Merge branch 'freqtrade:develop' into strategy_utils
This commit is contained in:
commit
69a63975c1
2
.github/workflows/ci.yml
vendored
2
.github/workflows/ci.yml
vendored
@ -360,6 +360,8 @@ jobs:
|
|||||||
pip install -e .
|
pip install -e .
|
||||||
|
|
||||||
- name: Tests incl. ccxt compatibility tests
|
- name: Tests incl. ccxt compatibility tests
|
||||||
|
env:
|
||||||
|
CI_WEB_PROXY: http://152.67.78.211:13128
|
||||||
run: |
|
run: |
|
||||||
pytest --random-order --cov=freqtrade --cov-config=.coveragerc --longrun
|
pytest --random-order --cov=freqtrade --cov-config=.coveragerc --longrun
|
||||||
|
|
||||||
|
@ -2,33 +2,33 @@
|
|||||||
# See https://pre-commit.com/hooks.html for more hooks
|
# See https://pre-commit.com/hooks.html for more hooks
|
||||||
repos:
|
repos:
|
||||||
- repo: https://github.com/pycqa/flake8
|
- repo: https://github.com/pycqa/flake8
|
||||||
rev: "4.0.1"
|
rev: "6.0.0"
|
||||||
hooks:
|
hooks:
|
||||||
- id: flake8
|
- id: flake8
|
||||||
# stages: [push]
|
# stages: [push]
|
||||||
|
|
||||||
- repo: https://github.com/pre-commit/mirrors-mypy
|
- repo: https://github.com/pre-commit/mirrors-mypy
|
||||||
rev: "v0.942"
|
rev: "v0.991"
|
||||||
hooks:
|
hooks:
|
||||||
- id: mypy
|
- id: mypy
|
||||||
exclude: build_helpers
|
exclude: build_helpers
|
||||||
additional_dependencies:
|
additional_dependencies:
|
||||||
- types-cachetools==5.2.1
|
- types-cachetools==5.3.0.0
|
||||||
- types-filelock==3.2.7
|
- types-filelock==3.2.7
|
||||||
- types-requests==2.28.11.7
|
- types-requests==2.28.11.8
|
||||||
- types-tabulate==0.9.0.0
|
- types-tabulate==0.9.0.0
|
||||||
- types-python-dateutil==2.8.19.5
|
- types-python-dateutil==2.8.19.6
|
||||||
# stages: [push]
|
# stages: [push]
|
||||||
|
|
||||||
- repo: https://github.com/pycqa/isort
|
- repo: https://github.com/pycqa/isort
|
||||||
rev: "5.10.1"
|
rev: "5.12.0"
|
||||||
hooks:
|
hooks:
|
||||||
- id: isort
|
- id: isort
|
||||||
name: isort (python)
|
name: isort (python)
|
||||||
# stages: [push]
|
# stages: [push]
|
||||||
|
|
||||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||||
rev: v2.4.0
|
rev: v4.4.0
|
||||||
hooks:
|
hooks:
|
||||||
- id: end-of-file-fixer
|
- id: end-of-file-fixer
|
||||||
exclude: |
|
exclude: |
|
||||||
|
@ -40,6 +40,7 @@ Please read the [exchange specific notes](docs/exchanges.md) to learn about even
|
|||||||
- [X] [Binance](https://www.binance.com/)
|
- [X] [Binance](https://www.binance.com/)
|
||||||
- [X] [Gate.io](https://www.gate.io/ref/6266643)
|
- [X] [Gate.io](https://www.gate.io/ref/6266643)
|
||||||
- [X] [OKX](https://okx.com/)
|
- [X] [OKX](https://okx.com/)
|
||||||
|
- [X] [Bybit](https://bybit.com/)
|
||||||
|
|
||||||
Please make sure to read the [exchange specific notes](docs/exchanges.md), as well as the [trading with leverage](docs/leverage.md) documentation before diving in.
|
Please make sure to read the [exchange specific notes](docs/exchanges.md), as well as the [trading with leverage](docs/leverage.md) documentation before diving in.
|
||||||
|
|
||||||
@ -164,6 +165,10 @@ first. If it hasn't been reported, please
|
|||||||
ensure you follow the template guide so that the team can assist you as
|
ensure you follow the template guide so that the team can assist you as
|
||||||
quickly as possible.
|
quickly as possible.
|
||||||
|
|
||||||
|
For every [issue](https://github.com/freqtrade/freqtrade/issues/new/choose) created, kindly follow up and mark satisfaction or reminder to close issue when equilibrium ground is reached.
|
||||||
|
|
||||||
|
--Maintain github's [community policy](https://docs.github.com/en/site-policy/github-terms/github-community-code-of-conduct)--
|
||||||
|
|
||||||
### [Feature Requests](https://github.com/freqtrade/freqtrade/labels/enhancement)
|
### [Feature Requests](https://github.com/freqtrade/freqtrade/labels/enhancement)
|
||||||
|
|
||||||
Have you a great idea to improve the bot you want to share? Please,
|
Have you a great idea to improve the bot you want to share? Please,
|
||||||
|
BIN
build_helpers/TA_Lib-0.4.25-cp311-cp311-win_amd64.whl
Normal file
BIN
build_helpers/TA_Lib-0.4.25-cp311-cp311-win_amd64.whl
Normal file
Binary file not shown.
@ -14,5 +14,8 @@ if ($pyv -eq '3.9') {
|
|||||||
if ($pyv -eq '3.10') {
|
if ($pyv -eq '3.10') {
|
||||||
pip install build_helpers\TA_Lib-0.4.25-cp310-cp310-win_amd64.whl
|
pip install build_helpers\TA_Lib-0.4.25-cp310-cp310-win_amd64.whl
|
||||||
}
|
}
|
||||||
|
if ($pyv -eq '3.11') {
|
||||||
|
pip install build_helpers\TA_Lib-0.4.25-cp311-cp311-win_amd64.whl
|
||||||
|
}
|
||||||
pip install -r requirements-dev.txt
|
pip install -r requirements-dev.txt
|
||||||
pip install -e .
|
pip install -e .
|
||||||
|
@ -70,20 +70,21 @@ docker push ${CACHE_IMAGE}:$TAG_ARM
|
|||||||
# Otherwise installation might fail.
|
# Otherwise installation might fail.
|
||||||
echo "create manifests"
|
echo "create manifests"
|
||||||
|
|
||||||
docker manifest create --amend ${IMAGE_NAME}:${TAG} ${CACHE_IMAGE}:${TAG_ARM} ${IMAGE_NAME}:${TAG_PI} ${CACHE_IMAGE}:${TAG}
|
docker manifest create ${IMAGE_NAME}:${TAG} ${CACHE_IMAGE}:${TAG} ${CACHE_IMAGE}:${TAG_ARM} ${IMAGE_NAME}:${TAG_PI}
|
||||||
docker manifest push -p ${IMAGE_NAME}:${TAG}
|
docker manifest push -p ${IMAGE_NAME}:${TAG}
|
||||||
|
|
||||||
docker manifest create ${IMAGE_NAME}:${TAG_PLOT} ${CACHE_IMAGE}:${TAG_PLOT_ARM} ${CACHE_IMAGE}:${TAG_PLOT}
|
docker manifest create ${IMAGE_NAME}:${TAG_PLOT} ${CACHE_IMAGE}:${TAG_PLOT} ${CACHE_IMAGE}:${TAG_PLOT_ARM}
|
||||||
docker manifest push -p ${IMAGE_NAME}:${TAG_PLOT}
|
docker manifest push -p ${IMAGE_NAME}:${TAG_PLOT}
|
||||||
|
|
||||||
docker manifest create ${IMAGE_NAME}:${TAG_FREQAI} ${CACHE_IMAGE}:${TAG_FREQAI_ARM} ${CACHE_IMAGE}:${TAG_FREQAI}
|
docker manifest create ${IMAGE_NAME}:${TAG_FREQAI} ${CACHE_IMAGE}:${TAG_FREQAI} ${CACHE_IMAGE}:${TAG_FREQAI_ARM}
|
||||||
docker manifest push -p ${IMAGE_NAME}:${TAG_FREQAI}
|
docker manifest push -p ${IMAGE_NAME}:${TAG_FREQAI}
|
||||||
|
|
||||||
docker manifest create ${IMAGE_NAME}:${TAG_FREQAI_RL} ${CACHE_IMAGE}:${TAG_FREQAI_RL_ARM} ${CACHE_IMAGE}:${TAG_FREQAI_RL}
|
docker manifest create ${IMAGE_NAME}:${TAG_FREQAI_RL} ${CACHE_IMAGE}:${TAG_FREQAI_RL} ${CACHE_IMAGE}:${TAG_FREQAI_RL_ARM}
|
||||||
docker manifest push -p ${IMAGE_NAME}:${TAG_FREQAI_RL}
|
docker manifest push -p ${IMAGE_NAME}:${TAG_FREQAI_RL}
|
||||||
|
|
||||||
# Tag as latest for develop builds
|
# Tag as latest for develop builds
|
||||||
if [ "${TAG}" = "develop" ]; then
|
if [ "${TAG}" = "develop" ]; then
|
||||||
|
echo 'Tagging image as latest'
|
||||||
docker manifest create ${IMAGE_NAME}:latest ${CACHE_IMAGE}:${TAG_ARM} ${IMAGE_NAME}:${TAG_PI} ${CACHE_IMAGE}:${TAG}
|
docker manifest create ${IMAGE_NAME}:latest ${CACHE_IMAGE}:${TAG_ARM} ${IMAGE_NAME}:${TAG_PI} ${CACHE_IMAGE}:${TAG}
|
||||||
docker manifest push -p ${IMAGE_NAME}:latest
|
docker manifest push -p ${IMAGE_NAME}:latest
|
||||||
fi
|
fi
|
||||||
|
@ -26,7 +26,10 @@ if [ "${GITHUB_EVENT_NAME}" = "schedule" ]; then
|
|||||||
--cache-to=type=registry,ref=${CACHE_TAG} \
|
--cache-to=type=registry,ref=${CACHE_TAG} \
|
||||||
-f docker/Dockerfile.armhf \
|
-f docker/Dockerfile.armhf \
|
||||||
--platform ${PI_PLATFORM} \
|
--platform ${PI_PLATFORM} \
|
||||||
-t ${IMAGE_NAME}:${TAG_PI} --push .
|
-t ${IMAGE_NAME}:${TAG_PI} \
|
||||||
|
--push \
|
||||||
|
--provenance=false \
|
||||||
|
.
|
||||||
else
|
else
|
||||||
echo "event ${GITHUB_EVENT_NAME}: building with cache"
|
echo "event ${GITHUB_EVENT_NAME}: building with cache"
|
||||||
# Build regular image
|
# Build regular image
|
||||||
@ -35,12 +38,16 @@ else
|
|||||||
|
|
||||||
# Pull last build to avoid rebuilding the whole image
|
# Pull last build to avoid rebuilding the whole image
|
||||||
# docker pull --platform ${PI_PLATFORM} ${IMAGE_NAME}:${TAG}
|
# docker pull --platform ${PI_PLATFORM} ${IMAGE_NAME}:${TAG}
|
||||||
|
# disable provenance due to https://github.com/docker/buildx/issues/1509
|
||||||
docker buildx build \
|
docker buildx build \
|
||||||
--cache-from=type=registry,ref=${CACHE_TAG} \
|
--cache-from=type=registry,ref=${CACHE_TAG} \
|
||||||
--cache-to=type=registry,ref=${CACHE_TAG} \
|
--cache-to=type=registry,ref=${CACHE_TAG} \
|
||||||
-f docker/Dockerfile.armhf \
|
-f docker/Dockerfile.armhf \
|
||||||
--platform ${PI_PLATFORM} \
|
--platform ${PI_PLATFORM} \
|
||||||
-t ${IMAGE_NAME}:${TAG_PI} --push .
|
-t ${IMAGE_NAME}:${TAG_PI} \
|
||||||
|
--push \
|
||||||
|
--provenance=false \
|
||||||
|
.
|
||||||
fi
|
fi
|
||||||
|
|
||||||
if [ $? -ne 0 ]; then
|
if [ $? -ne 0 ]; then
|
||||||
@ -68,12 +75,10 @@ fi
|
|||||||
|
|
||||||
docker images
|
docker images
|
||||||
|
|
||||||
docker push ${CACHE_IMAGE}
|
docker push ${CACHE_IMAGE}:$TAG
|
||||||
docker push ${CACHE_IMAGE}:$TAG_PLOT
|
docker push ${CACHE_IMAGE}:$TAG_PLOT
|
||||||
docker push ${CACHE_IMAGE}:$TAG_FREQAI
|
docker push ${CACHE_IMAGE}:$TAG_FREQAI
|
||||||
docker push ${CACHE_IMAGE}:$TAG_FREQAI_RL
|
docker push ${CACHE_IMAGE}:$TAG_FREQAI_RL
|
||||||
docker push ${CACHE_IMAGE}:$TAG
|
|
||||||
|
|
||||||
|
|
||||||
docker images
|
docker images
|
||||||
|
|
||||||
|
Binary file not shown.
@ -59,20 +59,6 @@
|
|||||||
"pairlists": [
|
"pairlists": [
|
||||||
{"method": "StaticPairList"}
|
{"method": "StaticPairList"}
|
||||||
],
|
],
|
||||||
"edge": {
|
|
||||||
"enabled": false,
|
|
||||||
"process_throttle_secs": 3600,
|
|
||||||
"calculate_since_number_of_days": 7,
|
|
||||||
"allowed_risk": 0.01,
|
|
||||||
"stoploss_range_min": -0.01,
|
|
||||||
"stoploss_range_max": -0.1,
|
|
||||||
"stoploss_range_step": -0.01,
|
|
||||||
"minimum_winrate": 0.60,
|
|
||||||
"minimum_expectancy": 0.20,
|
|
||||||
"min_trade_number": 10,
|
|
||||||
"max_trade_duration_minute": 1440,
|
|
||||||
"remove_pumps": false
|
|
||||||
},
|
|
||||||
"telegram": {
|
"telegram": {
|
||||||
"enabled": false,
|
"enabled": false,
|
||||||
"token": "your_telegram_token",
|
"token": "your_telegram_token",
|
||||||
|
@ -56,20 +56,6 @@
|
|||||||
"pairlists": [
|
"pairlists": [
|
||||||
{"method": "StaticPairList"}
|
{"method": "StaticPairList"}
|
||||||
],
|
],
|
||||||
"edge": {
|
|
||||||
"enabled": false,
|
|
||||||
"process_throttle_secs": 3600,
|
|
||||||
"calculate_since_number_of_days": 7,
|
|
||||||
"allowed_risk": 0.01,
|
|
||||||
"stoploss_range_min": -0.01,
|
|
||||||
"stoploss_range_max": -0.1,
|
|
||||||
"stoploss_range_step": -0.01,
|
|
||||||
"minimum_winrate": 0.60,
|
|
||||||
"minimum_expectancy": 0.20,
|
|
||||||
"min_trade_number": 10,
|
|
||||||
"max_trade_duration_minute": 1440,
|
|
||||||
"remove_pumps": false
|
|
||||||
},
|
|
||||||
"telegram": {
|
"telegram": {
|
||||||
"enabled": false,
|
"enabled": false,
|
||||||
"token": "your_telegram_token",
|
"token": "your_telegram_token",
|
||||||
|
@ -21,8 +21,8 @@
|
|||||||
"ccxt_config": {},
|
"ccxt_config": {},
|
||||||
"ccxt_async_config": {},
|
"ccxt_async_config": {},
|
||||||
"pair_whitelist": [
|
"pair_whitelist": [
|
||||||
"1INCH/USDT",
|
"1INCH/USDT:USDT",
|
||||||
"ALGO/USDT"
|
"ALGO/USDT:USDT"
|
||||||
],
|
],
|
||||||
"pair_blacklist": []
|
"pair_blacklist": []
|
||||||
},
|
},
|
||||||
@ -60,8 +60,8 @@
|
|||||||
"1h"
|
"1h"
|
||||||
],
|
],
|
||||||
"include_corr_pairlist": [
|
"include_corr_pairlist": [
|
||||||
"BTC/USDT",
|
"BTC/USDT:USDT",
|
||||||
"ETH/USDT"
|
"ETH/USDT:USDT"
|
||||||
],
|
],
|
||||||
"label_period_candles": 20,
|
"label_period_candles": 20,
|
||||||
"include_shifted_candles": 2,
|
"include_shifted_candles": 2,
|
||||||
|
@ -60,6 +60,7 @@
|
|||||||
"force_entry": "market",
|
"force_entry": "market",
|
||||||
"stoploss": "market",
|
"stoploss": "market",
|
||||||
"stoploss_on_exchange": false,
|
"stoploss_on_exchange": false,
|
||||||
|
"stoploss_price_type": "last",
|
||||||
"stoploss_on_exchange_interval": 60,
|
"stoploss_on_exchange_interval": 60,
|
||||||
"stoploss_on_exchange_limit_ratio": 0.99
|
"stoploss_on_exchange_limit_ratio": 0.99
|
||||||
},
|
},
|
||||||
|
@ -64,20 +64,6 @@
|
|||||||
"pairlists": [
|
"pairlists": [
|
||||||
{"method": "StaticPairList"}
|
{"method": "StaticPairList"}
|
||||||
],
|
],
|
||||||
"edge": {
|
|
||||||
"enabled": false,
|
|
||||||
"process_throttle_secs": 3600,
|
|
||||||
"calculate_since_number_of_days": 7,
|
|
||||||
"allowed_risk": 0.01,
|
|
||||||
"stoploss_range_min": -0.01,
|
|
||||||
"stoploss_range_max": -0.1,
|
|
||||||
"stoploss_range_step": -0.01,
|
|
||||||
"minimum_winrate": 0.60,
|
|
||||||
"minimum_expectancy": 0.20,
|
|
||||||
"min_trade_number": 10,
|
|
||||||
"max_trade_duration_minute": 1440,
|
|
||||||
"remove_pumps": false
|
|
||||||
},
|
|
||||||
"telegram": {
|
"telegram": {
|
||||||
"enabled": false,
|
"enabled": false,
|
||||||
"token": "your_telegram_token",
|
"token": "your_telegram_token",
|
||||||
|
@ -32,7 +32,7 @@ To analyze the entry/exit tags, we now need to use the `freqtrade backtesting-an
|
|||||||
with `--analysis-groups` option provided with space-separated arguments (default `0 1 2`):
|
with `--analysis-groups` option provided with space-separated arguments (default `0 1 2`):
|
||||||
|
|
||||||
``` bash
|
``` bash
|
||||||
freqtrade backtesting-analysis -c <config.json> --analysis-groups 0 1 2 3 4
|
freqtrade backtesting-analysis -c <config.json> --analysis-groups 0 1 2 3 4 5
|
||||||
```
|
```
|
||||||
|
|
||||||
This command will read from the last backtesting results. The `--analysis-groups` option is
|
This command will read from the last backtesting results. The `--analysis-groups` option is
|
||||||
@ -43,6 +43,7 @@ ranging from the simplest (0) to the most detailed per pair, per buy and per sel
|
|||||||
* 2: profit summaries grouped by enter_tag and exit_tag
|
* 2: profit summaries grouped by enter_tag and exit_tag
|
||||||
* 3: profit summaries grouped by pair and enter_tag
|
* 3: profit summaries grouped by pair and enter_tag
|
||||||
* 4: profit summaries grouped by pair, enter_ and exit_tag (this can get quite large)
|
* 4: profit summaries grouped by pair, enter_ and exit_tag (this can get quite large)
|
||||||
|
* 5: profit summaries grouped by exit_tag
|
||||||
|
|
||||||
More options are available by running with the `-h` option.
|
More options are available by running with the `-h` option.
|
||||||
|
|
||||||
|
@ -75,7 +75,7 @@ This function needs to return a floating point number (`float`). Smaller numbers
|
|||||||
|
|
||||||
## Overriding pre-defined spaces
|
## Overriding pre-defined spaces
|
||||||
|
|
||||||
To override a pre-defined space (`roi_space`, `generate_roi_table`, `stoploss_space`, `trailing_space`), define a nested class called Hyperopt and define the required spaces as follows:
|
To override a pre-defined space (`roi_space`, `generate_roi_table`, `stoploss_space`, `trailing_space`, `max_open_trades_space`), define a nested class called Hyperopt and define the required spaces as follows:
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from freqtrade.optimize.space import Categorical, Dimension, Integer, SKDecimal
|
from freqtrade.optimize.space import Categorical, Dimension, Integer, SKDecimal
|
||||||
@ -123,6 +123,12 @@ class MyAwesomeStrategy(IStrategy):
|
|||||||
|
|
||||||
Categorical([True, False], name='trailing_only_offset_is_reached'),
|
Categorical([True, False], name='trailing_only_offset_is_reached'),
|
||||||
]
|
]
|
||||||
|
|
||||||
|
# Define a custom max_open_trades space
|
||||||
|
def max_open_trades_space(self) -> List[Dimension]:
|
||||||
|
return [
|
||||||
|
Integer(-1, 10, name='max_open_trades'),
|
||||||
|
]
|
||||||
```
|
```
|
||||||
|
|
||||||
!!! Note
|
!!! Note
|
||||||
|
@ -75,3 +75,7 @@ This loop will be repeated again and again until the bot is stopped.
|
|||||||
|
|
||||||
!!! Note
|
!!! Note
|
||||||
Both Backtesting and Hyperopt include exchange default Fees in the calculation. Custom fees can be passed to backtesting / hyperopt by specifying the `--fee` argument.
|
Both Backtesting and Hyperopt include exchange default Fees in the calculation. Custom fees can be passed to backtesting / hyperopt by specifying the `--fee` argument.
|
||||||
|
|
||||||
|
!!! Warning "Callback call frequency"
|
||||||
|
Backtesting will call each callback at max. once per candle (`--timeframe-detail` modifies this behavior to once per detailed candle).
|
||||||
|
Most callbacks will be called once per iteration in live (usually every ~5s) - which can cause backtesting mismatches.
|
||||||
|
@ -11,7 +11,7 @@ Per default, the bot loads the configuration from the `config.json` file, locate
|
|||||||
|
|
||||||
You can specify a different configuration file used by the bot with the `-c/--config` command-line option.
|
You can specify a different configuration file used by the bot with the `-c/--config` command-line option.
|
||||||
|
|
||||||
If you used the [Quick start](installation.md/#quick-start) method for installing
|
If you used the [Quick start](docker_quickstart.md#docker-quick-start) method for installing
|
||||||
the bot, the installation script should have already created the default configuration file (`config.json`) for you.
|
the bot, the installation script should have already created the default configuration file (`config.json`) for you.
|
||||||
|
|
||||||
If the default configuration file is not created we recommend to use `freqtrade new-config --config config.json` to generate a basic configuration file.
|
If the default configuration file is not created we recommend to use `freqtrade new-config --config config.json` to generate a basic configuration file.
|
||||||
@ -134,7 +134,7 @@ Mandatory parameters are marked as **Required**, which means that they are requi
|
|||||||
|
|
||||||
| Parameter | Description |
|
| Parameter | Description |
|
||||||
|------------|-------------|
|
|------------|-------------|
|
||||||
| `max_open_trades` | **Required.** Number of open trades your bot is allowed to have. Only one open trade per pair is possible, so the length of your pairlist is another limitation that can apply. If -1 then it is ignored (i.e. potentially unlimited open trades, limited by the pairlist). [More information below](#configuring-amount-per-trade).<br> **Datatype:** Positive integer or -1.
