Merge pull request #1119 from creslinux/ta_on_candle

ta_on_candle (not loop, with optional flag in config.json) Resubmitting - because GIT.
This commit is contained in:
Matthias 2018-09-02 17:01:21 +02:00 committed by GitHub
commit 6b74fb0893
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 134 additions and 4 deletions

View File

@ -23,6 +23,7 @@ The table below will list all configuration parameters.
| `ticker_interval` | [1m, 5m, 30m, 1h, 1d] | No | The ticker interval to use (1min, 5 min, 30 min, 1 hour or 1 day). Default is 5 minutes | `ticker_interval` | [1m, 5m, 30m, 1h, 1d] | No | The ticker interval to use (1min, 5 min, 30 min, 1 hour or 1 day). Default is 5 minutes
| `fiat_display_currency` | USD | Yes | Fiat currency used to show your profits. More information below. | `fiat_display_currency` | USD | Yes | Fiat currency used to show your profits. More information below.
| `dry_run` | true | Yes | Define if the bot must be in Dry-run or production mode. | `dry_run` | true | Yes | Define if the bot must be in Dry-run or production mode.
| `process_only_new_candles` | false | No | If set to true indicators are processed only once a new candle arrives. If false each loop populates the indicators, this will mean the same candle is processed many times creating system load but can be useful of your strategy depends on tick data not only candle. Can be set either in Configuration or in the strategy.
| `minimal_roi` | See below | No | Set the threshold in percent the bot will use to sell a trade. More information below. If set, this parameter will override `minimal_roi` from your strategy file. | `minimal_roi` | See below | No | Set the threshold in percent the bot will use to sell a trade. More information below. If set, this parameter will override `minimal_roi` from your strategy file.
| `stoploss` | -0.10 | No | Value of the stoploss in percent used by the bot. More information below. If set, this parameter will override `stoploss` from your strategy file. | `stoploss` | -0.10 | No | Value of the stoploss in percent used by the bot. More information below. If set, this parameter will override `stoploss` from your strategy file.
| `trailing_stop` | false | No | Enables trailing stop-loss (based on `stoploss` in either configuration or strategy file). | `trailing_stop` | false | No | Enables trailing stop-loss (based on `stoploss` in either configuration or strategy file).

View File

@ -53,6 +53,7 @@ CONF_SCHEMA = {
}, },
'fiat_display_currency': {'type': 'string', 'enum': SUPPORTED_FIAT}, 'fiat_display_currency': {'type': 'string', 'enum': SUPPORTED_FIAT},
'dry_run': {'type': 'boolean'}, 'dry_run': {'type': 'boolean'},
'process_only_new_candles': {'type': 'boolean'},
'minimal_roi': { 'minimal_roi': {
'type': 'object', 'type': 'object',
'patternProperties': { 'patternProperties': {

View File

@ -70,8 +70,15 @@ class IStrategy(ABC):
# associated ticker interval # associated ticker interval
ticker_interval: str ticker_interval: str
# run "populate_indicators" only for new candle
process_only_new_candles: bool = False
# Dict to determine if analysis is necessary
_last_candle_seen_per_pair: Dict[str, datetime] = {}
def __init__(self, config: dict) -> None: def __init__(self, config: dict) -> None:
self.config = config self.config = config
self._last_candle_seen_per_pair = {}
@abstractmethod @abstractmethod
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame: def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
@ -112,10 +119,30 @@ class IStrategy(ABC):
add several TA indicators and buy signal to it add several TA indicators and buy signal to it
:return DataFrame with ticker data and indicator data :return DataFrame with ticker data and indicator data
""" """
dataframe = parse_ticker_dataframe(ticker_history) dataframe = parse_ticker_dataframe(ticker_history)
pair = str(metadata.get('pair'))
# Test if seen this pair and last candle before.
# always run if process_only_new_candles is set to true
if (not self.process_only_new_candles or
self._last_candle_seen_per_pair.get(pair, None) != dataframe.iloc[-1]['date']):
# Defs that only make change on new candle data.
logging.debug("TA Analysis Launched")
dataframe = self.advise_indicators(dataframe, metadata) dataframe = self.advise_indicators(dataframe, metadata)
dataframe = self.advise_buy(dataframe, metadata) dataframe = self.advise_buy(dataframe, metadata)
dataframe = self.advise_sell(dataframe, metadata) dataframe = self.advise_sell(dataframe, metadata)
self._last_candle_seen_per_pair[pair] = dataframe.iloc[-1]['date']
else:
logging.debug("Skippinig TA Analysis for already analyzed candle")
dataframe['buy'] = 0
dataframe['sell'] = 0
# Other Defs in strategy that want to be called every loop here
# twitter_sell = self.watch_twitter_feed(dataframe, metadata)
logging.debug("Loop Analysis Launched")
return dataframe return dataframe
def get_signal(self, pair: str, interval: str, ticker_hist: List[Dict]) -> Tuple[bool, bool]: def get_signal(self, pair: str, interval: str, ticker_hist: List[Dict]) -> Tuple[bool, bool]:

View File

@ -66,6 +66,15 @@ class StrategyResolver(object):
else: else:
config['ticker_interval'] = self.strategy.ticker_interval config['ticker_interval'] = self.strategy.ticker_interval
if 'process_only_new_candles' in config:
self.strategy.process_only_new_candles = config['process_only_new_candles']
logger.info(
"Override process_only_new_candles 'process_only_new_candles' "
"with value in config file: %s.", config['process_only_new_candles']
)
else:
config['process_only_new_candles'] = self.strategy.process_only_new_candles
# Sort and apply type conversions # Sort and apply type conversions
self.strategy.minimal_roi = OrderedDict(sorted( self.strategy.minimal_roi = OrderedDict(sorted(
{int(key): value for (key, value) in self.strategy.minimal_roi.items()}.items(), {int(key): value for (key, value) in self.strategy.minimal_roi.items()}.items(),

View File

@ -129,3 +129,75 @@ def test_min_roi_reached(default_conf, fee) -> None:
assert not strategy.min_roi_reached(trade, -0.01, arrow.utcnow().shift(minutes=-1).datetime) assert not strategy.min_roi_reached(trade, -0.01, arrow.utcnow().shift(minutes=-1).datetime)
assert strategy.min_roi_reached(trade, 0.02, arrow.utcnow().shift(minutes=-1).datetime) assert strategy.min_roi_reached(trade, 0.02, arrow.utcnow().shift(minutes=-1).datetime)
def test_analyze_ticker_default(ticker_history, mocker, caplog) -> None:
caplog.set_level(logging.DEBUG)
ind_mock = MagicMock(side_effect=lambda x, meta: x)
buy_mock = MagicMock(side_effect=lambda x, meta: x)
sell_mock = MagicMock(side_effect=lambda x, meta: x)
mocker.patch.multiple(
'freqtrade.strategy.interface.IStrategy',
advise_indicators=ind_mock,
advise_buy=buy_mock,
advise_sell=sell_mock,
)
strategy = DefaultStrategy({})
strategy.analyze_ticker(ticker_history, {'pair': 'ETH/BTC'})
assert ind_mock.call_count == 1
assert buy_mock.call_count == 1
assert buy_mock.call_count == 1
assert log_has('TA Analysis Launched', caplog.record_tuples)
assert not log_has('Skippinig TA Analysis for already analyzed candle',
caplog.record_tuples)
caplog.clear()
strategy.analyze_ticker(ticker_history, {'pair': 'ETH/BTC'})
# No analysis happens as process_only_new_candles is true
assert ind_mock.call_count == 2
assert buy_mock.call_count == 2
assert buy_mock.call_count == 2
assert log_has('TA Analysis Launched', caplog.record_tuples)
assert not log_has('Skippinig TA Analysis for already analyzed candle',
caplog.record_tuples)
def test_analyze_ticker_skip_analyze(ticker_history, mocker, caplog) -> None:
caplog.set_level(logging.DEBUG)
ind_mock = MagicMock(side_effect=lambda x, meta: x)
buy_mock = MagicMock(side_effect=lambda x, meta: x)
sell_mock = MagicMock(side_effect=lambda x, meta: x)
mocker.patch.multiple(
'freqtrade.strategy.interface.IStrategy',
advise_indicators=ind_mock,
advise_buy=buy_mock,
advise_sell=sell_mock,
)
strategy = DefaultStrategy({})
strategy.process_only_new_candles = True
ret = strategy.analyze_ticker(ticker_history, {'pair': 'ETH/BTC'})
assert ind_mock.call_count == 1
assert buy_mock.call_count == 1
assert buy_mock.call_count == 1
assert log_has('TA Analysis Launched', caplog.record_tuples)
assert not log_has('Skippinig TA Analysis for already analyzed candle',
caplog.record_tuples)
caplog.clear()
ret = strategy.analyze_ticker(ticker_history, {'pair': 'ETH/BTC'})
# No analysis happens as process_only_new_candles is true
assert ind_mock.call_count == 1
assert buy_mock.call_count == 1
assert buy_mock.call_count == 1
# only skipped analyze adds buy and sell columns, otherwise it's all mocked
assert 'buy' in ret
assert 'sell' in ret
assert ret['buy'].sum() == 0
assert ret['sell'].sum() == 0
assert not log_has('TA Analysis Launched', caplog.record_tuples)
assert log_has('Skippinig TA Analysis for already analyzed candle',
caplog.record_tuples)

View File

@ -165,6 +165,23 @@ def test_strategy_override_ticker_interval(caplog):
) in caplog.record_tuples ) in caplog.record_tuples
def test_strategy_override_process_only_new_candles(caplog):
caplog.set_level(logging.INFO)
config = {
'strategy': 'DefaultStrategy',
'process_only_new_candles': True
}
resolver = StrategyResolver(config)
assert resolver.strategy.process_only_new_candles
assert ('freqtrade.strategy.resolver',
logging.INFO,
"Override process_only_new_candles 'process_only_new_candles' "
"with value in config file: True."
) in caplog.record_tuples
def test_deprecate_populate_indicators(result): def test_deprecate_populate_indicators(result):
default_location = path.join(path.dirname(path.realpath(__file__))) default_location = path.join(path.dirname(path.realpath(__file__)))
resolver = StrategyResolver({'strategy': 'TestStrategyLegacy', resolver = StrategyResolver({'strategy': 'TestStrategyLegacy',

View File

@ -45,6 +45,9 @@ class TestStrategy(IStrategy):
# Optimal ticker interval for the strategy # Optimal ticker interval for the strategy
ticker_interval = '5m' ticker_interval = '5m'
# run "populate_indicators" only for new candle
ta_on_candle = False
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame: def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
""" """
Adds several different TA indicators to the given DataFrame Adds several different TA indicators to the given DataFrame