start adding tests
This commit is contained in:
parent
ed0f8b1189
commit
714d9534b6
@ -410,6 +410,11 @@ class FreqaiDataKitchen:
|
|||||||
bt_split: the backtesting length (dats). Specified in user configuration file
|
bt_split: the backtesting length (dats). Specified in user configuration file
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
if not isinstance(train_split, int) or train_split < 1:
|
||||||
|
raise OperationalException(
|
||||||
|
"train_period_days must be an integer greater than 0. "
|
||||||
|
f"Got {train_split}."
|
||||||
|
)
|
||||||
train_period_days = train_split * SECONDS_IN_DAY
|
train_period_days = train_split * SECONDS_IN_DAY
|
||||||
bt_period = bt_split * SECONDS_IN_DAY
|
bt_period = bt_split * SECONDS_IN_DAY
|
||||||
|
|
||||||
@ -742,6 +747,13 @@ class FreqaiDataKitchen:
|
|||||||
return
|
return
|
||||||
|
|
||||||
def create_fulltimerange(self, backtest_tr: str, backtest_period_days: int) -> str:
|
def create_fulltimerange(self, backtest_tr: str, backtest_period_days: int) -> str:
|
||||||
|
|
||||||
|
if not isinstance(backtest_period_days, int):
|
||||||
|
raise OperationalException('backtest_period_days must be an integer')
|
||||||
|
|
||||||
|
if backtest_period_days < 0:
|
||||||
|
raise OperationalException('backtest_period_days must be positive')
|
||||||
|
|
||||||
backtest_timerange = TimeRange.parse_timerange(backtest_tr)
|
backtest_timerange = TimeRange.parse_timerange(backtest_tr)
|
||||||
|
|
||||||
if backtest_timerange.stopts == 0:
|
if backtest_timerange.stopts == 0:
|
||||||
@ -869,30 +881,6 @@ class FreqaiDataKitchen:
|
|||||||
|
|
||||||
self.model_filename = "cb_" + coin.lower() + "_" + str(int(trained_timerange.stopts))
|
self.model_filename = "cb_" + coin.lower() + "_" + str(int(trained_timerange.stopts))
|
||||||
|
|
||||||
# self.freqai_config['live_trained_timerange'] = str(int(trained_timerange.stopts))
|
|
||||||
# enables persistence, but not fully implemented into save/load data yer
|
|
||||||
# self.data['live_trained_timerange'] = str(int(trained_timerange.stopts))
|
|
||||||
|
|
||||||
# SUPERCEDED
|
|
||||||
# def download_new_data_for_retraining(self, timerange: TimeRange, metadata: dict,
|
|
||||||
# strategy: IStrategy) -> None:
|
|
||||||
|
|
||||||
# exchange = ExchangeResolver.load_exchange(self.config['exchange']['name'],
|
|
||||||
# self.config, validate=False, freqai=True)
|
|
||||||
# # exchange = strategy.dp._exchange # closes ccxt session
|
|
||||||
# pairs = copy.deepcopy(self.freqai_config.get('corr_pairlist', []))
|
|
||||||
# if str(metadata['pair']) not in pairs:
|
|
||||||
# pairs.append(str(metadata['pair']))
|
|
||||||
|
|
||||||
# refresh_backtest_ohlcv_data(
|
|
||||||
# exchange, pairs=pairs, timeframes=self.freqai_config.get('timeframes'),
|
|
||||||
# datadir=self.config['datadir'], timerange=timerange,
|
|
||||||
# new_pairs_days=self.config['new_pairs_days'],
|
|
||||||
# erase=False, data_format=self.config.get('dataformat_ohlcv', 'json'),
|
|
||||||
# trading_mode=self.config.get('trading_mode', 'spot'),
|
|
||||||
# prepend=self.config.get('prepend_data', False)
|
|
||||||
# )
|
|
||||||
|
|
||||||
def download_all_data_for_training(self, timerange: TimeRange) -> None:
|
def download_all_data_for_training(self, timerange: TimeRange) -> None:
|
||||||
"""
|
"""
|
||||||
Called only once upon start of bot to download the necessary data for
|
Called only once upon start of bot to download the necessary data for
|
||||||
|
68
tests/freqai/conftest.py
Normal file
68
tests/freqai/conftest.py
Normal file
@ -0,0 +1,68 @@
|
|||||||
|
from copy import deepcopy
|
||||||
|
from pathlib import Path
|
||||||
|