|
| `max_open_trades` | **Required.** Number of open trades your bot is allowed to have. Only one open trade per pair is possible, so the length of your pairlist is another limitation that can apply. If -1 then it is ignored (i.e. potentially unlimited open trades, limited by the pairlist). [More information below](#configuring-amount-per-trade). [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Positive integer or -1.
|
||||||
| `stake_currency` | **Required.** Crypto-currency used for trading. <br> **Datatype:** String
|
| `stake_currency` | **Required.** Crypto-currency used for trading. <br> **Datatype:** String
|
||||||
| `stake_amount` | **Required.** Amount of crypto-currency your bot will use for each trade. Set it to `"unlimited"` to allow the bot to use all available balance. [More information below](#configuring-amount-per-trade). <br> **Datatype:** Positive float or `"unlimited"`.
|
| `stake_amount` | **Required.** Amount of crypto-currency your bot will use for each trade. Set it to `"unlimited"` to allow the bot to use all available balance. [More information below](#configuring-amount-per-trade). <br> **Datatype:** Positive float or `"unlimited"`.
|
||||||
| `tradable_balance_ratio` | Ratio of the total account balance the bot is allowed to trade. [More information below](#configuring-amount-per-trade). <br>*Defaults to `0.99` 99%).*<br> **Datatype:** Positive float between `0.1` and `1.0`.
|
| `tradable_balance_ratio` | Ratio of the total account balance the bot is allowed to trade. [More information below](#configuring-amount-per-trade). <br>*Defaults to `0.99` 99%).*<br> **Datatype:** Positive float between `0.1` and `1.0`.
|
||||||
@ -263,6 +263,7 @@ Values set in the configuration file always overwrite values set in the strategy
|
|||||||
* `minimal_roi`
|
* `minimal_roi`
|
||||||
* `timeframe`
|
* `timeframe`
|
||||||
* `stoploss`
|
* `stoploss`
|
||||||
|
* `max_open_trades`
|
||||||
* `trailing_stop`
|
* `trailing_stop`
|
||||||
* `trailing_stop_positive`
|
* `trailing_stop_positive`
|
||||||
* `trailing_stop_positive_offset`
|
* `trailing_stop_positive_offset`
|
||||||
@ -665,7 +666,7 @@ You should also make sure to read the [Exchanges](exchanges.md) section of the d
|
|||||||
### Using proxy with Freqtrade
|
### Using proxy with Freqtrade
|
||||||
|
|
||||||
To use a proxy with freqtrade, export your proxy settings using the variables `"HTTP_PROXY"` and `"HTTPS_PROXY"` set to the appropriate values.
|
To use a proxy with freqtrade, export your proxy settings using the variables `"HTTP_PROXY"` and `"HTTPS_PROXY"` set to the appropriate values.
|
||||||
This will have the proxy settings applied to everything (telegram, coingecko, ...) except exchange requests.
|
This will have the proxy settings applied to everything (telegram, coingecko, ...) **except** for exchange requests.
|
||||||
|
|
||||||
``` bash
|
``` bash
|
||||||
export HTTP_PROXY="http://addr:port"
|
export HTTP_PROXY="http://addr:port"
|
||||||
@ -681,11 +682,12 @@ To use a proxy for exchange connections - you will have to define the proxies as
|
|||||||
{
|
{
|
||||||
"exchange": {
|
"exchange": {
|
||||||
"ccxt_config": {
|
"ccxt_config": {
|
||||||
"aiohttp_proxy": "http://addr:port",
|
"aiohttp_proxy": "http://addr:port",
|
||||||
"proxies": {
|
"proxies": {
|
||||||
"http": "http://addr:port",
|
"http": "http://addr:port",
|
||||||
"https": "http://addr:port"
|
"https": "http://addr:port"
|
||||||
},
|
},
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
@ -75,6 +75,25 @@ Binance has been split into 2, and users must use the correct ccxt exchange ID f
|
|||||||
* [binance.com](https://www.binance.com/) - International users. Use exchange id: `binance`.
|
* [binance.com](https://www.binance.com/) - International users. Use exchange id: `binance`.
|
||||||
* [binance.us](https://www.binance.us/) - US based users. Use exchange id: `binanceus`.
|
* [binance.us](https://www.binance.us/) - US based users. Use exchange id: `binanceus`.
|
||||||
|
|
||||||
|
### Binance RSA keys
|
||||||
|
|
||||||
|
Freqtrade supports binance RSA API keys.
|
||||||
|
|
||||||
|
We recommend to use them as environment variable.
|
||||||
|
|
||||||
|
``` bash
|
||||||
|
export FREQTRADE__EXCHANGE__SECRET="$(cat ./rsa_binance.private)"
|
||||||
|
```
|
||||||
|
|
||||||
|
They can however also be configured via configuration file. Since json doesn't support multi-line strings, you'll have to replace all newlines with `\n` to have a valid json file.
|
||||||
|
|
||||||
|
``` json
|
||||||
|
// ...
|
||||||
|
"key": "<someapikey>",
|
||||||
|
"secret": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBABACAFQA<...>s8KX8=\n-----END PRIVATE KEY-----"
|
||||||
|
// ...
|
||||||
|
```
|
||||||
|
|
||||||
### Binance Futures
|
### Binance Futures
|
||||||
|
|
||||||
Binance has specific (unfortunately complex) [Futures Trading Quantitative Rules](https://www.binance.com/en/support/faq/4f462ebe6ff445d4a170be7d9e897272) which need to be followed, and which prohibit a too low stake-amount (among others) for too many orders.
|
Binance has specific (unfortunately complex) [Futures Trading Quantitative Rules](https://www.binance.com/en/support/faq/4f462ebe6ff445d4a170be7d9e897272) which need to be followed, and which prohibit a too low stake-amount (among others) for too many orders.
|
||||||
@ -224,8 +243,8 @@ OKX requires a passphrase for each api key, you will therefore need to add this
|
|||||||
OKX only provides 100 candles per api call. Therefore, the strategy will only have a pretty low amount of data available in backtesting mode.
|
OKX only provides 100 candles per api call. Therefore, the strategy will only have a pretty low amount of data available in backtesting mode.
|
||||||
|
|
||||||
!!! Warning "Futures"
|
!!! Warning "Futures"
|
||||||
OKX Futures has the concept of "position mode" - which can be Net or long/short (hedge mode).
|
OKX Futures has the concept of "position mode" - which can be "Buy/Sell" or long/short (hedge mode).
|
||||||
Freqtrade supports both modes (we recommend to use net mode) - but changing the mode mid-trading is not supported and will lead to exceptions and failures to place trades.
|
Freqtrade supports both modes (we recommend to use Buy/Sell mode) - but changing the mode mid-trading is not supported and will lead to exceptions and failures to place trades.
|
||||||
OKX also only provides MARK candles for the past ~3 months. Backtesting futures prior to that date will therefore lead to slight deviations, as funding-fees cannot be calculated correctly without this data.
|
OKX also only provides MARK candles for the past ~3 months. Backtesting futures prior to that date will therefore lead to slight deviations, as funding-fees cannot be calculated correctly without this data.
|
||||||
|
|
||||||
## Gate.io
|
## Gate.io
|
||||||
@ -236,6 +255,18 @@ OKX requires a passphrase for each api key, you will therefore need to add this
|
|||||||
Gate.io allows the use of `POINT` to pay for fees. As this is not a tradable currency (no regular market available), automatic fee calculations will fail (and default to a fee of 0).
|
Gate.io allows the use of `POINT` to pay for fees. As this is not a tradable currency (no regular market available), automatic fee calculations will fail (and default to a fee of 0).
|
||||||
The configuration parameter `exchange.unknown_fee_rate` can be used to specify the exchange rate between Point and the stake currency. Obviously, changing the stake-currency will also require changes to this value.
|
The configuration parameter `exchange.unknown_fee_rate` can be used to specify the exchange rate between Point and the stake currency. Obviously, changing the stake-currency will also require changes to this value.
|
||||||
|
|
||||||
|
## Bybit
|
||||||
|
|
||||||
|
Futures trading on bybit is currently supported for USDT markets, and will use isolated futures mode.
|
||||||
|
Users with unified accounts (there's no way back) can create a Sub-account which will start as "non-unified", and can therefore use isolated futures.
|
||||||
|
On startup, freqtrade will set the position mode to "One-way Mode" for the whole (sub)account. This avoids making this call over and over again (slowing down bot operations), but means that changes to this setting may result in exceptions and errors.
|
||||||
|
|
||||||
|
As bybit doesn't provide funding rate history, the dry-run calculation is used for live trades as well.
|
||||||
|
|
||||||
|
!!! Tip "Stoploss on Exchange"
|
||||||
|
Bybit (futures only) supports `stoploss_on_exchange` and uses `stop-loss-limit` orders. It provides great advantages, so we recommend to benefit from it by enabling stoploss on exchange.
|
||||||
|
On futures, Bybit supports both `stop-limit` as well as `stop-market` orders. You can use either `"limit"` or `"market"` in the `order_types.stoploss` configuration setting to decide which type to use.
|
||||||
|
|
||||||
## All exchanges
|
## All exchanges
|
||||||
|
|
||||||
Should you experience constant errors with Nonce (like `InvalidNonce`), it is best to regenerate the API keys. Resetting Nonce is difficult and it's usually easier to regenerate the API keys.
|
Should you experience constant errors with Nonce (like `InvalidNonce`), it is best to regenerate the API keys. Resetting Nonce is difficult and it's usually easier to regenerate the API keys.
|
||||||
|
@ -43,116 +43,113 @@ The FreqAI strategy requires including the following lines of code in the standa
|
|||||||
|
|
||||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||||
|
|
||||||
# the model will return all labels created by user in `populate_any_indicators`
|
# the model will return all labels created by user in `set_freqai_labels()`
|
||||||
# (& appended targets), an indication of whether or not the prediction should be accepted,
|
# (& appended targets), an indication of whether or not the prediction should be accepted,
|
||||||
# the target mean/std values for each of the labels created by user in
|
# the target mean/std values for each of the labels created by user in
|
||||||
# `populate_any_indicators()` for each training period.
|
# `feature_engineering_*` for each training period.
|
||||||
|
|
||||||
dataframe = self.freqai.start(dataframe, metadata, self)
|
dataframe = self.freqai.start(dataframe, metadata, self)
|
||||||
|
|
||||||
return dataframe
|
return dataframe
|
||||||
|
|
||||||
def populate_any_indicators(
|
def feature_engineering_expand_all(self, dataframe, period, **kwargs):
|
||||||
self, pair, df, tf, informative=None, set_generalized_indicators=False
|
|
||||||
):
|
|
||||||
"""
|
"""
|
||||||
Function designed to automatically generate, name and merge features
|
*Only functional with FreqAI enabled strategies*
|
||||||
from user indicated timeframes in the configuration file. User controls the indicators
|
This function will automatically expand the defined features on the config defined
|
||||||
passed to the training/prediction by prepending indicators with `'%-' + pair `
|
`indicator_periods_candles`, `include_timeframes`, `include_shifted_candles`, and
|
||||||
(see convention below). I.e. user should not prepend any supporting metrics
|
`include_corr_pairs`. In other words, a single feature defined in this function
|
||||||
(e.g. bb_lowerband below) with % unless they explicitly want to pass that metric to the
|
will automatically expand to a total of
|
||||||
model.
|
`indicator_periods_candles` * `include_timeframes` * `include_shifted_candles` *
|
||||||
:param pair: pair to be used as informative
|
`include_corr_pairs` numbers of features added to the model.
|
||||||
:param df: strategy dataframe which will receive merges from informatives
|
|
||||||
:param tf: timeframe of the dataframe which will modify the feature names
|
All features must be prepended with `%` to be recognized by FreqAI internals.
|
||||||
:param informative: the dataframe associated with the informative pair
|
|
||||||
|
:param df: strategy dataframe which will receive the features
|
||||||
|
:param period: period of the indicator - usage example:
|
||||||
|
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
|
||||||
"""
|
"""
|
||||||
|
|
||||||
if informative is None:
|
dataframe["%-rsi-period"] = ta.RSI(dataframe, timeperiod=period)
|
||||||
informative = self.dp.get_pair_dataframe(pair, tf)
|
dataframe["%-mfi-period"] = ta.MFI(dataframe, timeperiod=period)
|
||||||
|
dataframe["%-adx-period"] = ta.ADX(dataframe, timeperiod=period)
|
||||||
|
dataframe["%-sma-period"] = ta.SMA(dataframe, timeperiod=period)
|
||||||
|
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
|
||||||
|
|
||||||
# first loop is automatically duplicating indicators for time periods
|
return dataframe
|
||||||
for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]:
|
|
||||||
t = int(t)
|
|
||||||
informative[f"%-{pair}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t)
|
|
||||||
informative[f"%-{pair}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
|
|
||||||
informative[f"%-{pair}adx-period_{t}"] = ta.ADX(informative, window=t)
|
|
||||||
|
|
||||||
indicators = [col for col in informative if col.startswith("%")]
|
def feature_engineering_expand_basic(self, dataframe, **kwargs):
|
||||||
# This loop duplicates and shifts all indicators to add a sense of recency to data
|
"""
|
||||||
for n in range(self.freqai_info["feature_parameters"]["include_shifted_candles"] + 1):
|
*Only functional with FreqAI enabled strategies*
|
||||||
if n == 0:
|
This function will automatically expand the defined features on the config defined
|
||||||
continue
|
`include_timeframes`, `include_shifted_candles`, and `include_corr_pairs`.
|
||||||
informative_shift = informative[indicators].shift(n)
|
In other words, a single feature defined in this function
|
||||||
informative_shift = informative_shift.add_suffix("_shift-" + str(n))
|
will automatically expand to a total of
|
||||||
informative = pd.concat((informative, informative_shift), axis=1)
|
`include_timeframes` * `include_shifted_candles` * `include_corr_pairs`
|
||||||
|
numbers of features added to the model.
|
||||||
|
|
||||||
df = merge_informative_pair(df, informative, self.config["timeframe"], tf, ffill=True)
|
Features defined here will *not* be automatically duplicated on user defined
|
||||||
skip_columns = [
|
`indicator_periods_candles`
|
||||||
(s + "_" + tf) for s in ["date", "open", "high", "low", "close", "volume"]
|
|
||||||
]
|
|
||||||
df = df.drop(columns=skip_columns)
|
|
||||||
|
|
||||||
# Add generalized indicators here (because in live, it will call this
|
All features must be prepended with `%` to be recognized by FreqAI internals.
|
||||||
# function to populate indicators during training). Notice how we ensure not to
|
|
||||||
# add them multiple times
|
|
||||||
if set_generalized_indicators:
|
|
||||||
|
|
||||||
# user adds targets here by prepending them with &- (see convention below)
|
:param df: strategy dataframe which will receive the features
|
||||||
# If user wishes to use multiple targets, a multioutput prediction model
|
dataframe["%-pct-change"] = dataframe["close"].pct_change()
|
||||||
# needs to be used such as templates/CatboostPredictionMultiModel.py
|
dataframe["%-ema-200"] = ta.EMA(dataframe, timeperiod=200)
|
||||||
df["&-s_close"] = (
|
"""
|
||||||
df["close"]
|
dataframe["%-pct-change"] = dataframe["close"].pct_change()
|
||||||
.shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
|
dataframe["%-raw_volume"] = dataframe["volume"]
|
||||||
.rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
|
dataframe["%-raw_price"] = dataframe["close"]
|
||||||
.mean()
|
return dataframe
|
||||||
/ df["close"]
|
|
||||||
- 1
|
def feature_engineering_standard(self, dataframe, **kwargs):
|
||||||
|
"""
|
||||||
|
*Only functional with FreqAI enabled strategies*
|
||||||
|
This optional function will be called once with the dataframe of the base timeframe.
|
||||||
|
This is the final function to be called, which means that the dataframe entering this
|
||||||
|
function will contain all the features and columns created by all other
|
||||||
|
freqai_feature_engineering_* functions.
|
||||||
|
|
||||||
|
This function is a good place to do custom exotic feature extractions (e.g. tsfresh).
|
||||||
|
This function is a good place for any feature that should not be auto-expanded upon
|
||||||
|
(e.g. day of the week).
|
||||||
|
|
||||||
|
All features must be prepended with `%` to be recognized by FreqAI internals.
|
||||||
|
|
||||||
|
:param df: strategy dataframe which will receive the features
|
||||||
|
usage example: dataframe["%-day_of_week"] = (dataframe["date"].dt.dayofweek + 1) / 7
|
||||||
|
"""
|
||||||
|
dataframe["%-day_of_week"] = (dataframe["date"].dt.dayofweek + 1) / 7
|
||||||
|
dataframe["%-hour_of_day"] = (dataframe["date"].dt.hour + 1) / 25
|
||||||
|
return dataframe
|
||||||
|
|
||||||
|
def set_freqai_targets(self, dataframe, **kwargs):
|
||||||
|
"""
|
||||||
|
*Only functional with FreqAI enabled strategies*
|
||||||
|
Required function to set the targets for the model.
|
||||||
|
All targets must be prepended with `&` to be recognized by the FreqAI internals.
|
||||||
|
|
||||||
|
:param df: strategy dataframe which will receive the targets
|
||||||
|
usage example: dataframe["&-target"] = dataframe["close"].shift(-1) / dataframe["close"]
|
||||||
|
"""
|
||||||
|
dataframe["&-s_close"] = (
|
||||||
|
dataframe["close"]
|
||||||
|
.shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
|
||||||
|
.rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
|
||||||
|
.mean()
|
||||||
|
/ dataframe["close"]
|
||||||
|
- 1
|
||||||
)
|
)
|
||||||
|
|
||||||
return df
|
|
||||||
|
|
||||||
|
|
||||||
```
|
```
|
||||||
|
|
||||||
Notice how the `populate_any_indicators()` is where [features](freqai-feature-engineering.md#feature-engineering) and labels/targets are added. A full example strategy is available in `templates/FreqaiExampleStrategy.py`.
|
Notice how the `feature_engineering_*()` is where [features](freqai-feature-engineering.md#feature-engineering) are added. Meanwhile `set_freqai_targets()` adds the labels/targets. A full example strategy is available in `templates/FreqaiExampleStrategy.py`.
|
||||||
|
|
||||||
Notice also the location of the labels under `if set_generalized_indicators:` at the bottom of the example. This is where single features and labels/targets should be added to the feature set to avoid duplication of them from various configuration parameters that multiply the feature set, such as `include_timeframes`.
|
|
||||||
|
|
||||||
!!! Note
|
!!! Note
|
||||||
The `self.freqai.start()` function cannot be called outside the `populate_indicators()`.
|
The `self.freqai.start()` function cannot be called outside the `populate_indicators()`.
|
||||||
|
|
||||||
!!! Note
|
!!! Note
|
||||||
Features **must** be defined in `populate_any_indicators()`. Defining FreqAI features in `populate_indicators()`
|
Features **must** be defined in `feature_engineering_*()`. Defining FreqAI features in `populate_indicators()`
|
||||||
will cause the algorithm to fail in live/dry mode. In order to add generalized features that are not associated with a specific pair or timeframe, the following structure inside `populate_any_indicators()` should be used
|
will cause the algorithm to fail in live/dry mode. In order to add generalized features that are not associated with a specific pair or timeframe, you should use `feature_engineering_standard()`
|
||||||
(as exemplified in `freqtrade/templates/FreqaiExampleStrategy.py`):
|
(as exemplified in `freqtrade/templates/FreqaiExampleStrategy.py`).
|
||||||
|
|
||||||
```python
|
|
||||||
def populate_any_indicators(self, pair, df, tf, informative=None, set_generalized_indicators=False):
|
|
||||||
|
|
||||||
...
|
|
||||||
|
|
||||||
# Add generalized indicators here (because in live, it will call only this function to populate
|
|
||||||
# indicators for retraining). Notice how we ensure not to add them multiple times by associating
|
|
||||||
# these generalized indicators to the basepair/timeframe
|
|
||||||
if set_generalized_indicators:
|
|
||||||
df['%-day_of_week'] = (df["date"].dt.dayofweek + 1) / 7
|
|
||||||
df['%-hour_of_day'] = (df['date'].dt.hour + 1) / 25
|
|
||||||
|
|
||||||
# user adds targets here by prepending them with &- (see convention below)
|
|
||||||
# If user wishes to use multiple targets, a multioutput prediction model
|
|
||||||
# needs to be used such as templates/CatboostPredictionMultiModel.py
|
|
||||||
df["&-s_close"] = (
|
|
||||||
df["close"]
|
|
||||||
.shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
|
|
||||||
.rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
|
|
||||||
.mean()
|
|
||||||
/ df["close"]
|
|
||||||
- 1
|
|
||||||
)
|
|
||||||
```
|
|
||||||
|
|
||||||
Please see the example script located in `freqtrade/templates/FreqaiExampleStrategy.py` for a full example of `populate_any_indicators()`.
|
|
||||||
|
|
||||||
## Important dataframe key patterns
|
## Important dataframe key patterns
|
||||||
|
|
||||||
@ -160,11 +157,11 @@ Below are the values you can expect to include/use inside a typical strategy dat
|
|||||||
|
|
||||||
| DataFrame Key | Description |
|
| DataFrame Key | Description |
|
||||||
|------------|-------------|
|
|------------|-------------|
|
||||||
| `df['&*']` | Any dataframe column prepended with `&` in `populate_any_indicators()` is treated as a training target (label) inside FreqAI (typically following the naming convention `&-s*`). For example, to predict the close price 40 candles into the future, you would set `df['&-s_close'] = df['close'].shift(-self.freqai_info["feature_parameters"]["label_period_candles"])` with `"label_period_candles": 40` in the config. FreqAI makes the predictions and gives them back under the same key (`df['&-s_close']`) to be used in `populate_entry/exit_trend()`. <br> **Datatype:** Depends on the output of the model.
|
| `df['&*']` | Any dataframe column prepended with `&` in `set_freqai_targets()` is treated as a training target (label) inside FreqAI (typically following the naming convention `&-s*`). For example, to predict the close price 40 candles into the future, you would set `df['&-s_close'] = df['close'].shift(-self.freqai_info["feature_parameters"]["label_period_candles"])` with `"label_period_candles": 40` in the config. FreqAI makes the predictions and gives them back under the same key (`df['&-s_close']`) to be used in `populate_entry/exit_trend()`. <br> **Datatype:** Depends on the output of the model.
|
||||||
| `df['&*_std/mean']` | Standard deviation and mean values of the defined labels during training (or live tracking with `fit_live_predictions_candles`). Commonly used to understand the rarity of a prediction (use the z-score as shown in `templates/FreqaiExampleStrategy.py` and explained [here](#creating-a-dynamic-target-threshold) to evaluate how often a particular prediction was observed during training or historically with `fit_live_predictions_candles`). <br> **Datatype:** Float.
|
| `df['&*_std/mean']` | Standard deviation and mean values of the defined labels during training (or live tracking with `fit_live_predictions_candles`). Commonly used to understand the rarity of a prediction (use the z-score as shown in `templates/FreqaiExampleStrategy.py` and explained [here](#creating-a-dynamic-target-threshold) to evaluate how often a particular prediction was observed during training or historically with `fit_live_predictions_candles`). <br> **Datatype:** Float.
