Add some simple tests for hyperoptParameters
This commit is contained in:
parent
786ddc6a91
commit
71e2134694
@ -67,8 +67,10 @@ class IntParameter(BaseParameter):
|
|||||||
parameter fieldname is prefixed with 'buy_' or 'sell_'.
|
parameter fieldname is prefixed with 'buy_' or 'sell_'.
|
||||||
:param kwargs: Extra parameters to skopt.space.Integer.
|
:param kwargs: Extra parameters to skopt.space.Integer.
|
||||||
"""
|
"""
|
||||||
if high is None:
|
if high is not None and isinstance(low, Sequence):
|
||||||
if len(low) != 2:
|
raise OperationalException('IntParameter space invalid.')
|
||||||
|
if high is None or isinstance(low, Sequence):
|
||||||
|
if not isinstance(low, Sequence) or len(low) != 2:
|
||||||
raise OperationalException('IntParameter space must be [low, high]')
|
raise OperationalException('IntParameter space must be [low, high]')
|
||||||
opt_range = low
|
opt_range = low
|
||||||
else:
|
else:
|
||||||
@ -101,9 +103,11 @@ class FloatParameter(BaseParameter):
|
|||||||
parameter fieldname is prefixed with 'buy_' or 'sell_'.
|
parameter fieldname is prefixed with 'buy_' or 'sell_'.
|
||||||
:param kwargs: Extra parameters to skopt.space.Real.
|
:param kwargs: Extra parameters to skopt.space.Real.
|
||||||
"""
|
"""
|
||||||
if high is None:
|
if high is not None and isinstance(low, Sequence):
|
||||||
if len(low) != 2:
|
raise OperationalException('FloatParameter space invalid.')
|
||||||
raise OperationalException('IntParameter space must be [low, high]')
|
if high is None or isinstance(low, Sequence):
|
||||||
|
if not isinstance(low, Sequence) or len(low) != 2:
|
||||||
|
raise OperationalException('FloatParameter space must be [low, high]')
|
||||||
opt_range = low
|
opt_range = low
|
||||||
else:
|
else:
|
||||||
opt_range = [low, high]
|
opt_range = [low, high]
|
||||||
|
@ -1149,7 +1149,11 @@ def test_api_strategies(botclient):
|
|||||||
rc = client_get(client, f"{BASE_URI}/strategies")
|
rc = client_get(client, f"{BASE_URI}/strategies")
|
||||||
|
|
||||||
assert_response(rc)
|
assert_response(rc)
|
||||||
assert rc.json() == {'strategies': ['DefaultStrategy', 'TestStrategyLegacy']}
|
assert rc.json() == {'strategies': [
|
||||||
|
'DefaultStrategy',
|
||||||
|
'HyperoptableStrategy',
|
||||||
|
'TestStrategyLegacy'
|
||||||
|
]}
|
||||||
|
|
||||||
|
|
||||||
def test_api_strategy(botclient):
|
def test_api_strategy(botclient):
|
||||||
|
170
tests/strategy/strats/hyperoptable_strategy.py
Normal file
170
tests/strategy/strats/hyperoptable_strategy.py
Normal file
@ -0,0 +1,170 @@
|
|||||||
|
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
|
||||||
|
|
||||||
|
import talib.abstract as ta
|
||||||
|
from pandas import DataFrame
|
||||||
|
|
||||||
|
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||||||
|
from freqtrade.strategy import FloatParameter, IntParameter, IStrategy
|
||||||
|
|
||||||
|
|
||||||
|
class HyperoptableStrategy(IStrategy):
|
||||||
|
"""
|
||||||
|
Default Strategy provided by freqtrade bot.
|
||||||
|
Please do not modify this strategy, it's intended for internal use only.
|
||||||
|
Please look at the SampleStrategy in the user_data/strategy directory
|
||||||
|
or strategy repository https://github.com/freqtrade/freqtrade-strategies
|
||||||
|
for samples and inspiration.
