diff --git a/freqtrade/edge/__init__.py b/freqtrade/edge/__init__.py index 490bc065e..e2af560c9 100644 --- a/freqtrade/edge/__init__.py +++ b/freqtrade/edge/__init__.py @@ -15,7 +15,6 @@ from freqtrade.strategy.interface import SellType from freqtrade.strategy.resolver import IStrategy, StrategyResolver from freqtrade.optimize.backtesting import Backtesting - logger = logging.getLogger(__name__) @@ -221,25 +220,19 @@ class Edge(): and keep it in a storage. The calulation will be done per pair and per strategy. """ - # Removing pairs having less than min_trades_number min_trades_number = self.edge_config.get('min_trade_number', 15) - results = results.groupby('pair').filter(lambda x: len(x) > min_trades_number) + results = results.groupby(['pair', 'stoploss']).filter(lambda x: len(x) > min_trades_number) ################################### # Removing outliers (Only Pumps) from the dataset # The method to detect outliers is to calculate standard deviation # Then every value more than (standard deviation + 2*average) is out (pump) # - # Calculating standard deviation of profits - std = results[["profit_abs"]].std() - # - # Calculating average of profits - avg = results[["profit_abs"]].mean() - # # Removing Pumps if self.edge_config.get('remove_pumps', True): - results = results[results.profit_abs <= float(avg + 2 * std)] + results = results.groupby(['pair', 'stoploss']).apply( + lambda x: x[x['profit_abs'] < 2 * x['profit_abs'].std() + x['profit_abs'].mean()]) ########################################################################## # Removing trades having a duration more than X minutes (set in config)