diff --git a/config_examples/config_freqai-rl.example.json b/config_examples/config_freqai-rl.example.json index 826fe7187..736f3e022 100644 --- a/config_examples/config_freqai-rl.example.json +++ b/config_examples/config_freqai-rl.example.json @@ -55,6 +55,7 @@ } ], "freqai": { + "enabled": true, "model_save_type": "stable_baselines_ppo", "conv_width": 10, "follow_mode": false, diff --git a/freqtrade/freqai/example_strats/ReinforcementLearningExample3ac.py b/freqtrade/freqai/example_strats/ReinforcementLearningExample3ac.py index 2173f3d2f..1976620fb 100644 --- a/freqtrade/freqai/example_strats/ReinforcementLearningExample3ac.py +++ b/freqtrade/freqai/example_strats/ReinforcementLearningExample3ac.py @@ -62,57 +62,55 @@ class ReinforcementLearningExample3ac(IStrategy): coin = pair.split('/')[0] - with self.freqai.lock: - if informative is None: - informative = self.dp.get_pair_dataframe(pair, tf) - # first loop is automatically duplicating indicators for time periods - for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]: + if informative is None: + informative = self.dp.get_pair_dataframe(pair, tf) - t = int(t) - informative[f"%-{coin}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t) - informative[f"%-{coin}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t) - informative[f"%-{coin}adx-period_{t}"] = ta.ADX(informative, window=t) + # first loop is automatically duplicating indicators for time periods + for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]: - informative[f"%-{coin}pct-change"] = informative["close"].pct_change() - informative[f"%-{coin}raw_volume"] = informative["volume"] + t = int(t) + informative[f"%-{coin}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t) + informative[f"%-{coin}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t) + informative[f"%-{coin}adx-period_{t}"] = ta.ADX(informative, window=t) - # Raw price currently necessary for RL models: - informative[f"%-{coin}raw_price"] = informative["close"] + informative[f"%-{coin}pct-change"] = informative["close"].pct_change() + informative[f"%-{coin}raw_volume"] = informative["volume"] - indicators = [col for col in informative if col.startswith("%")] - # This loop duplicates and shifts all indicators to add a sense of recency to data - for n in range(self.freqai_info["feature_parameters"]["include_shifted_candles"] + 1): - if n == 0: - continue - informative_shift = informative[indicators].shift(n) - informative_shift = informative_shift.add_suffix("_shift-" + str(n)) - informative = pd.concat((informative, informative_shift), axis=1) + # Raw price currently necessary for RL models: + informative[f"%-{coin}raw_price"] = informative["close"] - df = merge_informative_pair(df, informative, self.config["timeframe"], tf, ffill=True) - skip_columns = [ - (s + "_" + tf) for s in ["date", "open", "high", "low", "close", "volume"] - ] - df = df.drop(columns=skip_columns) + indicators = [col for col in informative if col.startswith("%")] + # This loop duplicates and shifts all indicators to add a sense of recency to data + for n in range(self.freqai_info["feature_parameters"]["include_shifted_candles"] + 1): + if n == 0: + continue + informative_shift = informative[indicators].shift(n) + informative_shift = informative_shift.add_suffix("_shift-" + str(n)) + informative = pd.concat((informative, informative_shift), axis=1) - # Add generalized indicators here (because in live, it will call this - # function to populate indicators during training). Notice how we ensure not to - # add them multiple times - if set_generalized_indicators: - df["%-day_of_week"] = (df["date"].dt.dayofweek + 1) / 7 - df["%-hour_of_day"] = (df["date"].dt.hour + 1) / 25 + df = merge_informative_pair(df, informative, self.config["timeframe"], tf, ffill=True) + skip_columns = [ + (s + "_" + tf) for s in ["date", "open", "high", "low", "close", "volume"] + ] + df = df.drop(columns=skip_columns) - # user adds targets here by prepending them with &- (see convention below) - # If user wishes to use multiple targets, a multioutput prediction model - # needs to be used such as templates/CatboostPredictionMultiModel.py - df["&-action"] = 2 + # Add generalized indicators here (because in live, it will call this + # function to populate indicators during training). Notice how we ensure not to + # add them multiple times + if set_generalized_indicators: + df["%-day_of_week"] = (df["date"].dt.dayofweek + 1) / 7 + df["%-hour_of_day"] = (df["date"].dt.hour + 1) / 25 + + # user adds targets here by prepending them with &- (see convention below) + # If user wishes to use multiple targets, a multioutput prediction model + # needs to be used such as templates/CatboostPredictionMultiModel.py + df["&-action"] = 