new strategy
This commit is contained in:
parent
10c5b230b4
commit
6c86bacf28
175
user_data/strategies/AwesomeStrategy.py
Normal file
175
user_data/strategies/AwesomeStrategy.py
Normal file
@ -0,0 +1,175 @@
|
|||||||
|
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
|
||||||
|
|
||||||
|
# --- Do not remove these libs ---
|
||||||
|
import numpy as np # noqa
|
||||||
|
import pandas as pd # noqa
|
||||||
|
from pandas import DataFrame
|
||||||
|
|
||||||
|
from freqtrade.strategy.interface import IStrategy
|
||||||
|
|
||||||
|
# --------------------------------
|
||||||
|
# Add your lib to import here
|
||||||
|
import talib.abstract as ta
|
||||||
|
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||||||
|
|
||||||
|
|
||||||
|
class AwesomeStrategy(IStrategy):
|
||||||
|
"""
|
||||||
|
This is a strategy template to get you started.
|
||||||
|
More information in https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md
|
||||||
|
|
||||||
|
You can:
|
||||||
|
:return: a Dataframe with all mandatory indicators for the strategies
|
||||||
|
- Rename the class name (Do not forget to update class_name)
|
||||||
|
- Add any methods you want to build your strategy
|
||||||
|
- Add any lib you need to build your strategy
|
||||||
|
|
||||||
|
You must keep:
|
||||||
|
- the lib in the section "Do not remove these libs"
|
||||||
|
- the prototype for the methods: minimal_roi, stoploss, populate_indicators, populate_buy_trend,
|
||||||
|
populate_sell_trend, hyperopt_space, buy_strategy_generator
|
||||||
|
"""
|
||||||
|
# Strategy interface version - allow new iterations of the strategy interface.
|
||||||
|
# Check the documentation or the Sample strategy to get the latest version.
|
||||||
|
INTERFACE_VERSION = 2
|
||||||
|
|
||||||
|
# Minimal ROI designed for the strategy.
|
||||||
|
# This attribute will be overridden if the config file contains "minimal_roi".
|
||||||
|
minimal_roi = {
|
||||||
|
"60": 0.01,
|
||||||
|
"30": 0.02,
|
||||||
|
"0": 0.04
|
||||||
|
}
|
||||||
|
|
||||||
|
# Optimal stoploss designed for the strategy.
|
||||||
|
# This attribute will be overridden if the config file contains "stoploss".
|
||||||
|
stoploss = -1#-0.10
|
||||||
|
|
||||||
|
# Trailing stoploss
|
||||||
|
trailing_stop = False
|
||||||
|
# trailing_only_offset_is_reached = False
|
||||||
|
# trailing_stop_positive = 0.01
|
||||||
|
# trailing_stop_positive_offset = 0.0 # Disabled / not configured
|
||||||
|
|
||||||
|
# Optimal timeframe for the strategy.
|
||||||
|
timeframe = '1h'
|
||||||
|
|
||||||
|
# Run "populate_indicators()" only for new candle.
|
||||||
|
process_only_new_candles = False
|
||||||
|
|
||||||
|
# These values can be overridden in the "ask_strategy" section in the config.
|
||||||
|
use_sell_signal = True
|
||||||
|
sell_profit_only = False
|
||||||
|
ignore_roi_if_buy_signal = False
|
||||||
|
|
||||||
|
# Number of candles the strategy requires before producing valid signals
|
||||||
|
startup_candle_count: int = 20
|
||||||
|
|
||||||
|
# Optional order type mapping.
|
||||||
|
order_types = {
|
||||||
|
'buy': 'limit',
|
||||||
|
'sell': 'limit',
|
||||||
|
'stoploss': 'market',
|
||||||
|
'stoploss_on_exchange': False
|
||||||
|
}
|
||||||
|
|
||||||
|
# Optional order time in force.
|
||||||
|
order_time_in_force = {
|
||||||
|
'buy': 'gtc',
|
||||||
|
'sell': 'gtc'
|
||||||
|
}
|
||||||
|
|
||||||
|
plot_config = {
|
||||||
|
# Main plot indicators (Moving averages, ...)
|
||||||
|
'main_plot': {
|
||||||
|
'tema': {},
|
||||||
|
'sar': {'color': 'white'},
|
||||||
|
},
|
||||||
|
'subplots': {
|
||||||
|
# Subplots - each dict defines one additional plot
|
||||||
|
"MACD": {
|
||||||
|
'macd': {'color': 'blue'},
|
||||||
|
'macdsignal': {'color': 'orange'},
|
||||||
|
},
|
||||||
|
"RSI": {
|
||||||
|
'rsi': {'color': 'red'},
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
def informative_pairs(self):
|
||||||
|
"""
|
||||||
|
Define additional, informative pair/interval combinations to be cached from the exchange.
