- reduction of pickling time by using epochs to load points
- use object state just for rng and init points status, don't save models or points - other counting edge cases fixes
This commit is contained in:
parent
cc47f3e1e4
commit
6b9bc7c83f
@ -4,7 +4,6 @@ This module contains the hyperopt logic
|
||||
"""
|
||||
|
||||
import os
|
||||
import functools
|
||||
import locale
|
||||
import logging
|
||||
import random
|
||||
@ -92,7 +91,9 @@ class Hyperopt:
|
||||
self.n_jobs = self.config.get('hyperopt_jobs', -1)
|
||||
if self.n_jobs < 0:
|
||||
self.n_jobs = cpu_count() // 2 or 1
|
||||
self.effort = self.config['effort'] if 'effort' in self.config else 0
|
||||
self.effort = max(0.01,
|
||||
self.config['effort'] if 'effort' in self.config else 1
|
||||
)
|
||||
self.total_epochs = self.config['epochs'] if 'epochs' in self.config else 0
|
||||
self.max_epoch = 0
|
||||
self.max_epoch_reached = False
|
||||
@ -155,6 +156,8 @@ class Hyperopt:
|
||||
# optimizers
|
||||
self.opts: List[Optimizer] = []
|
||||
self.opt: Optimizer = None
|
||||
self.Xi: Dict = {}
|
||||
self.yi: Dict = {}
|
||||
|
||||
backend.manager = Manager()
|
||||
self.mode = self.config.get('mode', 'single')
|
||||
@ -170,11 +173,14 @@ class Hyperopt:
|
||||
self.opt_base_estimator = self.estimators
|
||||
self.opt_acq_optimizer = 'sampling'
|
||||
backend.optimizers = backend.manager.Queue()
|
||||
backend.results_board = backend.manager.Queue(maxsize=1)
|
||||
backend.results_board.put({})
|
||||
backend.results_batch = backend.manager.Queue()
|
||||
else:
|
||||
self.multi = False
|
||||
backend.results = backend.manager.Queue()
|
||||
backend.results_list = backend.manager.list([])
|
||||
# this is where opt_ask_and_tell stores the results after points are
|
||||
# used for fit and predict, to avoid additional pickling
|
||||
self.batch_results = []
|
||||
# self.opt_base_estimator = lambda: BayesianRidge(n_iter=100, normalize=True)
|
||||
self.opt_acq_optimizer = 'sampling'
|
||||
self.opt_base_estimator = lambda: 'ET'
|
||||
# The GaussianProcessRegressor is heavy, which makes it not a good default
|
||||
@ -262,14 +268,20 @@ class Hyperopt:
|
||||
n_opts = 0
|
||||
if self.multi:
|
||||
while not backend.optimizers.empty():
|
||||
opts.append(backend.optimizers.get())
|
||||
opt = backend.optimizers.get()
|
||||
opt = Hyperopt.opt_clear(opt)
|
||||
opts.append(opt)
|
||||
n_opts = len(opts)
|
||||
for opt in opts:
|
||||
backend.optimizers.put(opt)
|
||||
else:
|
||||
# when we clear the object for saving we have to make a copy to preserve state
|
||||
opt = Hyperopt.opt_rand(self.opt, seed=False)
|
||||
if self.opt:
|
||||
n_opts = 1
|
||||
opts = [self.opt]
|
||||
opts = [Hyperopt.opt_clear(self.opt)]
|
||||
# (the optimizer copy function also fits a new model with the known points)
|
||||
self.opt = opt
|
||||
logger.debug(f"Saving {n_opts} {plural(n_opts, 'optimizer')}.")