|
||||||
|
"""
|
||||||
|
INTERFACE_VERSION = 2
|
||||||
|
|
||||||
|
# Minimal ROI designed for the strategy
|
||||||
|
minimal_roi = {
|
||||||
|
"40": 0.0,
|
||||||
|
"30": 0.01,
|
||||||
|
"20": 0.02,
|
||||||
|
"0": 0.04
|
||||||
|
}
|
||||||
|
|
||||||
|
# Optimal stoploss designed for the strategy
|
||||||
|
stoploss = -0.10
|
||||||
|
|
||||||
|
# Optimal ticker interval for the strategy
|
||||||
|
timeframe = '5m'
|
||||||
|
|
||||||
|
# Optional order type mapping
|
||||||
|
order_types = {
|
||||||
|
'buy': 'limit',
|
||||||
|
'sell': 'limit',
|
||||||
|
'stoploss': 'limit',
|
||||||
|
'stoploss_on_exchange': False
|
||||||
|
}
|
||||||
|
|
||||||
|
# Number of candles the strategy requires before producing valid signals
|
||||||
|
startup_candle_count: int = 20
|
||||||
|
|
||||||
|
# Optional time in force for orders
|
||||||
|
order_time_in_force = {
|
||||||
|
'buy': 'gtc',
|
||||||
|
'sell': 'gtc',
|
||||||
|
}
|
||||||
|
|
||||||
|
buy_params = {
|
||||||
|
'buy_rsi': 35,
|
||||||
|
# Intentionally not specified, so "default" is tested
|
||||||
|
# 'buy_plusdi': 0.4
|
||||||
|
}
|
||||||
|
|
||||||
|
sell_params = {
|
||||||
|
'sell_rsi': 74
|
||||||
|
}
|
||||||
|
|
||||||
|
buy_rsi = IntParameter([0, 50], default=30, space='buy')
|
||||||
|
buy_plusdi = FloatParameter(low=0, high=1, default=0.5, space='buy')
|
||||||
|
sell_rsi = IntParameter(low=50, high=100, default=70, space='sell')
|
||||||
|
|
||||||
|
def informative_pairs(self):
|
||||||
|
"""
|
||||||
|
Define additional, informative pair/interval combinations to be cached from the exchange.
|
||||||
|
These pair/interval combinations are non-tradeable, unless they are part
|
||||||
|
of the whitelist as well.
|
||||||
|
For more information, please consult the documentation
|
||||||
|
:return: List of tuples in the format (pair, interval)
|
||||||
|
Sample: return [("ETH/USDT", "5m"),
|
||||||
|
("BTC/USDT", "15m"),
|
||||||
|
]
|
||||||
|
"""
|
||||||
|
return []
|
||||||
|
|
||||||
|
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||||
|
"""
|
||||||
|
Adds several different TA indicators to the given DataFrame
|
||||||
|
|
||||||
|
Performance Note: For the best performance be frugal on the number of indicators
|
||||||
|
you are using. Let uncomment only the indicator you are using in your strategies
|
||||||
|
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
|
||||||
|
:param dataframe: Dataframe with data from the exchange
|
||||||
|
:param metadata: Additional information, like the currently traded pair
|
||||||
|
:return: a Dataframe with all mandatory indicators for the strategies
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Momentum Indicator
|
||||||
|
# ------------------------------------
|
||||||
|
|
||||||
|
# ADX
|
||||||
|
dataframe['adx'] = ta.ADX(dataframe)
|
||||||
|
|
||||||
|
# MACD
|
||||||
|
macd = ta.MACD(dataframe)
|
||||||
|
dataframe['macd'] = macd['macd']
|
||||||
|
dataframe['macdsignal'] = macd['macdsignal']
|
||||||
|
dataframe['macdhist'] = macd['macdhist']
|
||||||
|
|
||||||
|
# Minus Directional Indicator / Movement
|
||||||
|
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
||||||
|
|
||||||
|
# Plus Directional Indicator / Movement
|
||||||
|
dataframe['plus_di'] = ta.PLUS_DI(dataframe)
|
||||||
|
|
||||||
|
# RSI
|
||||||
|
dataframe['rsi'] = ta.RSI(dataframe)
|
||||||
|
|
||||||
|
# Stoch fast
|
||||||
|
stoch_fast = ta.STOCHF(dataframe)
|
||||||
|
dataframe['fastd'] = stoch_fast['fastd']