|
||||||
| `df['do_predict']` | Indication of an outlier data point. The return value is integer between -2 and 2, which lets you know if the prediction is trustworthy or not. `do_predict==1` means that the prediction is trustworthy. If the Dissimilarity Index (DI, see details [here](freqai-feature-engineering.md#identifying-outliers-with-the-dissimilarity-index-di)) of the input data point is above the threshold defined in the config, FreqAI will subtract 1 from `do_predict`, resulting in `do_predict==0`. If `use_SVM_to_remove_outliers()` is active, the Support Vector Machine (SVM, see details [here](freqai-feature-engineering.md#identifying-outliers-using-a-support-vector-machine-svm)) may also detect outliers in training and prediction data. In this case, the SVM will also subtract 1 from `do_predict`. If the input data point was considered an outlier by the SVM but not by the DI, or vice versa, the result will be `do_predict==0`. If both the DI and the SVM considers the input data point to be an outlier, the result will be `do_predict==-1`. As with the SVM, if `use_DBSCAN_to_remove_outliers` is active, DBSCAN (see details [here](freqai-feature-engineering.md#identifying-outliers-with-dbscan)) may also detect outliers and subtract 1 from `do_predict`. Hence, if both the SVM and DBSCAN are active and identify a datapoint that was above the DI threshold as an outlier, the result will be `do_predict==-2`. A particular case is when `do_predict == 2`, which means that the model has expired due to exceeding `expired_hours`. <br> **Datatype:** Integer between -2 and 2.
|
| `df['do_predict']` | Indication of an outlier data point. The return value is integer between -2 and 2, which lets you know if the prediction is trustworthy or not. `do_predict==1` means that the prediction is trustworthy. If the Dissimilarity Index (DI, see details [here](freqai-feature-engineering.md#identifying-outliers-with-the-dissimilarity-index-di)) of the input data point is above the threshold defined in the config, FreqAI will subtract 1 from `do_predict`, resulting in `do_predict==0`. If `use_SVM_to_remove_outliers()` is active, the Support Vector Machine (SVM, see details [here](freqai-feature-engineering.md#identifying-outliers-using-a-support-vector-machine-svm)) may also detect outliers in training and prediction data. In this case, the SVM will also subtract 1 from `do_predict`. If the input data point was considered an outlier by the SVM but not by the DI, or vice versa, the result will be `do_predict==0`. If both the DI and the SVM considers the input data point to be an outlier, the result will be `do_predict==-1`. As with the SVM, if `use_DBSCAN_to_remove_outliers` is active, DBSCAN (see details [here](freqai-feature-engineering.md#identifying-outliers-with-dbscan)) may also detect outliers and subtract 1 from `do_predict`. Hence, if both the SVM and DBSCAN are active and identify a datapoint that was above the DI threshold as an outlier, the result will be `do_predict==-2`. A particular case is when `do_predict == 2`, which means that the model has expired due to exceeding `expired_hours`. <br> **Datatype:** Integer between -2 and 2.
|
||||||
| `df['DI_values']` | Dissimilarity Index (DI) values are proxies for the level of confidence FreqAI has in the prediction. A lower DI means the prediction is close to the training data, i.e., higher prediction confidence. See details about the DI [here](freqai-feature-engineering.md#identifying-outliers-with-the-dissimilarity-index-di). <br> **Datatype:** Float.
|
| `df['DI_values']` | Dissimilarity Index (DI) values are proxies for the level of confidence FreqAI has in the prediction. A lower DI means the prediction is close to the training data, i.e., higher prediction confidence. See details about the DI [here](freqai-feature-engineering.md#identifying-outliers-with-the-dissimilarity-index-di). <br> **Datatype:** Float.
|
||||||
| `df['%*']` | Any dataframe column prepended with `%` in `populate_any_indicators()` is treated as a training feature. For example, you can include the RSI in the training feature set (similar to in `templates/FreqaiExampleStrategy.py`) by setting `df['%-rsi']`. See more details on how this is done [here](freqai-feature-engineering.md). <br> **Note:** Since the number of features prepended with `%` can multiply very quickly (10s of thousands of features are easily engineered using the multiplictative functionality of, e.g., `include_shifted_candles` and `include_timeframes` as described in the [parameter table](freqai-parameter-table.md)), these features are removed from the dataframe that is returned from FreqAI to the strategy. To keep a particular type of feature for plotting purposes, you would prepend it with `%%`. <br> **Datatype:** Depends on the output of the model.
|
| `df['%*']` | Any dataframe column prepended with `%` in `feature_engineering_*()` is treated as a training feature. For example, you can include the RSI in the training feature set (similar to in `templates/FreqaiExampleStrategy.py`) by setting `df['%-rsi']`. See more details on how this is done [here](freqai-feature-engineering.md). <br> **Note:** Since the number of features prepended with `%` can multiply very quickly (10s of thousands of features are easily engineered using the multiplictative functionality of, e.g., `include_shifted_candles` and `include_timeframes` as described in the [parameter table](freqai-parameter-table.md)), these features are removed from the dataframe that is returned from FreqAI to the strategy. To keep a particular type of feature for plotting purposes, you would prepend it with `%%`. <br> **Datatype:** Depends on the output of the model.
|
||||||
|
|
||||||
## Setting the `startup_candle_count`
|
## Setting the `startup_candle_count`
|
||||||
|
|
||||||
|
@ -2,96 +2,150 @@
|
|||||||
|
|
||||||
## Defining the features
|
## Defining the features
|
||||||
|
|
||||||
Low level feature engineering is performed in the user strategy within a function called `populate_any_indicators()`. That function sets the `base features` such as, `RSI`, `MFI`, `EMA`, `SMA`, time of day, volume, etc. The `base features` can be custom indicators or they can be imported from any technical-analysis library that you can find. One important syntax rule is that all `base features` string names are prepended with `%-{pair}`, while labels/targets are prepended with `&`.
|
Low level feature engineering is performed in the user strategy within a set of functions called `feature_engineering_*`. These function set the `base features` such as, `RSI`, `MFI`, `EMA`, `SMA`, time of day, volume, etc. The `base features` can be custom indicators or they can be imported from any technical-analysis library that you can find. FreqAI is equipped with a set of functions to simplify rapid large-scale feature engineering:
|
||||||
|
|
||||||
!!! Note
|
| Function | Description |
|
||||||
Adding the full pair string, e.g. XYZ/USD, in the feature name enables improved performance for dataframe caching on the backend. If you decide *not* to add the full pair string in the feature string, FreqAI will operate in a reduced performance mode.
|
|---------------|-------------|
|
||||||
|
| `feature_engineering__expand_all()` | This optional function will automatically expand the defined features on the config defined `indicator_periods_candles`, `include_timeframes`, `include_shifted_candles`, and `include_corr_pairs`.
|
||||||
|
| `feature_engineering__expand_basic()` | This optional function will automatically expand the defined features on the config defined `include_timeframes`, `include_shifted_candles`, and `include_corr_pairs`. Note: this function does *not* expand across `include_periods_candles`.
|
||||||
|
| `feature_engineering_standard()` | This optional function will be called once with the dataframe of the base timeframe. This is the final function to be called, which means that the dataframe entering this function will contain all the features and columns from the base asset created by the other `feature_engineering_expand` functions. This function is a good place to do custom exotic feature extractions (e.g. tsfresh). This function is also a good place for any feature that should not be auto-expanded upon (e.g. day of the week).
|
||||||
|
| `set_freqai_targets()` | Required function to set the targets for the model. All targets must be prepended with `&` to be recognized by the FreqAI internals.
|
||||||
|
|
||||||
Meanwhile, high level feature engineering is handled within `"feature_parameters":{}` in the FreqAI config. Within this file, it is possible to decide large scale feature expansions on top of the `base_features` such as "including correlated pairs" or "including informative timeframes" or even "including recent candles."
|
Meanwhile, high level feature engineering is handled within `"feature_parameters":{}` in the FreqAI config. Within this file, it is possible to decide large scale feature expansions on top of the `base_features` such as "including correlated pairs" or "including informative timeframes" or even "including recent candles."
|
||||||
|
|
||||||
It is advisable to start from the template `populate_any_indicators()` in the source provided example strategy (found in `templates/FreqaiExampleStrategy.py`) to ensure that the feature definitions are following the correct conventions. Here is an example of how to set the indicators and labels in the strategy:
|
It is advisable to start from the template `feature_engineering_*` functions in the source provided example strategy (found in `templates/FreqaiExampleStrategy.py`) to ensure that the feature definitions are following the correct conventions. Here is an example of how to set the indicators and labels in the strategy:
|
||||||
|
|
||||||
```python
|
```python
|
||||||
def populate_any_indicators(
|
def feature_engineering_expand_all(self, dataframe, period, metadata, **kwargs):
|
||||||
self, pair, df, tf, informative=None, set_generalized_indicators=False
|
|
||||||
):
|
|
||||||
"""
|
"""
|
||||||
Function designed to automatically generate, name, and merge features
|
*Only functional with FreqAI enabled strategies*
|
||||||
from user-indicated timeframes in the configuration file. The user controls the indicators
|
This function will automatically expand the defined features on the config defined
|
||||||
passed to the training/prediction by prepending indicators with `'%-' + pair `
|
`indicator_periods_candles`, `include_timeframes`, `include_shifted_candles`, and
|
||||||
(see convention below). I.e., the user should not prepend any supporting metrics
|
`include_corr_pairs`. In other words, a single feature defined in this function
|
||||||
(e.g., bb_lowerband below) with % unless they explicitly want to pass that metric to the
|
will automatically expand to a total of
|
||||||
model.
|
`indicator_periods_candles` * `include_timeframes` * `include_shifted_candles` *
|
||||||
:param pair: pair to be used as informative
|
`include_corr_pairs` numbers of features added to the model.
|
||||||
:param df: strategy dataframe which will receive merges from informatives
|
|
||||||
:param tf: timeframe of the dataframe which will modify the feature names
|
All features must be prepended with `%` to be recognized by FreqAI internals.
|
||||||
:param informative: the dataframe associated with the informative pair
|
|
||||||
|
Access metadata such as the current pair/timeframe/period with:
|
||||||
|
|
||||||
|
`metadata["pair"]` `metadata["tf"]` `metadata["period"]`
|
||||||
|
|
||||||
|
:param df: strategy dataframe which will receive the features
|
||||||
|
:param period: period of the indicator - usage example:
|
||||||
|
:param metadata: metadata of current pair
|
||||||
|
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
|
||||||
"""
|
"""
|
||||||
|
|
||||||
if informative is None:
|
dataframe["%-rsi-period"] = ta.RSI(dataframe, timeperiod=period)
|
||||||
informative = self.dp.get_pair_dataframe(pair, tf)
|
dataframe["%-mfi-period"] = ta.MFI(dataframe, timeperiod=period)
|
||||||
|
dataframe["%-adx-period"] = ta.ADX(dataframe, timeperiod=period)
|
||||||
|
dataframe["%-sma-period"] = ta.SMA(dataframe, timeperiod=period)
|
||||||
|
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
|
||||||
|
|
||||||
# first loop is automatically duplicating indicators for time periods
|
bollinger = qtpylib.bollinger_bands(
|
||||||
for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]:
|
qtpylib.typical_price(dataframe), window=period, stds=2.2
|
||||||
t = int(t)
|
)
|
||||||
informative[f"%-{pair}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t)
|
dataframe["bb_lowerband-period"] = bollinger["lower"]
|
||||||
informative[f"%-{pair}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
|
dataframe["bb_middleband-period"] = bollinger["mid"]
|
||||||
informative[f"%-{pair}adx-period_{t}"] = ta.ADX(informative, window=t)
|
dataframe["bb_upperband-period"] = bollinger["upper"]
|
||||||
|
|
||||||
bollinger = qtpylib.bollinger_bands(
|
dataframe["%-bb_width-period"] = (
|
||||||
qtpylib.typical_price(informative), window=t, stds=2.2
|
dataframe["bb_upperband-period"]
|
||||||
)
|
- dataframe["bb_lowerband-period"]
|
||||||
informative[f"{pair}bb_lowerband-period_{t}"] = bollinger["lower"]
|
) / dataframe["bb_middleband-period"]
|
||||||
informative[f"{pair}bb_middleband-period_{t}"] = bollinger["mid"]
|
dataframe["%-close-bb_lower-period"] = (
|
||||||
informative[f"{pair}bb_upperband-period_{t}"] = bollinger["upper"]
|
dataframe["close"] / dataframe["bb_lowerband-period"]
|
||||||
|
)
|
||||||
|
|
||||||
informative[f"%-{pair}bb_width-period_{t}"] = (
|
dataframe["%-roc-period"] = ta.ROC(dataframe, timeperiod=period)
|
||||||
informative[f"{pair}bb_upperband-period_{t}"]
|
|
||||||
- informative[f"{pair}bb_lowerband-period_{t}"]
|
dataframe["%-relative_volume-period"] = (
|
||||||
) / informative[f"{pair}bb_middleband-period_{t}"]
|
dataframe["volume"] / dataframe["volume"].rolling(period).mean()
|
||||||
informative[f"%-{pair}close-bb_lower-period_{t}"] = (
|
)
|
||||||
informative["close"] / informative[f"{pair}bb_lowerband-period_{t}"]
|
|
||||||
|
return dataframe
|
||||||
|
|
||||||
|
def feature_engineering_expand_basic(self, dataframe, metadata, **kwargs):
|
||||||
|
"""
|
||||||
|
*Only functional with FreqAI enabled strategies*
|
||||||
|
This function will automatically expand the defined features on the config defined
|
||||||
|
`include_timeframes`, `include_shifted_candles`, and `include_corr_pairs`.
|
||||||
|
In other words, a single feature defined in this function
|
||||||
|
will automatically expand to a total of
|
||||||
|
`include_timeframes` * `include_shifted_candles` * `include_corr_pairs`
|
||||||
|
numbers of features added to the model.
|
||||||
|
|
||||||
|
Features defined here will *not* be automatically duplicated on user defined
|
||||||
|
`indicator_periods_candles`
|
||||||
|
|
||||||
|
Access metadata such as the current pair/timeframe with:
|
||||||
|
|
||||||
|
`metadata["pair"]` `metadata["tf"]`
|
||||||
|
|
||||||
|
All features must be prepended with `%` to be recognized by FreqAI internals.
|
||||||
|
|
||||||
|
:param df: strategy dataframe which will receive the features
|
||||||
|
:param metadata: metadata of current pair
|
||||||
|
dataframe["%-pct-change"] = dataframe["close"].pct_change()
|
||||||
|
dataframe["%-ema-200"] = ta.EMA(dataframe, timeperiod=200)
|
||||||
|
"""
|
||||||
|
dataframe["%-pct-change"] = dataframe["close"].pct_change()
|
||||||
|
dataframe["%-raw_volume"] = dataframe["volume"]
|
||||||
|
dataframe["%-raw_price"] = dataframe["close"]
|
||||||
|
return dataframe
|
||||||
|
|
||||||
|
def feature_engineering_standard(self, dataframe, metadata, **kwargs):
|
||||||
|
"""
|
||||||
|
*Only functional with FreqAI enabled strategies*
|
||||||
|
This optional function will be called once with the dataframe of the base timeframe.
|
||||||
|
This is the final function to be called, which means that the dataframe entering this
|
||||||
|
function will contain all the features and columns created by all other
|
||||||
|
freqai_feature_engineering_* functions.
|
||||||
|
|
||||||
|
This function is a good place to do custom exotic feature extractions (e.g. tsfresh).
|
||||||
|
This function is a good place for any feature that should not be auto-expanded upon
|
||||||
|
(e.g. day of the week).
|
||||||
|
|
||||||
|
Access metadata such as the current pair with:
|
||||||
|
|
||||||
|
`metadata["pair"]`
|
||||||
|
|
||||||
|
All features must be prepended with `%` to be recognized by FreqAI internals.
|
||||||
|
|
||||||
|
:param df: strategy dataframe which will receive the features
|
||||||
|
:param metadata: metadata of current pair
|
||||||
|
usage example: dataframe["%-day_of_week"] = (dataframe["date"].dt.dayofweek + 1) / 7
|
||||||
|
"""
|
||||||
|
dataframe["%-day_of_week"] = (dataframe["date"].dt.dayofweek + 1) / 7
|
||||||
|
dataframe["%-hour_of_day"] = (dataframe["date"].dt.hour + 1) / 25
|
||||||
|
return dataframe
|
||||||
|
|
||||||
|
def set_freqai_targets(self, dataframe, metadata, **kwargs):
|
||||||
|
"""
|
||||||
|
*Only functional with FreqAI enabled strategies*
|
||||||
|
Required function to set the targets for the model.
|
||||||
|
All targets must be prepended with `&` to be recognized by the FreqAI internals.
|
||||||
|
|
||||||
|
Access metadata such as the current pair with:
|
||||||
|
|
||||||
|
`metadata["pair"]`
|
||||||
|
|
||||||
|
:param df: strategy dataframe which will receive the targets
|
||||||
|
:param metadata: metadata of current pair
|
||||||
|
usage example: dataframe["&-target"] = dataframe["close"].shift(-1) / dataframe["close"]
|
||||||
|
"""
|
||||||
|
dataframe["&-s_close"] = (
|
||||||
|
dataframe["close"]
|
||||||
|
.shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
|
||||||
|
.rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
|
||||||
|
.mean()
|
||||||
|
/ dataframe["close"]
|
||||||
|
- 1
|
||||||
)
|
)
|
||||||
|
|
||||||
informative[f"%-{pair}relative_volume-period_{t}"] = (
|
return dataframe
|
||||||
informative["volume"] / informative["volume"].rolling(t).mean()
|
|
||||||
)
|
|
||||||
|
|
||||||
indicators = [col for col in informative if col.startswith("%")]
|
|
||||||
# This loop duplicates and shifts all indicators to add a sense of recency to data
|
|
||||||
for n in range(self.freqai_info["feature_parameters"]["include_shifted_candles"] + 1):
|
|
||||||
if n == 0:
|
|
||||||
continue
|
|
||||||
informative_shift = informative[indicators].shift(n)
|
|
||||||
informative_shift = informative_shift.add_suffix("_shift-" + str(n))
|
|
||||||
informative = pd.concat((informative, informative_shift), axis=1)
|
|
||||||
|
|
||||||
df = merge_informative_pair(df, informative, self.config["timeframe"], tf, ffill=True)
|
|
||||||
skip_columns = [
|
|
||||||
(s + "_" + tf) for s in ["date", "open", "high", "low", "close", "volume"]
|
|
||||||
]
|
|
||||||
df = df.drop(columns=skip_columns)
|
|
||||||
|
|
||||||
# Add generalized indicators here (because in live, it will call this
|
|
||||||
# function to populate indicators during training). Notice how we ensure not to
|
|
||||||
# add them multiple times
|
|
||||||
if set_generalized_indicators:
|
|
||||||
df["%-day_of_week"] = (df["date"].dt.dayofweek + 1) / 7
|
|
||||||
df["%-hour_of_day"] = (df["date"].dt.hour + 1) / 25
|
|
||||||
|
|
||||||
# user adds targets here by prepending them with &- (see convention below)
|
|
||||||
# If user wishes to use multiple targets, a multioutput prediction model
|
|
||||||
# needs to be used such as templates/CatboostPredictionMultiModel.py
|
|
||||||
df["&-s_close"] = (
|
|
||||||
df["close"]
|
|
||||||
.shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
|
|
||||||
.rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
|
|
||||||
.mean()
|
|
||||||
/ df["close"]
|
|
||||||
- 1
|
|
||||||
)
|
|
||||||
|
|
||||||
return df
|
|
||||||
```
|
```
|
||||||
|
|
||||||
In the presented example, the user does not wish to pass the `bb_lowerband` as a feature to the model,
|
In the presented example, the user does not wish to pass the `bb_lowerband` as a feature to the model,
|
||||||
@ -118,15 +172,28 @@ After having defined the `base features`, the next step is to expand upon them u
|
|||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
The `include_timeframes` in the config above are the timeframes (`tf`) of each call to `populate_any_indicators()` in the strategy. In the presented case, the user is asking for the `5m`, `15m`, and `4h` timeframes of the `rsi`, `mfi`, `roc`, and `bb_width` to be included in the feature set.
|
The `include_timeframes` in the config above are the timeframes (`tf`) of each call to `feature_engineering_expand_*()` in the strategy. In the presented case, the user is asking for the `5m`, `15m`, and `4h` timeframes of the `rsi`, `mfi`, `roc`, and `bb_width` to be included in the feature set.
|
||||||
|
|
||||||
You can ask for each of the defined features to be included also for informative pairs using the `include_corr_pairlist`. This means that the feature set will include all the features from `populate_any_indicators` on all the `include_timeframes` for each of the correlated pairs defined in the config (`ETH/USD`, `LINK/USD`, and `BNB/USD` in the presented example).
|
You can ask for each of the defined features to be included also for informative pairs using the `include_corr_pairlist`. This means that the feature set will include all the features from `feature_engineering_expand_*()` on all the `include_timeframes` for each of the correlated pairs defined in the config (`ETH/USD`, `LINK/USD`, and `BNB/USD` in the presented example).
|
||||||
|
|
||||||
`include_shifted_candles` indicates the number of previous candles to include in the feature set. For example, `include_shifted_candles: 2` tells FreqAI to include the past 2 candles for each of the features in the feature set.
|
`include_shifted_candles` indicates the number of previous candles to include in the feature set. For example, `include_shifted_candles: 2` tells FreqAI to include the past 2 candles for each of the features in the feature set.
|
||||||
|
|
||||||
In total, the number of features the user of the presented example strat has created is: length of `include_timeframes` * no. features in `populate_any_indicators()` * length of `include_corr_pairlist` * no. `include_shifted_candles` * length of `indicator_periods_candles`
|
In total, the number of features the user of the presented example strat has created is: length of `include_timeframes` * no. features in `feature_engineering_expand_*()` * length of `include_corr_pairlist` * no. `include_shifted_candles` * length of `indicator_periods_candles`
|
||||||
$= 3 * 3 * 3 * 2 * 2 = 108$.
|
$= 3 * 3 * 3 * 2 * 2 = 108$.
|
||||||
|
|
||||||
|
|
||||||
|
### Gain finer control over `feature_engineering_*` functions with `metadata`
|
||||||
|
|
||||||
|
All `feature_engineering_*` and `set_freqai_targets()` functions are passed a `metadata` dictionary which contains information about the `pair`, `tf` (timeframe), and `period` that FreqAI is automating for feature building. As such, a user can use `metadata` inside `feature_engineering_*` functions as criteria for blocking/reserving features for certain timeframes, periods, pairs etc.
|
||||||
|
|
||||||
|
```py
|
||||||
|
def feature_engineering_expand_all(self, dataframe, period, metadata, **kwargs):
|
||||||
|
if metadata["tf"] == "1h":
|
||||||
|
dataframe["%-roc-period"] = ta.ROC(dataframe, timeperiod=period)
|
||||||
|
```
|
||||||
|
|
||||||
|
This will block `ta.ROC()` from being added to any timeframes other than `"1h"`.
|
||||||
|
|
||||||
### Returning additional info from training
|
### Returning additional info from training
|
||||||
|
|
||||||
Important metrics can be returned to the strategy at the end of each model training by assigning them to `dk.data['extra_returns_per_train']['my_new_value'] = XYZ` inside the custom prediction model class.