|
||||
dump(opts, self.opts_file)
|
||||
|
||||
@ -610,42 +622,41 @@ class Hyperopt:
|
||||
def estimators(self):
|
||||
return ESTIMATORS[random.randrange(0, ESTIMATORS_N)]
|
||||
|
||||
def get_optimizer(self, dimensions: List[Dimension], n_jobs: int,
|
||||
n_initial_points: int) -> Optimizer:
|
||||
def get_optimizer(self, random_state: int = None) -> Optimizer:
|
||||
" Construct an optimizer object "
|
||||
# https://github.com/scikit-learn/scikit-learn/issues/14265
|
||||
# lbfgs uses joblib threading backend so n_jobs has to be reduced
|
||||
# to avoid oversubscription
|
||||
if self.opt_acq_optimizer == 'lbfgs':
|
||||
n_jobs = 1
|
||||
else:
|
||||
n_jobs = self.n_jobs
|
||||
return Optimizer(
|
||||
dimensions,
|
||||
self.dimensions,
|
||||
base_estimator=self.opt_base_estimator(),
|
||||
acq_optimizer=self.opt_acq_optimizer,
|
||||
n_initial_points=n_initial_points,
|
||||
n_initial_points=self.opt_n_initial_points,
|
||||
acq_optimizer_kwargs={'n_jobs': n_jobs},
|
||||
model_queue_size=self.n_models,
|
||||
random_state=self.random_state,
|
||||
random_state=random_state or self.random_state,
|
||||
)
|
||||
|
||||
def run_backtest_parallel(self, parallel: Parallel, tries: int, first_try: int,
|
||||
jobs: int) -> List:
|
||||
jobs: int):
|
||||
""" launch parallel in single opt mode, return the evaluated epochs """
|
||||
result = parallel(
|
||||
delayed(wrap_non_picklable_objects(self.parallel_objective))(asked, backend.results, i)
|
||||
parallel(
|
||||
delayed(wrap_non_picklable_objects(self.parallel_objective))
|
||||
(asked, backend.results_list, i)
|
||||
for asked, i in zip(self.opt_ask_and_tell(jobs, tries),
|
||||
range(first_try, first_try + tries)))
|
||||
return result
|
||||
|
||||
def run_multi_backtest_parallel(self, parallel: Parallel, tries: int, first_try: int,
|
||||
jobs: int) -> List:
|
||||
jobs: int):
|
||||
""" launch parallel in multi opt mode, return the evaluated epochs"""
|
||||
results = parallel(
|
||||
parallel(
|
||||
delayed(wrap_non_picklable_objects(self.parallel_opt_objective))(
|
||||
i, backend.optimizers, jobs, backend.results_board)
|
||||
i, backend.optimizers, jobs, backend.results_shared, backend.results_batch)
|
||||
for i in range(first_try, first_try + tries))
|
||||
# each worker will return a list containing n_points, so compact into a single list
|
||||
return functools.reduce(lambda x, y: [*x, *y], results, [])
|
||||
|
||||
def opt_ask_and_tell(self, jobs: int, tries: int):
|
||||
"""
|
||||
@ -660,34 +671,38 @@ class Hyperopt:
|
||||
evald: Set[Tuple] = set()
|
||||
opt = self.opt
|
||||
|
||||
def point():
|
||||
if self.ask_points:
|
||||
# this is needed because when we ask None points, the optimizer doesn't return a list
|
||||
if self.ask_points:
|
||||
def point():
|
||||
if to_ask:
|
||||
return tuple(to_ask.popleft())
|
||||
else:
|
||||
to_ask.extend(opt.ask(n_points=self.ask_points, strategy=self.lie_strat()))
|
||||
return tuple(to_ask.popleft())
|
||||
else:
|
||||
else:
|
||||
def point():
|
||||
return tuple(opt.ask(strategy=self.lie_strat()))
|
||||
|
||||
for r in range(tries):
|
||||
fit = (len(to_ask) < 1)
|
||||
while not backend.results.empty():
|
||||
vals.append(backend.results.get())
|
||||
if len(backend.results_list) > 0:
|
||||
vals.extend(backend.results_list)
|
||||
del backend.results_list[:]
|
||||
if vals:
|
||||
# filter losses
|
||||
void_filtered = self.filter_void_losses(vals, opt)
|
||||
void_filtered = Hyperopt.filter_void_losses(vals, opt)
|
||||
if void_filtered: # again if all are filtered
|
||||
opt.tell([list(v['params_dict'].values()) for v in void_filtered],
|
||||
opt.tell([Hyperopt.params_Xi(v) for v in void_filtered],
|
||||
[v['loss'] for v in void_filtered],
|
||||
fit=fit) # only fit when out of points
|
||||
del vals[:], void_filtered[:]
|
||||
self.batch_results.extend(void_filtered)
|
||||
del vals[:], void_filtered[:]
|
||||
|
||||
a = point()
|
||||
# this usually happens at the start when trying to fit before the initial points
|
||||
if a in evald:
|
||||
logger.debug("this point was evaluated before...")
