Merge branch 'develop' into pr/cryptomeisternox/5150

This commit is contained in:
Matthias
2021-10-30 10:26:05 +02:00
245 changed files with 10802 additions and 6918 deletions

View File

@@ -4,7 +4,7 @@ from pathlib import Path
from typing import Any, Dict, List, Union
from numpy import int64
from pandas import DataFrame
from pandas import DataFrame, to_datetime
from tabulate import tabulate
from freqtrade.constants import DATETIME_PRINT_FORMAT, LAST_BT_RESULT_FN, UNLIMITED_STAKE_AMOUNT
@@ -21,7 +21,7 @@ def store_backtest_stats(recordfilename: Path, stats: Dict[str, DataFrame]) -> N
Stores backtest results
:param recordfilename: Path object, which can either be a filename or a directory.
Filenames will be appended with a timestamp right before the suffix
while for diectories, <directory>/backtest-result-<datetime>.json will be used as filename
while for directories, <directory>/backtest-result-<datetime>.json will be used as filename
:param stats: Dataframe containing the backtesting statistics
"""
if recordfilename.is_dir():
@@ -31,7 +31,7 @@ def store_backtest_stats(recordfilename: Path, stats: Dict[str, DataFrame]) -> N
filename = Path.joinpath(
recordfilename.parent,
f'{recordfilename.stem}-{datetime.now().strftime("%Y-%m-%d_%H-%M-%S")}'
).with_suffix(recordfilename.suffix)
).with_suffix(recordfilename.suffix)
file_dump_json(filename, stats)
latest_filename = Path.joinpath(filename.parent, LAST_BT_RESULT_FN)
@@ -173,7 +173,7 @@ def generate_strategy_comparison(all_results: Dict) -> List[Dict]:
for strategy, results in all_results.items():
tabular_data.append(_generate_result_line(
results['results'], results['config']['dry_run_wallet'], strategy)
)
)
try:
max_drawdown_per, _, _, _, _ = calculate_max_drawdown(results['results'],
value_col='profit_ratio')
@@ -189,7 +189,6 @@ def generate_strategy_comparison(all_results: Dict) -> List[Dict]:
def generate_edge_table(results: dict) -> str:
floatfmt = ('s', '.10g', '.2f', '.2f', '.2f', '.2f', 'd', 'd', 'd')
tabular_data = []
headers = ['Pair', 'Stoploss', 'Win Rate', 'Risk Reward Ratio',
@@ -214,6 +213,41 @@ def generate_edge_table(results: dict) -> str:
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right") # type: ignore
def _get_resample_from_period(period: str) -> str:
if period == 'day':
return '1d'
if period == 'week':
return '1w'
if period == 'month':
return '1M'
raise ValueError(f"Period {period} is not supported.")
def generate_periodic_breakdown_stats(trade_list: List, period: str) -> List[Dict[str, Any]]:
results = DataFrame.from_records(trade_list)
if len(results) == 0:
return []
results['close_date'] = to_datetime(results['close_date'], utc=True)
resample_period = _get_resample_from_period(period)
resampled = results.resample(resample_period, on='close_date')
stats = []
for name, day in resampled:
profit_abs = day['profit_abs'].sum().round(10)
wins = sum(day['profit_abs'] > 0)
draws = sum(day['profit_abs'] == 0)
loses = sum(day['profit_abs'] < 0)
stats.append(
{
'date': name.strftime('%d/%m/%Y'),
'profit_abs': profit_abs,
'wins': wins,
'draws': draws,
'loses': loses
}
)
return stats
def generate_trading_stats(results: DataFrame) -> Dict[str, Any]:
""" Generate overall trade statistics """
if len(results) == 0:
@@ -229,8 +263,6 @@ def generate_trading_stats(results: DataFrame) -> Dict[str, Any]:
winning_trades = results.loc[results['profit_ratio'] > 0]
