Merge pull request #4628 from freqtrade/fix-startupcandles
Remove candle_count from dataframe
This commit is contained in:
commit
71dea3fb93
@ -115,17 +115,23 @@ def ohlcv_fill_up_missing_data(dataframe: DataFrame, timeframe: str, pair: str)
|
||||
return df
|
||||
|
||||
|
||||
def trim_dataframe(df: DataFrame, timerange, df_date_col: str = 'date') -> DataFrame:
|
||||
def trim_dataframe(df: DataFrame, timerange, df_date_col: str = 'date',
|
||||
startup_candles: int = 0) -> DataFrame:
|
||||
"""
|
||||
Trim dataframe based on given timerange
|
||||
:param df: Dataframe to trim
|
||||
:param timerange: timerange (use start and end date if available)
|
||||
:param: df_date_col: Column in the dataframe to use as Date column
|
||||
:param df_date_col: Column in the dataframe to use as Date column
|
||||
:param startup_candles: When not 0, is used instead the timerange start date
|
||||
:return: trimmed dataframe
|
||||
"""
|
||||
if timerange.starttype == 'date':
|
||||
start = datetime.fromtimestamp(timerange.startts, tz=timezone.utc)
|
||||
df = df.loc[df[df_date_col] >= start, :]
|
||||
if startup_candles:
|
||||
# Trim candles instead of timeframe in case of given startup_candle count
|
||||
df = df.iloc[startup_candles:, :]
|
||||
else:
|
||||
if timerange.starttype == 'date':
|
||||
start = datetime.fromtimestamp(timerange.startts, tz=timezone.utc)
|
||||
df = df.loc[df[df_date_col] >= start, :]
|
||||
if timerange.stoptype == 'date':
|
||||
stop = datetime.fromtimestamp(timerange.stopts, tz=timezone.utc)
|
||||
df = df.loc[df[df_date_col] <= stop, :]
|
||||
|
@ -443,7 +443,8 @@ class Backtesting:
|
||||
|
||||
# Trim startup period from analyzed dataframe
|
||||
for pair, df in preprocessed.items():
|
||||
preprocessed[pair] = trim_dataframe(df, timerange)
|
||||
preprocessed[pair] = trim_dataframe(df, timerange,
|
||||
startup_candles=self.required_startup)
|
||||
min_date, max_date = history.get_timerange(preprocessed)
|
||||
|
||||
logger.info(f'Backtesting with data from {min_date.strftime(DATETIME_PRINT_FORMAT)} '
|
||||
|
@ -379,7 +379,8 @@ class Hyperopt:
|
||||
|
||||
# Trim startup period from analyzed dataframe
|
||||
for pair, df in preprocessed.items():
|
||||
preprocessed[pair] = trim_dataframe(df, timerange)
|
||||
preprocessed[pair] = trim_dataframe(df, timerange,
|
||||
startup_candles=self.backtesting.required_startup)
|
||||
min_date, max_date = get_timerange(preprocessed)
|
||||
|
||||
logger.info(f'Hyperopting with data from {min_date.strftime(DATETIME_PRINT_FORMAT)} '
|
||||
|
@ -197,6 +197,16 @@ def test_trim_dataframe(testdatadir) -> None:
|
||||
assert all(data_modify.iloc[-1] == data.iloc[-1])
|
||||
assert all(data_modify.iloc[0] == data.iloc[30])
|
||||
|
||||
data_modify = data.copy()
|
||||
tr = TimeRange('date', None, min_date + 1800, 0)
|
||||
# Remove first 20 candles - ignores min date
|
||||
data_modify = trim_dataframe(data_modify, tr, startup_candles=20)
|
||||
assert not data_modify.equals(data)
|
||||
assert len(data_modify) < len(data)
|
||||
assert len(data_modify) == len(data) - 20
|
||||
assert all(data_modify.iloc[-1] == data.iloc[-1])
|
||||
assert all(data_modify.iloc[0] == data.iloc[20])
|
||||
|
||||
data_modify = data.copy()
|
||||
# Remove last 30 minutes (1800 s)
|
||||
tr = TimeRange(None, 'date', 0, max_date - 1800)
|
||||
|
Loading…
Reference in New Issue
Block a user