from unittest.mock import MagicMock
|
||||||
|
|
||||||
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||||
|
from freqtrade.resolvers import StrategyResolver
|
||||||
|
from freqtrade.resolvers.freqaimodel_resolver import FreqaiModelResolver
|
||||||
|
|
||||||
|
|
||||||
|
# @pytest.fixture(scope="function")
|
||||||
|
def freqai_conf(default_conf):
|
||||||
|
freqaiconf = deepcopy(default_conf)
|
||||||
|
freqaiconf.update(
|
||||||
|
{
|
||||||
|
"datadir": Path(default_conf["datadir"]),
|
||||||
|
"strategy": "FreqaiExampleStrategy",
|
||||||
|
"strategy-path": "freqtrade/templates",
|
||||||
|
"freqaimodel": "LightGBMPredictionModel",
|
||||||
|
"freqaimodel_path": "freqai/prediction_models",
|
||||||
|
"timerange": "20180110-20180115",
|
||||||
|
"freqai": {
|
||||||
|
"startup_candles": 10000,
|
||||||
|
"purge_old_models": True,
|
||||||
|
"train_period_days": 15,
|
||||||
|
"backtest_period_days": 7,
|
||||||
|
"live_retrain_hours": 0,
|
||||||
|
"identifier": "uniqe-id7",
|
||||||
|
"live_trained_timestamp": 0,
|
||||||
|
"feature_parameters": {
|
||||||
|
"include_timeframes": ["5m"],
|
||||||
|
"include_corr_pairlist": ["ADA/BTC", "DASH/BTC"],
|
||||||
|
"label_period_candles": 20,
|
||||||
|
"include_shifted_candles": 2,
|
||||||
|
"DI_threshold": 0.9,
|
||||||
|
"weight_factor": 0.9,
|
||||||
|
"principal_component_analysis": False,
|
||||||
|
"use_SVM_to_remove_outliers": True,
|
||||||
|
"stratify_training_data": 0,
|
||||||
|
"indicator_max_period_candles": 10,
|
||||||
|
"indicator_periods_candles": [10],
|
||||||
|
},
|
||||||
|
"data_split_parameters": {"test_size": 0.33, "random_state": 1},
|
||||||
|
"model_training_parameters": {"n_estimators": 1000, "task_type": "CPU"},
|
||||||
|
},
|
||||||
|
"config_files": [Path('config_examples', 'config_freqai_futures.example.json')]
|
||||||
|
}
|
||||||
|
)
|
||||||
|
freqaiconf['exchange'].update({'pair_whitelist': ['ADA/BTC', 'DASH/BTC', 'ETH/BTC', 'LTC/BTC']})
|
||||||
|
return freqaiconf
|
||||||
|
|
||||||
|
|
||||||
|
def get_patched_data_kitchen(mocker, freqaiconf):
|
||||||
|
dd = mocker.patch('freqtrade.freqai.data_drawer', MagicMock())
|
||||||
|
dk = FreqaiDataKitchen(freqaiconf, dd)
|
||||||
|
return dk
|
||||||
|
|
||||||
|
|
||||||
|
def get_patched_strategy(mocker, freqaiconf):
|
||||||
|
strategy = StrategyResolver.load_strategy(freqaiconf)
|
||||||
|
strategy.bot_start()
|
||||||
|
|
||||||
|
return strategy
|
||||||
|
|
||||||
|
|
||||||
|
def get_patched_freqaimodel(mocker, freqaiconf):
|
||||||
|
freqaimodel = FreqaiModelResolver.load_freqaimodel(freqaiconf)
|
||||||
|
|
||||||
|
return freqaimodel
|
95
tests/freqai/test_freqai.py
Normal file
95
tests/freqai/test_freqai.py
Normal file
@ -0,0 +1,95 @@
|
|||||||
|
# from unittest.mock import MagicMock
|
||||||
|
# from freqtrade.commands.optimize_commands import setup_optimize_configuration, start_edge
|
||||||
|
import copy
|
||||||
|
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
from freqtrade.configuration import TimeRange
|
||||||
|
from freqtrade.data.dataprovider import DataProvider
|
||||||
|
# from freqtrade.freqai.data_drawer import FreqaiDataDrawer
|
||||||
|
from freqtrade.exceptions import OperationalException
|
||||||
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||||
|
from tests.conftest import get_patched_exchange
|
||||||
|
from tests.freqai.conftest import freqai_conf, get_patched_data_kitchen, get_patched_strategy
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize(
|
||||||
|
"timerange, train_period_days, expected_result",
|
||||||
|
[
|
||||||
|
("20220101-20220201", 30, "20211202-20220201"),
|
||||||
|