draw_trades = results.loc[results['profit_ratio'] == 0]
losing_trades = results.loc[results['profit_ratio'] < 0]
zero_duration_trades = len(results.loc[(results['trade_duration'] == 0) &
(results['sell_reason'] == 'trailing_stop_loss')])
holding_avg = (timedelta(minutes=round(results['trade_duration'].mean()))
if not results.empty else timedelta())
@@ -249,7 +281,6 @@ def generate_trading_stats(results: DataFrame) -> Dict[str, Any]:
'winner_holding_avg_s': winner_holding_avg.total_seconds(),
'loser_holding_avg': loser_holding_avg,
'loser_holding_avg_s': loser_holding_avg.total_seconds(),
'zero_duration_trades': zero_duration_trades,
}
@@ -264,6 +295,7 @@ def generate_daily_stats(results: DataFrame) -> Dict[str, Any]:
'winning_days': 0,
'draw_days': 0,
'losing_days': 0,
'daily_profit_list': [],
}
daily_profit_rel = results.resample('1d', on='close_date')['profit_ratio'].sum()
daily_profit = results.resample('1d', on='close_date')['profit_abs'].sum().round(10)
@@ -274,6 +306,7 @@ def generate_daily_stats(results: DataFrame) -> Dict[str, Any]:
winning_days = sum(daily_profit > 0)
draw_days = sum(daily_profit == 0)
losing_days = sum(daily_profit < 0)
daily_profit_list = [(str(idx.date()), val) for idx, val in daily_profit.iteritems()]
return {
'backtest_best_day': best_rel,
@@ -283,6 +316,7 @@ def generate_daily_stats(results: DataFrame) -> Dict[str, Any]:
'winning_days': winning_days,
'draw_days': draw_days,
'losing_days': losing_days,
'daily_profit': daily_profit_list,
}
@@ -300,7 +334,7 @@ def generate_strategy_stats(btdata: Dict[str, DataFrame],
:param min_date: Backtest start date
:param max_date: Backtest end date
:param market_change: float indicating the market change
:return: Dictionary containing results per strategy and a stratgy summary.
:return: Dictionary containing results per strategy and a strategy summary.
"""
results: Dict[str, DataFrame] = content['results']
if not isinstance(results, DataFrame):
@@ -325,10 +359,11 @@ def generate_strategy_stats(btdata: Dict[str, DataFrame],
key=lambda x: x['profit_sum']) if len(pair_results) > 1 else None
worst_pair = min([pair for pair in pair_results if pair['key'] != 'TOTAL'],
key=lambda x: x['profit_sum']) if len(pair_results) > 1 else None
results['open_timestamp'] = results['open_date'].astype(int64) // 1e6
results['close_timestamp'] = results['close_date'].astype(int64) // 1e6
if not results.empty:
results['open_timestamp'] = results['open_date'].view(int64) // 1e6
results['close_timestamp'] = results['close_date'].view(int64) // 1e6
backtest_days = (max_date - min_date).days
backtest_days = (max_date - min_date).days or 1
strat_stats = {
'trades': results.to_dict(orient='records'),
'locks': [lock.to_json() for lock in content['locks']],
@@ -337,6 +372,8 @@ def generate_strategy_stats(btdata: Dict[str, DataFrame],
'results_per_pair': pair_results,
'sell_reason_summary': sell_reason_stats,
'left_open_trades': left_open_results,
# 'days_breakdown_stats': days_breakdown_stats,
'total_trades': len(results),
'total_volume': float(results['stake_amount'].sum()),
'avg_stake_amount': results['stake_amount'].mean() if len(results) > 0 else 0,
@@ -353,7 +390,7 @@ def generate_strategy_stats(btdata: Dict[str, DataFrame],
'backtest_run_start_ts': content['backtest_start_time'],
'backtest_run_end_ts': content['backtest_end_time'],
