This commit is contained in:
jblestang 2018-02-05 06:55:09 +00:00 committed by GitHub
commit 6aa9f6553e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
15 changed files with 138 additions and 46 deletions

View File

@ -51,7 +51,7 @@ update your buy strategy.
Sample from `user_data/strategies/test_strategy.py`:
```python
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
def populate_buy_trend(self, dataframe: DataFrame, pair : str) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame
@ -74,7 +74,7 @@ update your sell strategy.
Sample from `user_data/strategies/test_strategy.py`:
```python
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
def populate_sell_trend(self, dataframe: DataFrame, pair : str) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame
@ -97,7 +97,7 @@ the method `populate_indicators()` from your strategy file.
Sample:
```python
def populate_indicators(dataframe: DataFrame) -> DataFrame:
def populate_indicators(dataframe: DataFrame, pair : str) -> DataFrame:
"""
Adds several different TA indicators to the given DataFrame
"""

View File

@ -42,7 +42,7 @@ If you have updated the buy strategy, means change the content of
As for an example if your `populate_buy_trend()` method is:
```python
def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
def populate_buy_trend(dataframe: DataFrame, pair: str) -> DataFrame:
dataframe.loc[
(dataframe['rsi'] < 35) &
(dataframe['adx'] > 65),
@ -81,7 +81,7 @@ space = {
...
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
def populate_buy_trend(self, dataframe: DataFrame, pair: str) -> DataFrame:
conditions = []
# GUARDS AND TRENDS
if params['adx']['enabled']:
@ -280,7 +280,7 @@ at `adx`-block, that translates to the following code block:
So translating your whole hyperopt result to as the new buy-signal
would be the following:
```
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
def populate_buy_trend(self, dataframe: DataFrame, pair: str) -> DataFrame:
dataframe.loc[
(
(dataframe['adx'] > 15.0) & # adx-value

View File

@ -37,7 +37,7 @@ def parse_ticker_dataframe(ticker: list) -> DataFrame:
return frame
def populate_indicators(dataframe: DataFrame) -> DataFrame:
def populate_indicators(dataframe: DataFrame, pair: str) -> DataFrame:
"""
Adds several different TA indicators to the given DataFrame
@ -46,39 +46,39 @@ def populate_indicators(dataframe: DataFrame) -> DataFrame:
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
"""
strategy = Strategy()
return strategy.populate_indicators(dataframe=dataframe)
return strategy.populate_indicators(dataframe=dataframe, pair=pair)
def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
def populate_buy_trend(dataframe: DataFrame, pair: str) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
strategy = Strategy()
return strategy.populate_buy_trend(dataframe=dataframe)
return strategy.populate_buy_trend(dataframe=dataframe, pair=pair)
def populate_sell_trend(dataframe: DataFrame) -> DataFrame:
def populate_sell_trend(dataframe: DataFrame, pair: str) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
strategy = Strategy()
return strategy.populate_sell_trend(dataframe=dataframe)
return strategy.populate_sell_trend(dataframe=dataframe, pair=pair)
def analyze_ticker(ticker_history: List[Dict]) -> DataFrame:
def analyze_ticker(ticker_history: List[Dict], pair: str) -> DataFrame:
"""
Parses the given ticker history and returns a populated DataFrame
add several TA indicators and buy signal to it
:return DataFrame with ticker data and indicator data
"""
dataframe = parse_ticker_dataframe(ticker_history)
dataframe = populate_indicators(dataframe)
dataframe = populate_buy_trend(dataframe)
dataframe = populate_sell_trend(dataframe)
dataframe = populate_indicators(dataframe, pair)
dataframe = populate_buy_trend(dataframe, pair)
dataframe = populate_sell_trend(dataframe, pair)
return dataframe
@ -96,7 +96,7 @@ def get_signal(pair: str, interval: int) -> (bool, bool):
return (False, False) # return False ?
try:
dataframe = analyze_ticker(ticker_hist)
dataframe = analyze_ticker(ticker_hist, pair)
except ValueError as ex:
logger.warning('Unable to analyze ticker for pair %s: %s', pair, str(ex))
return (False, False) # return False ?