|
Important metrics can be returned to the strategy at the end of each model training by assigning them to `dk.data['extra_returns_per_train']['my_new_value'] = XYZ` inside the custom prediction model class.
|
||||||
@ -167,7 +234,7 @@ This will perform PCA on the features and reduce their dimensionality so that th
|
|||||||
|
|
||||||
## Inlier metric
|
## Inlier metric
|
||||||
|
|
||||||
The `inlier_metric` is a metric aimed at quantifying how similar a the features of a data point are to the most recent historic data points.
|
The `inlier_metric` is a metric aimed at quantifying how similar the features of a data point are to the most recent historical data points.
|
||||||
|
|
||||||
You define the lookback window by setting `inlier_metric_window` and FreqAI computes the distance between the present time point and each of the previous `inlier_metric_window` lookback points. A Weibull function is fit to each of the lookback distributions and its cumulative distribution function (CDF) is used to produce a quantile for each lookback point. The `inlier_metric` is then computed for each time point as the average of the corresponding lookback quantiles. The figure below explains the concept for an `inlier_metric_window` of 5.
|
You define the lookback window by setting `inlier_metric_window` and FreqAI computes the distance between the present time point and each of the previous `inlier_metric_window` lookback points. A Weibull function is fit to each of the lookback distributions and its cumulative distribution function (CDF) is used to produce a quantile for each lookback point. The `inlier_metric` is then computed for each time point as the average of the corresponding lookback quantiles. The figure below explains the concept for an `inlier_metric_window` of 5.
|
||||||
|
|
||||||
|
@ -18,7 +18,6 @@ Mandatory parameters are marked as **Required** and have to be set in one of the
|
|||||||
| `purge_old_models` | Delete all unused models during live runs (not relevant to backtesting). If set to false (not default), dry/live runs will accumulate all unused models to disk. If <br> **Datatype:** Boolean. <br> Default: `True`.
|
| `purge_old_models` | Delete all unused models during live runs (not relevant to backtesting). If set to false (not default), dry/live runs will accumulate all unused models to disk. If <br> **Datatype:** Boolean. <br> Default: `True`.
|
||||||
| `save_backtest_models` | Save models to disk when running backtesting. Backtesting operates most efficiently by saving the prediction data and reusing them directly for subsequent runs (when you wish to tune entry/exit parameters). Saving backtesting models to disk also allows to use the same model files for starting a dry/live instance with the same model `identifier`. <br> **Datatype:** Boolean. <br> Default: `False` (no models are saved).
|
| `save_backtest_models` | Save models to disk when running backtesting. Backtesting operates most efficiently by saving the prediction data and reusing them directly for subsequent runs (when you wish to tune entry/exit parameters). Saving backtesting models to disk also allows to use the same model files for starting a dry/live instance with the same model `identifier`. <br> **Datatype:** Boolean. <br> Default: `False` (no models are saved).
|
||||||
| `fit_live_predictions_candles` | Number of historical candles to use for computing target (label) statistics from prediction data, instead of from the training dataset (more information can be found [here](freqai-configuration.md#creating-a-dynamic-target-threshold)). <br> **Datatype:** Positive integer.
|
| `fit_live_predictions_candles` | Number of historical candles to use for computing target (label) statistics from prediction data, instead of from the training dataset (more information can be found [here](freqai-configuration.md#creating-a-dynamic-target-threshold)). <br> **Datatype:** Positive integer.
|
||||||
| `follow_mode` | Use a `follower` that will look for models associated with a specific `identifier` and load those for inferencing. A `follower` will **not** train new models. <br> **Datatype:** Boolean. <br> Default: `False`.
|
|
||||||
| `continual_learning` | Use the final state of the most recently trained model as starting point for the new model, allowing for incremental learning (more information can be found [here](freqai-running.md#continual-learning)). <br> **Datatype:** Boolean. <br> Default: `False`.
|
| `continual_learning` | Use the final state of the most recently trained model as starting point for the new model, allowing for incremental learning (more information can be found [here](freqai-running.md#continual-learning)). <br> **Datatype:** Boolean. <br> Default: `False`.
|
||||||
| `write_metrics_to_disk` | Collect train timings, inference timings and cpu usage in json file. <br> **Datatype:** Boolean. <br> Default: `False`
|
| `write_metrics_to_disk` | Collect train timings, inference timings and cpu usage in json file. <br> **Datatype:** Boolean. <br> Default: `False`
|
||||||
| `data_kitchen_thread_count` | <br> Designate the number of threads you want to use for data processing (outlier methods, normalization, etc.). This has no impact on the number of threads used for training. If user does not set it (default), FreqAI will use max number of threads - 2 (leaving 1 physical core available for Freqtrade bot and FreqUI) <br> **Datatype:** Positive integer.
|
| `data_kitchen_thread_count` | <br> Designate the number of threads you want to use for data processing (outlier methods, normalization, etc.). This has no impact on the number of threads used for training. If user does not set it (default), FreqAI will use max number of threads - 2 (leaving 1 physical core available for Freqtrade bot and FreqUI) <br> **Datatype:** Positive integer.
|
||||||
@ -29,12 +28,12 @@ Mandatory parameters are marked as **Required** and have to be set in one of the
|
|||||||
|------------|-------------|
|
|------------|-------------|
|
||||||
| | **Feature parameters within the `freqai.feature_parameters` sub dictionary**
|
| | **Feature parameters within the `freqai.feature_parameters` sub dictionary**
|
||||||
| `feature_parameters` | A dictionary containing the parameters used to engineer the feature set. Details and examples are shown [here](freqai-feature-engineering.md). <br> **Datatype:** Dictionary.
|
| `feature_parameters` | A dictionary containing the parameters used to engineer the feature set. Details and examples are shown [here](freqai-feature-engineering.md). <br> **Datatype:** Dictionary.
|
||||||
| `include_timeframes` | A list of timeframes that all indicators in `populate_any_indicators` will be created for. The list is added as features to the base indicators dataset. <br> **Datatype:** List of timeframes (strings).
|
| `include_timeframes` | A list of timeframes that all indicators in `feature_engineering_expand_*()` will be created for. The list is added as features to the base indicators dataset. <br> **Datatype:** List of timeframes (strings).
|
||||||
| `include_corr_pairlist` | A list of correlated coins that FreqAI will add as additional features to all `pair_whitelist` coins. All indicators set in `populate_any_indicators` during feature engineering (see details [here](freqai-feature-engineering.md)) will be created for each correlated coin. The correlated coins features are added to the base indicators dataset. <br> **Datatype:** List of assets (strings).
|
| `include_corr_pairlist` | A list of correlated coins that FreqAI will add as additional features to all `pair_whitelist` coins. All indicators set in `feature_engineering_expand_*()` during feature engineering (see details [here](freqai-feature-engineering.md)) will be created for each correlated coin. The correlated coins features are added to the base indicators dataset. <br> **Datatype:** List of assets (strings).
|
||||||
| `label_period_candles` | Number of candles into the future that the labels are created for. This is used in `populate_any_indicators` (see `templates/FreqaiExampleStrategy.py` for detailed usage). You can create custom labels and choose whether to make use of this parameter or not. <br> **Datatype:** Positive integer.
|
| `label_period_candles` | Number of candles into the future that the labels are created for. This is used in `feature_engineering_expand_all()` (see `templates/FreqaiExampleStrategy.py` for detailed usage). You can create custom labels and choose whether to make use of this parameter or not. <br> **Datatype:** Positive integer.
|
||||||
| `include_shifted_candles` | Add features from previous candles to subsequent candles with the intent of adding historical information. If used, FreqAI will duplicate and shift all features from the `include_shifted_candles` previous candles so that the information is available for the subsequent candle. <br> **Datatype:** Positive integer.
|
| `include_shifted_candles` | Add features from previous candles to subsequent candles with the intent of adding historical information. If used, FreqAI will duplicate and shift all features from the `include_shifted_candles` previous candles so that the information is available for the subsequent candle. <br> **Datatype:** Positive integer.
|
||||||
| `weight_factor` | Weight training data points according to their recency (see details [here](freqai-feature-engineering.md#weighting-features-for-temporal-importance)). <br> **Datatype:** Positive float (typically < 1).
|
| `weight_factor` | Weight training data points according to their recency (see details [here](freqai-feature-engineering.md#weighting-features-for-temporal-importance)). <br> **Datatype:** Positive float (typically < 1).
|
||||||
| `indicator_max_period_candles` | **No longer used (#7325)**. Replaced by `startup_candle_count` which is set in the [strategy](freqai-configuration.md#building-a-freqai-strategy). `startup_candle_count` is timeframe independent and defines the maximum *period* used in `populate_any_indicators()` for indicator creation. FreqAI uses this parameter together with the maximum timeframe in `include_time_frames` to calculate how many data points to download such that the first data point does not include a NaN. <br> **Datatype:** Positive integer.
|
| `indicator_max_period_candles` | **No longer used (#7325)**. Replaced by `startup_candle_count` which is set in the [strategy](freqai-configuration.md#building-a-freqai-strategy). `startup_candle_count` is timeframe independent and defines the maximum *period* used in `feature_engineering_*()` for indicator creation. FreqAI uses this parameter together with the maximum timeframe in `include_time_frames` to calculate how many data points to download such that the first data point does not include a NaN. <br> **Datatype:** Positive integer.
|
||||||
| `indicator_periods_candles` | Time periods to calculate indicators for. The indicators are added to the base indicator dataset. <br> **Datatype:** List of positive integers.
|
| `indicator_periods_candles` | Time periods to calculate indicators for. The indicators are added to the base indicator dataset. <br> **Datatype:** List of positive integers.
|
||||||
| `principal_component_analysis` | Automatically reduce the dimensionality of the data set using Principal Component Analysis. See details about how it works [here](#reducing-data-dimensionality-with-principal-component-analysis) <br> **Datatype:** Boolean. <br> Default: `False`.
|
| `principal_component_analysis` | Automatically reduce the dimensionality of the data set using Principal Component Analysis. See details about how it works [here](#reducing-data-dimensionality-with-principal-component-analysis) <br> **Datatype:** Boolean. <br> Default: `False`.
|
||||||
| `plot_feature_importances` | Create a feature importance plot for each model for the top/bottom `plot_feature_importances` number of features. Plot is stored in `user_data/models/<identifier>/sub-train-<COIN>_<timestamp>.html`. <br> **Datatype:** Integer. <br> Default: `0`.
|
| `plot_feature_importances` | Create a feature importance plot for each model for the top/bottom `plot_feature_importances` number of features. Plot is stored in `user_data/models/<identifier>/sub-train-<COIN>_<timestamp>.html`. <br> **Datatype:** Integer. <br> Default: `0`.
|
||||||
|
@ -34,65 +34,36 @@ Setting up and running a Reinforcement Learning model is the same as running a R
|
|||||||
freqtrade trade --freqaimodel ReinforcementLearner --strategy MyRLStrategy --config config.json
|
freqtrade trade --freqaimodel ReinforcementLearner --strategy MyRLStrategy --config config.json
|
||||||
```
|
```
|
||||||
|
|
||||||
where `ReinforcementLearner` will use the templated `ReinforcementLearner` from `freqai/prediction_models/ReinforcementLearner` (or a custom user defined one located in `user_data/freqaimodels`). The strategy, on the other hand, follows the same base [feature engineering](freqai-feature-engineering.md) with `populate_any_indicators` as a typical Regressor:
|
where `ReinforcementLearner` will use the templated `ReinforcementLearner` from `freqai/prediction_models/ReinforcementLearner` (or a custom user defined one located in `user_data/freqaimodels`). The strategy, on the other hand, follows the same base [feature engineering](freqai-feature-engineering.md) with `feature_engineering_*` as a typical Regressor. The difference lies in the creation of the targets, Reinforcement Learning doesn't require them. However, FreqAI requires a default (neutral) value to be set in the action column:
|
||||||
|
|
||||||
```python
|
```python
|
||||||
def populate_any_indicators(
|
def set_freqai_targets(self, dataframe, **kwargs):
|
||||||
self, pair, df, tf, informative=None, set_generalized_indicators=False
|
"""
|
||||||
):
|
*Only functional with FreqAI enabled strategies*
|
||||||
|
Required function to set the targets for the model.
|
||||||
|
All targets must be prepended with `&` to be recognized by the FreqAI internals.
|
||||||
|
|
||||||
if informative is None:
|
More details about feature engineering available:
|
||||||
informative = self.dp.get_pair_dataframe(pair, tf)
|
|
||||||
|
|
||||||
# first loop is automatically duplicating indicators for time periods
|
https://www.freqtrade.io/en/latest/freqai-feature-engineering
|
||||||
for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]:
|
|
||||||
|
|
||||||
t = int(t)
|
:param df: strategy dataframe which will receive the targets
|
||||||
informative[f"%-{pair}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t)
|
usage example: dataframe["&-target"] = dataframe["close"].shift(-1) / dataframe["close"]
|
||||||
informative[f"%-{pair}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
|
"""
|
||||||
informative[f"%-{pair}adx-period_{t}"] = ta.ADX(informative, window=t)
|
# For RL, there are no direct targets to set. This is filler (neutral)
|
||||||
|
# until the agent sends an action.
|
||||||
# The following raw price values are necessary for RL models
|
dataframe["&-action"] = 0
|
||||||
informative[f"%-{pair}raw_close"] = informative["close"]
|
|
||||||
informative[f"%-{pair}raw_open"] = informative["open"]
|
|
||||||
informative[f"%-{pair}raw_high"] = informative["high"]
|
|
||||||
informative[f"%-{pair}raw_low"] = informative["low"]
|
|
||||||
|
|
||||||
indicators = [col for col in informative if col.startswith("%")]
|
|
||||||
# This loop duplicates and shifts all indicators to add a sense of recency to data
|
|
||||||
for n in range(self.freqai_info["feature_parameters"]["include_shifted_candles"] + 1):
|
|
||||||
if n == 0:
|
|
||||||
continue
|
|
||||||
informative_shift = informative[indicators].shift(n)
|
|
||||||
informative_shift = informative_shift.add_suffix("_shift-" + str(n))
|
|
||||||
informative = pd.concat((informative, informative_shift), axis=1)
|
|
||||||
|
|
||||||
df = merge_informative_pair(df, informative, self.config["timeframe"], tf, ffill=True)
|
|
||||||
skip_columns = [
|
|
||||||
(s + "_" + tf) for s in ["date", "open", "high", "low", "close", "volume"]
|
|
||||||
]
|
|
||||||
df = df.drop(columns=skip_columns)
|
|
||||||
|
|
||||||
# Add generalized indicators here (because in live, it will call this
|
|
||||||
# function to populate indicators during training). Notice how we ensure not to
|
|
||||||
# add them multiple times
|
|
||||||
if set_generalized_indicators:
|
|
||||||
|
|
||||||
# For RL, there are no direct targets to set. This is filler (neutral)
|
|
||||||
# until the agent sends an action.
|
|
||||||
df["&-action"] = 0
|
|
||||||
|
|
||||||
return df
|
|
||||||
```
|
```
|
||||||
|
|
||||||
Most of the function remains the same as for typical Regressors, however, the function above shows how the strategy must pass the raw price data to the agent so that it has access to raw OHLCV in the training environment:
|
Most of the function remains the same as for typical Regressors, however, the function above shows how the strategy must pass the raw price data to the agent so that it has access to raw OHLCV in the training environment:
|
||||||
|
|
||||||
```python
|
```python
|
||||||
|
def feature_engineering_standard(self, dataframe, **kwargs):
|
||||||
# The following features are necessary for RL models
|
# The following features are necessary for RL models
|
||||||
informative[f"%-{pair}raw_close"] = informative["close"]
|
dataframe[f"%-raw_close"] = dataframe["close"]
|
||||||
informative[f"%-{pair}raw_open"] = informative["open"]
|
dataframe[f"%-raw_open"] = dataframe["open"]
|
||||||
informative[f"%-{pair}raw_high"] = informative["high"]
|
dataframe[f"%-raw_high"] = dataframe["high"]
|
||||||
informative[f"%-{pair}raw_low"] = informative["low"]
|
dataframe[f"%-raw_low"] = dataframe["low"]
|
||||||
```
|
```
|
||||||
|
|
||||||
Finally, there is no explicit "label" to make - instead it is necessary to assign the `&-action` column which will contain the agent's actions when accessed in `populate_entry/exit_trends()`. In the present example, the neutral action to 0. This value should align with the environment used. FreqAI provides two environments, both use 0 as the neutral action.
|
Finally, there is no explicit "label" to make - instead it is necessary to assign the `&-action` column which will contain the agent's actions when accessed in `populate_entry/exit_trends()`. In the present example, the neutral action to 0. This value should align with the environment used. FreqAI provides two environments, both use 0 as the neutral action.
|
||||||
@ -204,10 +175,20 @@ As you begin to modify the strategy and the prediction model, you will quickly r
|
|||||||
pnl = self.get_unrealized_profit()
|
pnl = self.get_unrealized_profit()
|
||||||
|
|
||||||
factor = 100
|
factor = 100
|
||||||
# reward agent for entering trades
|
|
||||||
if action in (Actions.Long_enter.value, Actions.Short_enter.value) \
|
# you can use feature values from dataframe
|
||||||
and self._position == Positions.Neutral:
|
rsi_now = self.raw_features[f"%-rsi-period-10_shift-1_{self.pair}_"
|
||||||
return 25
|
f"{self.config['timeframe']}"].iloc[self._current_tick]
|
||||||
|
|
||||||
|
# reward agent for entering trades
|
||||||
|
if (action in (Actions.Long_enter.value, Actions.Short_enter.value)
|
||||||
|
and self._position == Positions.Neutral):
|
||||||
|
if rsi_now < 40:
|
||||||
|
factor = 40 / rsi_now
|
||||||
|
else:
|
||||||
|
factor = 1
|
||||||
|
return 25 * factor
|
||||||
|
|
||||||
# discourage agent from not entering trades
|
# discourage agent from not entering trades
|
||||||
if action == Actions.Neutral.value and self._position == Positions.Neutral:
|
if action == Actions.Neutral.value and self._position == Positions.Neutral:
|
||||||
return -1
|
return -1
|
||||||
@ -272,7 +253,6 @@ FreqAI also provides a built in episodic summary logger called `self.tensorboard
|
|||||||
!!! Note
|
!!! Note
|
||||||
The `self.tensorboard_log()` function is designed for tracking incremented objects only i.e. events, actions inside the training environment. If the event of interest is a float, the float can be passed as the second argument e.g. `self.tensorboard_log("float_metric1", 0.23)` would add 0.23 to `float_metric`. In this case you can also disable incrementing using `inc=False` parameter.
|
The `self.tensorboard_log()` function is designed for tracking incremented objects only i.e. events, actions inside the training environment. If the event of interest is a float, the float can be passed as the second argument e.g. `self.tensorboard_log("float_metric1", 0.23)` would add 0.23 to `float_metric`. In this case you can also disable incrementing using `inc=False` parameter.
|
||||||
|
|
||||||
|
|
||||||
### Choosing a base environment
|
### Choosing a base environment
|
||||||
|
|
||||||
FreqAI provides three base environments, `Base3ActionRLEnvironment`, `Base4ActionEnvironment` and `Base5ActionEnvironment`. As the names imply, the environments are customized for agents that can select from 3, 4 or 5 actions. The `Base3ActionEnvironment` is the simplest, the agent can select from hold, long, or short. This environment can also be used for long-only bots (it automatically follows the `can_short` flag from the strategy), where long is the enter condition and short is the exit condition. Meanwhile, in the `Base4ActionEnvironment`, the agent can enter long, enter short, hold neutral, or exit position. Finally, in the `Base5ActionEnvironment`, the agent has the same actions as Base4, but instead of a single exit action, it separates exit long and exit short. The main changes stemming from the environment selection include:
|
FreqAI provides three base environments, `Base3ActionRLEnvironment`, `Base4ActionEnvironment` and `Base5ActionEnvironment`. As the names imply, the environments are customized for agents that can select from 3, 4 or 5 actions. The `Base3ActionEnvironment` is the simplest, the agent can select from hold, long, or short. This environment can also be used for long-only bots (it automatically follows the `can_short` flag from the strategy), where long is the enter condition and short is the exit condition. Meanwhile, in the `Base4ActionEnvironment`, the agent can enter long, enter short, hold neutral, or exit position. Finally, in the `Base5ActionEnvironment`, the agent has the same actions as Base4, but instead of a single exit action, it separates exit long and exit short. The main changes stemming from the environment selection include:
|
||||||
|
@ -67,6 +67,10 @@ Backtesting mode requires [downloading the necessary data](#downloading-data-to-
|
|||||||
*want* to retrain a new model with the same config file, you should simply change the `identifier`.
|
*want* to retrain a new model with the same config file, you should simply change the `identifier`.
|
||||||
This way, you can return to using any model you wish by simply specifying the `identifier`.
|
This way, you can return to using any model you wish by simply specifying the `identifier`.
|
||||||
|
|
||||||
|
!!! Note
|
||||||
|
Backtesting calls `set_freqai_targets()` one time for each backtest window (where the number of windows is the full backtest timerange divided by the `backtest_period_days` parameter). Doing this means that the targets simulate dry/live behavior without look ahead bias. However, the definition of the features in `feature_engineering_*()` is performed once on the entire backtest timerange. This means that you should be sure that features do look-ahead into the future.
|
||||||
|
More details about look-ahead bias can be found in [Common Mistakes](strategy-customization.md#common-mistakes-when-developing-strategies).
|
||||||
|
|
||||||
---
|
---
|
||||||
|
|
||||||
### Saving prediction data
|
### Saving prediction data
|
||||||
@ -135,7 +139,7 @@ freqtrade hyperopt --hyperopt-loss SharpeHyperOptLoss --strategy FreqaiExampleSt
|
|||||||
`hyperopt` requires you to have the data pre-downloaded in the same fashion as if you were doing [backtesting](#backtesting). In addition, you must consider some restrictions when trying to hyperopt FreqAI strategies:
|
`hyperopt` requires you to have the data pre-downloaded in the same fashion as if you were doing [backtesting](#backtesting). In addition, you must consider some restrictions when trying to hyperopt FreqAI strategies:
|
||||||
|
|
||||||
- The `--analyze-per-epoch` hyperopt parameter is not compatible with FreqAI.
|
- The `--analyze-per-epoch` hyperopt parameter is not compatible with FreqAI.
|
||||||
- It's not possible to hyperopt indicators in the `populate_any_indicators()` function. This means that you cannot optimize model parameters using hyperopt. Apart from this exception, it is possible to optimize all other [spaces](hyperopt.md#running-hyperopt-with-smaller-search-space).
|
- It's not possible to hyperopt indicators in the `feature_engineering_*()` and `set_freqai_targets()` functions. This means that you cannot optimize model parameters using hyperopt. Apart from this exception, it is possible to optimize all other [spaces](hyperopt.md#running-hyperopt-with-smaller-search-space).
|
||||||
- The backtesting instructions also apply to hyperopt.
|
- The backtesting instructions also apply to hyperopt.
|
||||||
|
|
||||||
The best method for combining hyperopt and FreqAI is to focus on hyperopting entry/exit thresholds/criteria. You need to focus on hyperopting parameters that are not used in your features. For example, you should not try to hyperopt rolling window lengths in the feature creation, or any part of the FreqAI config which changes predictions. In order to efficiently hyperopt the FreqAI strategy, FreqAI stores predictions as dataframes and reuses them. Hence the requirement to hyperopt entry/exit thresholds/criteria only.