|
||||||
|
dataframe['fastk'] = stoch_fast['fastk']
|
||||||
|
|
||||||
|
# Bollinger bands
|
||||||
|
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
||||||
|
dataframe['bb_lowerband'] = bollinger['lower']
|
||||||
|
dataframe['bb_middleband'] = bollinger['mid']
|
||||||
|
dataframe['bb_upperband'] = bollinger['upper']
|
||||||
|
|
||||||
|
# EMA - Exponential Moving Average
|
||||||
|
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
|
||||||
|
|
||||||
|
return dataframe
|
||||||
|
|
||||||
|
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||||
|
"""
|
||||||
|
Based on TA indicators, populates the buy signal for the given dataframe
|
||||||
|
:param dataframe: DataFrame
|
||||||
|
:param metadata: Additional information, like the currently traded pair
|
||||||
|
:return: DataFrame with buy column
|
||||||
|
"""
|
||||||
|
dataframe.loc[
|
||||||
|
(
|
||||||
|
(dataframe['rsi'] < self.buy_rsi.value) &
|
||||||
|
(dataframe['fastd'] < 35) &
|
||||||
|
(dataframe['adx'] > 30) &
|
||||||
|
(dataframe['plus_di'] > self.buy_plusdi.value)
|
||||||
|
) |
|
||||||
|
(
|
||||||
|
(dataframe['adx'] > 65) &
|
||||||
|
(dataframe['plus_di'] > self.buy_plusdi.value)
|
||||||
|
),
|
||||||
|
'buy'] = 1
|
||||||
|
|
||||||
|
return dataframe
|
||||||
|
|
||||||
|
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||||
|
"""
|
||||||
|
Based on TA indicators, populates the sell signal for the given dataframe
|
||||||
|
:param dataframe: DataFrame
|
||||||
|
:param metadata: Additional information, like the currently traded pair
|
||||||
|
:return: DataFrame with buy column
|
||||||
|
"""
|
||||||
|
dataframe.loc[
|
||||||
|
(
|
||||||
|
(
|
||||||
|
(qtpylib.crossed_above(dataframe['rsi'], self.sell_rsi.value)) |
|
||||||
|
(qtpylib.crossed_above(dataframe['fastd'], 70))
|
||||||
|
) &
|
||||||
|
(dataframe['adx'] > 10) &
|
||||||
|
(dataframe['minus_di'] > 0)
|
||||||
|
) |
|
||||||
|
(
|
||||||
|
(dataframe['adx'] > 70) &
|
||||||
|
(dataframe['minus_di'] > 0.5)
|
||||||
|
),
|
||||||
|
'sell'] = 1
|
||||||
|
return dataframe
|
@ -1,4 +1,5 @@
|
|||||||
# pragma pylint: disable=missing-docstring, C0103
|
# pragma pylint: disable=missing-docstring, C0103
|
||||||
|
from freqtrade.strategy.hyper import BaseParameter, FloatParameter, IntParameter
|
||||||
import logging
|
import logging
|
||||||
from datetime import datetime, timedelta, timezone
|
from datetime import datetime, timedelta, timezone
|
||||||
from unittest.mock import MagicMock
|
from unittest.mock import MagicMock
|
||||||
@ -10,7 +11,7 @@ from pandas import DataFrame
|
|||||||
from freqtrade.configuration import TimeRange
|
from freqtrade.configuration import TimeRange
|
||||||
from freqtrade.data.dataprovider import DataProvider
|
from freqtrade.data.dataprovider import DataProvider
|
||||||
from freqtrade.data.history import load_data
|
from freqtrade.data.history import load_data
|
||||||
from freqtrade.exceptions import StrategyError
|
from freqtrade.exceptions import OperationalException, StrategyError
|
||||||
from freqtrade.persistence import PairLocks, Trade
|
from freqtrade.persistence import PairLocks, Trade
|
||||||
from freqtrade.resolvers import StrategyResolver
|
from freqtrade.resolvers import StrategyResolver
|
||||||
from freqtrade.strategy.interface import SellCheckTuple, SellType
|
from freqtrade.strategy.interface import SellCheckTuple, SellType
|
||||||
@ -552,3 +553,38 @@ def test_strategy_safe_wrapper(value):
|
|||||||
|
|
||||||