|
||||
if not fit:
|
||||
opt.update_next()
|
||||
opt.update_next()
|
||||
a = point()
|
||||
if a in evald:
|
||||
break
|
||||
@ -695,90 +710,111 @@ class Hyperopt:
|
||||
yield a
|
||||
|
||||
@staticmethod
|
||||
def opt_get_past_points(asked: dict, results_board: Queue) -> Tuple[dict, int]:
|
||||
def opt_get_past_points(is_shared: bool, asked: dict, results_shared: Dict) -> Tuple[dict, int]:
|
||||
""" fetch shared results between optimizers """
|
||||
results = results_board.get()
|
||||
results_board.put(results)
|
||||
# a result is (y, counter)
|
||||
for a in asked:
|
||||
if a in results:
|
||||
asked[a] = results[a]
|
||||
return asked, len(results)
|
||||
if a in results_shared:
|
||||
y, counter = results_shared[a]
|
||||
asked[a] = y
|
||||
counter -= 1
|
||||
if counter < 1:
|
||||
del results_shared[a]
|
||||
return asked, len(results_shared)
|
||||
|
||||
@staticmethod
|
||||
def opt_state(shared: bool, optimizers: Queue) -> Tuple[Optimizer, int]:
|
||||
def opt_rand(opt: Optimizer, rand: int = None, seed: bool = True) -> Optimizer:
|
||||
""" return a new instance of the optimizer with modified rng """
|
||||
if seed:
|
||||
if not rand:
|
||||
rand = opt.rng.randint(0, VOID_LOSS)
|
||||
opt.rng.seed(rand)
|
||||
opt, opt.void_loss, opt.void, opt.rs = (
|
||||
opt.copy(random_state=opt.rng), opt.void_loss, opt.void, opt.rs
|
||||
)
|
||||
return opt
|
||||
|
||||
@staticmethod
|
||||
def opt_state(shared: bool, optimizers: Queue) -> Optimizer:
|
||||
""" fetch an optimizer in multi opt mode """
|
||||
# get an optimizer instance
|
||||
opt = optimizers.get()
|
||||
# this is the counter used by the optimizer internally to track the initial
|
||||
# points evaluated so far..
|
||||
initial_points = opt._n_initial_points
|
||||
if shared:
|
||||
# get a random number before putting it back to avoid
|
||||
# replication with other workers and keep reproducibility
|
||||
rand = opt.rng.randint(0, VOID_LOSS)
|
||||
optimizers.put(opt)
|
||||
# switch the seed to get a different point
|
||||
opt.rng.seed(rand)
|
||||
opt, opt.void_loss, opt.void = opt.copy(random_state=opt.rng), opt.void_loss, opt.void
|
||||
# a model is only fit after initial points
|
||||
elif initial_points < 1:
|
||||
opt.tell(opt.Xi, opt.yi)
|
||||
# we have to get a new point anyway
|
||||
else:
|
||||
opt.update_next()
|
||||
return opt, initial_points
|
||||
opt = Hyperopt.opt_rand(opt, rand)
|
||||
return opt
|
||||
|
||||
@staticmethod
|
||||
def opt_results(opt: Optimizer, void_filtered: list,
|
||||
Xi_d: list, yi_d: list, initial_points: int, is_shared: bool,
|
||||
results_board: Queue, optimizers: Queue) -> list:
|
||||
def opt_clear(opt: Optimizer):
|
||||
""" clear state from an optimizer object """
|
||||
del opt.models[:], opt.Xi[:], opt.yi[:]
|
||||
return opt
|
||||
|
||||
@staticmethod
|
||||
def opt_results(opt: Optimizer, void_filtered: list, jobs: int, is_shared: bool,
|
||||
results_shared: Dict, results_batch: Queue, optimizers: Queue):
|
||||
"""
|
||||
update the board used to skip already computed points,
|
||||
set the initial point status
|
||||
"""
|
||||
# add points of the current dispatch if any
|
||||
if opt.void_loss != VOID_LOSS or len(void_filtered) > 0:
|
||||
Xi = [*Xi_d, *[list(v['params_dict'].values()) for v in void_filtered]]
|
||||
yi = [*yi_d, *[v['loss'] for v in void_filtered]]
|
||||
if is_shared:
|
||||
# refresh the optimizer that stores all the points
|
||||
opt = optimizers.get()
|
||||
opt.tell(Xi, yi, fit=False)
|
||||
opt.void = False