View File

@ -161,6 +161,8 @@ def handle_timedout_limit_buy(trade: Trade, order: Dict) -> bool:
logger.info('Buy order timeout for %s.', trade)
rpc.send_msg('*Timeout:* Unfilled buy order for {} cancelled'.format(
trade.pair.replace('_', '/')))
strategy = Strategy()
strategy.did_cancel_buy(trade.pair)
return True
# if trade is partially complete, edit the stake details for the trade
@ -191,6 +193,8 @@ def handle_timedout_limit_sell(trade: Trade, order: Dict) -> bool:
rpc.send_msg('*Timeout:* Unfilled sell order for {} cancelled'.format(
trade.pair.replace('_', '/')))
logger.info('Sell order timeout for %s.', trade)
strategy = Strategy()
strategy.did_cancel_sell(trade.pair)
return True
# TODO: figure out how to handle partially complete sell orders
@ -234,6 +238,9 @@ def execute_sell(trade: Trade, limit: float) -> None:
order_id = exchange.sell(str(trade.pair), limit, trade.amount)
trade.open_order_id = order_id
strategy = Strategy()
strategy.did_sold(trade.pair)
fmt_exp_profit = round(trade.calc_profit_percent(rate=limit) * 100, 2)
profit_trade = trade.calc_profit(rate=limit)
current_rate = exchange.get_ticker(trade.pair, False)['bid']
@ -412,6 +419,8 @@ def create_trade(stake_amount: float, interval: int) -> bool:
_CONF['stake_currency'],
_CONF['fiat_display_currency']
)
strategy = Strategy()
strategy.did_bought(pair)
# Create trade entity and return
rpc.send_msg('*{}:* Buying [{}]({}) with limit `{:.8f} ({:.6f} {}, {:.3f} {})` '.format(

View File

@ -91,7 +91,7 @@ def tickerdata_to_dataframe(data):
def preprocess(tickerdata: Dict[str, List]) -> Dict[str, DataFrame]:
"""Creates a dataframe and populates indicators for given ticker data"""
return {pair: populate_indicators(parse_ticker_dataframe(pair_data))
return {pair: populate_indicators(parse_ticker_dataframe(pair_data), pair)
for pair, pair_data in tickerdata.items()}

View File

@ -119,7 +119,7 @@ def backtest(args) -> DataFrame:
exchange._API = Bittrex({'key': '', 'secret': ''})
for pair, pair_data in processed.items():
pair_data['buy'], pair_data['sell'] = 0, 0
ticker = populate_sell_trend(populate_buy_trend(pair_data))
ticker = populate_sell_trend(populate_buy_trend(pair_data, pair), pair)
# for each buy point
lock_pair_until = None
headers = ['buy', 'open', 'close', 'date', 'sell']

View File

@ -61,7 +61,7 @@ TRIALS = Trials()
main._CONF = OPTIMIZE_CONFIG
def populate_indicators(dataframe: DataFrame) -> DataFrame:
def populate_indicators(dataframe: DataFrame, pair: str) -> DataFrame:
"""
Adds several different TA indicators to the given DataFrame
"""
@ -320,7 +320,7 @@ def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
"""
Define the buy strategy parameters to be used by hyperopt
"""
def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
def populate_buy_trend(dataframe: DataFrame, pair: str) -> DataFrame:
conditions = []
# GUARDS AND TRENDS
if 'uptrend_long_ema' in params and params['uptrend_long_ema']['enabled']:

View File

@ -29,7 +29,7 @@ class DefaultStrategy(IStrategy):
# Optimal ticker interval for the strategy
ticker_interval = 5
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
def populate_indicators(self, dataframe: DataFrame, pair: str) -> DataFrame:
"""
Adds several different TA indicators to the given DataFrame
@ -196,7 +196,7 @@ class DefaultStrategy(IStrategy):
return dataframe
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
def populate_buy_trend(self, dataframe: DataFrame, pair: str) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame
@ -217,7 +217,7 @@ class DefaultStrategy(IStrategy):
return dataframe
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
def populate_sell_trend(self, dataframe: DataFrame, pair: str) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame
@ -238,3 +238,27 @@ class DefaultStrategy(IStrategy):
),
'sell'] = 1
return dataframe
def did_bought(self, pair: str):
"""
