter may be specified for formatting | ||||||
|  |         # column names. A callable `fmt(**kwargs) -> str` may be specified, to implement custom | ||||||
|  |         # formatting. Available in populate_indicators and other methods as 'rsi_upper'. | ||||||
|  |         @informative('1h', 'BTC/{stake}', '{column}') | ||||||
|  |         def populate_indicators_btc_1h_2(self, dataframe: DataFrame, metadata: dict) -> DataFrame: | ||||||
|  |             dataframe['rsi_upper'] = ta.RSI(dataframe, timeperiod=14) | ||||||
|  |             return dataframe | ||||||
|  |      | ||||||
|  |         def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame: | ||||||
|  |             # Strategy timeframe indicators for current pair. | ||||||
|  |             dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14) | ||||||
|  |             # Informative pairs are available in this method. | ||||||
|  |             dataframe['rsi_less'] = dataframe['rsi'] < dataframe['rsi_1h'] | ||||||
|  |             return dataframe | ||||||
|  |  | ||||||
|  |     ``` | ||||||
|  |  | ||||||
|  | !!! Note | ||||||
|  |     Do not use `@informative` decorator if you need to use data of one informative pair when generating another informative pair. Instead, define informative pairs | ||||||
|  |     manually as described [in the DataProvider section](#complete-data-provider-sample). | ||||||
|  |  | ||||||
|  | !!! Note | ||||||
|  |     Use string formatting when accessing informative dataframes of other pairs. This will allow easily changing stake currency in config without having to adjust strategy code. | ||||||
|  |  | ||||||
|  |     ``` python | ||||||
|  |     def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame: | ||||||
|  |         stake = self.config['stake_currency'] | ||||||
|  |         dataframe.loc[ | ||||||
|  |             ( | ||||||
|  |                 (dataframe[f'btc_{stake}_rsi_1h'] < 35) | ||||||
|  |                 & | ||||||
|  |                 (dataframe['volume'] > 0) | ||||||
|  |             ), | ||||||
|  |             ['buy', 'buy_tag']] = (1, 'buy_signal_rsi') | ||||||
|  |      | ||||||
|  |         return dataframe | ||||||
|  |     ``` | ||||||
|  |  | ||||||
|  |     Alternatively column renaming may be used to remove stake currency from column names: `@informative('1h', 'BTC/{stake}', fmt='{base}_{column}_{timeframe}')`. | ||||||
|  |  | ||||||
|  | !!! Warning "Duplicate method names" | ||||||
|  |     Methods tagged with `@informative()` decorator must always have unique names! Re-using same name (for example when copy-pasting already defined informative method) | ||||||
|  |     will overwrite previously defined method and not produce any errors due to limitations of Python programming language. In such cases you will find that indicators | ||||||
|  |     created in earlier-defined methods are not available in the dataframe. Carefully review method names and make sure they are unique! | ||||||
|  |  | ||||||
|  | !!! Warning | ||||||
|  |     When using a legacy hyperopt implementation informative pairs defined with a decorator will not be executed. Please update your strategy if necessary. | ||||||
|  |  | ||||||
| ## Additional data (Wallets) | ## Additional data (Wallets) | ||||||
|  |  | ||||||
|   | |||||||
| @@ -119,7 +119,7 @@ class Edge: | |||||||
|             ) |             ) | ||||||
|             # Download informative pairs too |             # Download informative pairs too | ||||||
|             res = defaultdict(list) |             res = defaultdict(list) | ||||||
|             for p, t in self.strategy.informative_pairs(): |             for p, t in self.strategy.gather_informative_pairs(): | ||||||
|                 res[t].append(p) |                 res[t].append(p) | ||||||
|             for timeframe, inf_pairs in res.items(): |             for timeframe, inf_pairs in res.items(): | ||||||
|                 timerange_startup = deepcopy(self._timerange) |                 timerange_startup = deepcopy(self._timerange) | ||||||
|   | |||||||
| @@ -83,10 +83,10 @@ class FreqtradeBot(LoggingMixin): | |||||||
|  |  | ||||||
|         self.dataprovider = DataProvider(self.config, self.exchange, self.pairlists) |         self.dataprovider = DataProvider(self.config, self.exchange, self.pairlists) | ||||||
|  |  | ||||||
|         # Attach Dataprovider to Strategy baseclass |         # Attach Dataprovider to strategy instance | ||||||
|         IStrategy.dp = self.dataprovider |         self.strategy.dp = self.dataprovider | ||||||
|         # Attach Wallets to Strategy baseclass |         # Attach Wallets to strategy instance | ||||||
|         IStrategy.wallets = self.wallets |         self.strategy.wallets = self.wallets | ||||||
|  |  | ||||||
|         # Initializing Edge only if enabled |         # Initializing Edge only if enabled | ||||||
|         self.edge = Edge(self.config, self.exchange, self.strategy) if \ |         self.edge = Edge(self.config, self.exchange, self.strategy) if \ | ||||||
| @@ -160,7 +160,7 @@ class FreqtradeBot(LoggingMixin): | |||||||
|  |  | ||||||
|         # Refreshing candles |         # Refreshing candles | ||||||