|
The best method for combining hyperopt and FreqAI is to focus on hyperopting entry/exit thresholds/criteria. You need to focus on hyperopting parameters that are not used in your features. For example, you should not try to hyperopt rolling window lengths in the feature creation, or any part of the FreqAI config which changes predictions. In order to efficiently hyperopt the FreqAI strategy, FreqAI stores predictions as dataframes and reuses them. Hence the requirement to hyperopt entry/exit thresholds/criteria only.
|
||||||
@ -161,20 +165,3 @@ tensorboard --logdir user_data/models/unique-id
|
|||||||
where `unique-id` is the `identifier` set in the `freqai` configuration file. This command must be run in a separate shell if you wish to view the output in your browser at 127.0.0.1:6060 (6060 is the default port used by Tensorboard).
|
where `unique-id` is the `identifier` set in the `freqai` configuration file. This command must be run in a separate shell if you wish to view the output in your browser at 127.0.0.1:6060 (6060 is the default port used by Tensorboard).
|
||||||
|
|
||||||
![tensorboard](assets/tensorboard.jpg)
|
![tensorboard](assets/tensorboard.jpg)
|
||||||
|
|
||||||
## Setting up a follower
|
|
||||||
|
|
||||||
You can indicate to the bot that it should not train models, but instead should look for models trained by a leader with a specific `identifier` by defining:
|
|
||||||
|
|
||||||
```json
|
|
||||||
"freqai": {
|
|
||||||
"enabled": true,
|
|
||||||
"follow_mode": true,
|
|
||||||
"identifier": "example",
|
|
||||||
"feature_parameters": {
|
|
||||||
// leader bots feature_parameters inserted here
|
|
||||||
},
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
In this example, the user has a leader bot with the `"identifier": "example"`. The leader bot is already running or is launched simultaneously with the follower. The follower will load models created by the leader and inference them to obtain predictions instead of training its own models. The user will also need to duplicate the `feature_parameters` parameters from from the leaders freqai configuration file into the freqai section of the followers config.
|
|
||||||
|
@ -50,7 +50,7 @@ usage: freqtrade hyperopt [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH]
|
|||||||
[--eps] [--dmmp] [--enable-protections]
|
[--eps] [--dmmp] [--enable-protections]
|
||||||
[--dry-run-wallet DRY_RUN_WALLET]
|
[--dry-run-wallet DRY_RUN_WALLET]
|
||||||
[--timeframe-detail TIMEFRAME_DETAIL] [-e INT]
|
[--timeframe-detail TIMEFRAME_DETAIL] [-e INT]
|
||||||
[--spaces {all,buy,sell,roi,stoploss,trailing,protection,default} [{all,buy,sell,roi,stoploss,trailing,protection,default} ...]]
|
[--spaces {all,buy,sell,roi,stoploss,trailing,protection,trades,default} [{all,buy,sell,roi,stoploss,trailing,protection,trades,default} ...]]
|
||||||
[--print-all] [--no-color] [--print-json] [-j JOBS]
|
[--print-all] [--no-color] [--print-json] [-j JOBS]
|
||||||
[--random-state INT] [--min-trades INT]
|
[--random-state INT] [--min-trades INT]
|
||||||
[--hyperopt-loss NAME] [--disable-param-export]
|
[--hyperopt-loss NAME] [--disable-param-export]
|
||||||
@ -96,7 +96,7 @@ optional arguments:
|
|||||||
Specify detail timeframe for backtesting (`1m`, `5m`,
|
Specify detail timeframe for backtesting (`1m`, `5m`,
|
||||||
`30m`, `1h`, `1d`).
|
`30m`, `1h`, `1d`).
|
||||||
-e INT, --epochs INT Specify number of epochs (default: 100).
|
-e INT, --epochs INT Specify number of epochs (default: 100).
|
||||||
--spaces {all,buy,sell,roi,stoploss,trailing,protection,default} [{all,buy,sell,roi,stoploss,trailing,protection,default} ...]
|
--spaces {all,buy,sell,roi,stoploss,trailing,protection,trades,default} [{all,buy,sell,roi,stoploss,trailing,protection,trades,default} ...]
|
||||||
Specify which parameters to hyperopt. Space-separated
|
Specify which parameters to hyperopt. Space-separated
|
||||||
list.
|
list.
|
||||||
--print-all Print all results, not only the best ones.
|
--print-all Print all results, not only the best ones.
|
||||||
@ -180,6 +180,7 @@ Rarely you may also need to create a [nested class](advanced-hyperopt.md#overrid
|
|||||||
* `generate_roi_table` - for custom ROI optimization (if you need the ranges for the values in the ROI table that differ from default or the number of entries (steps) in the ROI table which differs from the default 4 steps)
|
* `generate_roi_table` - for custom ROI optimization (if you need the ranges for the values in the ROI table that differ from default or the number of entries (steps) in the ROI table which differs from the default 4 steps)
|
||||||
* `stoploss_space` - for custom stoploss optimization (if you need the range for the stoploss parameter in the optimization hyperspace that differs from default)
|
* `stoploss_space` - for custom stoploss optimization (if you need the range for the stoploss parameter in the optimization hyperspace that differs from default)
|
||||||
* `trailing_space` - for custom trailing stop optimization (if you need the ranges for the trailing stop parameters in the optimization hyperspace that differ from default)
|
* `trailing_space` - for custom trailing stop optimization (if you need the ranges for the trailing stop parameters in the optimization hyperspace that differ from default)
|
||||||
|
* `max_open_trades_space` - for custom max_open_trades optimization (if you need the ranges for the max_open_trades parameter in the optimization hyperspace that differ from default)
|
||||||
|
|
||||||
!!! Tip "Quickly optimize ROI, stoploss and trailing stoploss"
|
!!! Tip "Quickly optimize ROI, stoploss and trailing stoploss"
|
||||||
You can quickly optimize the spaces `roi`, `stoploss` and `trailing` without changing anything in your strategy.
|
You can quickly optimize the spaces `roi`, `stoploss` and `trailing` without changing anything in your strategy.
|
||||||
@ -643,6 +644,7 @@ Legal values are:
|
|||||||
* `roi`: just optimize the minimal profit table for your strategy
|
* `roi`: just optimize the minimal profit table for your strategy
|
||||||
* `stoploss`: search for the best stoploss value
|
* `stoploss`: search for the best stoploss value
|
||||||
* `trailing`: search for the best trailing stop values
|
* `trailing`: search for the best trailing stop values
|
||||||
|
* `trades`: search for the best max open trades values
|
||||||
* `protection`: search for the best protection parameters (read the [protections section](#optimizing-protections) on how to properly define these)
|
* `protection`: search for the best protection parameters (read the [protections section](#optimizing-protections) on how to properly define these)
|
||||||
* `default`: `all` except `trailing` and `protection`
|
* `default`: `all` except `trailing` and `protection`
|
||||||
* space-separated list of any of the above values for example `--spaces roi stoploss`
|
* space-separated list of any of the above values for example `--spaces roi stoploss`
|
||||||
@ -916,5 +918,5 @@ Once the optimized strategy has been implemented into your strategy, you should
|
|||||||
To achieve same the results (number of trades, their durations, profit, etc.) as during Hyperopt, please use the same configuration and parameters (timerange, timeframe, ...) used for hyperopt `--dmmp`/`--disable-max-market-positions` and `--eps`/`--enable-position-stacking` for Backtesting.
|
To achieve same the results (number of trades, their durations, profit, etc.) as during Hyperopt, please use the same configuration and parameters (timerange, timeframe, ...) used for hyperopt `--dmmp`/`--disable-max-market-positions` and `--eps`/`--enable-position-stacking` for Backtesting.
|
||||||
|
|
||||||
Should results not match, please double-check to make sure you transferred all conditions correctly.
|
Should results not match, please double-check to make sure you transferred all conditions correctly.
|
||||||
Pay special care to the stoploss (and trailing stoploss) parameters, as these are often set in configuration files, which override changes to the strategy.
|
Pay special care to the stoploss, max_open_trades and trailing stoploss parameters, as these are often set in configuration files, which override changes to the strategy.
|
||||||
You should also carefully review the log of your backtest to ensure that there were no parameters inadvertently set by the configuration (like `stoploss` or `trailing_stop`).
|
You should also carefully review the log of your backtest to ensure that there were no parameters inadvertently set by the configuration (like `stoploss`, `max_open_trades` or `trailing_stop`).
|
||||||
|
@ -52,6 +52,7 @@ Please read the [exchange specific notes](exchanges.md) to learn about eventual,
|
|||||||
- [X] [Binance](https://www.binance.com/)
|
- [X] [Binance](https://www.binance.com/)
|
||||||
- [X] [Gate.io](https://www.gate.io/ref/6266643)
|
- [X] [Gate.io](https://www.gate.io/ref/6266643)
|
||||||
- [X] [OKX](https://okx.com/)
|
- [X] [OKX](https://okx.com/)
|
||||||
|
- [X] [Bybit](https://bybit.com/)
|
||||||
|
|
||||||
Please make sure to read the [exchange specific notes](exchanges.md), as well as the [trading with leverage](leverage.md) documentation before diving in.
|
Please make sure to read the [exchange specific notes](exchanges.md), as well as the [trading with leverage](leverage.md) documentation before diving in.
|
||||||
|
|
||||||
|
@ -30,6 +30,12 @@ The easiest way to install and run Freqtrade is to clone the bot Github reposito
|
|||||||
!!! Warning "Up-to-date clock"
|
!!! Warning "Up-to-date clock"
|
||||||
The clock on the system running the bot must be accurate, synchronized to a NTP server frequently enough to avoid problems with communication to the exchanges.
|
The clock on the system running the bot must be accurate, synchronized to a NTP server frequently enough to avoid problems with communication to the exchanges.
|
||||||
|
|
||||||
|
!!! Error "Running setup.py install for gym did not run successfully."
|
||||||
|
If you get an error related with gym we suggest you to downgrade setuptools it to version 65.5.0 you can do it with the following command:
|
||||||
|
```bash
|
||||||
|
pip install setuptools==65.5.0
|
||||||
|
```
|
||||||
|
|
||||||
------
|
------
|
||||||
|
|
||||||
## Requirements
|
## Requirements
|
||||||
|
@ -67,8 +67,6 @@ You will also have to pick a "margin mode" (explanation below) - with freqtrade
|
|||||||
Freqtrade follows the [ccxt naming conventions for futures](https://docs.ccxt.com/en/latest/manual.html?#perpetual-swap-perpetual-future).
|
Freqtrade follows the [ccxt naming conventions for futures](https://docs.ccxt.com/en/latest/manual.html?#perpetual-swap-perpetual-future).
|
||||||
A futures pair will therefore have the naming of `base/quote:settle` (e.g. `ETH/USDT:USDT`).
|
A futures pair will therefore have the naming of `base/quote:settle` (e.g. `ETH/USDT:USDT`).
|
||||||
|
|
||||||
Binance is currently still an exception to this naming scheme, where pairs are named `ETH/USDT` also for futures markets, but will be aligned as soon as CCXT is ready.
|
|
||||||
|
|
||||||
### Margin mode
|
### Margin mode
|
||||||
|
|
||||||
On top of `trading_mode` - you will also have to configure your `margin_mode`.
|
On top of `trading_mode` - you will also have to configure your `margin_mode`.
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
markdown==3.3.7
|
markdown==3.3.7
|
||||||
mkdocs==1.4.2
|
mkdocs==1.4.2
|
||||||
mkdocs-material==8.5.11
|
mkdocs-material==9.0.11
|
||||||
mdx_truly_sane_lists==1.3
|
mdx_truly_sane_lists==1.3
|
||||||
pymdown-extensions==9.9
|
pymdown-extensions==9.9.2
|
||||||
jinja2==3.1.2
|
jinja2==3.1.2
|
||||||
|
@ -163,7 +163,7 @@ python3 scripts/rest_client.py --config rest_config.json <command> [optional par
|
|||||||
| `strategy <strategy>` | Get specific Strategy content. **Alpha**
|
| `strategy <strategy>` | Get specific Strategy content. **Alpha**
|
||||||
| `available_pairs` | List available backtest data. **Alpha**
|
| `available_pairs` | List available backtest data. **Alpha**
|
||||||
| `version` | Show version.
|
| `version` | Show version.
|
||||||
| `sysinfo` | Show informations about the system load.
|
| `sysinfo` | Show information about the system load.
|
||||||
| `health` | Show bot health (last bot loop).
|
| `health` | Show bot health (last bot loop).
|
||||||
|
|
||||||
!!! Warning "Alpha status"
|
!!! Warning "Alpha status"
|
||||||
@ -192,6 +192,11 @@ blacklist
|
|||||||
|
|
||||||
:param add: List of coins to add (example: "BNB/BTC")
|
:param add: List of coins to add (example: "BNB/BTC")
|
||||||
|
|
||||||
|
cancel_open_order
|
||||||
|
Cancel open order for trade.
|
||||||
|
|
||||||
|
:param trade_id: Cancels open orders for this trade.
|
||||||
|
|
||||||
count
|
count
|
||||||
Return the amount of open trades.
|
Return the amount of open trades.
|
||||||
|
|
||||||
@ -274,7 +279,6 @@ reload_config
|
|||||||
Reload configuration.
|
Reload configuration.
|
||||||
|
|
||||||
show_config
|
show_config
|
||||||
|
|
||||||
Returns part of the configuration, relevant for trading operations.
|
Returns part of the configuration, relevant for trading operations.
|
||||||
|
|
||||||
start
|
start
|
||||||
@ -320,6 +324,7 @@ version
|
|||||||
whitelist
|
whitelist
|
||||||
Show the current whitelist.
|
Show the current whitelist.
|
||||||
|
|
||||||
|
|
||||||
```
|
```
|
||||||
|
|
||||||
### Message WebSocket
|
### Message WebSocket
|
||||||
|
@ -24,7 +24,7 @@ These modes can be configured with these values:
|
|||||||
```
|
```
|
||||||
|
|
||||||
!!! Note
|
!!! Note
|
||||||
Stoploss on exchange is only supported for Binance (stop-loss-limit), Huobi (stop-limit), Kraken (stop-loss-market, stop-loss-limit), Gateio (stop-limit), and Kucoin (stop-limit and stop-market) as of now.
|
Stoploss on exchange is only supported for Binance (stop-loss-limit), Huobi (stop-limit), Kraken (stop-loss-market, stop-loss-limit), Gate (stop-limit), and Kucoin (stop-limit and stop-market) as of now.
|
||||||
<ins>Do not set too low/tight stoploss value if using stop loss on exchange!</ins>
|
<ins>Do not set too low/tight stoploss value if using stop loss on exchange!</ins>
|
||||||
If set to low/tight then you have greater risk of missing fill on the order and stoploss will not work.
|
If set to low/tight then you have greater risk of missing fill on the order and stoploss will not work.
|
||||||
|
|
||||||
@ -52,6 +52,18 @@ The bot cannot do these every 5 seconds (at each iteration), otherwise it would
|
|||||||
So this parameter will tell the bot how often it should update the stoploss order. The default value is 60 (1 minute).
|
So this parameter will tell the bot how often it should update the stoploss order. The default value is 60 (1 minute).
|
||||||
This same logic will reapply a stoploss order on the exchange should you cancel it accidentally.
|
This same logic will reapply a stoploss order on the exchange should you cancel it accidentally.
|
||||||
|
|
||||||
|
### stoploss_price_type
|
||||||
|
|
||||||
|
!!! Warning "Only applies to futures"
|
||||||
|
`stoploss_price_type` only applies to futures markets (on exchanges where it's available).
|
||||||
|
Freqtrade will perform a validation of this setting on startup, failing to start if an invalid setting for your exchange has been selected.
|
||||||
|
Supported price types are gonna differs between each exchanges. Please check with your exchange on which price types it supports.
|
||||||
|
|
||||||
|
Stoploss on exchange on futures markets can trigger on different price types.
|
||||||
|
The naming for these prices in exchange terminology often varies, but is usually something around "last" (or "contract price" ), "mark" and "index".
|
||||||
|
|
||||||
|
Acceptable values for this setting are `"last"`, `"mark"` and `"index"` - which freqtrade will transfer automatically to the corresponding API type, and place the [stoploss on exchange](#stoploss_on_exchange-and-stoploss_on_exchange_limit_ratio) order correspondingly.
|
||||||
|
|
||||||
### force_exit
|
### force_exit
|
||||||
|
|
||||||
`force_exit` is an optional value, which defaults to the same value as `exit` and is used when sending a `/forceexit` command from Telegram or from the Rest API.
|
`force_exit` is an optional value, which defaults to the same value as `exit` and is used when sending a `/forceexit` command from Telegram or from the Rest API.
|
||||||
|
@ -80,7 +80,7 @@ class AwesomeStrategy(IStrategy):
|
|||||||
## Enter Tag
|
## Enter Tag
|
||||||
|
|
||||||
When your strategy has multiple buy signals, you can name the signal that triggered.
|
When your strategy has multiple buy signals, you can name the signal that triggered.
|
||||||
Then you can access you buy signal on `custom_exit`
|
Then you can access your buy signal on `custom_exit`
|
||||||
|
|
||||||
```python
|
```python
|
||||||
def populate_entry_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
def populate_entry_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||||
|
@ -659,6 +659,7 @@ Position adjustments will always be applied in the direction of the trade, so a
|
|||||||
|
|
||||||
!!! Warning "Backtesting"
|
!!! Warning "Backtesting"
|
||||||
During backtesting this callback is called for each candle in `timeframe` or `timeframe_detail`, so run-time performance will be affected.
|
During backtesting this callback is called for each candle in `timeframe` or `timeframe_detail`, so run-time performance will be affected.
|
||||||
|
This can also cause deviating results between live and backtesting, since backtesting can adjust the trade only once per candle, whereas live could adjust the trade multiple times per candle.
|
||||||
|
|
||||||
``` python
|
``` python
|
||||||
from freqtrade.persistence import Trade
|
from freqtrade.persistence import Trade
|
||||||
@ -827,7 +828,7 @@ class AwesomeStrategy(IStrategy):
|
|||||||
|
|
||||||
"""
|
"""
|
||||||
# Limit orders to use and follow SMA200 as price target for the first 10 minutes since entry trigger for BTC/USDT pair.
|
# Limit orders to use and follow SMA200 as price target for the first 10 minutes since entry trigger for BTC/USDT pair.
|
||||||
if pair == 'BTC/USDT' and entry_tag == 'long_sma200' and side == 'long' and (current_time - timedelta(minutes=10) > trade.open_date_utc:
|
if pair == 'BTC/USDT' and entry_tag == 'long_sma200' and side == 'long' and (current_time - timedelta(minutes=10)) > trade.open_date_utc:
|
||||||
# just cancel the order if it has been filled more than half of the amount
|
# just cancel the order if it has been filled more than half of the amount
|
||||||
if order.filled > order.remaining:
|
if order.filled > order.remaining:
|
||||||
return None
|
return None
|
||||||
|
@ -80,6 +80,7 @@ from freqtrade.resolvers import StrategyResolver
|
|||||||
from freqtrade.data.dataprovider import DataProvider
|
from freqtrade.data.dataprovider import DataProvider
|
||||||
strategy = StrategyResolver.load_strategy(config)
|
strategy = StrategyResolver.load_strategy(config)
|
||||||
strategy.dp = DataProvider(config, None, None)
|
strategy.dp = DataProvider(config, None, None)
|
||||||
|
strategy.ft_bot_start()
|
||||||
|
|
||||||
# Generate buy/sell signals using strategy
|
# Generate buy/sell signals using strategy
|
||||||
df = strategy.analyze_ticker(candles, {'pair': pair})
|
df = strategy.analyze_ticker(candles, {'pair': pair})
|
||||||
|
@ -477,3 +477,254 @@ after:
|
|||||||
"ignore_buying_expired_candle_after": 120
|
"ignore_buying_expired_candle_after": 120
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## FreqAI strategy
|
||||||
|
|
||||||
|
The `populate_any_indicators()` method has been split into `feature_engineering_expand_all()`, `feature_engineering_expand_basic()`, `feature_engineering_standard()` and`set_freqai_targets()`.
|
||||||
|
|
||||||
|
For each new function, the pair (and timeframe where necessary) will be automatically added to the column.
|
||||||
|
As such, the definition of features becomes much simpler with the new logic.
|
||||||
|
|
||||||
|
For a full explanation of each method, please go to the corresponding [freqAI documentation page](freqai-feature-engineering.md#defining-the-features)
|
||||||
|
|
||||||
|
``` python linenums="1" hl_lines="12-37 39-42 63-65 67-75"
|
||||||
|
|
||||||
|
def populate_any_indicators(
|
||||||
|
self, pair, df, tf, informative=None, set_generalized_indicators=False
|
||||||
|
):
|
||||||
|
|
||||||
|
if informative is None:
|
||||||
|
informative = self.dp.get_pair_dataframe(pair, tf)
|
||||||
|
|
||||||
|
# first loop is automatically duplicating indicators for time periods
|
||||||
|
for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]:
|
||||||
|
|
||||||
|
t = int(t)
|
||||||
|
informative[f"%-{pair}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t)
|
||||||
|
informative[f"%-{pair}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
|
||||||
|
informative[f"%-{pair}adx-period_{t}"] = ta.ADX(informative, timeperiod=t)
|
||||||
|
informative[f"%-{pair}sma-period_{t}"] = ta.SMA(informative, timeperiod=t)
|
||||||
|
informative[f"%-{pair}ema-period_{t}"] = ta.EMA(informative, timeperiod=t)
|
||||||
|
|
||||||
|
bollinger = qtpylib.bollinger_bands(
|
||||||
|
qtpylib.typical_price(informative), window=t, stds=2.2
|
||||||
|
)
|
||||||
|
informative[f"{pair}bb_lowerband-period_{t}"] = bollinger["lower"]
|
||||||
|
informative[f"{pair}bb_middleband-period_{t}"] = bollinger["mid"]
|
||||||
|
informative[f"{pair}bb_upperband-period_{t}"] = bollinger["upper"]
|
||||||
|
|
||||||
|
informative[f"%-{pair}bb_width-period_{t}"] = (
|
||||||
|
informative[f"{pair}bb_upperband-period_{t}"]
|
||||||
|
- informative[f"{pair}bb_lowerband-period_{t}"]
|
||||||
|
) / informative[f"{pair}bb_middleband-period_{t}"]
|
||||||
|
informative[f"%-{pair}close-bb_lower-period_{t}"] = (
|
||||||
|
informative["close"] / informative[f"{pair}bb_lowerband-period_{t}"]
|
||||||
|
)
|
||||||
|
|
||||||
|
informative[f"%-{pair}roc-period_{t}"] = ta.ROC(informative, timeperiod=t)
|
||||||
|
|
||||||
|
informative[f"%-{pair}relative_volume-period_{t}"] = (
|
||||||
|
informative["volume"] / informative["volume"].rolling(t).mean()
|
||||||
|
) # (1)
|
||||||
|
|
||||||
|
informative[f"%-{pair}pct-change"] = informative["close"].pct_change()
|
||||||
|
informative[f"%-{pair}raw_volume"] = informative["volume"]
|
||||||
|
informative[f"%-{pair}raw_price"] = informative["close"]
|
||||||
|
# (2)
|
||||||
|
|
||||||
|
indicators = [col for col in informative if col.startswith("%")]
|
||||||
|
# This loop duplicates and shifts all indicators to add a sense of recency to data
|
||||||
|
for n in range(self.freqai_info["feature_parameters"]["include_shifted_candles"] + 1):
|
||||||
|
if n == 0:
|
||||||
|
continue
|
||||||
|
informative_shift = informative[indicators].shift(n)
|
||||||
|
informative_shift = informative_shift.add_suffix("_shift-" + str(n))
|
||||||
|
informative = pd.concat((informative, informative_shift), axis=1)
|
||||||
|
|
||||||
|
df = merge_informative_pair(df, informative, self.config["timeframe"], tf, ffill=True)
|
||||||
|
skip_columns = [
|
||||||
|
(s + "_" + tf) for s in ["date", "open", "high", "low", "close", "volume"]
|
||||||
|
]
|
||||||
|
df = df.drop(columns=skip_columns)
|
||||||
|
|
||||||
|
# Add generalized indicators here (because in live, it will call this
|
||||||
|
# function to populate indicators during training). Notice how we ensure not to
|
||||||
|
# add them multiple times
|
||||||
|
if set_generalized_indicators:
|
||||||
|
df["%-day_of_week"] = (df["date"].dt.dayofweek + 1) / 7
|
||||||
|
df["%-hour_of_day"] = (df["date"].dt.hour + 1) / 25
|
||||||
|
# (3)
|
||||||
|
|
||||||
|
# user adds targets here by prepending them with &- (see convention below)
|
||||||
|
df["&-s_close"] = (
|
||||||
|
df["close"]
|
||||||
|
.shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
|
||||||
|
.rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
|
||||||
|
.mean()
|
||||||
|
/ df["close"]
|
||||||
|
- 1
|
||||||
|
) # (4)
|
||||||
|
|
||||||
|
return df
|
||||||
|
```
|
||||||
|
|
||||||
|
1. Features - Move to `feature_engineering_expand_all`
|
||||||
|
2. Basic features, not expanded across `include_periods_candles` - move to`feature_engineering_expand_basic()`.
|
||||||
|
3. Standard features which should not be expanded - move to `feature_engineering_standard()`.
|
||||||
|
4. Targets - Move this part to `set_freqai_targets()`.
|
||||||
|
|
||||||
|
### freqai - feature engineering expand all
|
||||||
|
|
||||||
|
Features will now expand automatically. As such, the expansion loops, as well as the `{pair}` / `{timeframe}` parts will need to be removed.
