start adding tests
This commit is contained in:
parent
ed0f8b1189
commit
714d9534b6
@ -410,6 +410,11 @@ class FreqaiDataKitchen:
|
||||
bt_split: the backtesting length (dats). Specified in user configuration file
|
||||
"""
|
||||
|
||||
if not isinstance(train_split, int) or train_split < 1:
|
||||
raise OperationalException(
|
||||
"train_period_days must be an integer greater than 0. "
|
||||
f"Got {train_split}."
|
||||
)
|
||||
train_period_days = train_split * SECONDS_IN_DAY
|
||||
bt_period = bt_split * SECONDS_IN_DAY
|
||||
|
||||
@ -742,6 +747,13 @@ class FreqaiDataKitchen:
|
||||
return
|
||||
|
||||
def create_fulltimerange(self, backtest_tr: str, backtest_period_days: int) -> str:
|
||||
|
||||
if not isinstance(backtest_period_days, int):
|
||||
raise OperationalException('backtest_period_days must be an integer')
|
||||
|
||||
if backtest_period_days < 0:
|
||||
raise OperationalException('backtest_period_days must be positive')
|
||||
|
||||
backtest_timerange = TimeRange.parse_timerange(backtest_tr)
|
||||
|
||||
if backtest_timerange.stopts == 0:
|
||||
@ -869,30 +881,6 @@ class FreqaiDataKitchen:
|
||||
|
||||
self.model_filename = "cb_" + coin.lower() + "_" + str(int(trained_timerange.stopts))
|
||||
|
||||
# self.freqai_config['live_trained_timerange'] = str(int(trained_timerange.stopts))
|
||||
# enables persistence, but not fully implemented into save/load data yer
|
||||
# self.data['live_trained_timerange'] = str(int(trained_timerange.stopts))
|
||||
|
||||
# SUPERCEDED
|
||||
# def download_new_data_for_retraining(self, timerange: TimeRange, metadata: dict,
|
||||
# strategy: IStrategy) -> None:
|
||||
|
||||
# exchange = ExchangeResolver.load_exchange(self.config['exchange']['name'],
|
||||
# self.config, validate=False, freqai=True)
|
||||
# # exchange = strategy.dp._exchange # closes ccxt session
|
||||
# pairs = copy.deepcopy(self.freqai_config.get('corr_pairlist', []))
|
||||
# if str(metadata['pair']) not in pairs:
|
||||
# pairs.append(str(metadata['pair']))
|
||||
|
||||
# refresh_backtest_ohlcv_data(
|
||||
# exchange, pairs=pairs, timeframes=self.freqai_config.get('timeframes'),
|
||||
# datadir=self.config['datadir'], timerange=timerange,
|
||||
# new_pairs_days=self.config['new_pairs_days'],
|
||||
# erase=False, data_format=self.config.get('dataformat_ohlcv', 'json'),
|
||||
# trading_mode=self.config.get('trading_mode', 'spot'),
|
||||
# prepend=self.config.get('prepend_data', False)
|
||||
# )
|
||||
|
||||
def download_all_data_for_training(self, timerange: TimeRange) -> None:
|
||||
"""
|
||||
Called only once upon start of bot to download the necessary data for
|
||||
|
68
tests/freqai/conftest.py
Normal file
68
tests/freqai/conftest.py
Normal file
@ -0,0 +1,68 @@
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.resolvers import StrategyResolver
|
||||
from freqtrade.resolvers.freqaimodel_resolver import FreqaiModelResolver
|
||||
|
||||
|
||||
# @pytest.fixture(scope="function")
|
||||
def freqai_conf(default_conf):
|
||||
freqaiconf = deepcopy(default_conf)
|
||||
freqaiconf.update(
|
||||
{
|
||||
"datadir": Path(default_conf["datadir"]),
|
||||
"strategy": "FreqaiExampleStrategy",
|
||||
"strategy-path": "freqtrade/templates",
|
||||
"freqaimodel": "LightGBMPredictionModel",
|
||||
"freqaimodel_path": "freqai/prediction_models",
|
||||
"timerange": "20180110-20180115",
|
||||
"freqai": {
|
||||
"startup_candles": 10000,
|
||||
"purge_old_models": True,
|
||||
"train_period_days": 15,
|
||||
"backtest_period_days": 7,
|
||||
"live_retrain_hours": 0,
|
||||
"identifier": "uniqe-id7",
|
||||
"live_trained_timestamp": 0,
|
||||
"feature_parameters": {
|
||||
"include_timeframes": ["5m"],
|
||||
"include_corr_pairlist": ["ADA/BTC", "DASH/BTC"],
|
||||
"label_period_candles": 20,
|
||||
"include_shifted_candles": 2,
|
||||
"DI_threshold": 0.9,
|
||||
"weight_factor": 0.9,
|
||||
"principal_component_analysis": False,
|
||||
"use_SVM_to_remove_outliers": True,
|
||||
"stratify_training_data": 0,
|
||||
"indicator_max_period_candles": 10,
|
||||
"indicator_periods_candles": [10],
|
||||
},
|
||||
"data_split_parameters": {"test_size": 0.33, "random_state": 1},
|
||||
"model_training_parameters": {"n_estimators": 1000, "task_type": "CPU"},
|
||||
},
|
||||
"config_files": [Path('config_examples', 'config_freqai_futures.example.json')]
|
||||
}
|
||||
)
|
||||
freqaiconf['exchange'].update({'pair_whitelist': ['ADA/BTC', 'DASH/BTC', 'ETH/BTC', 'LTC/BTC']})
|
||||
return freqaiconf
|
||||
|
||||
|
||||
def get_patched_data_kitchen(mocker, freqaiconf):
|
||||
dd = mocker.patch('freqtrade.freqai.data_drawer', MagicMock())
|
||||