|         self.dataprovider.refresh(self.pairlists.create_pair_list(self.active_pair_whitelist), |         self.dataprovider.refresh(self.pairlists.create_pair_list(self.active_pair_whitelist), | ||||||
|                                   self.strategy.informative_pairs()) |                                   self.strategy.gather_informative_pairs()) | ||||||
|  |  | ||||||
|         strategy_safe_wrapper(self.strategy.bot_loop_start, supress_error=True)() |         strategy_safe_wrapper(self.strategy.bot_loop_start, supress_error=True)() | ||||||
|  |  | ||||||
|   | |||||||
| @@ -154,7 +154,7 @@ class Backtesting: | |||||||
|         self.strategy: IStrategy = strategy |         self.strategy: IStrategy = strategy | ||||||
|         strategy.dp = self.dataprovider |         strategy.dp = self.dataprovider | ||||||
|         # Attach Wallets to Strategy baseclass |         # Attach Wallets to Strategy baseclass | ||||||
|         IStrategy.wallets = self.wallets |         strategy.wallets = self.wallets | ||||||
|         # Set stoploss_on_exchange to false for backtesting, |         # Set stoploss_on_exchange to false for backtesting, | ||||||
|         # since a "perfect" stoploss-sell is assumed anyway |         # since a "perfect" stoploss-sell is assumed anyway | ||||||
|         # And the regular "stoploss" function would not apply to that case |         # And the regular "stoploss" function would not apply to that case | ||||||
|   | |||||||
| @@ -8,6 +8,7 @@ from typing import Any, Dict | |||||||
|  |  | ||||||
| from freqtrade import constants | from freqtrade import constants | ||||||
| from freqtrade.configuration import TimeRange, validate_config_consistency | from freqtrade.configuration import TimeRange, validate_config_consistency | ||||||
|  | from freqtrade.data.dataprovider import DataProvider | ||||||
| from freqtrade.edge import Edge | from freqtrade.edge import Edge | ||||||
| from freqtrade.optimize.optimize_reports import generate_edge_table | from freqtrade.optimize.optimize_reports import generate_edge_table | ||||||
| from freqtrade.resolvers import ExchangeResolver, StrategyResolver | from freqtrade.resolvers import ExchangeResolver, StrategyResolver | ||||||
| @@ -33,6 +34,7 @@ class EdgeCli: | |||||||
|         self.config['stake_amount'] = constants.UNLIMITED_STAKE_AMOUNT |         self.config['stake_amount'] = constants.UNLIMITED_STAKE_AMOUNT | ||||||
|         self.exchange = ExchangeResolver.load_exchange(self.config['exchange']['name'], self.config) |         self.exchange = ExchangeResolver.load_exchange(self.config['exchange']['name'], self.config) | ||||||
|         self.strategy = StrategyResolver.load_strategy(self.config) |         self.strategy = StrategyResolver.load_strategy(self.config) | ||||||
|  |         self.strategy.dp = DataProvider(config, None) | ||||||
|  |  | ||||||
|         validate_config_consistency(self.config) |         validate_config_consistency(self.config) | ||||||
|  |  | ||||||
|   | |||||||
| @@ -3,5 +3,7 @@ from freqtrade.exchange import (timeframe_to_minutes, timeframe_to_msecs, timefr | |||||||
|                                 timeframe_to_prev_date, timeframe_to_seconds) |                                 timeframe_to_prev_date, timeframe_to_seconds) | ||||||
| from freqtrade.strategy.hyper import (BooleanParameter, CategoricalParameter, DecimalParameter, | from freqtrade.strategy.hyper import (BooleanParameter, CategoricalParameter, DecimalParameter, | ||||||
|                                       IntParameter, RealParameter) |                                       IntParameter, RealParameter) | ||||||
|  | from freqtrade.strategy.informative_decorator import informative | ||||||
| from freqtrade.strategy.interface import IStrategy | from freqtrade.strategy.interface import IStrategy | ||||||
| from freqtrade.strategy.strategy_helper import merge_informative_pair, stoploss_from_open | from freqtrade.strategy.strategy_helper import (merge_informative_pair, stoploss_from_absolute, | ||||||
|  |                                                 stoploss_from_open) | ||||||
|   | |||||||
							
								
								
									
										128
									
								
								freqtrade/strategy/informative_decorator.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										128
									
								
								freqtrade/strategy/informative_decorator.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,128 @@ | |||||||
|  | from typing import Any, Callable, NamedTuple, Optional, Union | ||||||
|  |  | ||||||
|  | from pandas import DataFrame | ||||||
|  |  | ||||||
|  | from freqtrade.exceptions import OperationalException | ||||||
|  | from freqtrade.strategy.strategy_helper import merge_informative_pair | ||||||
|  |  | ||||||
|  |  | ||||||
|  | PopulateIndicators = Callable[[Any, DataFrame, dict], DataFrame] | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class InformativeData(NamedTuple): | ||||||
|  |     asset: Optional[str] | ||||||
|  |     timeframe: str | ||||||
|  |     fmt: Union[str, Callable[[Any], str], None] | ||||||
|  |     ffill: bool | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def informative(timeframe: str, asset: str = '', | ||||||
|  |                 fmt: Optional[Union[str, Callable[[Any], str]]] = None, | ||||||