|
||||
void = False
|
||||
else:
|
||||
opt.void = True
|
||||
void = True
|
||||
# send back the updated optimizer only in non shared mode
|
||||
# because in shared mode if all results are void we don't
|
||||
# fetch it at all
|
||||
if not opt.void or not is_shared:
|
||||
# don't pickle models
|
||||
del opt.models[:]
|
||||
if not is_shared:
|
||||
opt = Hyperopt.opt_clear(opt)
|
||||
# is not a replica in shared mode
|
||||
optimizers.put(opt)
|
||||
# NOTE: some results at the beginning won't be published
|
||||
# because they are removed by the filter_void_losses
|
||||
if not opt.void:
|
||||
results = results_board.get()
|
||||
for v in void_filtered:
|
||||
a = tuple(v['params_dict'].values())
|
||||
if a not in results:
|
||||
results[a] = v['loss']
|
||||
results_board.put(results)
|
||||
# set initial point flag
|
||||
# because they are removed by filter_void_losses
|
||||
rs = opt.rs
|
||||
if not void:
|
||||
# the tuple keys are used to avoid computation of done points by any optimizer
|
||||
results_shared.update({tuple(Hyperopt.params_Xi(v)): (v["loss"], jobs - 1)
|
||||
for v in void_filtered})
|
||||
# in multi opt mode (non shared) also track results for each optimizer (using rs as ID)
|
||||
# this keys should be cleared after each batch
|
||||
Xi, yi = results_shared[rs]
|
||||
Xi = Xi + tuple((Hyperopt.params_Xi(v)) for v in void_filtered)
|
||||
yi = yi + tuple(v["loss"] for v in void_filtered)
|
||||
results_shared[rs] = (Xi, yi)
|
||||
# this is the counter used by the optimizer internally to track the initial
|
||||
# points evaluated so far..
|
||||
initial_points = opt._n_initial_points
|
||||
# set initial point flag and optimizer random state
|
||||
for n, v in enumerate(void_filtered):
|
||||
v['is_initial_point'] = initial_points - n > 0
|
||||
return void_filtered
|
||||
v['random_state'] = rs
|
||||
results_batch.put(void_filtered)
|
||||
|
||||
def parallel_opt_objective(self, n: int, optimizers: Queue, jobs: int, results_board: Queue):
|
||||
def parallel_opt_objective(self, n: int, optimizers: Queue, jobs: int,
|
||||
results_shared: Dict, results_batch: Queue):
|
||||
"""
|
||||
objective run in multi opt mode, optimizers share the results as soon as they are completed
|
||||
"""
|
||||
self.log_results_immediate(n)
|
||||
is_shared = self.shared
|
||||
opt, initial_points = self.opt_state(is_shared, optimizers)
|
||||
opt = self.opt_state(is_shared, optimizers)
|
||||
sss = self.search_space_size
|
||||
asked: Dict[Tuple, Any] = {tuple([]): None}
|
||||
asked_d: Dict[Tuple, Any] = {}
|
||||
|
||||
# fit a model with the known points, (the optimizer has no points here since
|
||||
# it was just fetched from the queue)
|
||||
rs = opt.rs
|
||||
Xi, yi = self.Xi[rs], self.yi[rs]
|
||||
# add the points discovered within this batch
|
||||
bXi, byi = results_shared[rs]
|
||||
Xi.extend(list(bXi))
|
||||
yi.extend(list(byi))
|
||||
if Xi:
|
||||
opt.tell(Xi, yi)
|
||||
told = 0 # told
|
||||
Xi_d = [] # done
|
||||
yi_d = []
|
||||
@ -794,7 +830,7 @@ class Hyperopt:
|
||||
else:
|
||||
asked = {tuple(a): None for a in asked}
|
||||
# check if some points have been evaluated by other optimizers
|
||||
p_asked, _ = self.opt_get_past_points(asked, results_board)
|
||||
p_asked, _ = Hyperopt.opt_get_past_points(is_shared, asked, results_shared)
|
||||
for a in p_asked:
|
||||
if p_asked[a] is not None:
|
||||
if a not in Xi_d:
|
||||
@ -802,51 +838,55 @@ class Hyperopt:
|
||||
yi_d.append(p_asked[a])
|
||||
else:
|
||||
Xi_t.append(a)
