Update hyperopt.py
This commit is contained in:
		| @@ -540,7 +540,7 @@ class Hyperopt: | |||||||
|         if not hasattr(self, 'mse_list'): |         if not hasattr(self, 'mse_list'): | ||||||
|             self.mse_list = [] |             self.mse_list = [] | ||||||
|  |  | ||||||
|         model = clone(res.models[-1]) |         # model = clone(res.models[-1]) | ||||||
|         # i_subset = random.sample(range(len(res.x_iters)), 100) if len(res.x_iters) > 100 else range(len(res.x_iters)) |         # i_subset = random.sample(range(len(res.x_iters)), 100) if len(res.x_iters) > 100 else range(len(res.x_iters)) | ||||||
|  |  | ||||||
|         # i_train = random.sample(i_subset, round(.8*len(i_subset))) # get 80% random indices |         # i_train = random.sample(i_subset, round(.8*len(i_subset))) # get 80% random indices | ||||||
| @@ -550,11 +550,11 @@ class Hyperopt: | |||||||
|         # i_test = [i for i in i_subset if i not in i_train] # get 20% random indices |         # i_test = [i for i in i_subset if i not in i_train] # get 20% random indices | ||||||
|         # x_test = [x for i, x in enumerate(res.x_iters) if i in i_test] |         # x_test = [x for i, x in enumerate(res.x_iters) if i in i_test] | ||||||
|         # y_test = [y for i, y in enumerate(res.func_vals) if i in i_test] |         # y_test = [y for i, y in enumerate(res.func_vals) if i in i_test] | ||||||
|         model.fit(res.x_iters, res.func_vals) |         # model.fit(res.x_iters, res.func_vals) | ||||||
|         # Perform a cross-validation estimate of the coefficient of determination using |         # Perform a cross-validation estimate of the coefficient of determination using | ||||||
|         # the cross_validation module using all CPUs available on the machine |         # the cross_validation module using all CPUs available on the machine | ||||||
|         # K = 5  # folds |         # K = 5  # folds | ||||||
|         R2 = cross_val_score(model, X=res.x_iters, y=res.func_vals, cv=5, n_jobs=jobs).mean() |         R2 = cross_val_score(res.models[-1], X=res.x_iters, y=res.func_vals, cv=5, n_jobs=jobs).mean() | ||||||
|         print(f'R2: {R2}') |         print(f'R2: {R2}') | ||||||
|         R2 = R2 if R2 > -5 else -5 |         R2 = R2 if R2 > -5 else -5 | ||||||
|         self.mse_list.append(R2) |         self.mse_list.append(R2) | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user