|  |                 ffill: bool = True) -> Callable[[PopulateIndicators], PopulateIndicators]: | ||||||
|  |     """ | ||||||
|  |     A decorator for populate_indicators_Nn(self, dataframe, metadata), allowing these functions to | ||||||
|  |     define informative indicators. | ||||||
|  |  | ||||||
|  |     Example usage: | ||||||
|  |  | ||||||
|  |         @informative('1h') | ||||||
|  |         def populate_indicators_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame: | ||||||
|  |             dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14) | ||||||
|  |             return dataframe | ||||||
|  |  | ||||||
|  |     :param timeframe: Informative timeframe. Must always be equal or higher than strategy timeframe. | ||||||
|  |     :param asset: Informative asset, for example BTC, BTC/USDT, ETH/BTC. Do not specify to use | ||||||
|  |     current pair. | ||||||
|  |     :param fmt: Column format (str) or column formatter (callable(name, asset, timeframe)). When not | ||||||
|  |     specified, defaults to: | ||||||
|  |     * {base}_{quote}_{column}_{timeframe} if asset is specified. | ||||||
|  |     * {column}_{timeframe} if asset is not specified. | ||||||
|  |     Format string supports these format variables: | ||||||
|  |     * {asset} - full name of the asset, for example 'BTC/USDT'. | ||||||
|  |     * {base} - base currency in lower case, for example 'eth'. | ||||||
|  |     * {BASE} - same as {base}, except in upper case. | ||||||
|  |     * {quote} - quote currency in lower case, for example 'usdt'. | ||||||
|  |     * {QUOTE} - same as {quote}, except in upper case. | ||||||
|  |     * {column} - name of dataframe column. | ||||||
|  |     * {timeframe} - timeframe of informative dataframe. | ||||||
|  |     :param ffill: ffill dataframe after merging informative pair. | ||||||
|  |     """ | ||||||
|  |     _asset = asset | ||||||
|  |     _timeframe = timeframe | ||||||
|  |     _fmt = fmt | ||||||
|  |     _ffill = ffill | ||||||
|  |  | ||||||
|  |     def decorator(fn: PopulateIndicators): | ||||||
|  |         informative_pairs = getattr(fn, '_ft_informative', []) | ||||||
|  |         informative_pairs.append(InformativeData(_asset, _timeframe, _fmt, _ffill)) | ||||||
|  |         setattr(fn, '_ft_informative', informative_pairs) | ||||||
|  |         return fn | ||||||
|  |     return decorator | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def _format_pair_name(config, pair: str) -> str: | ||||||
|  |     return pair.format(stake_currency=config['stake_currency'], | ||||||
|  |                        stake=config['stake_currency']).upper() | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def _create_and_merge_informative_pair(strategy, dataframe: DataFrame, metadata: dict, | ||||||
|  |                                        inf_data: InformativeData, | ||||||
|  |                                        populate_indicators: PopulateIndicators): | ||||||
|  |     asset = inf_data.asset or '' | ||||||
|  |     timeframe = inf_data.timeframe | ||||||
|  |     fmt = inf_data.fmt | ||||||
|  |     config = strategy.config | ||||||
|  |  | ||||||
|  |     if asset: | ||||||
|  |         # Insert stake currency if needed. | ||||||
|  |         asset = _format_pair_name(config, asset) | ||||||
|  |     else: | ||||||
|  |         # Not specifying an asset will define informative dataframe for current pair. | ||||||
|  |         asset = metadata['pair'] | ||||||
|  |  | ||||||
|  |     if '/' in asset: | ||||||
|  |         base, quote = asset.split('/') | ||||||
|  |     else: | ||||||
|  |         # When futures are supported this may need reevaluation. | ||||||
|  |         # base, quote = asset, '' | ||||||
|  |         raise OperationalException('Not implemented.') | ||||||
|  |  | ||||||
|  |     # Default format. This optimizes for the common case: informative pairs using same stake | ||||||
|  |     # currency. When quote currency matches stake currency, column name will omit base currency. | ||||||
|  |     # This allows easily reconfiguring strategy to use different base currency. In a rare case | ||||||
|  |     # where it is desired to keep quote currency in column name at all times user should specify | ||||||
|  |     # fmt='{base}_{quote}_{column}_{timeframe}' format or similar. | ||||||
|  |     if not fmt: | ||||||
|  |         fmt = '{column}_{timeframe}'                # Informatives of current pair | ||||||
|  |         if inf_data.asset: | ||||||
|  |             fmt = '{base}_{quote}_' + fmt           # Informatives of other pairs | ||||||
|  |  | ||||||
|  |     inf_metadata = {'pair': asset, 'timeframe': timeframe} | ||||||
|  |     inf_dataframe = strategy.dp.get_pair_dataframe(asset, timeframe) | ||||||
|  |     inf_dataframe = populate_indicators(strategy, inf_dataframe, inf_metadata) | ||||||
|  |  | ||||||
|  |     formatter: Any = None | ||||||
|  |     if callable(fmt): | ||||||
|  |         formatter = fmt             # A custom user-specified formatter function. | ||||||
|  |     else: | ||||||
|  |         formatter = fmt.format      # A default string formatter. | ||||||
|  |  | ||||||
|  |     fmt_args = { | ||||||
|  |         'BASE': base.upper(), | ||||||