|
||||
# no points to do?
|
||||
if len(Xi_t) < self.n_points:
|
||||
len_Xi_d = len(Xi_d)
|
||||
if len_Xi_d > told: # tell new points
|
||||
# did other workers backtest some points?
|
||||
if len_Xi_d > told:
|
||||
# if yes fit a new model with the new points
|
||||
opt.tell(Xi_d[told:], yi_d[told:])
|
||||
told = len_Xi_d
|
||||
else:
|
||||
opt.update_next()
|
||||
else: # or get new points from a different random state
|
||||
opt = Hyperopt.opt_rand(opt)
|
||||
else:
|
||||
break
|
||||
# return early if there is nothing to backtest
|
||||
if len(Xi_t) < 1:
|
||||
if not is_shared:
|
||||
opt.void = -1
|
||||
del opt.models[:]
|
||||
optimizers.put(opt)
|
||||
if is_shared:
|
||||
opt = optimizers.get()
|
||||
opt.void = -1
|
||||
opt = Hyperopt.opt_clear(opt)
|
||||
optimizers.put(opt)
|
||||
return []
|
||||
# run the backtest for each point to do (Xi_t)
|
||||
f_val = [self.backtest_params(a) for a in Xi_t]
|
||||
results = [self.backtest_params(a) for a in Xi_t]
|
||||
# filter losses
|
||||
void_filtered = self.filter_void_losses(f_val, opt)
|
||||
void_filtered = Hyperopt.filter_void_losses(results, opt)
|
||||
|
||||
return self.opt_results(opt, void_filtered, Xi_d, yi_d, initial_points, is_shared,
|
||||
results_board, optimizers)
|
||||
Hyperopt.opt_results(opt, void_filtered, jobs, is_shared,
|
||||
results_shared, results_batch, optimizers)
|
||||
|
||||
def parallel_objective(self, asked, results: Queue = None, n=0):
|
||||
def parallel_objective(self, asked, results_list: List = [], n=0):
|
||||
""" objective run in single opt mode, run the backtest, store the results into a queue """
|
||||
self.log_results_immediate(n)
|
||||
v = self.backtest_params(asked)
|
||||
if results:
|
||||
results.put(v)
|
||||
|
||||
v['is_initial_point'] = n < self.opt_n_initial_points
|
||||
return v
|
||||
v['random_state'] = self.random_state
|
||||
results_list.append(v)
|
||||
|
||||
def log_results_immediate(self, n) -> None:
|
||||
""" Signals that a new job has been scheduled"""
|
||||
print('.', end='')
|
||||
sys.stdout.flush()
|
||||
|
||||
def log_results(self, f_val, frame_start, total_epochs: int) -> int:
|
||||
def log_results(self, batch_results, frame_start, total_epochs: int) -> int:
|
||||
"""
|
||||
Log results if it is better than any previous evaluation
|
||||
"""
|
||||
current = frame_start + 1
|
||||
i = 0
|
||||
for i, v in enumerate(f_val, 1):
|
||||
for i, v in enumerate(batch_results, 1):
|
||||
is_best = self.is_best_loss(v, self.current_best_loss)
|
||||
current = frame_start + i
|
||||
v['is_best'] = is_best
|
||||
@ -857,8 +897,13 @@ class Hyperopt:
|
||||
self.update_max_epoch(v, current)
|
||||
self.print_results(v)
|
||||
self.trials.append(v)
|
||||
# Save results and optimizersafter every batch
|
||||
# Save results and optimizers after every batch
|
||||
self.save_trials()
|
||||
# track new points if in multi mode
|
||||
if self.multi:
|
||||
self.track_points(trials=self.trials[frame_start:])
|
||||
# clear points used by optimizers intra batch
|
||||
backend.results_shared.update(self.opt_empty_tuple())
|
||||
# give up if no best since max epochs
|
||||
if current + 1 > self.epochs_limit():
|
||||
