Modify hyperoptable strategy to use relative importing

This commit is contained in:
Matthias 2022-03-20 13:12:26 +01:00
parent 49e087df5b
commit 6ec7b84b92

View File

@ -1,14 +1,13 @@
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement # pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
import talib.abstract as ta
from pandas import DataFrame from pandas import DataFrame
from strategy_test_v2 import StrategyTestV2
import freqtrade.vendor.qtpylib.indicators as qtpylib import freqtrade.vendor.qtpylib.indicators as qtpylib
from freqtrade.strategy import (BooleanParameter, DecimalParameter, IntParameter, IStrategy, from freqtrade.strategy import BooleanParameter, DecimalParameter, IntParameter, RealParameter
RealParameter)
class HyperoptableStrategy(IStrategy): class HyperoptableStrategy(StrategyTestV2):
""" """
Default Strategy provided by freqtrade bot. Default Strategy provided by freqtrade bot.
Please do not modify this strategy, it's intended for internal use only. Please do not modify this strategy, it's intended for internal use only.
@ -16,38 +15,6 @@ class HyperoptableStrategy(IStrategy):
or strategy repository https://github.com/freqtrade/freqtrade-strategies or strategy repository https://github.com/freqtrade/freqtrade-strategies
for samples and inspiration. for samples and inspiration.
""" """
INTERFACE_VERSION = 2
# Minimal ROI designed for the strategy
minimal_roi = {
"40": 0.0,
"30": 0.01,
"20": 0.02,
"0": 0.04
}
# Optimal stoploss designed for the strategy
stoploss = -0.10
# Optimal ticker interval for the strategy
timeframe = '5m'
# Optional order type mapping
order_types = {
'buy': 'limit',
'sell': 'limit',
'stoploss': 'limit',
'stoploss_on_exchange': False
}
# Number of candles the strategy requires before producing valid signals
startup_candle_count: int = 20
# Optional time in force for orders
order_time_in_force = {
'buy': 'gtc',
'sell': 'gtc',
}
buy_params = { buy_params = {
'buy_rsi': 35, 'buy_rsi': 35,
@ -91,55 +58,6 @@ class HyperoptableStrategy(IStrategy):
""" """
return [] return []
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Adds several different TA indicators to the given DataFrame
Performance Note: For the best performance be frugal on the number of indicators
you are using. Let uncomment only the indicator you are using in your strategies
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
:param dataframe: Dataframe with data from the exchange
:param metadata: Additional information, like the currently traded pair
:return: a Dataframe with all mandatory indicators for the strategies
"""
# Momentum Indicator
# ------------------------------------
# ADX
dataframe['adx'] = ta.ADX(dataframe)
# MACD
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
dataframe['macdhist'] = macd['macdhist']
# Minus Directional Indicator / Movement
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
# Plus Directional Indicator / Movement
dataframe['plus_di'] = ta.PLUS_DI(dataframe)
# RSI
dataframe['rsi'] = ta.RSI(dataframe)
# Stoch fast
stoch_fast = ta.STOCHF(dataframe)
dataframe['fastd'] = stoch_fast['fastd']
dataframe['fastk'] = stoch_fast['fastk']
# Bollinger bands
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe['bb_lowerband'] = bollinger['lower']
dataframe['bb_middleband'] = bollinger['mid']
dataframe['bb_upperband'] = bollinger['upper']
# EMA - Exponential Moving Average
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
return dataframe
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame: def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
""" """
Based on TA indicators, populates the buy signal for the given dataframe Based on TA indicators, populates the buy signal for the given dataframe