|  |         'QUOTE': quote.upper(), | ||||||
|  |         'base': base.lower(), | ||||||
|  |         'quote': quote.lower(), | ||||||
|  |         'asset': asset, | ||||||
|  |         'timeframe': timeframe, | ||||||
|  |     } | ||||||
|  |     inf_dataframe.rename(columns=lambda column: formatter(column=column, **fmt_args), | ||||||
|  |                          inplace=True) | ||||||
|  |  | ||||||
|  |     date_column = formatter(column='date', **fmt_args) | ||||||
|  |     if date_column in dataframe.columns: | ||||||
|  |         raise OperationalException(f'Duplicate column name {date_column} exists in ' | ||||||
|  |                                    f'dataframe! Ensure column names are unique!') | ||||||
|  |     dataframe = merge_informative_pair(dataframe, inf_dataframe, strategy.timeframe, timeframe, | ||||||
|  |                                        ffill=inf_data.ffill, append_timeframe=False, | ||||||
|  |                                        date_column=date_column) | ||||||
|  |     return dataframe | ||||||
| @@ -19,6 +19,9 @@ from freqtrade.exchange import timeframe_to_minutes, timeframe_to_seconds | |||||||
| from freqtrade.exchange.exchange import timeframe_to_next_date | from freqtrade.exchange.exchange import timeframe_to_next_date | ||||||
| from freqtrade.persistence import PairLocks, Trade | from freqtrade.persistence import PairLocks, Trade | ||||||
| from freqtrade.strategy.hyper import HyperStrategyMixin | from freqtrade.strategy.hyper import HyperStrategyMixin | ||||||
|  | from freqtrade.strategy.informative_decorator import (InformativeData, PopulateIndicators, | ||||||
|  |                                                       _create_and_merge_informative_pair, | ||||||
|  |                                                       _format_pair_name) | ||||||
| from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper | from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper | ||||||
| from freqtrade.wallets import Wallets | from freqtrade.wallets import Wallets | ||||||
|  |  | ||||||
| @@ -118,7 +121,7 @@ class IStrategy(ABC, HyperStrategyMixin): | |||||||
|     # Class level variables (intentional) containing |     # Class level variables (intentional) containing | ||||||
|     # the dataprovider (dp) (access to other candles, historic data, ...) |     # the dataprovider (dp) (access to other candles, historic data, ...) | ||||||
|     # and wallets - access to the current balance. |     # and wallets - access to the current balance. | ||||||
|     dp: Optional[DataProvider] = None |     dp: Optional[DataProvider] | ||||||
|     wallets: Optional[Wallets] = None |     wallets: Optional[Wallets] = None | ||||||
|     # Filled from configuration |     # Filled from configuration | ||||||
|     stake_currency: str |     stake_currency: str | ||||||
| @@ -134,6 +137,24 @@ class IStrategy(ABC, HyperStrategyMixin): | |||||||
|         self._last_candle_seen_per_pair: Dict[str, datetime] = {} |         self._last_candle_seen_per_pair: Dict[str, datetime] = {} | ||||||
|         super().__init__(config) |         super().__init__(config) | ||||||
|  |  | ||||||
|  |         # Gather informative pairs from @informative-decorated methods. | ||||||
|  |         self._ft_informative: List[Tuple[InformativeData, PopulateIndicators]] = [] | ||||||
|  |         for attr_name in dir(self.__class__): | ||||||
|  |             cls_method = getattr(self.__class__, attr_name) | ||||||
|  |             if not callable(cls_method): | ||||||
|  |                 continue | ||||||
|  |             informative_data_list = getattr(cls_method, '_ft_informative', None) | ||||||
|  |             if not isinstance(informative_data_list, list): | ||||||
|  |                 # Type check is required because mocker would return a mock object that evaluates to | ||||||
|  |                 # True, confusing this code. | ||||||
|  |                 continue | ||||||
|  |             strategy_timeframe_minutes = timeframe_to_minutes(self.timeframe) | ||||||
|  |             for informative_data in informative_data_list: | ||||||
|  |                 if timeframe_to_minutes(informative_data.timeframe) < strategy_timeframe_minutes: | ||||||
|  |                     raise OperationalException('Informative timeframe must be equal or higher than ' | ||||||
|  |                                                'strategy timeframe!') | ||||||
|  |                 self._ft_informative.append((informative_data, cls_method)) | ||||||
|  |  | ||||||
|     @abstractmethod |     @abstractmethod | ||||||
|     def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame: |     def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame: | ||||||
|         """ |         """ | ||||||
| @@ -377,6 +398,23 @@ class IStrategy(ABC, HyperStrategyMixin): | |||||||
| # END - Intended to be overridden by strategy | # END - Intended to be overridden by strategy | ||||||
| ### | ### | ||||||
|  |  | ||||||
|  |     def gather_informative_pairs(self) -> ListPairsWithTimeframes: | ||||||
|  |         """ | ||||||
|  |         Internal method which gathers all informative pairs (user or automatically defined). | ||||||
|  |         """ | ||||||