self.max_epoch_reached = True
|
||||
@ -953,8 +998,8 @@ class Hyperopt:
|
||||
# never waste
|
||||
n_initial_points = min(log_sss, search_space_size // 3)
|
||||
# it shall run for this much, I say
|
||||
min_epochs = int(max(n_initial_points, opt_points) * (1 + effort) + n_initial_points)
|
||||
return n_initial_points or 1, min_epochs, search_space_size
|
||||
min_epochs = int(max(n_initial_points, opt_points) + 2 * n_initial_points)
|
||||
return int(n_initial_points * effort) or 1, int(min_epochs * effort), search_space_size
|
||||
|
||||
def update_max_epoch(self, val: Dict, current: int):
|
||||
""" calculate max epochs: store the number of non best epochs
|
||||
@ -966,49 +1011,108 @@ class Hyperopt:
|
||||
self.current_best_epoch = current
|
||||
self.max_epoch = int(
|
||||
(self.current_best_epoch + self.avg_best_occurrence + self.min_epochs) *
|
||||
(1 + self.effort))
|
||||
max(1, self.effort))
|
||||
if self.max_epoch > self.search_space_size:
|
||||
self.max_epoch = self.search_space_size
|
||||
logger.debug(f'\nMax epoch set to: {self.epochs_limit()}')
|
||||
|
||||
@staticmethod
|
||||
def params_Xi(v: dict):
|
||||
return list(v["params_dict"].values())
|
||||
|
||||
def track_points(self, trials: List = None):
|
||||
"""
|
||||
keep tracking of the evaluated points per optimizer random state
|
||||
"""
|
||||
# if no trials are given, use saved trials
|
||||
if not trials:
|
||||
if len(self.trials) > 0:
|
||||
if self.config.get('hyperopt_continue_filtered', False):
|
||||
trials = filter_trials(self.trials, self.config)
|
||||
else:
|
||||
trials = self.trials
|
||||
else:
|
||||
return
|
||||
for v in trials:
|
||||
rs = v["random_state"]
|
||||
try:
|
||||
self.Xi[rs].append(Hyperopt.params_Xi(v))
|
||||
self.yi[rs].append(v["loss"])
|
||||
except IndexError: # Hyperopt was started with different random_state or number of jobs
|
||||
pass
|
||||
|
||||
def setup_optimizers(self):
|
||||
""" Setup the optimizers objects, try to load from disk, or create new ones """
|
||||
# try to load previous optimizers
|
||||
opts = self.load_previous_optimizers(self.opts_file)
|
||||
n_opts = len(opts)
|
||||
max_opts = self.n_jobs
|
||||
|
||||
if self.multi:
|
||||
max_opts = self.n_jobs
|
||||
rngs = []
|
||||
# when sharing results there is only one optimizer that gets copied
|
||||
if self.shared:
|
||||
max_opts = 1
|
||||
# put the restored optimizers in the queue
|
||||
if n_opts > 0:
|
||||
# only if they match the current number of jobs
|
||||
if n_opts == max_opts:
|
||||
for n in range(n_opts):
|
||||
backend.optimizers.put(opts[n])
|
||||
rngs.append(opts[n].rs)
|
||||
# make sure to not store points and models in the optimizer
|
||||
backend.optimizers.put(Hyperopt.opt_clear(opts[n]))
|
||||
# generate as many optimizers as are still needed to fill the job count
|
||||
remaining = max_opts - backend.optimizers.qsize()
|
||||
if remaining > 0:
|
||||
opt = self.get_optimizer(self.dimensions, self.n_jobs, self.opt_n_initial_points)
|
||||
opt = self.get_optimizer()
|
||||
rngs = []
|
||||
for _ in range(remaining): # generate optimizers
|
||||
# random state is preserved
|
||||
opt_copy = opt.copy(random_state=opt.rng.randint(0,