|
||||||
|
|
||||||
|
``` python linenums="1"
|
||||||
|
def feature_engineering_expand_all(self, dataframe, period, **kwargs):
|
||||||
|
"""
|
||||||
|
*Only functional with FreqAI enabled strategies*
|
||||||
|
This function will automatically expand the defined features on the config defined
|
||||||
|
`indicator_periods_candles`, `include_timeframes`, `include_shifted_candles`, and
|
||||||
|
`include_corr_pairs`. In other words, a single feature defined in this function
|
||||||
|
will automatically expand to a total of
|
||||||
|
`indicator_periods_candles` * `include_timeframes` * `include_shifted_candles` *
|
||||||
|
`include_corr_pairs` numbers of features added to the model.
|
||||||
|
|
||||||
|
All features must be prepended with `%` to be recognized by FreqAI internals.
|
||||||
|
|
||||||
|
More details on how these config defined parameters accelerate feature engineering
|
||||||
|
in the documentation at:
|
||||||
|
|
||||||
|
https://www.freqtrade.io/en/latest/freqai-parameter-table/#feature-parameters
|
||||||
|
|
||||||
|
https://www.freqtrade.io/en/latest/freqai-feature-engineering/#defining-the-features
|
||||||
|
|
||||||
|
:param df: strategy dataframe which will receive the features
|
||||||
|
:param period: period of the indicator - usage example:
|
||||||
|
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
|
||||||
|
"""
|
||||||
|
|
||||||
|
dataframe["%-rsi-period"] = ta.RSI(dataframe, timeperiod=period)
|
||||||
|
dataframe["%-mfi-period"] = ta.MFI(dataframe, timeperiod=period)
|
||||||
|
dataframe["%-adx-period"] = ta.ADX(dataframe, timeperiod=period)
|
||||||
|
dataframe["%-sma-period"] = ta.SMA(dataframe, timeperiod=period)
|
||||||
|
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
|
||||||
|
|
||||||
|
bollinger = qtpylib.bollinger_bands(
|
||||||
|
qtpylib.typical_price(dataframe), window=period, stds=2.2
|
||||||
|
)
|
||||||
|
dataframe["bb_lowerband-period"] = bollinger["lower"]
|
||||||
|
dataframe["bb_middleband-period"] = bollinger["mid"]
|
||||||
|
dataframe["bb_upperband-period"] = bollinger["upper"]
|
||||||
|
|
||||||
|
dataframe["%-bb_width-period"] = (
|
||||||
|
dataframe["bb_upperband-period"]
|
||||||
|
- dataframe["bb_lowerband-period"]
|
||||||
|
) / dataframe["bb_middleband-period"]
|
||||||
|
dataframe["%-close-bb_lower-period"] = (
|
||||||
|
dataframe["close"] / dataframe["bb_lowerband-period"]
|
||||||
|
)
|
||||||
|
|
||||||
|
dataframe["%-roc-period"] = ta.ROC(dataframe, timeperiod=period)
|
||||||
|
|
||||||
|
dataframe["%-relative_volume-period"] = (
|
||||||
|
dataframe["volume"] / dataframe["volume"].rolling(period).mean()
|
||||||
|
)
|
||||||
|
|
||||||
|
return dataframe
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
### Freqai - feature engineering basic
|
||||||
|
|
||||||
|
Basic features. Make sure to remove the `{pair}` part from your features.
|
||||||
|
|
||||||
|
``` python linenums="1"
|
||||||
|
def feature_engineering_expand_basic(self, dataframe, **kwargs):
|
||||||
|
"""
|
||||||
|
*Only functional with FreqAI enabled strategies*
|
||||||
|
This function will automatically expand the defined features on the config defined
|
||||||
|
`include_timeframes`, `include_shifted_candles`, and `include_corr_pairs`.
|
||||||
|
In other words, a single feature defined in this function
|
||||||
|
will automatically expand to a total of
|
||||||
|
`include_timeframes` * `include_shifted_candles` * `include_corr_pairs`
|
||||||
|
numbers of features added to the model.
|
||||||
|
|
||||||
|
Features defined here will *not* be automatically duplicated on user defined
|
||||||
|
`indicator_periods_candles`
|
||||||
|
|
||||||
|
All features must be prepended with `%` to be recognized by FreqAI internals.
|
||||||
|
|
||||||
|
More details on how these config defined parameters accelerate feature engineering
|
||||||
|
in the documentation at:
|
||||||
|
|
||||||
|
https://www.freqtrade.io/en/latest/freqai-parameter-table/#feature-parameters
|
||||||
|
|
||||||
|
https://www.freqtrade.io/en/latest/freqai-feature-engineering/#defining-the-features
|
||||||
|
|
||||||
|
:param df: strategy dataframe which will receive the features
|
||||||
|
dataframe["%-pct-change"] = dataframe["close"].pct_change()
|
||||||
|
dataframe["%-ema-200"] = ta.EMA(dataframe, timeperiod=200)
|
||||||
|
"""
|
||||||
|
dataframe["%-pct-change"] = dataframe["close"].pct_change()
|
||||||
|
dataframe["%-raw_volume"] = dataframe["volume"]
|
||||||
|
dataframe["%-raw_price"] = dataframe["close"]
|
||||||
|
return dataframe
|
||||||
|
```
|
||||||
|
|
||||||
|
### FreqAI - feature engineering standard
|
||||||
|
|
||||||
|
``` python linenums="1"
|
||||||
|
def feature_engineering_standard(self, dataframe, **kwargs):
|
||||||
|
"""
|
||||||
|
*Only functional with FreqAI enabled strategies*
|
||||||
|
This optional function will be called once with the dataframe of the base timeframe.
|
||||||
|
This is the final function to be called, which means that the dataframe entering this
|
||||||
|
function will contain all the features and columns created by all other
|
||||||
|
freqai_feature_engineering_* functions.
|
||||||
|
|
||||||
|
This function is a good place to do custom exotic feature extractions (e.g. tsfresh).
|
||||||
|
This function is a good place for any feature that should not be auto-expanded upon
|
||||||
|
(e.g. day of the week).
|
||||||
|
|
||||||
|
All features must be prepended with `%` to be recognized by FreqAI internals.
|
||||||
|
|
||||||
|
More details about feature engineering available:
|
||||||
|
|
||||||
|
https://www.freqtrade.io/en/latest/freqai-feature-engineering
|
||||||
|
|
||||||
|
:param df: strategy dataframe which will receive the features
|
||||||
|
usage example: dataframe["%-day_of_week"] = (dataframe["date"].dt.dayofweek + 1) / 7
|
||||||
|
"""
|
||||||
|
dataframe["%-day_of_week"] = dataframe["date"].dt.dayofweek
|
||||||
|
dataframe["%-hour_of_day"] = dataframe["date"].dt.hour
|
||||||
|
return dataframe
|
||||||
|
```
|
||||||
|
|
||||||
|
### FreqAI - set Targets
|
||||||
|
|
||||||
|
Targets now get their own, dedicated method.
|
||||||
|
|
||||||
|
``` python linenums="1"
|
||||||
|
def set_freqai_targets(self, dataframe, **kwargs):
|
||||||
|
"""
|
||||||
|
*Only functional with FreqAI enabled strategies*
|
||||||
|
Required function to set the targets for the model.
|
||||||
|
All targets must be prepended with `&` to be recognized by the FreqAI internals.
|
||||||
|
|
||||||
|
More details about feature engineering available:
|
||||||
|
|
||||||
|
https://www.freqtrade.io/en/latest/freqai-feature-engineering
|
||||||
|
|
||||||
|
:param df: strategy dataframe which will receive the targets
|
||||||
|
usage example: dataframe["&-target"] = dataframe["close"].shift(-1) / dataframe["close"]
|
||||||
|
"""
|
||||||
|
dataframe["&-s_close"] = (
|
||||||
|
dataframe["close"]
|
||||||
|
.shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
|
||||||
|
.rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
|
||||||
|
.mean()
|
||||||
|
/ dataframe["close"]
|
||||||
|
- 1
|
||||||
|
)
|
||||||
|
|
||||||
|
return dataframe
|
||||||
|
```
|
||||||
|
@ -162,26 +162,33 @@ official commands. You can ask at any moment for help with `/help`.
|
|||||||
|
|
||||||
| Command | Description |
|
| Command | Description |
|
||||||
|----------|-------------|
|
|----------|-------------|
|
||||||
|
| **System commands**
|
||||||
| `/start` | Starts the trader
|
| `/start` | Starts the trader
|
||||||
| `/stop` | Stops the trader
|
| `/stop` | Stops the trader
|
||||||
| `/stopbuy | /stopentry` | Stops the trader from opening new trades. Gracefully closes open trades according to their rules.
|
| `/stopbuy | /stopentry` | Stops the trader from opening new trades. Gracefully closes open trades according to their rules.
|
||||||
| `/reload_config` | Reloads the configuration file
|
| `/reload_config` | Reloads the configuration file
|
||||||
| `/show_config` | Shows part of the current configuration with relevant settings to operation
|
| `/show_config` | Shows part of the current configuration with relevant settings to operation
|
||||||
| `/logs [limit]` | Show last log messages.
|
| `/logs [limit]` | Show last log messages.
|
||||||
|
| `/help` | Show help message
|
||||||
|
| `/version` | Show version
|
||||||
|
| **Status** |
|
||||||
| `/status` | Lists all open trades
|
| `/status` | Lists all open trades
|
||||||
| `/status <trade_id>` | Lists one or more specific trade. Separate multiple <trade_id> with a blank space.
|
| `/status <trade_id>` | Lists one or more specific trade. Separate multiple <trade_id> with a blank space.
|
||||||
| `/status table` | List all open trades in a table format. Pending buy orders are marked with an asterisk (*) Pending sell orders are marked with a double asterisk (**)
|
| `/status table` | List all open trades in a table format. Pending buy orders are marked with an asterisk (*) Pending sell orders are marked with a double asterisk (**)
|
||||||
| `/trades [limit]` | List all recently closed trades in a table format.
|
| `/trades [limit]` | List all recently closed trades in a table format.
|
||||||
| `/delete <trade_id>` | Delete a specific trade from the Database. Tries to close open orders. Requires manual handling of this trade on the exchange.
|
|
||||||
| `/count` | Displays number of trades used and available
|
| `/count` | Displays number of trades used and available
|
||||||
| `/locks` | Show currently locked pairs.
|
| `/locks` | Show currently locked pairs.
|
||||||
| `/unlock <pair or lock_id>` | Remove the lock for this pair (or for this lock id).
|
| `/unlock <pair or lock_id>` | Remove the lock for this pair (or for this lock id).
|
||||||
| `/profit [<n>]` | Display a summary of your profit/loss from close trades and some stats about your performance, over the last n days (all trades by default)
|
| **Modify Trade states** |
|
||||||
| `/forceexit <trade_id> | /fx <tradeid>` | Instantly exits the given trade (Ignoring `minimum_roi`).
|
| `/forceexit <trade_id> | /fx <tradeid>` | Instantly exits the given trade (Ignoring `minimum_roi`).
|
||||||
| `/forceexit all | /fx all` | Instantly exits all open trades (Ignoring `minimum_roi`).
|
| `/forceexit all | /fx all` | Instantly exits all open trades (Ignoring `minimum_roi`).
|
||||||
| `/fx` | alias for `/forceexit`
|
| `/fx` | alias for `/forceexit`
|
||||||
| `/forcelong <pair> [rate]` | Instantly buys the given pair. Rate is optional and only applies to limit orders. (`force_entry_enable` must be set to True)
|
| `/forcelong <pair> [rate]` | Instantly buys the given pair. Rate is optional and only applies to limit orders. (`force_entry_enable` must be set to True)
|
||||||
| `/forceshort <pair> [rate]` | Instantly shorts the given pair. Rate is optional and only applies to limit orders. This will only work on non-spot markets. (`force_entry_enable` must be set to True)
|
| `/forceshort <pair> [rate]` | Instantly shorts the given pair. Rate is optional and only applies to limit orders. This will only work on non-spot markets. (`force_entry_enable` must be set to True)
|
||||||
|
| `/delete <trade_id>` | Delete a specific trade from the Database. Tries to close open orders. Requires manual handling of this trade on the exchange.
|
||||||
|
| `/cancel_open_order <trade_id> | /coo <trade_id>` | Cancel an open order for a trade.
|
||||||
|
| **Metrics** |
|
||||||
|
| `/profit [<n>]` | Display a summary of your profit/loss from close trades and some stats about your performance, over the last n days (all trades by default)
|
||||||
| `/performance` | Show performance of each finished trade grouped by pair
|
| `/performance` | Show performance of each finished trade grouped by pair
|
||||||
| `/balance` | Show account balance per currency
|
| `/balance` | Show account balance per currency
|
||||||
| `/daily <n>` | Shows profit or loss per day, over the last n days (n defaults to 7)
|
| `/daily <n>` | Shows profit or loss per day, over the last n days (n defaults to 7)
|
||||||
@ -193,8 +200,7 @@ official commands. You can ask at any moment for help with `/help`.
|
|||||||
| `/whitelist [sorted] [baseonly]` | Show the current whitelist. Optionally display in alphabetical order and/or with just the base currency of each pairing.
|
| `/whitelist [sorted] [baseonly]` | Show the current whitelist. Optionally display in alphabetical order and/or with just the base currency of each pairing.
|
||||||
| `/blacklist [pair]` | Show the current blacklist, or adds a pair to the blacklist.
|
| `/blacklist [pair]` | Show the current blacklist, or adds a pair to the blacklist.
|
||||||
| `/edge` | Show validated pairs by Edge if it is enabled.
|
| `/edge` | Show validated pairs by Edge if it is enabled.
|
||||||
| `/help` | Show help message
|
|
||||||
| `/version` | Show version
|
|
||||||
|
|
||||||
## Telegram commands in action
|
## Telegram commands in action
|
||||||
|
|
||||||
|
@ -12,7 +12,7 @@ dependencies:
|
|||||||
- py-find-1st
|
- py-find-1st
|
||||||
- aiohttp
|
- aiohttp
|
||||||
- SQLAlchemy
|
- SQLAlchemy
|
||||||
- python-telegram-bot
|
- python-telegram-bot<20.0.0
|
||||||
- arrow
|
- arrow
|
||||||
- cachetools
|
- cachetools
|
||||||
- requests
|
- requests
|
||||||
|
@ -1,19 +1,20 @@
|
|||||||
""" Freqtrade bot """
|
""" Freqtrade bot """
|
||||||
__version__ = '2023.1.dev'
|
__version__ = '2023.2.dev'
|
||||||
|
|
||||||
if 'dev' in __version__:
|
if 'dev' in __version__:
|
||||||
|
from pathlib import Path
|
||||||
try:
|
try:
|
||||||
import subprocess
|
import subprocess
|
||||||
|
freqtrade_basedir = Path(__file__).parent
|
||||||
|
|
||||||
__version__ = __version__ + '-' + subprocess.check_output(
|
__version__ = __version__ + '-' + subprocess.check_output(
|
||||||
['git', 'log', '--format="%h"', '-n 1'],
|
['git', 'log', '--format="%h"', '-n 1'],
|
||||||
stderr=subprocess.DEVNULL).decode("utf-8").rstrip().strip('"')
|
stderr=subprocess.DEVNULL, cwd=freqtrade_basedir).decode("utf-8").rstrip().strip('"')
|
||||||
|
|
||||||
except Exception: # pragma: no cover
|
except Exception: # pragma: no cover
|
||||||
# git not available, ignore
|
# git not available, ignore
|
||||||
try:
|
try:
|
||||||
# Try Fallback to freqtrade_commit file (created by CI while building docker image)
|
# Try Fallback to freqtrade_commit file (created by CI while building docker image)
|
||||||
from pathlib import Path
|
|
||||||
versionfile = Path('./freqtrade_commit')
|
versionfile = Path('./freqtrade_commit')
|
||||||
if versionfile.is_file():
|
if versionfile.is_file():
|
||||||
__version__ = f"docker-{__version__}-{versionfile.read_text()[:8]}"
|
__version__ = f"docker-{__version__}-{versionfile.read_text()[:8]}"
|
||||||
|
@ -108,7 +108,7 @@ def ask_user_config() -> Dict[str, Any]:
|
|||||||
"binance",
|
"binance",
|
||||||
"binanceus",
|
"binanceus",
|
||||||
"bittrex",
|
"bittrex",
|
||||||
"gateio",
|
"gate",
|
||||||
"huobi",
|
"huobi",
|
||||||
"kraken",
|
"kraken",
|
||||||
"kucoin",
|
"kucoin",
|
||||||
@ -123,7 +123,7 @@ def ask_user_config() -> Dict[str, Any]:
|
|||||||
"message": "Do you want to trade Perpetual Swaps (perpetual futures)?",
|
"message": "Do you want to trade Perpetual Swaps (perpetual futures)?",
|
||||||
"default": False,
|
"default": False,
|
||||||
"filter": lambda val: 'futures' if val else 'spot',
|
"filter": lambda val: 'futures' if val else 'spot',
|
||||||
"when": lambda x: x["exchange_name"] in ['binance', 'gateio', 'okx'],
|
"when": lambda x: x["exchange_name"] in ['binance', 'gate', 'okx'],
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"type": "autocomplete",
|
"type": "autocomplete",
|
||||||
|
@ -251,7 +251,8 @@ AVAILABLE_CLI_OPTIONS = {
|
|||||||
"spaces": Arg(
|
"spaces": Arg(
|
||||||
'--spaces',
|
'--spaces',
|
||||||
help='Specify which parameters to hyperopt. Space-separated list.',
|
help='Specify which parameters to hyperopt. Space-separated list.',
|
||||||
choices=['all', 'buy', 'sell', 'roi', 'stoploss', 'trailing', 'protection', 'default'],
|
choices=['all', 'buy', 'sell', 'roi', 'stoploss',
|
||||||
|
'trailing', 'protection', 'trades', 'default'],
|
||||||
nargs='+',
|
nargs='+',
|
||||||
default='default',
|
default='default',
|
||||||
),
|
),
|
||||||
@ -632,10 +633,11 @@ AVAILABLE_CLI_OPTIONS = {
|
|||||||
"1: by enter_tag, "
|
"1: by enter_tag, "
|
||||||
"2: by enter_tag and exit_tag, "
|
"2: by enter_tag and exit_tag, "
|
||||||
"3: by pair and enter_tag, "
|
"3: by pair and enter_tag, "
|
||||||
"4: by pair, enter_ and exit_tag (this can get quite large)"),
|
"4: by pair, enter_ and exit_tag (this can get quite large), "
|
||||||
|
"5: by exit_tag"),
|
||||||
nargs='+',
|
nargs='+',
|
||||||
default=['0', '1', '2'],
|
default=['0', '1', '2'],
|
||||||
choices=['0', '1', '2', '3', '4'],
|
choices=['0', '1', '2', '3', '4', '5'],
|
||||||
),
|
),
|
||||||
"enter_reason_list": Arg(
|
"enter_reason_list": Arg(
|
||||||
"--enter-reason-list",
|
"--enter-reason-list",
|
||||||
|
@ -14,6 +14,7 @@ from freqtrade.exceptions import OperationalException
|
|||||||
from freqtrade.exchange import market_is_active, timeframe_to_minutes
|
from freqtrade.exchange import market_is_active, timeframe_to_minutes
|
||||||
from freqtrade.plugins.pairlist.pairlist_helpers import dynamic_expand_pairlist, expand_pairlist
|
from freqtrade.plugins.pairlist.pairlist_helpers import dynamic_expand_pairlist, expand_pairlist
|
||||||
from freqtrade.resolvers import ExchangeResolver
|
from freqtrade.resolvers import ExchangeResolver
|
||||||
|
from freqtrade.util.binance_mig import migrate_binance_futures_data
|
||||||
|
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
@ -86,6 +87,7 @@ def start_download_data(args: Dict[str, Any]) -> None:
|
|||||||
"Please use `--dl-trades` instead for this exchange "
|
"Please use `--dl-trades` instead for this exchange "
|
||||||
"(will unfortunately take a long time)."
|
"(will unfortunately take a long time)."