|  |         informative_pairs = self.informative_pairs() | ||||||
|  |         for inf_data, _ in self._ft_informative: | ||||||
|  |             if inf_data.asset: | ||||||
|  |                 pair_tf = (_format_pair_name(self.config, inf_data.asset), inf_data.timeframe) | ||||||
|  |                 informative_pairs.append(pair_tf) | ||||||
|  |             else: | ||||||
|  |                 if not self.dp: | ||||||
|  |                     raise OperationalException('@informative decorator with unspecified asset ' | ||||||
|  |                                                'requires DataProvider instance.') | ||||||
|  |                 for pair in self.dp.current_whitelist(): | ||||||
|  |                     informative_pairs.append((pair, inf_data.timeframe)) | ||||||
|  |         return list(set(informative_pairs)) | ||||||
|  |  | ||||||
|     def get_strategy_name(self) -> str: |     def get_strategy_name(self) -> str: | ||||||
|         """ |         """ | ||||||
|         Returns strategy class name |         Returns strategy class name | ||||||
| @@ -793,6 +831,12 @@ class IStrategy(ABC, HyperStrategyMixin): | |||||||
|         :return: a Dataframe with all mandatory indicators for the strategies |         :return: a Dataframe with all mandatory indicators for the strategies | ||||||
|         """ |         """ | ||||||
|         logger.debug(f"Populating indicators for pair {metadata.get('pair')}.") |         logger.debug(f"Populating indicators for pair {metadata.get('pair')}.") | ||||||
|  |  | ||||||
|  |         # call populate_indicators_Nm() which were tagged with @informative decorator. | ||||||
|  |         for inf_data, populate_fn in self._ft_informative: | ||||||
|  |             dataframe = _create_and_merge_informative_pair( | ||||||
|  |                 self, dataframe, metadata, inf_data, populate_fn) | ||||||
|  |  | ||||||
|         if self._populate_fun_len == 2: |         if self._populate_fun_len == 2: | ||||||
|             warnings.warn("deprecated - check out the Sample strategy to see " |             warnings.warn("deprecated - check out the Sample strategy to see " | ||||||
|                           "the current function headers!", DeprecationWarning) |                           "the current function headers!", DeprecationWarning) | ||||||
|   | |||||||
| @@ -4,7 +4,9 @@ from freqtrade.exchange import timeframe_to_minutes | |||||||
|  |  | ||||||
|  |  | ||||||
| def merge_informative_pair(dataframe: pd.DataFrame, informative: pd.DataFrame, | def merge_informative_pair(dataframe: pd.DataFrame, informative: pd.DataFrame, | ||||||
|                            timeframe: str, timeframe_inf: str, ffill: bool = True) -> pd.DataFrame: |                            timeframe: str, timeframe_inf: str, ffill: bool = True, | ||||||
|  |                            append_timeframe: bool = True, | ||||||
|  |                            date_column: str = 'date') -> pd.DataFrame: | ||||||
|     """ |     """ | ||||||
|     Correctly merge informative samples to the original dataframe, avoiding lookahead bias. |     Correctly merge informative samples to the original dataframe, avoiding lookahead bias. | ||||||
|  |  | ||||||
| @@ -24,6 +26,8 @@ def merge_informative_pair(dataframe: pd.DataFrame, informative: pd.DataFrame, | |||||||
|     :param timeframe: Timeframe of the original pair sample. |     :param timeframe: Timeframe of the original pair sample. | ||||||
|     :param timeframe_inf: Timeframe of the informative pair sample. |     :param timeframe_inf: Timeframe of the informative pair sample. | ||||||
|     :param ffill: Forwardfill missing values - optional but usually required |     :param ffill: Forwardfill missing values - optional but usually required | ||||||
|  |     :param append_timeframe: Rename columns by appending timeframe. | ||||||
|  |     :param date_column: A custom date column name. | ||||||
|     :return: Merged dataframe |     :return: Merged dataframe | ||||||
|     :raise: ValueError if the secondary timeframe is shorter than the dataframe timeframe |     :raise: ValueError if the secondary timeframe is shorter than the dataframe timeframe | ||||||
|     """ |     """ | ||||||
| @@ -32,25 +36,29 @@ def merge_informative_pair(dataframe: pd.DataFrame, informative: pd.DataFrame, | |||||||
|     minutes = timeframe_to_minutes(timeframe) |     minutes = timeframe_to_minutes(timeframe) | ||||||
|     if minutes == minutes_inf: |     if minutes == minutes_inf: | ||||||
|         # No need to forwardshift if the timeframes are identical |         # No need to forwardshift if the timeframes are identical | ||||||
|         informative['date_merge'] = informative["date"] |         informative['date_merge'] = informative[date_column] | ||||||
|     elif minutes < minutes_inf: |     elif minutes < minutes_inf: | ||||||
|         # Subtract "small" timeframe so merging is not delayed by 1 small candle |         # Subtract "small" timeframe so merging is not delayed by 1 small candle | ||||||
|         # Detailed explanation in https://github.com/freqtrade/freqtrade/issues/4073 |         # Detailed explanation in https://github.com/freqtrade/freqtrade/issues/4073 | ||||||