|
||||||
|
These pair/interval combinations are non-tradeable, unless they are part
|
||||||
|
of the whitelist as well.
|
||||||
|
For more information, please consult the documentation
|
||||||
|
:return: List of tuples in the format (pair, interval)
|
||||||
|
Sample: return [("ETH/USDT", "5m"),
|
||||||
|
("BTC/USDT", "15m"),
|
||||||
|
]
|
||||||
|
"""
|
||||||
|
return []
|
||||||
|
|
||||||
|
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||||
|
"""
|
||||||
|
Adds several different TA indicators to the given DataFrame
|
||||||
|
|
||||||
|
Performance Note: For the best performance be frugal on the number of indicators
|
||||||
|
you are using. Let uncomment only the indicator you are using in your strategies
|
||||||
|
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
|
||||||
|
:param dataframe: Dataframe with data from the exchange
|
||||||
|
:param metadata: Additional information, like the currently traded pair
|
||||||
|
:return: a Dataframe with all mandatory indicators for the strategies
|
||||||
|
"""
|
||||||
|
|
||||||
|
dataframe['sma_s'] = ta.SMA(dataframe, timeperiod=5)
|
||||||
|
dataframe['sma_m'] = ta.SMA(dataframe, timeperiod=10)
|
||||||
|
dataframe['sma_l'] = ta.SMA(dataframe, timeperiod=20)
|
||||||
|
|
||||||
|
# Retrieve best bid and best ask from the orderbook
|
||||||
|
# ------------------------------------
|
||||||
|
"""
|
||||||
|
# first check if dataprovider is available
|
||||||
|
if self.dp:
|
||||||
|
if self.dp.runmode in ('live', 'dry_run'):
|
||||||
|
ob = self.dp.orderbook(metadata['pair'], 1)
|
||||||
|
dataframe['best_bid'] = ob['bids'][0][0]
|
||||||
|
dataframe['best_ask'] = ob['asks'][0][0]
|
||||||
|
"""
|
||||||
|
|
||||||
|
return dataframe
|
||||||
|
|
||||||
|
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||||
|
"""
|
||||||
|
Based on TA indicators, populates the buy signal for the given dataframe
|
||||||
|
:param dataframe: DataFrame populated with indicators
|
||||||
|
:param metadata: Additional information, like the currently traded pair
|
||||||
|
:return: DataFrame with buy column
|
||||||
|
"""
|
||||||
|
dataframe.loc[
|
||||||
|
(
|
||||||
|
(dataframe['sma_m'] > dataframe['sma_l']) &
|
||||||
|
(dataframe['sma_s'] > dataframe['sma_l']) &
|
||||||
|
(dataframe['sma_s'] > dataframe['sma_m'])
|
||||||
|
# qtpylib.crossed_above(dataframe['sma_m'], dataframe['sma_l'])
|
||||||
|
),
|
||||||
|
'buy'] = 1
|
||||||
|
|
||||||
|
return dataframe
|
||||||
|
|
||||||
|
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||||
|
"""
|
||||||
|
Based on TA indicators, populates the sell signal for the given dataframe
|
||||||
|
:param dataframe: DataFrame populated with indicators
|
||||||
|
:param metadata: Additional information, like the currently traded pair
|
||||||
|
:return: DataFrame with buy column
|
||||||
|
"""
|
||||||
|
dataframe.loc[
|
||||||
|
(
|
||||||
|
(dataframe['sma_m'] < dataframe['sma_l']) &
|
||||||
|
(dataframe['sma_s'] < dataframe['sma_l']) &
|
||||||
|
(dataframe['sma_s'] < dataframe['sma_m'])
|
||||||
|
# qtpylib.crossed_below(dataframe['sma_m'], dataframe['sma_l'])
|
||||||
|
),
|
||||||
|
'sell'] = 1
|
||||||
|
return dataframe
|
||||||
|
|
Loading…
Reference in New Issue
Block a user