'trades_per_day': round(len(results) / backtest_days, 2) if backtest_days > 0 else 0,
'trades_per_day': round(len(results) / backtest_days, 2),
'market_change': market_change,
'pairlist': list(btdata.keys()),
'stake_amount': config['stake_amount'],
@@ -367,6 +404,7 @@ def generate_strategy_stats(btdata: Dict[str, DataFrame],
'max_open_trades_setting': (config['max_open_trades']
if config['max_open_trades'] != float('inf') else -1),
'timeframe': config['timeframe'],
'timeframe_detail': config.get('timeframe_detail', ''),
'timerange': config.get('timerange', ''),
'enable_protections': config.get('enable_protections', False),
'strategy_name': strategy,
@@ -378,10 +416,10 @@ def generate_strategy_stats(btdata: Dict[str, DataFrame],
'trailing_only_offset_is_reached': config.get('trailing_only_offset_is_reached', False),
'use_custom_stoploss': config.get('use_custom_stoploss', False),
'minimal_roi': config['minimal_roi'],
'use_sell_signal': config['ask_strategy']['use_sell_signal'],
'sell_profit_only': config['ask_strategy']['sell_profit_only'],
'sell_profit_offset': config['ask_strategy']['sell_profit_offset'],
'ignore_roi_if_buy_signal': config['ask_strategy']['ignore_roi_if_buy_signal'],
'use_sell_signal': config['use_sell_signal'],
'sell_profit_only': config['sell_profit_only'],
'sell_profit_offset': config['sell_profit_offset'],
'ignore_roi_if_buy_signal': config['ignore_roi_if_buy_signal'],
**daily_stats,
**trade_stats
}
@@ -436,7 +474,7 @@ def generate_backtest_stats(btdata: Dict[str, DataFrame],
{ Strategy: {'results: results, 'config: config}}.
:param min_date: Backtest start date
:param max_date: Backtest end date
:return: Dictionary containing results per strategy and a stratgy summary.
:return: Dictionary containing results per strategy and a strategy summary.
"""
result: Dict[str, Any] = {'strategy': {}}
market_change = calculate_market_change(btdata, 'close')
@@ -504,12 +542,33 @@ def text_table_sell_reason(sell_reason_stats: List[Dict[str, Any]], stake_curren
return tabulate(output, headers=headers, tablefmt="orgtbl", stralign="right")
def text_table_periodic_breakdown(days_breakdown_stats: List[Dict[str, Any]],
stake_currency: str, period: str) -> str:
"""
Generate small table with Backtest results by days
:param days_breakdown_stats: Days breakdown metrics
:param stake_currency: Stakecurrency used
:return: pretty printed table with tabulate as string
"""
headers = [
period.capitalize(),
f'Tot Profit {stake_currency}',
'Wins',
'Draws',
'Losses',
]
output = [[
d['date'], round_coin_value(d['profit_abs'], stake_currency, False),
d['wins'], d['draws'], d['loses'],
] for d in days_breakdown_stats]
return tabulate(output, headers=headers, tablefmt="orgtbl", stralign="right")
def text_table_strategy(strategy_results, stake_currency: str) -> str:
"""
Generate summary table per strategy
:param strategy_results: Dict of <Strategyname: DataFrame> containing results for all strategies
:param stake_currency: stake-currency - used to correctly name headers
:param max_open_trades: Maximum allowed open trades used for backtest
:param all_results: Dict of <Strategyname: DataFrame> containing results for all strategies
:return: pretty printed table with tabulate as string
"""
floatfmt = _get_line_floatfmt(stake_currency)
@@ -543,28 +602,23 @@ def text_table_add_metrics(strat_results: Dict) -> str:
