simplified predict and predict_proba using super(). Added duplicate class label check.

This commit is contained in:
Mark Regan 2022-10-30 09:48:30 +00:00
parent 6ef82dd8b6
commit 7053f81fa8

View File

@ -4,7 +4,9 @@ from sklearn.base import is_classifier
from sklearn.multioutput import MultiOutputClassifier, _fit_estimator
from sklearn.utils.fixes import delayed
from sklearn.utils.multiclass import check_classification_targets
from sklearn.utils.validation import check_is_fitted, has_fit_parameter
from sklearn.utils.validation import has_fit_parameter
from freqtrade.exceptions import OperationalException
class FreqaiMultiOutputClassifier(MultiOutputClassifier):
@ -65,6 +67,9 @@ class FreqaiMultiOutputClassifier(MultiOutputClassifier):
self.classes_ = []
for estimator in self.estimators_:
self.classes_.extend(estimator.classes_)
if len(set(self.classes_)) != len(self.classes_):
raise OperationalException(f"Class labels must be unique across targets: "
f"{self.classes_}")
if hasattr(self.estimators_[0], "n_features_in_"):
self.n_features_in_ = self.estimators_[0].n_features_in_
@ -74,56 +79,15 @@ class FreqaiMultiOutputClassifier(MultiOutputClassifier):
return self
def predict_proba(self, X):
"""Return prediction probabilities for each class of each output.
This method will raise a ``ValueError`` if any of the
estimators do not have ``predict_proba``.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The input data.
Returns
-------
p : array of shape (n_samples, n_classes), or a list of n_outputs \
such arrays if n_outputs > 1.
The class probabilities of the input samples. The order of the
classes corresponds to that in the attribute :term:`classes_`.
.. versionchanged:: 0.19
This function now returns a list of arrays where the length of
the list is ``n_outputs``, and each array is (``n_samples``,
``n_classes``) for that particular output.
"""
check_is_fitted(self)
results = np.squeeze(np.hstack(
[estimator.predict_proba(X) for estimator in self.estimators_]
))
return results
Get predict_proba and stack arrays horizontally
"""
results = np.hstack(super().predict_proba(X))
return np.squeeze(results)
def predict(self, X):
"""Predict multi-output variable using model for each target variable.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input data.
Returns
-------
y : {array-like, sparse matrix} of shape (n_samples, n_outputs)
Multi-output targets predicted across multiple predictors.
Note: Separate models are generated for each predictor.
"""
check_is_fitted(self)
if not hasattr(self.estimators_[0], "predict"):
raise ValueError("The base estimator should implement a predict method")
y = Parallel(n_jobs=self.n_jobs)(
delayed(e.predict)(X) for e in self.estimators_
)
results = np.squeeze(np.asarray(y).T)
return results
Get predict and squeeze into 2D array
"""
results = super().predict(X)
return np.squeeze(results)