|
||||||
)
|
)
|
||||||
|
migrate_binance_futures_data(config)
|
||||||
pairs_not_available = refresh_backtest_ohlcv_data(
|
pairs_not_available = refresh_backtest_ohlcv_data(
|
||||||
exchange, pairs=expanded_pairs, timeframes=config['timeframes'],
|
exchange, pairs=expanded_pairs, timeframes=config['timeframes'],
|
||||||
datadir=config['datadir'], timerange=timerange,
|
datadir=config['datadir'], timerange=timerange,
|
||||||
@ -145,6 +147,7 @@ def start_convert_data(args: Dict[str, Any], ohlcv: bool = True) -> None:
|
|||||||
"""
|
"""
|
||||||
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
|
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
|
||||||
if ohlcv:
|
if ohlcv:
|
||||||
|
migrate_binance_futures_data(config)
|
||||||
candle_types = [CandleType.from_string(ct) for ct in config.get('candle_types', ['spot'])]
|
candle_types = [CandleType.from_string(ct) for ct in config.get('candle_types', ['spot'])]
|
||||||
for candle_type in candle_types:
|
for candle_type in candle_types:
|
||||||
convert_ohlcv_format(config,
|
convert_ohlcv_format(config,
|
||||||
|
@ -28,7 +28,7 @@ class Configuration:
|
|||||||
Reuse this class for the bot, backtesting, hyperopt and every script that required configuration
|
Reuse this class for the bot, backtesting, hyperopt and every script that required configuration
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, args: Dict[str, Any], runmode: RunMode = None) -> None:
|
def __init__(self, args: Dict[str, Any], runmode: Optional[RunMode] = None) -> None:
|
||||||
self.args = args
|
self.args = args
|
||||||
self.config: Optional[Config] = None
|
self.config: Optional[Config] = None
|
||||||
self.runmode = runmode
|
self.runmode = runmode
|
||||||
|
@ -32,7 +32,7 @@ def flat_vars_to_nested_dict(env_dict: Dict[str, Any], prefix: str) -> Dict[str,
|
|||||||
:param prefix: Prefix to consider (usually FREQTRADE__)
|
:param prefix: Prefix to consider (usually FREQTRADE__)
|
||||||
:return: Nested dict based on available and relevant variables.
|
:return: Nested dict based on available and relevant variables.
|
||||||
"""
|
"""
|
||||||
no_convert = ['CHAT_ID']
|
no_convert = ['CHAT_ID', 'PASSWORD']
|
||||||
relevant_vars: Dict[str, Any] = {}
|
relevant_vars: Dict[str, Any] = {}
|
||||||
|
|
||||||
for env_var, val in sorted(env_dict.items()):
|
for env_var, val in sorted(env_dict.items()):
|
||||||
|
@ -6,7 +6,7 @@ import re
|
|||||||
import sys
|
import sys
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Any, Dict, List
|
from typing import Any, Dict, List, Optional
|
||||||
|
|
||||||
import rapidjson
|
import rapidjson
|
||||||
|
|
||||||
@ -75,7 +75,8 @@ def load_config_file(path: str) -> Dict[str, Any]:
|
|||||||
return config
|
return config
|
||||||
|
|
||||||
|
|
||||||
def load_from_files(files: List[str], base_path: Path = None, level: int = 0) -> Dict[str, Any]:
|
def load_from_files(
|
||||||
|
files: List[str], base_path: Optional[Path] = None, level: int = 0) -> Dict[str, Any]:
|
||||||
"""
|
"""
|
||||||
Recursively load configuration files if specified.
|
Recursively load configuration files if specified.
|
||||||
Sub-files are assumed to be relative to the initial config.
|
Sub-files are assumed to be relative to the initial config.
|
||||||
|
@ -5,7 +5,7 @@ bot constants
|
|||||||
"""
|
"""
|
||||||
from typing import Any, Dict, List, Literal, Tuple
|
from typing import Any, Dict, List, Literal, Tuple
|
||||||
|
|
||||||
from freqtrade.enums import CandleType, RPCMessageType
|
from freqtrade.enums import CandleType, PriceType, RPCMessageType
|
||||||
|
|
||||||
|
|
||||||
DEFAULT_CONFIG = 'config.json'
|
DEFAULT_CONFIG = 'config.json'
|
||||||
@ -25,6 +25,7 @@ PRICING_SIDES = ['ask', 'bid', 'same', 'other']
|
|||||||
ORDERTYPE_POSSIBILITIES = ['limit', 'market']
|
ORDERTYPE_POSSIBILITIES = ['limit', 'market']
|
||||||
_ORDERTIF_POSSIBILITIES = ['GTC', 'FOK', 'IOC', 'PO']
|
_ORDERTIF_POSSIBILITIES = ['GTC', 'FOK', 'IOC', 'PO']
|
||||||
ORDERTIF_POSSIBILITIES = _ORDERTIF_POSSIBILITIES + [t.lower() for t in _ORDERTIF_POSSIBILITIES]
|
ORDERTIF_POSSIBILITIES = _ORDERTIF_POSSIBILITIES + [t.lower() for t in _ORDERTIF_POSSIBILITIES]
|
||||||
|
STOPLOSS_PRICE_TYPES = [p for p in PriceType]
|
||||||
HYPEROPT_LOSS_BUILTIN = ['ShortTradeDurHyperOptLoss', 'OnlyProfitHyperOptLoss',
|
HYPEROPT_LOSS_BUILTIN = ['ShortTradeDurHyperOptLoss', 'OnlyProfitHyperOptLoss',
|
||||||
'SharpeHyperOptLoss', 'SharpeHyperOptLossDaily',
|
'SharpeHyperOptLoss', 'SharpeHyperOptLossDaily',
|
||||||
'SortinoHyperOptLoss', 'SortinoHyperOptLossDaily',
|
'SortinoHyperOptLoss', 'SortinoHyperOptLossDaily',
|
||||||
@ -229,6 +230,7 @@ CONF_SCHEMA = {
|
|||||||
'default': 'market'},
|
'default': 'market'},
|
||||||
'stoploss': {'type': 'string', 'enum': ORDERTYPE_POSSIBILITIES},
|
'stoploss': {'type': 'string', 'enum': ORDERTYPE_POSSIBILITIES},
|
||||||
'stoploss_on_exchange': {'type': 'boolean'},
|
'stoploss_on_exchange': {'type': 'boolean'},
|
||||||
|
'stoploss_price_type': {'type': 'string', 'enum': STOPLOSS_PRICE_TYPES},
|
||||||
'stoploss_on_exchange_interval': {'type': 'number'},
|
'stoploss_on_exchange_interval': {'type': 'number'},
|
||||||
'stoploss_on_exchange_limit_ratio': {'type': 'number', 'minimum': 0.0,
|
'stoploss_on_exchange_limit_ratio': {'type': 'number', 'minimum': 0.0,
|
||||||
'maximum': 1.0}
|
'maximum': 1.0}
|
||||||
@ -636,7 +638,6 @@ SCHEMA_TRADE_REQUIRED = [
|
|||||||
|
|
||||||
SCHEMA_BACKTEST_REQUIRED = [
|
SCHEMA_BACKTEST_REQUIRED = [
|
||||||
'exchange',
|
'exchange',
|
||||||
'max_open_trades',
|
|
||||||
'stake_currency',
|
'stake_currency',
|
||||||
'stake_amount',
|
'stake_amount',
|
||||||
'dry_run_wallet',
|
'dry_run_wallet',
|
||||||
@ -646,6 +647,7 @@ SCHEMA_BACKTEST_REQUIRED = [
|
|||||||
SCHEMA_BACKTEST_REQUIRED_FINAL = SCHEMA_BACKTEST_REQUIRED + [
|
SCHEMA_BACKTEST_REQUIRED_FINAL = SCHEMA_BACKTEST_REQUIRED + [
|
||||||
'stoploss',
|
'stoploss',
|
||||||
'minimal_roi',
|
'minimal_roi',
|
||||||
|
'max_open_trades'
|
||||||
]
|
]
|
||||||
|
|
||||||
SCHEMA_MINIMAL_REQUIRED = [
|
SCHEMA_MINIMAL_REQUIRED = [
|
||||||
@ -681,3 +683,4 @@ MakerTaker = Literal['maker', 'taker']
|
|||||||
BidAsk = Literal['bid', 'ask']
|
BidAsk = Literal['bid', 'ask']
|
||||||
|
|
||||||
Config = Dict[str, Any]
|
Config = Dict[str, Any]
|
||||||
|
IntOrInf = float
|
||||||
|
@ -10,7 +10,7 @@ from typing import Any, Dict, List, Optional, Union
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
|
||||||
from freqtrade.constants import LAST_BT_RESULT_FN
|
from freqtrade.constants import LAST_BT_RESULT_FN, IntOrInf
|
||||||
from freqtrade.exceptions import OperationalException
|
from freqtrade.exceptions import OperationalException
|
||||||
from freqtrade.misc import json_load
|
from freqtrade.misc import json_load
|
||||||
from freqtrade.optimize.backtest_caching import get_backtest_metadata_filename
|
from freqtrade.optimize.backtest_caching import get_backtest_metadata_filename
|
||||||
@ -90,7 +90,8 @@ def get_latest_hyperopt_filename(directory: Union[Path, str]) -> str:
|
|||||||
return 'hyperopt_results.pickle'
|
return 'hyperopt_results.pickle'
|
||||||
|
|
||||||
|
|
||||||
def get_latest_hyperopt_file(directory: Union[Path, str], predef_filename: str = None) -> Path:
|
def get_latest_hyperopt_file(
|
||||||
|
directory: Union[Path, str], predef_filename: Optional[str] = None) -> Path:
|
||||||
"""
|
"""
|
||||||
Get latest hyperopt export based on '.last_result.json'.
|
Get latest hyperopt export based on '.last_result.json'.
|
||||||
:param directory: Directory to search for last result
|
:param directory: Directory to search for last result
|
||||||
@ -193,7 +194,7 @@ def get_backtest_resultlist(dirname: Path):
|
|||||||
|
|
||||||
|
|
||||||
def find_existing_backtest_stats(dirname: Union[Path, str], run_ids: Dict[str, str],
|
def find_existing_backtest_stats(dirname: Union[Path, str], run_ids: Dict[str, str],
|
||||||
min_backtest_date: datetime = None) -> Dict[str, Any]:
|
min_backtest_date: Optional[datetime] = None) -> Dict[str, Any]:
|
||||||
"""
|
"""
|
||||||
Find existing backtest stats that match specified run IDs and load them.
|
Find existing backtest stats that match specified run IDs and load them.
|
||||||
:param dirname: pathlib.Path object, or string pointing to the file.
|
:param dirname: pathlib.Path object, or string pointing to the file.
|
||||||
@ -332,7 +333,7 @@ def analyze_trade_parallelism(results: pd.DataFrame, timeframe: str) -> pd.DataF
|
|||||||
|
|
||||||
|
|
||||||
def evaluate_result_multi(results: pd.DataFrame, timeframe: str,
|
def evaluate_result_multi(results: pd.DataFrame, timeframe: str,
|
||||||
max_open_trades: int) -> pd.DataFrame:
|
max_open_trades: IntOrInf) -> pd.DataFrame:
|
||||||
"""
|
"""
|
||||||
Find overlapping trades by expanding each trade once per period it was open
|
Find overlapping trades by expanding each trade once per period it was open
|
||||||
and then counting overlaps
|
and then counting overlaps
|
||||||
|
@ -9,7 +9,7 @@ from collections import deque
|
|||||||
from datetime import datetime, timezone
|
from datetime import datetime, timezone
|
||||||
from typing import Any, Dict, List, Optional, Tuple
|
from typing import Any, Dict, List, Optional, Tuple
|
||||||
|
|
||||||
from pandas import DataFrame, to_timedelta
|
from pandas import DataFrame, Timedelta, Timestamp, to_timedelta
|
||||||
|
|
||||||
from freqtrade.configuration import TimeRange
|
from freqtrade.configuration import TimeRange
|
||||||
from freqtrade.constants import (FULL_DATAFRAME_THRESHOLD, Config, ListPairsWithTimeframes,
|
from freqtrade.constants import (FULL_DATAFRAME_THRESHOLD, Config, ListPairsWithTimeframes,
|
||||||
@ -206,9 +206,11 @@ class DataProvider:
|
|||||||
existing_df, _ = self.__producer_pairs_df[producer_name][pair_key]
|
existing_df, _ = self.__producer_pairs_df[producer_name][pair_key]
|
||||||
|
|
||||||
# CHECK FOR MISSING CANDLES
|
# CHECK FOR MISSING CANDLES
|
||||||
timeframe_delta = to_timedelta(timeframe) # Convert the timeframe to a timedelta for pandas
|
# Convert the timeframe to a timedelta for pandas
|
||||||
local_last = existing_df.iloc[-1]['date'] # We want the last date from our copy
|
timeframe_delta: Timedelta = to_timedelta(timeframe)
|
||||||
incoming_first = dataframe.iloc[0]['date'] # We want the first date from the incoming
|
local_last: Timestamp = existing_df.iloc[-1]['date'] # We want the last date from our copy
|
||||||
|
# We want the first date from the incoming
|
||||||
|
incoming_first: Timestamp = dataframe.iloc[0]['date']
|
||||||
|
|
||||||
# Remove existing candles that are newer than the incoming first candle
|
# Remove existing candles that are newer than the incoming first candle
|
||||||
existing_df1 = existing_df[existing_df['date'] < incoming_first]
|
existing_df1 = existing_df[existing_df['date'] < incoming_first]
|
||||||
@ -221,7 +223,7 @@ class DataProvider:
|
|||||||
# we missed some candles between our data and the incoming
|
# we missed some candles between our data and the incoming
|
||||||
# so return False and candle_difference.
|
# so return False and candle_difference.
|
||||||
if candle_difference > 1:
|
if candle_difference > 1:
|
||||||
return (False, candle_difference)
|
return (False, int(candle_difference))
|
||||||
if existing_df1.empty:
|
if existing_df1.empty:
|
||||||
appended_df = dataframe
|
appended_df = dataframe
|
||||||
else:
|
else:
|
||||||
@ -281,7 +283,7 @@ class DataProvider:
|
|||||||
def historic_ohlcv(
|
def historic_ohlcv(
|
||||||
self,
|
self,
|
||||||
pair: str,
|
pair: str,
|
||||||
timeframe: str = None,
|
timeframe: Optional[str] = None,
|
||||||
candle_type: str = ''
|
candle_type: str = ''
|
||||||
) -> DataFrame:
|
) -> DataFrame:
|
||||||
"""
|
"""
|
||||||
@ -333,7 +335,7 @@ class DataProvider:
|
|||||||
def get_pair_dataframe(
|
def get_pair_dataframe(
|
||||||
self,
|
self,
|
||||||
pair: str,
|
pair: str,
|
||||||
timeframe: str = None,
|
timeframe: Optional[str] = None,
|
||||||
candle_type: str = ''
|
candle_type: str = ''
|
||||||
) -> DataFrame:
|
) -> DataFrame:
|
||||||
"""
|
"""
|
||||||
@ -415,7 +417,7 @@ class DataProvider:
|
|||||||
|
|
||||||
def refresh(self,
|
def refresh(self,
|
||||||
pairlist: ListPairsWithTimeframes,
|
pairlist: ListPairsWithTimeframes,
|
||||||
helping_pairs: ListPairsWithTimeframes = None) -> None:
|
helping_pairs: Optional[ListPairsWithTimeframes] = None) -> None:
|
||||||
"""
|
"""
|
||||||
Refresh data, called with each cycle
|
Refresh data, called with each cycle
|
||||||
"""
|
"""
|
||||||
@ -439,7 +441,7 @@ class DataProvider:
|
|||||||
def ohlcv(
|
def ohlcv(
|
||||||
self,
|
self,
|
||||||
pair: str,
|
pair: str,
|
||||||
timeframe: str = None,
|
timeframe: Optional[str] = None,
|
||||||
copy: bool = True,
|
copy: bool = True,
|
||||||
candle_type: str = ''
|
candle_type: str = ''
|
||||||
) -> DataFrame:
|
) -> DataFrame:
|
||||||
|
@ -141,6 +141,12 @@ def _do_group_table_output(bigdf, glist):
|
|||||||
# 4: profit summaries grouped by pair, enter_ and exit_tag (this can get quite large)
|
# 4: profit summaries grouped by pair, enter_ and exit_tag (this can get quite large)
|
||||||
if g == "4":
|
if g == "4":
|
||||||
group_mask = ['pair', 'enter_reason', 'exit_reason']
|
group_mask = ['pair', 'enter_reason', 'exit_reason']
|
||||||
|
|
||||||
|
# 5: profit summaries grouped by exit_tag
|
||||||
|
if g == "5":
|
||||||
|
group_mask = ['exit_reason']
|
||||||
|
sortcols = ['exit_reason']
|
||||||
|
|
||||||
if group_mask:
|
if group_mask:
|
||||||
new = bigdf.groupby(group_mask).agg(agg_mask).reset_index()
|
new = bigdf.groupby(group_mask).agg(agg_mask).reset_index()
|
||||||
new.columns = group_mask + agg_cols
|
new.columns = group_mask + agg_cols
|
||||||
|
@ -28,8 +28,8 @@ def load_pair_history(pair: str,
|
|||||||
fill_up_missing: bool = True,
|
fill_up_missing: bool = True,
|
||||||
drop_incomplete: bool = False,
|
drop_incomplete: bool = False,
|
||||||
startup_candles: int = 0,
|
startup_candles: int = 0,
|
||||||
data_format: str = None,
|
data_format: Optional[str] = None,
|
||||||
data_handler: IDataHandler = None,
|
data_handler: Optional[IDataHandler] = None,
|
||||||
candle_type: CandleType = CandleType.SPOT
|
candle_type: CandleType = CandleType.SPOT
|
||||||
) -> DataFrame:
|
) -> DataFrame:
|
||||||
"""
|
"""
|
||||||
@ -69,7 +69,7 @@ def load_data(datadir: Path,
|
|||||||
fail_without_data: bool = False,
|
fail_without_data: bool = False,
|
||||||
data_format: str = 'json',
|
data_format: str = 'json',
|
||||||
candle_type: CandleType = CandleType.SPOT,
|
candle_type: CandleType = CandleType.SPOT,
|
||||||
user_futures_funding_rate: int = None,
|
user_futures_funding_rate: Optional[int] = None,
|
||||||
) -> Dict[str, DataFrame]:
|
) -> Dict[str, DataFrame]:
|
||||||
"""
|
"""
|
||||||
Load ohlcv history data for a list of pairs.
|
Load ohlcv history data for a list of pairs.
|
||||||
@ -116,7 +116,7 @@ def refresh_data(*, datadir: Path,
|
|||||||
timeframe: str,
|
timeframe: str,
|
||||||
pairs: List[str],
|
pairs: List[str],
|
||||||
exchange: Exchange,
|
exchange: Exchange,
|
||||||
data_format: str = None,
|
data_format: Optional[str] = None,
|
||||||
timerange: Optional[TimeRange] = None,
|
timerange: Optional[TimeRange] = None,
|
||||||
candle_type: CandleType,
|
candle_type: CandleType,
|
||||||
) -> None:
|
) -> None:
|
||||||
@ -189,7 +189,7 @@ def _download_pair_history(pair: str, *,
|
|||||||
timeframe: str = '5m',
|
timeframe: str = '5m',
|
||||||
process: str = '',
|
process: str = '',
|
||||||
new_pairs_days: int = 30,
|
new_pairs_days: int = 30,
|
||||||
data_handler: IDataHandler = None,
|
data_handler: Optional[IDataHandler] = None,
|
||||||
timerange: Optional[TimeRange] = None,
|
timerange: Optional[TimeRange] = None,
|
||||||
candle_type: CandleType,
|
candle_type: CandleType,
|
||||||
erase: bool = False,
|
erase: bool = False,
|
||||||
@ -272,7 +272,7 @@ def refresh_backtest_ohlcv_data(exchange: Exchange, pairs: List[str], timeframes
|
|||||||
datadir: Path, trading_mode: str,
|
datadir: Path, trading_mode: str,
|
||||||
timerange: Optional[TimeRange] = None,
|
timerange: Optional[TimeRange] = None,
|
||||||
new_pairs_days: int = 30, erase: bool = False,
|
new_pairs_days: int = 30, erase: bool = False,
|
||||||
data_format: str = None,
|
data_format: Optional[str] = None,
|
||||||
prepend: bool = False,
|
prepend: bool = False,
|
||||||
) -> List[str]:
|
) -> List[str]:
|
||||||
"""
|
"""
|
||||||
|
@ -308,7 +308,7 @@ class IDataHandler(ABC):
|
|||||||
timerange=timerange_startup,
|
timerange=timerange_startup,
|
||||||
candle_type=candle_type
|
candle_type=candle_type
|
||||||
)
|
)
|
||||||
if self._check_empty_df(pairdf, pair, timeframe, candle_type, warn_no_data, True):
|
if self._check_empty_df(pairdf, pair, timeframe, candle_type, warn_no_data):
|
||||||
return pairdf
|
return pairdf
|
||||||
else:
|
else:
|
||||||
enddate = pairdf.iloc[-1]['date']
|
enddate = pairdf.iloc[-1]['date']
|
||||||
@ -316,7 +316,7 @@ class IDataHandler(ABC):
|
|||||||
if timerange_startup:
|
if timerange_startup:
|
||||||
self._validate_pairdata(pair, pairdf, timeframe, candle_type, timerange_startup)
|
self._validate_pairdata(pair, pairdf, timeframe, candle_type, timerange_startup)
|
||||||
pairdf = trim_dataframe(pairdf, timerange_startup)
|
pairdf = trim_dataframe(pairdf, timerange_startup)
|
||||||
if self._check_empty_df(pairdf, pair, timeframe, candle_type, warn_no_data):
|
if self._check_empty_df(pairdf, pair, timeframe, candle_type, warn_no_data, True):
|
||||||
return pairdf
|
return pairdf
|
||||||
|
|
||||||
# incomplete candles should only be dropped if we didn't trim the end beforehand.
|
# incomplete candles should only be dropped if we didn't trim the end beforehand.
|
||||||
@ -374,6 +374,21 @@ class IDataHandler(ABC):
|
|||||||
logger.warning(f"{pair}, {candle_type}, {timeframe}, "
|
logger.warning(f"{pair}, {candle_type}, {timeframe}, "
|
||||||
f"data ends at {pairdata.iloc[-1]['date']:%Y-%m-%d %H:%M:%S}")
|
f"data ends at {pairdata.iloc[-1]['date']:%Y-%m-%d %H:%M:%S}")
|
||||||
|
|
||||||
|
def rename_futures_data(
|
||||||
|
self, pair: str, new_pair: str, timeframe: str, candle_type: CandleType):
|
||||||
|
"""
|
||||||
|
Temporary method to migrate data from old naming to new naming (BTC/USDT -> BTC/USDT:USDT)
|
||||||
|
Only used for binance to support the binance futures naming unification.
|
||||||
|
"""
|
||||||
|
|
||||||
|
file_old = self._pair_data_filename(self._datadir, pair, timeframe, candle_type)
|
||||||
|
file_new = self._pair_data_filename(self._datadir, new_pair, timeframe, candle_type)
|
||||||
|
# print(file_old, file_new)
|
||||||
|
if file_new.exists():
|
||||||
|
logger.warning(f"{file_new} exists already, can't migrate {pair}.")
|
||||||
|
return
|
||||||
|
file_old.rename(file_new)
|
||||||
|
|
||||||
|
|
||||||
def get_datahandlerclass(datatype: str) -> Type[IDataHandler]:
|
def get_datahandlerclass(datatype: str) -> Type[IDataHandler]:
|
||||||
"""
|
"""
|
||||||
@ -403,8 +418,8 @@ def get_datahandlerclass(datatype: str) -> Type[IDataHandler]:
|
|||||||
raise ValueError(f"No datahandler for datatype {datatype} available.")
|
raise ValueError(f"No datahandler for datatype {datatype} available.")