("20220301-20220401", 15, "20220214-20220401"),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
def test_create_fulltimerange(
|
||||||
|
timerange, train_period_days, expected_result, default_conf, mocker, caplog
|
||||||
|
):
|
||||||
|
dk = get_patched_data_kitchen(mocker, freqai_conf(copy.deepcopy(default_conf)))
|
||||||
|
assert dk.create_fulltimerange(timerange, train_period_days) == expected_result
|
||||||
|
|
||||||
|
|
||||||
|
def test_create_fulltimerange_incorrect_backtest_period(mocker, default_conf):
|
||||||
|
dk = get_patched_data_kitchen(mocker, freqai_conf(copy.deepcopy(default_conf)))
|
||||||
|
with pytest.raises(OperationalException, match=r"backtest_period_days must be an integer"):
|
||||||
|
dk.create_fulltimerange("20220101-20220201", 0.5)
|
||||||
|
with pytest.raises(OperationalException, match=r"backtest_period_days must be positive"):
|
||||||
|
dk.create_fulltimerange("20220101-20220201", -1)
|
||||||
|
|
||||||
|
|
||||||
|
def test_split_timerange(mocker, default_conf):
|
||||||
|
freqaiconf = freqai_conf(copy.deepcopy(default_conf))
|
||||||
|
freqaiconf.update({"timerange": "20220101-20220401"})
|
||||||
|
dk = get_patched_data_kitchen(mocker, freqaiconf)
|
||||||
|
tr_list, bt_list = dk.split_timerange("20220101-20220201", 30, 7)
|
||||||
|
assert len(tr_list) == len(bt_list) == 9
|
||||||
|
|
||||||
|
tr_list, bt_list = dk.split_timerange("20220101-20220201", 30, 0.5)
|
||||||
|
assert len(tr_list) == len(bt_list) == 120
|
||||||
|
|
||||||
|
tr_list, bt_list = dk.split_timerange("20220101-20220201", 10, 1)
|
||||||
|
assert len(tr_list) == len(bt_list) == 80
|
||||||
|
|
||||||
|
with pytest.raises(
|
||||||
|
OperationalException, match=r"train_period_days must be an integer greater than 0."
|
||||||
|
):
|
||||||
|
dk.split_timerange("20220101-20220201", -1, 0.5)
|
||||||
|
|
||||||
|
|
||||||
|
def test_update_historic_data(mocker, default_conf):
|
||||||
|
freqaiconf = freqai_conf(copy.deepcopy(default_conf))
|
||||||
|
strategy = get_patched_strategy(mocker, freqaiconf)
|
||||||
|
exchange = get_patched_exchange(mocker, freqaiconf)
|
||||||
|
strategy.dp = DataProvider(freqaiconf, exchange)
|
||||||
|
freqai = strategy.model.bridge
|
||||||
|
freqai.live = True
|
||||||
|
freqai.dk = FreqaiDataKitchen(freqaiconf, freqai.dd)
|
||||||
|
timerange = TimeRange.parse_timerange("20180110-20180114")
|
||||||
|
|
||||||
|
freqai.dk.load_all_pair_histories(timerange)
|
||||||
|
historic_candles = len(freqai.dd.historic_data["ADA/BTC"]["5m"])
|
||||||
|
dp_candles = len(strategy.dp.get_pair_dataframe("ADA/BTC", "5m"))
|
||||||
|
candle_difference = dp_candles - historic_candles
|
||||||
|
freqai.dk.update_historic_data(strategy)
|
||||||
|
|
||||||
|
updated_historic_candles = len(freqai.dd.historic_data["ADA/BTC"]["5m"])
|
||||||
|
|
||||||
|
assert updated_historic_candles - historic_candles == candle_difference
|
||||||
|
|
||||||
|
|
||||||
|
# def generate_test_data(timeframe: str, size: int, start: str = '2020-07-05'):
|
||||||
|
# np.random.seed(42)
|
||||||
|
# tf_mins = timeframe_to_minutes(timeframe)
|
||||||
|
|
||||||
|
# base = np.random.normal(20, 2, size=size)
|
||||||
|
|
||||||
|
# date = pd.date_range(start, periods=size, freq=f'{tf_mins}min', tz='UTC')
|
||||||
|
# df = pd.DataFrame({
|
||||||
|
# 'date': date,
|
||||||
|
# 'open': base,
|
||||||
|
# 'high': base + np.random.normal(2, 1, size=size),
|
||||||
|
# 'low': base - np.random.normal(2, 1, size=size),
|
||||||
|
# 'close': base + np.random.normal(0, 1, size=size),
|
||||||
|
# 'volume': np.random.normal(200, size=size)
|
||||||
|
# }
|
||||||
|
# )
|
||||||
|
# df = df.dropna()
|
||||||
|
# return df
|
Loading…
Reference in New Issue
Block a user