|         informative['date_merge'] = ( |         informative['date_merge'] = ( | ||||||
|             informative["date"] + pd.to_timedelta(minutes_inf, 'm') - pd.to_timedelta(minutes, 'm') |             informative[date_column] + pd.to_timedelta(minutes_inf, 'm') - | ||||||
|  |             pd.to_timedelta(minutes, 'm') | ||||||
|         ) |         ) | ||||||
|     else: |     else: | ||||||
|         raise ValueError("Tried to merge a faster timeframe to a slower timeframe." |         raise ValueError("Tried to merge a faster timeframe to a slower timeframe." | ||||||
|                          "This would create new rows, and can throw off your regular indicators.") |                          "This would create new rows, and can throw off your regular indicators.") | ||||||
|  |  | ||||||
|     # Rename columns to be unique |     # Rename columns to be unique | ||||||
|  |     date_merge = 'date_merge' | ||||||
|  |     if append_timeframe: | ||||||
|  |         date_merge = f'date_merge_{timeframe_inf}' | ||||||
|         informative.columns = [f"{col}_{timeframe_inf}" for col in informative.columns] |         informative.columns = [f"{col}_{timeframe_inf}" for col in informative.columns] | ||||||
|  |  | ||||||
|     # Combine the 2 dataframes |     # Combine the 2 dataframes | ||||||
|     # all indicators on the informative sample MUST be calculated before this point |     # all indicators on the informative sample MUST be calculated before this point | ||||||
|     dataframe = pd.merge(dataframe, informative, left_on='date', |     dataframe = pd.merge(dataframe, informative, left_on='date', | ||||||
|                          right_on=f'date_merge_{timeframe_inf}', how='left') |                          right_on=date_merge, how='left') | ||||||
|     dataframe = dataframe.drop(f'date_merge_{timeframe_inf}', axis=1) |     dataframe = dataframe.drop(date_merge, axis=1) | ||||||
|  |  | ||||||
|     if ffill: |     if ffill: | ||||||
|         dataframe = dataframe.ffill() |         dataframe = dataframe.ffill() | ||||||
| @@ -83,3 +91,28 @@ def stoploss_from_open(open_relative_stop: float, current_profit: float) -> floa | |||||||
|  |  | ||||||
|     # negative stoploss values indicate the requested stop price is higher than the current price |     # negative stoploss values indicate the requested stop price is higher than the current price | ||||||
|     return max(stoploss, 0.0) |     return max(stoploss, 0.0) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def stoploss_from_absolute(stop_rate: float, current_rate: float) -> float: | ||||||
|  |     """ | ||||||
|  |     Given current price and desired stop price, return a stop loss value that is relative to current | ||||||
|  |     price. | ||||||
|  |  | ||||||
|  |     The requested stop can be positive for a stop above the open price, or negative for | ||||||
|  |     a stop below the open price. The return value is always >= 0. | ||||||
|  |  | ||||||
|  |     Returns 0 if the resulting stop price would be above the current price. | ||||||
|  |  | ||||||
|  |     :param stop_rate: Stop loss price. | ||||||
|  |     :param current_rate: Current asset price. | ||||||
|  |     :return: Positive stop loss value relative to current price | ||||||
|  |     """ | ||||||
|  |  | ||||||
|  |     # formula is undefined for current_rate 0, return maximum value | ||||||
|  |     if current_rate == 0: | ||||||
|  |         return 1 | ||||||
|  |  | ||||||
|  |     stoploss = 1 - (stop_rate / current_rate) | ||||||
|  |  | ||||||
|  |     # negative stoploss values indicate the requested stop price is higher than the current price | ||||||
|  |     return max(stoploss, 0.0) | ||||||
|   | |||||||
| @@ -1218,6 +1218,7 @@ def test_api_strategies(botclient): | |||||||
|     assert_response(rc) |     assert_response(rc) | ||||||
|     assert rc.json() == {'strategies': [ |     assert rc.json() == {'strategies': [ | ||||||
|         'HyperoptableStrategy', |         'HyperoptableStrategy', | ||||||
|  |         'InformativeDecoratorTest', | ||||||
|         'StrategyTestV2', |         'StrategyTestV2', | ||||||
|         'TestStrategyLegacyV1' |         'TestStrategyLegacyV1' | ||||||
|     ]} |     ]} | ||||||
|   | |||||||
							
								
								
									
										75
									
								
								tests/strategy/strats/informative_decorator_strategy.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										75
									
								
								tests/strategy/strats/informative_decorator_strategy.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,75 @@ | |||||||
|  | # pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement | ||||||
|  |  | ||||||
|  | from pandas import DataFrame | ||||||
|  |  | ||||||
|  | from freqtrade.strategy import informative, merge_informative_pair | ||||||
|  | from freqtrade.strategy.interface import IStrategy | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class InformativeDecoratorTest(IStrategy): | ||||||
|  |     """ | ||||||
|  |     Strategy used by tests freqtrade bot. | ||||||
|  |     Please do not modify this strategy, it's  intended for internal use only. | ||||||
|  |     Please look at the SampleStrategy in the user_data/strategy directory | ||||||