we are notified that a given pair was bought
:param pair: the pair that was is concerned by the dataframe
"""
def did_sold(self, pair: str):
"""
we are notified that a given pair was sold
:param pair: the pair that was is concerned by the dataframe
"""
def did_cancel_buy(self, pair: str):
"""
we are notified that a given pair buy was not filled
:param pair: the pair that was is concerned by the dataframe
"""
def did_cancel_sell(self, pair: str):
"""
we are notified that a given pair was not sold
:param pair: the pair that was is concerned by the dataframe
"""

View File

@ -19,26 +19,57 @@ class IStrategy(ABC):
"""
@abstractmethod
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
def populate_indicators(self, dataframe: DataFrame, pair: str) -> DataFrame:
"""
Populate indicators that will be used in the Buy and Sell strategy
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
:param pair: the pair that was is concerned by the dataframe
:return: a Dataframe with all mandatory indicators for the strategies
"""
@abstractmethod
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
def populate_buy_trend(self, dataframe: DataFrame, pair: str) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame
:param pair: the pair that was is concerned by the dataframe
:return: DataFrame with buy column
:return:
"""
@abstractmethod
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
def populate_sell_trend(self, dataframe: DataFrame, pair: str) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame
:param pair: the pair that was is concerned by the dataframe
:return: DataFrame with buy column
"""
@abstractmethod
def did_bought(self, pair: str):
"""
we are notified that a given pair was bought
:param pair: the pair that was is concerned by the dataframe
"""
@abstractmethod
def did_sold(self, pair: str):
"""
we are notified that a given pair was sold
:param pair: the pair that was is concerned by the dataframe
"""
@abstractmethod
def did_cancel_buy(self, pair: str):
"""
we are notified that a given buy for a pair was cancelled
:param pair: the pair that was is concerned by the dataframe
"""
@abstractmethod
def did_cancel_sell(self, pair: str):
"""
we are notified that a given sell for a pair was cancelled
:param pair: the pair that was is concerned by the dataframe
"""

View File

@ -151,27 +151,55 @@ class Strategy(object):
return path
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
def populate_indicators(self, dataframe: DataFrame, pair: str) -> DataFrame:
"""
Populate indicators that will be used in the Buy and Sell strategy
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
:return: a Dataframe with all mandatory indicators for the strategies
"""
return self.custom_strategy.populate_indicators(dataframe)
return self.custom_strategy.populate_indicators(dataframe, pair)
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
def populate_buy_trend(self, dataframe: DataFrame, pair: str) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
:return:
"""
return self.custom_strategy.populate_buy_trend(dataframe)
return self.custom_strategy.populate_buy_trend(dataframe, pair)
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
def populate_sell_trend(self, dataframe: DataFrame, pair: str) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
return self.custom_strategy.populate_sell_trend(dataframe)
return self.custom_strategy.populate_sell_trend(dataframe, pair)
def did_bought(self, pair: str):
"""
we are notified that a given pair was bought
:param pair: the pair that was is concerned by the dataframe
"""
return self.custom_strategy.did_bought(pair)
def did_sold(self, pair: str):
"""
we are notified that a given pair was sold
:param pair: the pair that was is concerned by the dataframe
"""
return self.custom_strategy.did_sold(pair)
def did_cancel_buy(self, pair: str):
"""
we are notified that a given pair was bought