dk = FreqaiDataKitchen(freqaiconf, dd)
|
||||
return dk
|
||||
|
||||
|
||||
def get_patched_strategy(mocker, freqaiconf):
|
||||
strategy = StrategyResolver.load_strategy(freqaiconf)
|
||||
strategy.bot_start()
|
||||
|
||||
return strategy
|
||||
|
||||
|
||||
def get_patched_freqaimodel(mocker, freqaiconf):
|
||||
freqaimodel = FreqaiModelResolver.load_freqaimodel(freqaiconf)
|
||||
|
||||
return freqaimodel
|
95
tests/freqai/test_freqai.py
Normal file
95
tests/freqai/test_freqai.py
Normal file
@ -0,0 +1,95 @@
|
||||
# from unittest.mock import MagicMock
|
||||
# from freqtrade.commands.optimize_commands import setup_optimize_configuration, start_edge
|
||||
import copy
|
||||
|
||||
import pytest
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.data.dataprovider import DataProvider
|
||||
# from freqtrade.freqai.data_drawer import FreqaiDataDrawer
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from tests.conftest import get_patched_exchange
|
||||
from tests.freqai.conftest import freqai_conf, get_patched_data_kitchen, get_patched_strategy
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"timerange, train_period_days, expected_result",
|
||||
[
|
||||
("20220101-20220201", 30, "20211202-20220201"),
|
||||
("20220301-20220401", 15, "20220214-20220401"),
|
||||
],
|
||||
)
|
||||
def test_create_fulltimerange(
|
||||
timerange, train_period_days, expected_result, default_conf, mocker, caplog
|
||||
):
|
||||
dk = get_patched_data_kitchen(mocker, freqai_conf(copy.deepcopy(default_conf)))
|
||||
assert dk.create_fulltimerange(timerange, train_period_days) == expected_result
|
||||
|
||||
|
||||
def test_create_fulltimerange_incorrect_backtest_period(mocker, default_conf):
|
||||
dk = get_patched_data_kitchen(mocker, freqai_conf(copy.deepcopy(default_conf)))
|
||||
with pytest.raises(OperationalException, match=r"backtest_period_days must be an integer"):
|
||||
dk.create_fulltimerange("20220101-20220201", 0.5)
|
||||
with pytest.raises(OperationalException, match=r"backtest_period_days must be positive"):
|
||||
dk.create_fulltimerange("20220101-20220201", -1)
|
||||
|
||||
|
||||
def test_split_timerange(mocker, default_conf):
|
||||
freqaiconf = freqai_conf(copy.deepcopy(default_conf))
|
||||
freqaiconf.update({"timerange": "20220101-20220401"})
|
||||
dk = get_patched_data_kitchen(mocker, freqaiconf)
|
||||
tr_list, bt_list = dk.split_timerange("20220101-20220201", 30, 7)
|
||||
assert len(tr_list) == len(bt_list) == 9
|
||||
|
||||
tr_list, bt_list = dk.split_timerange("20220101-20220201", 30, 0.5)
|
||||
assert len(tr_list) == len(bt_list) == 120
|
||||
|
||||
tr_list, bt_list = dk.split_timerange("20220101-20220201", 10, 1)
|
||||
assert len(tr_list) == len(bt_list) == 80
|
||||
|
||||
with pytest.raises(
|
||||
OperationalException, match=r"train_period_days must be an integer greater than 0."
|
||||
):
|
||||
dk.split_timerange("20220101-20220201", -1, 0.5)
|
||||
|
||||
|
||||
def test_update_historic_data(mocker, default_conf):
|
||||
freqaiconf = freqai_conf(copy.deepcopy(default_conf))
|
||||
strategy = get_patched_strategy(mocker, freqaiconf)
|
||||
exchange = get_patched_exchange(mocker, freqaiconf)
|
||||
strategy.dp = DataProvider(freqaiconf, exchange)
|
||||
freqai = strategy.model.bridge
|
||||
freqai.live = True
|
||||
freqai.dk = FreqaiDataKitchen(freqaiconf, freqai.dd)
|
||||
timerange = TimeRange.parse_timerange("20180110-20180114")
|
||||
|
||||
freqai.dk.load_all_pair_histories(timerange)
|
||||
historic_candles = len(freqai.dd.historic_data["ADA/BTC"]["5m"])
|
||||
dp_candles = len(strategy.dp.get_pair_dataframe("ADA/BTC", "5m"))
|
||||
candle_difference = dp_candles - historic_candles
|
||||
freqai.dk.update_historic_data(strategy)
|
||||
|
||||
updated_historic_candles = len(freqai.dd.historic_data["ADA/BTC"]["5m"])
|
||||
|
||||
assert updated_historic_candles - historic_candles == candle_difference
|
||||
|
||||
|
||||
# def generate_test_data(timeframe: str, size: int, start: str = '2020-07-05'):
|
||||
# np.random.seed(42)
|
||||
# tf_mins = timeframe_to_minutes(timeframe)
|
||||
|
||||
# base = np.random.normal(20, 2, size=size)
|
||||
|
||||
# date = pd.date_range(start, periods=size, freq=f'{tf_mins}min', tz='UTC')
|
||||
# df = pd.DataFrame({
|
||||
# 'date': date,
|
||||
# 'open': base,
|
||||
# 'high': base + np.random.normal(2, 1, size=size),
|
||||
# 'low': base - np.random.normal(2, 1, size=size),
|
||||
# 'close': base + np.random.normal(0, 1, size=size),
|
||||
# 'volume': np.random.normal(200, size=size)
|
||||
# }
|
||||
# )
|
||||
# df = df.dropna()
|
||||
# return df
|
Loading…
Reference in New Issue
Block a user