|
||||
iinfo(int32).max))
|
||||
rs = opt.rng.randint(0, iinfo(int32).max)
|
||||
opt_copy = opt.copy(random_state=rs)
|
||||
opt_copy.void_loss = VOID_LOSS
|
||||
opt_copy.void = False
|
||||
opt_copy.rs = rs
|
||||
rngs.append(rs)
|
||||
backend.optimizers.put(opt_copy)
|
||||
del opt, opt_copy
|
||||
# reconstruct observed points from epochs
|
||||
# in shared mode each worker will remove the results once all the workers
|
||||
# have read it (counter < 1)
|
||||
counter = self.n_jobs
|
||||
|
||||
def empty_dict():
|
||||
return {rs: [] for rs in rngs}
|
||||
self.opt_empty_tuple = lambda: {rs: ((), ()) for rs in rngs}
|
||||
self.Xi.update(empty_dict())
|
||||
self.yi.update(empty_dict())
|
||||
self.track_points()
|
||||
# this is needed to keep track of results discovered within the same batch
|
||||
# by each optimizer, use tuples! as the SyncManager doesn't handle nested dicts
|
||||
Xi, yi = self.Xi, self.yi
|
||||
results = {tuple(X): [yi[r][n], counter] for r in Xi for n, X in enumerate(Xi[r])}
|
||||
results.update(self.opt_empty_tuple())
|
||||
backend.results_shared = backend.manager.dict(results)
|
||||
else:
|
||||
# if we have more than 1 optimizer but are using single opt,
|
||||
# pick one discard the rest...
|
||||
if n_opts > 0:
|
||||
self.opt = opts[-1]
|
||||
else:
|
||||
self.opt = self.get_optimizer(
|
||||
self.dimensions, self.n_jobs, self.opt_n_initial_points
|
||||
)
|
||||
self.opt = self.get_optimizer()
|
||||
self.opt.void_loss = VOID_LOSS
|
||||
self.opt.void = False
|
||||
self.opt.rs = self.random_state
|
||||
# in single mode restore the points directly to the optimizer
|
||||
# but delete first in case we have filtered the starting list of points
|
||||
self.opt = Hyperopt.opt_clear(self.opt)
|
||||
rs = self.random_state
|
||||
self.Xi[rs] = []
|
||||
self.track_points()
|
||||
if len(self.Xi[rs]) > 0:
|
||||
self.opt.tell(self.Xi[rs], self.yi[rs], fit=False)
|
||||
# delete points since in single mode the optimizer state sits in the main
|
||||
# process and is not discarded
|
||||
self.Xi, self.yi = {}, {}
|
||||
del opts[:]
|
||||
|
||||
def setup_points(self):
|
||||
@ -1028,6 +1132,20 @@ class Hyperopt:
|
||||
# initialize average best occurrence
|
||||
self.avg_best_occurrence = self.min_epochs // self.n_jobs
|
||||
|
||||
def return_results(self):
|
||||
"""
|
||||
results are passed by queue in multi mode, or stored by ask_and_tell in single mode
|
||||
"""
|
||||
batch_results = []
|
||||
if self.multi:
|
||||
while not backend.results_batch.empty():
|
||||
worker_results = backend.results_batch.get()
|
||||
batch_results.extend(worker_results)
|
||||
else:
|
||||
batch_results.extend(self.batch_results)
|
||||
del self.batch_results[:]
|
||||
return batch_results
|
||||
|
||||
def main_loop(self, jobs_scheduler):
|
||||
""" main parallel loop """
|
||||
try:
|
||||
@ -1036,7 +1154,7 @@ class Hyperopt:
|
||||
jobs = parallel._effective_n_jobs()
|
||||
logger.info(f'Effective number of parallel workers used: {jobs}')
|
||||
# update epochs count
|
||||
n_points = self.n_points
|
||||
opt_points = self.opt_points
|
||||
prev_batch = -1
|
||||
epochs_so_far = len(self.trials)
|
||||