|  |     or strategy repository https://github.com/freqtrade/freqtrade-strategies | ||||||
|  |     for samples and inspiration. | ||||||
|  |     """ | ||||||
|  |     INTERFACE_VERSION = 2 | ||||||
|  |     stoploss = -0.10 | ||||||
|  |     timeframe = '5m' | ||||||
|  |     startup_candle_count: int = 20 | ||||||
|  |  | ||||||
|  |     def informative_pairs(self): | ||||||
|  |         return [('BTC/USDT', '5m')] | ||||||
|  |  | ||||||
|  |     def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame: | ||||||
|  |         dataframe['buy'] = 0 | ||||||
|  |         return dataframe | ||||||
|  |  | ||||||
|  |     def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame: | ||||||
|  |         dataframe['sell'] = 0 | ||||||
|  |         return dataframe | ||||||
|  |  | ||||||
|  |     # Decorator stacking test. | ||||||
|  |     @informative('30m') | ||||||
|  |     @informative('1h') | ||||||
|  |     def populate_indicators_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame: | ||||||
|  |         dataframe['rsi'] = 14 | ||||||
|  |         return dataframe | ||||||
|  |  | ||||||
|  |     # Simple informative test. | ||||||
|  |     @informative('1h', 'BTC/{stake}') | ||||||
|  |     def populate_indicators_btc_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame: | ||||||
|  |         dataframe['rsi'] = 14 | ||||||
|  |         return dataframe | ||||||
|  |  | ||||||
|  |     # Quote currency different from stake currency test. | ||||||
|  |     @informative('1h', 'ETH/BTC') | ||||||
|  |     def populate_indicators_eth_btc_1h(self, dataframe: DataFrame, metadata: dict) -> DataFrame: | ||||||
|  |         dataframe['rsi'] = 14 | ||||||
|  |         return dataframe | ||||||
|  |  | ||||||
|  |     # Formatting test. | ||||||
|  |     @informative('30m', 'BTC/{stake}', '{column}_{BASE}_{QUOTE}_{base}_{quote}_{asset}_{timeframe}') | ||||||
|  |     def populate_indicators_btc_1h_2(self, dataframe: DataFrame, metadata: dict) -> DataFrame: | ||||||
|  |         dataframe['rsi'] = 14 | ||||||
|  |         return dataframe | ||||||
|  |  | ||||||
|  |     # Custom formatter test | ||||||
|  |     @informative('30m', 'ETH/{stake}', fmt=lambda column, **kwargs: column + '_from_callable') | ||||||
|  |     def populate_indicators_eth_30m(self, dataframe: DataFrame, metadata: dict) -> DataFrame: | ||||||
|  |         dataframe['rsi'] = 14 | ||||||
|  |         return dataframe | ||||||
|  |  | ||||||
|  |     def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame: | ||||||
|  |         # Strategy timeframe indicators for current pair. | ||||||
|  |         dataframe['rsi'] = 14 | ||||||
|  |         # Informative pairs are available in this method. | ||||||
|  |         dataframe['rsi_less'] = dataframe['rsi'] < dataframe['rsi_1h'] | ||||||
|  |  | ||||||
|  |         # Mixing manual informative pairs with decorators. | ||||||
|  |         informative = self.dp.get_pair_dataframe('BTC/USDT', '5m') | ||||||
|  |         informative['rsi'] = 14 | ||||||
|  |         dataframe = merge_informative_pair(dataframe, informative, self.timeframe, '5m', ffill=True) | ||||||
|  |  | ||||||
|  |         return dataframe | ||||||
| @@ -607,7 +607,7 @@ def test_is_informative_pairs_callback(default_conf): | |||||||
|     strategy = StrategyResolver.load_strategy(default_conf) |     strategy = StrategyResolver.load_strategy(default_conf) | ||||||
|     # Should return empty |     # Should return empty | ||||||
|     # Uses fallback to base implementation |     # Uses fallback to base implementation | ||||||
|     assert [] == strategy.informative_pairs() |     assert [] == strategy.gather_informative_pairs() | ||||||
|  |  | ||||||
|  |  | ||||||
| @pytest.mark.parametrize('error', [ | @pytest.mark.parametrize('error', [ | ||||||
|   | |||||||
| @@ -4,7 +4,9 @@ import numpy as np | |||||||
| import pandas as pd | import pandas as pd | ||||||
| import pytest | import pytest | ||||||
|  |  | ||||||
| from freqtrade.strategy import merge_informative_pair, stoploss_from_open, timeframe_to_minutes | from freqtrade.data.dataprovider import DataProvider | ||||||
|  | from freqtrade.strategy import (merge_informative_pair, stoploss_from_absolute, stoploss_from_open, | ||||||
|  |                                 timeframe_to_minutes) | ||||||
|  |  | ||||||
|  |  | ||||||
| def generate_test_data(timeframe: str, size: int): | def generate_test_data(timeframe: str, size: int): | ||||||
| @@ -132,3 +134,65 @@ def test_stoploss_from_open(): | |||||||
|                         assert stoploss == 0 |                         assert stoploss == 0 | ||||||
|                     else: |                     else: | ||||||
|                         assert isclose(stop_price, expected_stop_price, rel_tol=0.00001) |                         assert isclose(stop_price, expected_stop_price, rel_tol=0.00001) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def test_stoploss_from_absolute(): | ||||||
|  |     assert stoploss_from_absolute(90, 100) == 1 - (90 / 100) | ||||||
|  |     assert stoploss_from_absolute(100, 100) == 0 | ||||||
|  |     assert stoploss_from_absolute(110, 100) == 0 | ||||||
|  |     assert stoploss_from_absolute(100, 0) == 1 | ||||||