:param pair: the pair that was is concerned by the dataframe
"""
return self.custom_strategy.did_cancel_buy(pair)
def did_cancel_sell(self, pair: str):
"""
we are notified that a given pair was sold
:param pair: the pair that was is concerned by the dataframe
"""
return self.custom_strategy.did_cancel_sell(pair)

View File

@ -30,7 +30,7 @@ def test_default_strategy(result):
assert type(strategy.minimal_roi) is dict
assert type(strategy.stoploss) is float
assert type(strategy.ticker_interval) is int
indicators = strategy.populate_indicators(result)
indicators = strategy.populate_indicators(result, None)
assert type(indicators) is DataFrame
assert type(strategy.populate_buy_trend(indicators)) is DataFrame
assert type(strategy.populate_sell_trend(indicators)) is DataFrame
assert type(strategy.populate_buy_trend(indicators, None)) is DataFrame
assert type(strategy.populate_sell_trend(indicators, None)) is DataFrame

View File

@ -37,7 +37,7 @@ def test_load_strategy(result):
assert not hasattr(Strategy, 'custom_strategy')
assert hasattr(strategy.custom_strategy, 'populate_indicators')
assert 'adx' in strategy.populate_indicators(result)
assert 'adx' in strategy.populate_indicators(result, None)
def test_load_not_found_strategy(caplog):
@ -63,14 +63,14 @@ def test_strategy(result):
assert strategy.stoploss == -0.10
assert hasattr(strategy.custom_strategy, 'populate_indicators')
assert 'adx' in strategy.populate_indicators(result)
assert 'adx' in strategy.populate_indicators(result, None)
assert hasattr(strategy.custom_strategy, 'populate_buy_trend')
dataframe = strategy.populate_buy_trend(strategy.populate_indicators(result))
dataframe = strategy.populate_buy_trend(strategy.populate_indicators(result, None), None)
assert 'buy' in dataframe.columns
assert hasattr(strategy.custom_strategy, 'populate_sell_trend')
dataframe = strategy.populate_sell_trend(strategy.populate_indicators(result))
dataframe = strategy.populate_sell_trend(strategy.populate_indicators(result, None), None)
assert 'sell' in dataframe.columns

View File

@ -27,7 +27,7 @@ def test_populates_buy_trend(result):
# Load the default strategy for the unit test, because this logic is done in main.py
Strategy().init({'strategy': 'default_strategy'})
dataframe = populate_buy_trend(populate_indicators(result))
dataframe = populate_buy_trend(populate_indicators(result, None), None)
assert 'buy' in dataframe.columns
@ -35,7 +35,7 @@ def test_populates_sell_trend(result):
# Load the default strategy for the unit test, because this logic is done in main.py
Strategy().init({'strategy': 'default_strategy'})
dataframe = populate_sell_trend(populate_indicators(result))
dataframe = populate_sell_trend(populate_indicators(result, None), None)
assert 'sell' in dataframe.columns

View File

@ -12,7 +12,7 @@ def load_dataframe_pair(pairs):
assert isinstance(ld, dict)
assert isinstance(pairs[0], str)
dataframe = ld[pairs[0]]
dataframe = analyze.analyze_ticker(dataframe)
dataframe = analyze.analyze_ticker(dataframe, pairs[0])
return dataframe

View File

@ -47,7 +47,7 @@ class TestStrategy(IStrategy):
# Optimal ticker interval for the strategy
ticker_interval = 5
def populate_indicators(self, dataframe: DataFrame) -> DataFrame:
def populate_indicators(self, dataframe: DataFrame, pair: str) -> DataFrame:
"""
Adds several different TA indicators to the given DataFrame
@ -214,7 +214,7 @@ class TestStrategy(IStrategy):
return dataframe
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
def populate_buy_trend(self, dataframe: DataFrame, pair: str) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame
@ -230,7 +230,7 @@ class TestStrategy(IStrategy):
return dataframe
def populate_sell_trend(self, dataframe: DataFrame) -> DataFrame:
def populate_sell_trend(self, dataframe: DataFrame, pair: str) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame