Modify hyperoptable strategy to use relative importing
This commit is contained in:
parent
49e087df5b
commit
6ec7b84b92
@ -1,14 +1,13 @@
|
|||||||
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
|
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
|
||||||
|
|
||||||
import talib.abstract as ta
|
|
||||||
from pandas import DataFrame
|
from pandas import DataFrame
|
||||||
|
from strategy_test_v2 import StrategyTestV2
|
||||||
|
|
||||||
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||||||
from freqtrade.strategy import (BooleanParameter, DecimalParameter, IntParameter, IStrategy,
|
from freqtrade.strategy import BooleanParameter, DecimalParameter, IntParameter, RealParameter
|
||||||
RealParameter)
|
|
||||||
|
|
||||||
|
|
||||||
class HyperoptableStrategy(IStrategy):
|
class HyperoptableStrategy(StrategyTestV2):
|
||||||
"""
|
"""
|
||||||
Default Strategy provided by freqtrade bot.
|
Default Strategy provided by freqtrade bot.
|
||||||
Please do not modify this strategy, it's intended for internal use only.
|
Please do not modify this strategy, it's intended for internal use only.
|
||||||
@ -16,38 +15,6 @@ class HyperoptableStrategy(IStrategy):
|
|||||||
or strategy repository https://github.com/freqtrade/freqtrade-strategies
|
or strategy repository https://github.com/freqtrade/freqtrade-strategies
|
||||||
for samples and inspiration.
|
for samples and inspiration.
|
||||||
"""
|
"""
|
||||||
INTERFACE_VERSION = 2
|
|
||||||
|
|
||||||
# Minimal ROI designed for the strategy
|
|
||||||
minimal_roi = {
|
|
||||||
"40": 0.0,
|
|
||||||
"30": 0.01,
|
|
||||||
"20": 0.02,
|
|
||||||
"0": 0.04
|
|
||||||
}
|
|
||||||
|
|
||||||
# Optimal stoploss designed for the strategy
|
|
||||||
stoploss = -0.10
|
|
||||||
|
|
||||||
# Optimal ticker interval for the strategy
|
|
||||||
timeframe = '5m'
|
|
||||||
|
|
||||||
# Optional order type mapping
|
|
||||||
order_types = {
|
|
||||||
'buy': 'limit',
|
|
||||||
'sell': 'limit',
|
|
||||||
'stoploss': 'limit',
|
|
||||||
'stoploss_on_exchange': False
|
|
||||||
}
|
|
||||||
|
|
||||||
# Number of candles the strategy requires before producing valid signals
|
|
||||||
startup_candle_count: int = 20
|
|
||||||
|
|
||||||
# Optional time in force for orders
|
|
||||||
order_time_in_force = {
|
|
||||||
'buy': 'gtc',
|
|
||||||
'sell': 'gtc',
|
|
||||||
}
|
|
||||||
|
|
||||||
buy_params = {
|
buy_params = {
|
||||||
'buy_rsi': 35,
|
'buy_rsi': 35,
|
||||||
@ -91,55 +58,6 @@ class HyperoptableStrategy(IStrategy):
|
|||||||
"""
|
"""
|
||||||
return []
|
return []
|
||||||
|
|
||||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
||||||
"""
|
|
||||||
Adds several different TA indicators to the given DataFrame
|
|
||||||
|
|
||||||
Performance Note: For the best performance be frugal on the number of indicators
|
|
||||||
you are using. Let uncomment only the indicator you are using in your strategies
|
|
||||||
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
|
|
||||||
:param dataframe: Dataframe with data from the exchange
|
|
||||||
:param metadata: Additional information, like the currently traded pair
|
|
||||||
:return: a Dataframe with all mandatory indicators for the strategies
|
|
||||||
"""
|
|
||||||
|
|
||||||
# Momentum Indicator
|
|
||||||
# ------------------------------------
|
|
||||||
|
|
||||||
# ADX
|
|
||||||
dataframe['adx'] = ta.ADX(dataframe)
|
|
||||||
|
|
||||||
# MACD
|
|
||||||
macd = ta.MACD(dataframe)
|
|
||||||
dataframe['macd'] = macd['macd']
|
|
||||||
dataframe['macdsignal'] = macd['macdsignal']
|
|
||||||
dataframe['macdhist'] = macd['macdhist']
|
|
||||||
|
|
||||||
# Minus Directional Indicator / Movement
|
|
||||||
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
|
||||||
|
|
||||||
# Plus Directional Indicator / Movement
|
|
||||||
dataframe['plus_di'] = ta.PLUS_DI(dataframe)
|
|
||||||
|
|
||||||
# RSI
|
|
||||||
dataframe['rsi'] = ta.RSI(dataframe)
|
|
||||||
|
|
||||||
# Stoch fast
|
|
||||||
stoch_fast = ta.STOCHF(dataframe)
|
|
||||||
dataframe['fastd'] = stoch_fast['fastd']
|
|
||||||
dataframe['fastk'] = stoch_fast['fastk']
|
|
||||||
|
|
||||||
# Bollinger bands
|
|
||||||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
|
||||||
dataframe['bb_lowerband'] = bollinger['lower']
|
|
||||||
dataframe['bb_middleband'] = bollinger['mid']
|
|
||||||
dataframe['bb_upperband'] = bollinger['upper']
|
|
||||||
|
|
||||||
# EMA - Exponential Moving Average
|
|
||||||
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
|
|
||||||
|
|
||||||
return dataframe
|
|
||||||
|
|
||||||
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||||
"""
|
"""
|
||||||
Based on TA indicators, populates the buy signal for the given dataframe
|
Based on TA indicators, populates the buy signal for the given dataframe
|
||||||
|
Loading…
Reference in New Issue
Block a user