|  |     assert stoploss_from_absolute(0, 100) == 1 | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def test_informative_decorator(mocker, default_conf): | ||||||
|  |     test_data_5m = generate_test_data('5m', 40) | ||||||
|  |     test_data_30m = generate_test_data('30m', 40) | ||||||
|  |     test_data_1h = generate_test_data('1h', 40) | ||||||
|  |     data = { | ||||||
|  |         ('XRP/USDT', '5m'): test_data_5m, | ||||||
|  |         ('XRP/USDT', '30m'): test_data_30m, | ||||||
|  |         ('XRP/USDT', '1h'): test_data_1h, | ||||||
|  |         ('LTC/USDT', '5m'): test_data_5m, | ||||||
|  |         ('LTC/USDT', '30m'): test_data_30m, | ||||||
|  |         ('LTC/USDT', '1h'): test_data_1h, | ||||||
|  |         ('BTC/USDT', '30m'): test_data_30m, | ||||||
|  |         ('BTC/USDT', '5m'): test_data_5m, | ||||||
|  |         ('BTC/USDT', '1h'): test_data_1h, | ||||||
|  |         ('ETH/USDT', '1h'): test_data_1h, | ||||||
|  |         ('ETH/USDT', '30m'): test_data_30m, | ||||||
|  |         ('ETH/BTC', '1h'): test_data_1h, | ||||||
|  |     } | ||||||
|  |     from .strats.informative_decorator_strategy import InformativeDecoratorTest | ||||||
|  |     default_conf['stake_currency'] = 'USDT' | ||||||
|  |     strategy = InformativeDecoratorTest(config=default_conf) | ||||||
|  |     strategy.dp = DataProvider({}, None, None) | ||||||
|  |     mocker.patch.object(strategy.dp, 'current_whitelist', return_value=[ | ||||||
|  |         'XRP/USDT', 'LTC/USDT', 'BTC/USDT' | ||||||
|  |     ]) | ||||||
|  |  | ||||||
|  |     assert len(strategy._ft_informative) == 6   # Equal to number of decorators used | ||||||
|  |     informative_pairs = [('XRP/USDT', '1h'), ('LTC/USDT', '1h'), ('XRP/USDT', '30m'), | ||||||
|  |                          ('LTC/USDT', '30m'), ('BTC/USDT', '1h'), ('BTC/USDT', '30m'), | ||||||
|  |                          ('BTC/USDT', '5m'), ('ETH/BTC', '1h'), ('ETH/USDT', '30m')] | ||||||
|  |     for inf_pair in informative_pairs: | ||||||
|  |         assert inf_pair in strategy.gather_informative_pairs() | ||||||
|  |  | ||||||
|  |     def test_historic_ohlcv(pair, timeframe): | ||||||
|  |         return data[(pair, timeframe or strategy.timeframe)].copy() | ||||||
|  |     mocker.patch('freqtrade.data.dataprovider.DataProvider.historic_ohlcv', | ||||||
|  |                  side_effect=test_historic_ohlcv) | ||||||
|  |  | ||||||
|  |     analyzed = strategy.advise_all_indicators( | ||||||
|  |         {p: data[(p, strategy.timeframe)] for p in ('XRP/USDT', 'LTC/USDT')}) | ||||||
|  |     expected_columns = [ | ||||||
|  |         'rsi_1h', 'rsi_30m',                    # Stacked informative decorators | ||||||
|  |         'btc_usdt_rsi_1h',                      # BTC 1h informative | ||||||
|  |         'rsi_BTC_USDT_btc_usdt_BTC/USDT_30m',   # Column formatting | ||||||
|  |         'rsi_from_callable',                    # Custom column formatter | ||||||
|  |         'eth_btc_rsi_1h',                       # Quote currency not matching stake currency | ||||||
|  |         'rsi', 'rsi_less',                      # Non-informative columns | ||||||
|  |         'rsi_5m',                               # Manual informative dataframe | ||||||
|  |     ] | ||||||
|  |     for _, dataframe in analyzed.items(): | ||||||
|  |         for col in expected_columns: | ||||||
|  |             assert col in dataframe.columns | ||||||
|   | |||||||
| @@ -35,7 +35,7 @@ def test_search_all_strategies_no_failed(): | |||||||
|     directory = Path(__file__).parent / "strats" |     directory = Path(__file__).parent / "strats" | ||||||
|     strategies = StrategyResolver.search_all_objects(directory, enum_failed=False) |     strategies = StrategyResolver.search_all_objects(directory, enum_failed=False) | ||||||
|     assert isinstance(strategies, list) |     assert isinstance(strategies, list) | ||||||
|     assert len(strategies) == 3 |     assert len(strategies) == 4 | ||||||
|     assert isinstance(strategies[0], dict) |     assert isinstance(strategies[0], dict) | ||||||
|  |  | ||||||
|  |  | ||||||
| @@ -43,10 +43,10 @@ def test_search_all_strategies_with_failed(): | |||||||
|     directory = Path(__file__).parent / "strats" |     directory = Path(__file__).parent / "strats" | ||||||
|     strategies = StrategyResolver.search_all_objects(directory, enum_failed=True) |     strategies = StrategyResolver.search_all_objects(directory, enum_failed=True) | ||||||
|     assert isinstance(strategies, list) |     assert isinstance(strategies, list) | ||||||
|     assert len(strategies) == 4 |     assert len(strategies) == 5 | ||||||
|     # with enum_failed=True search_all_objects() shall find 2 good strategies |     # with enum_failed=True search_all_objects() shall find 2 good strategies | ||||||
|     # and 1 which fails to load |     # and 1 which fails to load | ||||||
|     assert len([x for x in strategies if x['class'] is not None]) == 3 |     assert len([x for x in strategies if x['class'] is not None]) == 4 | ||||||
|     assert len([x for x in strategies if x['class'] is None]) == 1 |     assert len([x for x in strategies if x['class'] is None]) == 1 | ||||||
|  |  | ||||||
|  |  | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user