2 return df def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame: - self.freqai_info = self.config["freqai"] - dataframe = self.freqai.start(dataframe, metadata, self) return dataframe diff --git a/freqtrade/freqai/example_strats/ReinforcementLearningExample5ac.py b/freqtrade/freqai/example_strats/ReinforcementLearningExample5ac.py index bf0d91390..8c19cc0fa 100644 --- a/freqtrade/freqai/example_strats/ReinforcementLearningExample5ac.py +++ b/freqtrade/freqai/example_strats/ReinforcementLearningExample5ac.py @@ -62,57 +62,55 @@ class ReinforcementLearningExample5ac(IStrategy): coin = pair.split('/')[0] - with self.freqai.lock: - if informative is None: - informative = self.dp.get_pair_dataframe(pair, tf) - # first loop is automatically duplicating indicators for time periods - for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]: + if informative is None: + informative = self.dp.get_pair_dataframe(pair, tf) - t = int(t) - informative[f"%-{coin}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t) - informative[f"%-{coin}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t) - informative[f"%-{coin}adx-period_{t}"] = ta.ADX(informative, window=t) + # first loop is automatically duplicating indicators for time periods + for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]: - informative[f"%-{coin}pct-change"] = informative["close"].pct_change() - informative[f"%-{coin}raw_volume"] = informative["volume"] + t = int(t) + informative[f"%-{coin}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t) + informative[f"%-{coin}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t) + informative[f"%-{coin}adx-period_{t}"] = ta.ADX(informative, window=t) - # Raw price currently necessary for RL models: - informative[f"%-{coin}raw_price"] = informative["close"] + informative[f"%-{coin}pct-change"] = informative["close"].pct_change() + informative[f"%-{coin}raw_volume"] = informative["volume"] - indicators = [col for col in informative if col.startswith("%")] - # This loop duplicates and shifts all indicators to add a sense of recency to data - for n in range(self.freqai_info["feature_parameters"]["include_shifted_candles"] + 1): - if n == 0: - continue - informative_shift = informative[indicators].shift(n) - informative_shift = informative_shift.add_suffix("_shift-" + str(n)) - informative = pd.concat((informative, informative_shift), axis=1) + # Raw price currently necessary for RL models: + informative[f"%-{coin}raw_price"] = informative["close"] - df = merge_informative_pair(df, informative, self.config["timeframe"], tf, ffill=True) - skip_columns = [ - (s + "_" + tf) for s in ["date", "open", "high", "low", "close", "volume"] - ] - df = df.drop(columns=skip_columns) + indicators = [col for col in informative if col.startswith("%")] + # This loop duplicates and shifts all indicators to add a sense of recency to data + for n in range(self.freqai_info["feature_parameters"]["include_shifted_candles"] + 1): + if n == 0: + continue + informative_shift = informative[indicators].shift(n) + informative_shift = informative_shift.add_suffix("_shift-" + str(n)) + informative = pd.concat((informative, informative_shift), axis=1) - # Add generalized indicators here (because in live, it will call this - # function to populate indicators during training). Notice how we ensure not to - # add them multiple times - if set_generalized_indicators: - df["%-day_of_week"] = (df["date"].dt.dayofweek + 1) / 7 - df["%-hour_of_day"] = (df["date"].dt.hour + 1) / 25 + df = merge_informative_pair(df, informative, self.config["timeframe"], tf, ffill=True) + skip_columns = [ + (s + "_" + tf) for s in ["date", "open", "high", "low", "close", "volume"] + ] + df = df.drop(columns=skip_columns) - # user adds targets here by prepending them with &- (see convention below) - # If user wishes to use multiple targets, a multioutput prediction model - # needs to be used such as templates/CatboostPredictionMultiModel.py - df["&-action"] = 2 + # Add generalized indicators here (because in live, it will call this + # function to populate indicators during training). Notice how we ensure not to + # add them multiple times + if set_generalized_indicators: + df["%-day_of_week"] = (df["date"].dt.dayofweek + 1) / 7 + df["%-hour_of_day"] = (df["date"].dt.hour + 1) / 25 + + # user adds targets here by prepending them with &- (see convention below) + # If user wishes to use multiple targets, a multioutput prediction model + # needs to be used such as templates/CatboostPredictionMultiModel.py + df["&-action"] = 2 return df def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame: - self.freqai_info = self.config["freqai"] - dataframe = self.freqai.start(dataframe, metadata, self) return dataframe