# Newly added fields should be ignored if they are missing in strat_results. hyperopt-show
# command stores these results and newer version of freqtrade must be able to handle old
# results with missing new fields.
zero_duration_trades = '--'
if 'zero_duration_trades' in strat_results:
zero_duration_trades_per = \
100.0 / strat_results['total_trades'] * strat_results['zero_duration_trades']
zero_duration_trades = f'{zero_duration_trades_per:.2f}% ' \
f'({strat_results["zero_duration_trades"]})'
metrics = [
('Backtesting from', strat_results['backtest_start']),
('Backtesting to', strat_results['backtest_end']),
('Max open trades', strat_results['max_open_trades']),
('', ''), # Empty line to improve readability
('Total trades', strat_results['total_trades']),
('Total/Daily Avg Trades',
f"{strat_results['total_trades']} / {strat_results['trades_per_day']}"),
('Starting balance', round_coin_value(strat_results['starting_balance'],
strat_results['stake_currency'])),
('Final balance', round_coin_value(strat_results['final_balance'],
strat_results['stake_currency'])),
('Absolute profit ', round_coin_value(strat_results['profit_total_abs'],
strat_results['stake_currency'])),
('Total profit %', f"{round(strat_results['profit_total'] * 100, 2):}%"),
('Total profit %', f"{round(strat_results['profit_total'] * 100, 2)}%"),
('Trades per day', strat_results['trades_per_day']),
('Avg. daily profit %',
f"{round(strat_results['profit_total'] / strat_results['backtest_days'] * 100, 2)}%"),
('Avg. stake amount', round_coin_value(strat_results['avg_stake_amount'],
strat_results['stake_currency'])),
('Total trade volume', round_coin_value(strat_results['total_volume'],
@@ -586,7 +640,6 @@ def text_table_add_metrics(strat_results: Dict) -> str:
f"{strat_results['draw_days']} / {strat_results['losing_days']}"),
('Avg. Duration Winners', f"{strat_results['winner_holding_avg']}"),
('Avg. Duration Loser', f"{strat_results['loser_holding_avg']}"),
('Zero Duration Trades', zero_duration_trades),
('Rejected Buy signals', strat_results.get('rejected_signals', 'N/A')),
('', ''), # Empty line to improve readability
@@ -613,7 +666,7 @@ def text_table_add_metrics(strat_results: Dict) -> str:
strat_results['stake_currency'])
stake_amount = round_coin_value(
strat_results['stake_amount'], strat_results['stake_currency']
) if strat_results['stake_amount'] != UNLIMITED_STAKE_AMOUNT else 'unlimited'
) if strat_results['stake_amount'] != UNLIMITED_STAKE_AMOUNT else 'unlimited'
message = ("No trades made. "
f"Your starting balance was {start_balance}, "
@@ -622,7 +675,8 @@ def text_table_add_metrics(strat_results: Dict) -> str:
return message
def show_backtest_result(strategy: str, results: Dict[str, Any], stake_currency: str):
def show_backtest_result(strategy: str, results: Dict[str, Any], stake_currency: str,
backtest_breakdown=[]):
"""
Print results for one strategy
"""
@@ -644,6 +698,15 @@ def show_backtest_result(strategy: str, results: Dict[str, Any], stake_currency:
print(' LEFT OPEN TRADES REPORT '.center(len(table.splitlines()[0]), '='))
print(table)
for period in backtest_breakdown:
days_breakdown_stats = generate_periodic_breakdown_stats(
trade_list=results['trades'], period=period)
table = text_table_periodic_breakdown(days_breakdown_stats=days_breakdown_stats,
stake_currency=stake_currency, period=period)
if isinstance(table, str) and len(table) > 0:
print(f' {period.upper()} BREAKDOWN '.center(len(table.splitlines()[0]), '='))
print(table)
table = text_table_add_metrics(results)
if isinstance(table, str) and len(table) > 0:
print(' SUMMARY METRICS '.center(len(table.splitlines()[0]), '='))
@@ -658,12 +721,16 @@ def show_backtest_results(config: Dict, backtest_stats: Dict):
stake_currency = config['stake_currency']
for strategy, results in backtest_stats['strategy'].items():
show_backtest_result(strategy, results, stake_currency)
show_backtest_result(
strategy, results, stake_currency,
config.get('backtest_breakdown', []))
if len(backtest_stats['strategy']) > 1:
# Print Strategy summary table
table = text_table_strategy(backtest_stats['strategy_comparison'], stake_currency)
print(f"{results['backtest_start']} -> {results['backtest_end']} |"
f" Max open trades : {results['max_open_trades']}")
print(' STRATEGY SUMMARY '.center(len(table.splitlines()[0]), '='))
print(table)
print('=' * len(table.splitlines()[0]))