epochs_limit = self.epochs_limit
|
||||
@ -1044,7 +1162,7 @@ class Hyperopt:
|
||||
columns -= 1
|
||||
while epochs_so_far > prev_batch or epochs_so_far < self.min_epochs:
|
||||
prev_batch = epochs_so_far
|
||||
occurrence = int(self.avg_best_occurrence * (1 + self.effort))
|
||||
occurrence = int(self.avg_best_occurrence * max(1, self.effort))
|
||||
# pad the batch length to the number of jobs to avoid desaturation
|
||||
batch_len = (occurrence + jobs -
|
||||
occurrence % jobs)
|
||||
@ -1052,22 +1170,23 @@ class Hyperopt:
|
||||
# n_points (epochs) in 1 dispatch but this reduces the batch len too much
|
||||
# if self.multi: batch_len = batch_len // self.n_points
|
||||
# don't go over the limit
|
||||
if epochs_so_far + batch_len * n_points >= epochs_limit():
|
||||
q, r = divmod(epochs_limit() - epochs_so_far, n_points)
|
||||
if epochs_so_far + batch_len * opt_points >= epochs_limit():
|
||||
q, r = divmod(epochs_limit() - epochs_so_far, opt_points)
|
||||
batch_len = q + r
|
||||
print(
|
||||
f"{epochs_so_far+1}-{epochs_so_far+batch_len*n_points}"
|
||||
f"{epochs_so_far+1}-{epochs_so_far+batch_len}"
|
||||
f"/{epochs_limit()}: ",
|
||||
end='')
|
||||
f_val = jobs_scheduler(parallel, batch_len, epochs_so_far, jobs)
|
||||
jobs_scheduler(parallel, batch_len, epochs_so_far, jobs)
|
||||
batch_results = self.return_results()
|
||||
print(end='\r')
|
||||
saved = self.log_results(f_val, epochs_so_far, epochs_limit())
|
||||
saved = self.log_results(batch_results, epochs_so_far, epochs_limit())
|
||||
print('\r', ' ' * columns, end='\r')
|
||||
# stop if no epochs have been evaluated
|
||||
if len(f_val) < batch_len:
|
||||
if len(batch_results) < batch_len:
|
||||
logger.warning("Some evaluated epochs were void, "
|
||||
"check the loss function and the search space.")
|
||||
if (not saved and len(f_val) > 1) or batch_len < 1 or \
|
||||
if (not saved and len(batch_results) > 1) or batch_len < 1 or \
|
||||
(not saved and self.search_space_size < batch_len + epochs_limit()):
|
||||
break
|
||||
# log_results add
|
||||
|
@ -1,4 +1,4 @@
|
||||
from typing import Any
|
||||
from typing import Any, Dict, List, Tuple
|
||||
from queue import Queue
|
||||
from multiprocessing.managers import SyncManager
|
||||
|
||||
@ -6,8 +6,13 @@ hyperopt: Any = None
|
||||
manager: SyncManager
|
||||
# stores the optimizers in multi opt mode
|
||||
optimizers: Queue
|
||||
# stores a list of the results to share between optimizers
|
||||
# in the form of dict[tuple(Xi)] = yi
|
||||
results_board: Queue
|
||||
# store the results in single opt mode
|
||||
results: Queue
|
||||
# stores the results to share between optimizers
|
||||
# in the form of key = Tuple[Xi], value = Tuple[float, int]
|
||||
# where float is the loss and int is a decreasing counter of optimizers
|
||||
# that have registered the result
|
||||
results_shared: Dict[Tuple, Tuple]
|
||||
# in single mode the results_list is used to pass the results to the optimizer
|
||||
# to fit new models
|
||||
results_list: List
|
||||
# results_batch stores keeps results per batch that are eventually logged and stored
|
||||
results_batch: Queue
|
||||
|
Loading…
Reference in New Issue
Block a user