assert type(ret) == type(value)
|
assert type(ret) == type(value)
|
||||||
assert ret == value
|
assert ret == value
|
||||||
|
|
||||||
|
|
||||||
|
def test_hyperopt_parameters():
|
||||||
|
with pytest.raises(OperationalException, match=r"Name is determined.*"):
|
||||||
|
IntParameter(low=0, high=5, default=1, name='hello')
|
||||||
|
|
||||||
|
with pytest.raises(OperationalException, match=r"IntParameter space must be.*"):
|
||||||
|
IntParameter(low=0, default=5, space='buy')
|
||||||
|
|
||||||
|
with pytest.raises(OperationalException, match=r"FloatParameter space must be.*"):
|
||||||
|
FloatParameter(low=0, default=5, space='buy')
|
||||||
|
|
||||||
|
with pytest.raises(OperationalException, match=r"IntParameter space invalid\."):
|
||||||
|
IntParameter([0, 10], high=7, default=5, space='buy')
|
||||||
|
|
||||||
|
with pytest.raises(OperationalException, match=r"FloatParameter space invalid\."):
|
||||||
|
FloatParameter([0, 10], high=7, default=5, space='buy')
|
||||||
|
|
||||||
|
x = BaseParameter(opt_range=[0, 1], default=1, space='buy')
|
||||||
|
with pytest.raises(NotImplementedError):
|
||||||
|
x.get_space('space')
|
||||||
|
|
||||||
|
fltpar = IntParameter(low=0, high=5, default=1, space='buy')
|
||||||
|
assert fltpar.value == 1
|
||||||
|
|
||||||
|
|
||||||
|
def test_auto_hyperopt_interface(default_conf):
|
||||||
|
default_conf.update({'strategy': 'HyperoptableStrategy'})
|
||||||
|
PairLocks.timeframe = default_conf['timeframe']
|
||||||
|
strategy = StrategyResolver.load_strategy(default_conf)
|
||||||
|
|
||||||
|
assert strategy.buy_rsi.value == strategy.buy_params['buy_rsi']
|
||||||
|
# PlusDI is NOT in the buy-params, so default should be used
|
||||||
|
assert strategy.buy_plusdi.value == 0.5
|
||||||
|
assert strategy.sell_rsi.value == strategy.sell_params['sell_rsi']
|
||||||
|
@ -35,7 +35,7 @@ def test_search_all_strategies_no_failed():
|
|||||||
directory = Path(__file__).parent / "strats"
|
directory = Path(__file__).parent / "strats"
|
||||||
strategies = StrategyResolver.search_all_objects(directory, enum_failed=False)
|
strategies = StrategyResolver.search_all_objects(directory, enum_failed=False)
|
||||||
assert isinstance(strategies, list)
|
assert isinstance(strategies, list)
|
||||||
assert len(strategies) == 2
|
assert len(strategies) == 3
|
||||||
assert isinstance(strategies[0], dict)
|
assert isinstance(strategies[0], dict)
|
||||||
|
|
||||||
|
|
||||||
@ -43,10 +43,10 @@ def test_search_all_strategies_with_failed():
|
|||||||
directory = Path(__file__).parent / "strats"
|
directory = Path(__file__).parent / "strats"
|
||||||
strategies = StrategyResolver.search_all_objects(directory, enum_failed=True)
|
strategies = StrategyResolver.search_all_objects(directory, enum_failed=True)
|
||||||
assert isinstance(strategies, list)
|
assert isinstance(strategies, list)
|
||||||
assert len(strategies) == 3
|
assert len(strategies) == 4
|
||||||
# with enum_failed=True search_all_objects() shall find 2 good strategies
|
# with enum_failed=True search_all_objects() shall find 2 good strategies
|
||||||
# and 1 which fails to load
|
# and 1 which fails to load
|
||||||
assert len([x for x in strategies if x['class'] is not None]) == 2
|
assert len([x for x in strategies if x['class'] is not None]) == 3
|
||||||
assert len([x for x in strategies if x['class'] is None]) == 1
|
assert len([x for x in strategies if x['class'] is None]) == 1
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user