|
||||||
|
|
||||||
|
|
||||||
def get_datahandler(datadir: Path, data_format: str = None,
|
def get_datahandler(datadir: Path, data_format: Optional[str] = None,
|
||||||
data_handler: IDataHandler = None) -> IDataHandler:
|
data_handler: Optional[IDataHandler] = None) -> IDataHandler:
|
||||||
"""
|
"""
|
||||||
:param datadir: Folder to save data
|
:param datadir: Folder to save data
|
||||||
:param data_format: dataformat to use
|
:param data_format: dataformat to use
|
||||||
|
@ -197,7 +197,7 @@ def calculate_cagr(days_passed: int, starting_balance: float, final_balance: flo
|
|||||||
def calculate_expectancy(trades: pd.DataFrame) -> float:
|
def calculate_expectancy(trades: pd.DataFrame) -> float:
|
||||||
"""
|
"""
|
||||||
Calculate expectancy
|
Calculate expectancy
|
||||||
:param trades: DataFrame containing trades (requires columns close_date and profit_ratio)
|
:param trades: DataFrame containing trades (requires columns close_date and profit_abs)
|
||||||
:return: expectancy
|
:return: expectancy
|
||||||
"""
|
"""
|
||||||
if len(trades) == 0:
|
if len(trades) == 0:
|
||||||
|
@ -6,6 +6,7 @@ from freqtrade.enums.exittype import ExitType
|
|||||||
from freqtrade.enums.hyperoptstate import HyperoptState
|
from freqtrade.enums.hyperoptstate import HyperoptState
|
||||||
from freqtrade.enums.marginmode import MarginMode
|
from freqtrade.enums.marginmode import MarginMode
|
||||||
from freqtrade.enums.ordertypevalue import OrderTypeValues
|
from freqtrade.enums.ordertypevalue import OrderTypeValues
|
||||||
|
from freqtrade.enums.pricetype import PriceType
|
||||||
from freqtrade.enums.rpcmessagetype import NO_ECHO_MESSAGES, RPCMessageType, RPCRequestType
|
from freqtrade.enums.rpcmessagetype import NO_ECHO_MESSAGES, RPCMessageType, RPCRequestType
|
||||||
from freqtrade.enums.runmode import NON_UTIL_MODES, OPTIMIZE_MODES, TRADING_MODES, RunMode
|
from freqtrade.enums.runmode import NON_UTIL_MODES, OPTIMIZE_MODES, TRADING_MODES, RunMode
|
||||||
from freqtrade.enums.signaltype import SignalDirection, SignalTagType, SignalType
|
from freqtrade.enums.signaltype import SignalDirection, SignalTagType, SignalType
|
||||||
|
8
freqtrade/enums/pricetype.py
Normal file
8
freqtrade/enums/pricetype.py
Normal file
@ -0,0 +1,8 @@
|
|||||||
|
from enum import Enum
|
||||||
|
|
||||||
|
|
||||||
|
class PriceType(str, Enum):
|
||||||
|
"""Enum to distinguish possible trigger prices for stoplosses"""
|
||||||
|
LAST = "last"
|
||||||
|
MARK = "mark"
|
||||||
|
INDEX = "index"
|
@ -17,7 +17,7 @@ from freqtrade.exchange.exchange_utils import (amount_to_contract_precision, amo
|
|||||||
timeframe_to_next_date, timeframe_to_prev_date,
|
timeframe_to_next_date, timeframe_to_prev_date,
|
||||||
timeframe_to_seconds, validate_exchange,
|
timeframe_to_seconds, validate_exchange,
|
||||||
validate_exchanges)
|
validate_exchanges)
|
||||||
from freqtrade.exchange.gateio import Gateio
|
from freqtrade.exchange.gate import Gate
|
||||||
from freqtrade.exchange.hitbtc import Hitbtc
|
from freqtrade.exchange.hitbtc import Hitbtc
|
||||||
from freqtrade.exchange.huobi import Huobi
|
from freqtrade.exchange.huobi import Huobi
|
||||||
from freqtrade.exchange.kraken import Kraken
|
from freqtrade.exchange.kraken import Kraken
|
||||||
|
@ -7,11 +7,11 @@ from typing import Dict, List, Optional, Tuple
|
|||||||
import arrow
|
import arrow
|
||||||
import ccxt
|
import ccxt
|
||||||
|
|
||||||
from freqtrade.enums import CandleType, MarginMode, TradingMode
|
from freqtrade.enums import CandleType, MarginMode, PriceType, TradingMode
|
||||||
from freqtrade.exceptions import DDosProtection, OperationalException, TemporaryError
|
from freqtrade.exceptions import DDosProtection, OperationalException, TemporaryError
|
||||||
from freqtrade.exchange import Exchange
|
from freqtrade.exchange import Exchange
|
||||||
from freqtrade.exchange.common import retrier
|
from freqtrade.exchange.common import retrier
|
||||||
from freqtrade.exchange.types import Tickers
|
from freqtrade.exchange.types import OHLCVResponse, Tickers
|
||||||
from freqtrade.misc import deep_merge_dicts, json_load
|
from freqtrade.misc import deep_merge_dicts, json_load
|
||||||
|
|
||||||
|
|
||||||
@ -28,11 +28,16 @@ class Binance(Exchange):
|
|||||||
"trades_pagination": "id",
|
"trades_pagination": "id",
|
||||||
"trades_pagination_arg": "fromId",
|
"trades_pagination_arg": "fromId",
|
||||||
"l2_limit_range": [5, 10, 20, 50, 100, 500, 1000],
|
"l2_limit_range": [5, 10, 20, 50, 100, 500, 1000],
|
||||||
"ccxt_futures_name": "future"
|
|
||||||
}
|
}
|
||||||
_ft_has_futures: Dict = {
|
_ft_has_futures: Dict = {
|
||||||
"stoploss_order_types": {"limit": "stop", "market": "stop_market"},
|
"stoploss_order_types": {"limit": "stop", "market": "stop_market"},
|
||||||
"tickers_have_price": False,
|
"tickers_have_price": False,
|
||||||
|
"floor_leverage": True,
|
||||||
|
"stop_price_type_field": "workingType",
|
||||||
|
"stop_price_type_value_mapping": {
|
||||||
|
PriceType.LAST: "CONTRACT_PRICE",
|
||||||
|
PriceType.MARK: "MARK_PRICE",
|
||||||
|
},
|
||||||
}
|
}
|
||||||
|
|
||||||
_supported_trading_mode_margin_pairs: List[Tuple[TradingMode, MarginMode]] = [
|
_supported_trading_mode_margin_pairs: List[Tuple[TradingMode, MarginMode]] = [
|
||||||
@ -78,33 +83,9 @@ class Binance(Exchange):
|
|||||||
raise DDosProtection(e) from e
|
raise DDosProtection(e) from e
|
||||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||||
raise TemporaryError(
|
raise TemporaryError(
|
||||||
f'Could not set leverage due to {e.__class__.__name__}. Message: {e}') from e
|
f'Error in additional_exchange_init due to {e.__class__.__name__}. Message: {e}'
|
||||||
except ccxt.BaseError as e:
|
) from e
|
||||||
raise OperationalException(e) from e
|
|
||||||
|
|
||||||
@retrier
|
|
||||||
def _set_leverage(
|
|
||||||
self,
|
|
||||||
leverage: float,
|
|
||||||
pair: Optional[str] = None,
|
|
||||||
trading_mode: Optional[TradingMode] = None
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
Set's the leverage before making a trade, in order to not
|
|
||||||
have the same leverage on every trade
|
|
||||||
"""
|
|
||||||
trading_mode = trading_mode or self.trading_mode
|
|
||||||
|
|
||||||
if self._config['dry_run'] or trading_mode != TradingMode.FUTURES:
|
|
||||||
return
|
|
||||||
|
|
||||||
try:
|
|
||||||
self._api.set_leverage(symbol=pair, leverage=round(leverage))
|
|
||||||
except ccxt.DDoSProtection as e:
|
|
||||||
raise DDosProtection(e) from e
|
|
||||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
|
||||||
raise TemporaryError(
|
|
||||||
f'Could not set leverage due to {e.__class__.__name__}. Message: {e}') from e
|
|
||||||
except ccxt.BaseError as e:
|
except ccxt.BaseError as e:
|
||||||
raise OperationalException(e) from e
|
raise OperationalException(e) from e
|
||||||
|
|
||||||
@ -112,7 +93,7 @@ class Binance(Exchange):
|
|||||||
since_ms: int, candle_type: CandleType,
|
since_ms: int, candle_type: CandleType,
|
||||||
is_new_pair: bool = False, raise_: bool = False,
|
is_new_pair: bool = False, raise_: bool = False,
|
||||||
until_ms: Optional[int] = None
|
until_ms: Optional[int] = None
|
||||||
) -> Tuple[str, str, str, List]:
|
) -> OHLCVResponse:
|
||||||
"""
|
"""
|
||||||
Overwrite to introduce "fast new pair" functionality by detecting the pair's listing date
|
Overwrite to introduce "fast new pair" functionality by detecting the pair's listing date
|
||||||
Does not work for other exchanges, which don't return the earliest data when called with "0"
|
Does not work for other exchanges, which don't return the earliest data when called with "0"
|
||||||
@ -150,6 +131,7 @@ class Binance(Exchange):
|
|||||||
is_short: bool,
|
is_short: bool,
|
||||||
amount: float,
|
amount: float,
|
||||||
stake_amount: float,
|
stake_amount: float,
|
||||||
|
leverage: float,
|
||||||
wallet_balance: float, # Or margin balance
|
wallet_balance: float, # Or margin balance
|
||||||
mm_ex_1: float = 0.0, # (Binance) Cross only
|
mm_ex_1: float = 0.0, # (Binance) Cross only
|
||||||
upnl_ex_1: float = 0.0, # (Binance) Cross only
|
upnl_ex_1: float = 0.0, # (Binance) Cross only
|
||||||
@ -159,11 +141,12 @@ class Binance(Exchange):
|
|||||||
MARGIN: https://www.binance.com/en/support/faq/f6b010588e55413aa58b7d63ee0125ed
|
MARGIN: https://www.binance.com/en/support/faq/f6b010588e55413aa58b7d63ee0125ed
|
||||||
PERPETUAL: https://www.binance.com/en/support/faq/b3c689c1f50a44cabb3a84e663b81d93
|
PERPETUAL: https://www.binance.com/en/support/faq/b3c689c1f50a44cabb3a84e663b81d93
|
||||||
|
|
||||||
:param exchange_name:
|
:param pair: Pair to calculate liquidation price for
|
||||||
:param open_rate: Entry price of position
|
:param open_rate: Entry price of position
|
||||||
:param is_short: True if the trade is a short, false otherwise
|
:param is_short: True if the trade is a short, false otherwise
|
||||||
:param amount: Absolute value of position size incl. leverage (in base currency)
|
:param amount: Absolute value of position size incl. leverage (in base currency)
|
||||||
:param stake_amount: Stake amount - Collateral in settle currency.
|
:param stake_amount: Stake amount - Collateral in settle currency.
|
||||||
|
:param leverage: Leverage used for this position.
|
||||||
:param trading_mode: SPOT, MARGIN, FUTURES, etc.
|
:param trading_mode: SPOT, MARGIN, FUTURES, etc.
|
||||||
:param margin_mode: Either ISOLATED or CROSS
|
:param margin_mode: Either ISOLATED or CROSS
|
||||||
:param wallet_balance: Amount of margin_mode in the wallet being used to trade
|
:param wallet_balance: Amount of margin_mode in the wallet being used to trade
|
||||||
|
File diff suppressed because it is too large
Load Diff
@ -1,9 +1,16 @@
|
|||||||
""" Bybit exchange subclass """
|
""" Bybit exchange subclass """
|
||||||
import logging
|
import logging
|
||||||
from typing import Dict, List, Tuple
|
from datetime import datetime
|
||||||
|
from typing import Any, Dict, List, Optional, Tuple
|
||||||
|
|
||||||
from freqtrade.enums import MarginMode, TradingMode
|
import ccxt
|
||||||
|
|
||||||
|
from freqtrade.constants import BuySell
|
||||||
|
from freqtrade.enums import MarginMode, PriceType, TradingMode
|
||||||
|
from freqtrade.exceptions import DDosProtection, OperationalException, TemporaryError
|
||||||
from freqtrade.exchange import Exchange
|
from freqtrade.exchange import Exchange
|
||||||
|
from freqtrade.exchange.common import retrier
|
||||||
|
from freqtrade.exchange.exchange_utils import timeframe_to_msecs
|
||||||
|
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
@ -21,17 +28,27 @@ class Bybit(Exchange):
|
|||||||
|
|
||||||
_ft_has: Dict = {
|
_ft_has: Dict = {
|
||||||
"ohlcv_candle_limit": 1000,
|
"ohlcv_candle_limit": 1000,
|
||||||
"ccxt_futures_name": "linear",
|
|
||||||
"ohlcv_has_history": False,
|
"ohlcv_has_history": False,
|
||||||
}
|
}
|
||||||
_ft_has_futures: Dict = {
|
_ft_has_futures: Dict = {
|
||||||
|
"ohlcv_candle_limit": 200,
|
||||||
"ohlcv_has_history": True,
|
"ohlcv_has_history": True,
|
||||||
|
"mark_ohlcv_timeframe": "4h",
|
||||||
|
"funding_fee_timeframe": "8h",
|
||||||
|
"stoploss_on_exchange": True,
|
||||||
|
"stoploss_order_types": {"limit": "limit", "market": "market"},
|
||||||
|
"stop_price_type_field": "triggerBy",
|
||||||
|
"stop_price_type_value_mapping": {
|
||||||
|
PriceType.LAST: "LastPrice",
|
||||||
|
PriceType.MARK: "MarkPrice",
|
||||||
|
PriceType.INDEX: "IndexPrice",
|
||||||
|
},
|
||||||
}
|
}
|
||||||
|
|
||||||
_supported_trading_mode_margin_pairs: List[Tuple[TradingMode, MarginMode]] = [
|
_supported_trading_mode_margin_pairs: List[Tuple[TradingMode, MarginMode]] = [
|
||||||
# TradingMode.SPOT always supported and not required in this list
|
# TradingMode.SPOT always supported and not required in this list
|
||||||
# (TradingMode.FUTURES, MarginMode.CROSS),
|
# (TradingMode.FUTURES, MarginMode.CROSS),
|
||||||
# (TradingMode.FUTURES, MarginMode.ISOLATED)
|
(TradingMode.FUTURES, MarginMode.ISOLATED)
|
||||||
]
|
]
|
||||||
|
|
||||||
@property
|
@property
|
||||||
@ -47,3 +64,158 @@ class Bybit(Exchange):
|
|||||||
})
|
})
|
||||||
config.update(super()._ccxt_config)
|
config.update(super()._ccxt_config)
|
||||||
return config
|
return config
|
||||||
|
|
||||||
|
def market_is_future(self, market: Dict[str, Any]) -> bool:
|
||||||
|
main = super().market_is_future(market)
|
||||||
|
# For ByBit, we'll only support USDT markets for now.
|
||||||
|
return (
|
||||||
|
main and market['settle'] == 'USDT'
|
||||||
|
)
|
||||||
|
|
||||||
|
@retrier
|
||||||
|
def additional_exchange_init(self) -> None:
|
||||||
|
"""
|
||||||
|
Additional exchange initialization logic.
|
||||||
|
.api will be available at this point.
|
||||||
|
Must be overridden in child methods if required.
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
if self.trading_mode == TradingMode.FUTURES and not self._config['dry_run']:
|
||||||
|
position_mode = self._api.set_position_mode(False)
|
||||||
|
self._log_exchange_response('set_position_mode', position_mode)
|
||||||
|
except ccxt.DDoSProtection as e:
|
||||||
|
raise DDosProtection(e) from e
|
||||||
|
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||||
|
raise TemporaryError(
|
||||||
|
f'Error in additional_exchange_init due to {e.__class__.__name__}. Message: {e}'
|
||||||
|
) from e
|
||||||
|
except ccxt.BaseError as e:
|
||||||
|
raise OperationalException(e) from e
|
||||||
|
|
||||||
|
async def _fetch_funding_rate_history(
|
||||||
|
self,
|
||||||
|
pair: str,
|
||||||
|
timeframe: str,
|
||||||
|
limit: int,
|
||||||
|
since_ms: Optional[int] = None,
|
||||||
|
) -> List[List]:
|
||||||
|
"""
|
||||||
|
Fetch funding rate history
|
||||||
|
Necessary workaround until https://github.com/ccxt/ccxt/issues/15990 is fixed.
|
||||||
|
"""
|
||||||
|
params = {}
|
||||||
|
if since_ms:
|
||||||
|
until = since_ms + (timeframe_to_msecs(timeframe) * self._ft_has['ohlcv_candle_limit'])
|
||||||
|
params.update({'until': until})
|
||||||
|
# Funding rate
|
||||||
|
data = await self._api_async.fetch_funding_rate_history(
|
||||||
|
pair, since=since_ms,
|
||||||
|
params=params)
|
||||||
|
# Convert funding rate to candle pattern
|
||||||
|
data = [[x['timestamp'], x['fundingRate'], 0, 0, 0, 0] for x in data]
|
||||||
|
return data
|
||||||
|
|
||||||
|
def _lev_prep(self, pair: str, leverage: float, side: BuySell):
|
||||||
|
if self.trading_mode != TradingMode.SPOT:
|
||||||
|
params = {'leverage': leverage}
|
||||||
|
self.set_margin_mode(pair, self.margin_mode, accept_fail=True, params=params)
|
||||||
|
self._set_leverage(leverage, pair, accept_fail=True)
|
||||||
|
|
||||||
|
def _get_params(
|
||||||
|
self,
|
||||||
|
side: BuySell,
|
||||||
|
ordertype: str,
|
||||||
|
leverage: float,
|
||||||
|
reduceOnly: bool,
|
||||||
|
time_in_force: str = 'GTC',
|
||||||
|
) -> Dict:
|
||||||
|
params = super()._get_params(
|
||||||
|
side=side,
|
||||||
|
ordertype=ordertype,
|
||||||
|
leverage=leverage,
|
||||||
|
reduceOnly=reduceOnly,
|
||||||
|
time_in_force=time_in_force,
|
||||||
|
)
|
||||||
|
if self.trading_mode == TradingMode.FUTURES and self.margin_mode:
|
||||||
|
params['position_idx'] = 0
|
||||||
|
return params
|
||||||
|
|
||||||
|
def dry_run_liquidation_price(
|
||||||
|
self,
|
||||||
|
pair: str,
|
||||||
|
open_rate: float, # Entry price of position
|
||||||
|
is_short: bool,
|
||||||
|
amount: float,
|
||||||
|
stake_amount: float,
|
||||||
|
leverage: float,
|
||||||
|
wallet_balance: float, # Or margin balance
|
||||||
|
mm_ex_1: float = 0.0, # (Binance) Cross only
|
||||||
|
upnl_ex_1: float = 0.0, # (Binance) Cross only
|
||||||
|
) -> Optional[float]:
|
||||||
|
"""
|
||||||
|
Important: Must be fetching data from cached values as this is used by backtesting!
|
||||||
|
PERPETUAL:
|
||||||
|
bybit:
|
||||||
|
https://www.bybithelp.com/HelpCenterKnowledge/bybitHC_Article?language=en_US&id=000001067
|
||||||
|
|
||||||
|
Long:
|
||||||
|
Liquidation Price = (
|
||||||
|
Entry Price * (1 - Initial Margin Rate + Maintenance Margin Rate)
|
||||||
|
- Extra Margin Added/ Contract)
|
||||||
|
Short:
|
||||||
|
Liquidation Price = (
|
||||||
|
Entry Price * (1 + Initial Margin Rate - Maintenance Margin Rate)
|
||||||
|
+ Extra Margin Added/ Contract)
|
||||||
|
|
||||||
|
Implementation Note: Extra margin is currently not used.
|
||||||
|
|
||||||
|
:param pair: Pair to calculate liquidation price for
|
||||||
|
:param open_rate: Entry price of position
|
||||||
|
:param is_short: True if the trade is a short, false otherwise
|
||||||
|
:param amount: Absolute value of position size incl. leverage (in base currency)
|
||||||
|
:param stake_amount: Stake amount - Collateral in settle currency.
|
||||||
|
:param leverage: Leverage used for this position.
|
||||||
|
:param trading_mode: SPOT, MARGIN, FUTURES, etc.
|
||||||
|
:param margin_mode: Either ISOLATED or CROSS
|
||||||
|
:param wallet_balance: Amount of margin_mode in the wallet being used to trade
|
||||||
|
Cross-Margin Mode: crossWalletBalance
|
||||||
|
Isolated-Margin Mode: isolatedWalletBalance
|
||||||
|
"""
|
||||||
|
|
||||||
|
market = self.markets[pair]
|
||||||
|
mm_ratio, _ = self.get_maintenance_ratio_and_amt(pair, stake_amount)
|
||||||
|
|
||||||
|
if self.trading_mode == TradingMode.FUTURES and self.margin_mode == MarginMode.ISOLATED:
|
||||||
|
|
||||||
|
if market['inverse']:
|
||||||
|
raise OperationalException(
|
||||||
|
"Freqtrade does not yet support inverse contracts")
|
||||||
|
initial_margin_rate = 1 / leverage
|
||||||
|
|
||||||
|
# See docstring - ignores extra margin!
|
||||||
|
if is_short:
|
||||||
|
return open_rate * (1 + initial_margin_rate - mm_ratio)
|
||||||
|
else:
|
||||||
|
return open_rate * (1 - initial_margin_rate + mm_ratio)
|
||||||
|
|
||||||
|
else:
|
||||||
|
raise OperationalException(
|
||||||
|
"Freqtrade only supports isolated futures for leverage trading")
|
||||||
|
|
||||||
|
def get_funding_fees(
|
||||||
|
self, pair: str, amount: float, is_short: bool, open_date: datetime) -> float:
|
||||||
|
"""
|
||||||
|
Fetch funding fees, either from the exchange (live) or calculates them
|
||||||
|
based on funding rate/mark price history
|
||||||
|
:param pair: The quote/base pair of the trade
|
||||||
|
:param is_short: trade direction
|
||||||
|
:param amount: Trade amount
|
||||||
|
:param open_date: Open date of the trade
|
||||||
|
:return: funding fee since open_date
|
||||||
|
:raises: ExchangeError if something goes wrong.
|
||||||
|
"""
|
||||||
|
# Bybit does not provide "applied" funding fees per position.
|
||||||
|
if self.trading_mode == TradingMode.FUTURES:
|
||||||
|
return self._fetch_and_calculate_funding_fees(
|
||||||
|
pair, amount, is_short, open_date)
|
||||||
|
return 0.0
|
||||||
|
@ -46,13 +46,13 @@ MAP_EXCHANGE_CHILDCLASS = {
|
|||||||
'binanceje': 'binance',
|
'binanceje': 'binance',
|
||||||
'binanceusdm': 'binance',
|
'binanceusdm': 'binance',
|
||||||
'okex': 'okx',
|
'okex': 'okx',
|
||||||
'gate': 'gateio',
|
'gateio': 'gate',
|
||||||
}
|
}
|
||||||
|
|
||||||
SUPPORTED_EXCHANGES = [
|
SUPPORTED_EXCHANGES = [
|
||||||
'binance',
|
'binance',
|
||||||
'bittrex',
|
'bittrex',
|
||||||
'gateio',
|
'gate',
|
||||||
'huobi',
|
'huobi',
|
||||||
'kraken',
|
'kraken',
|
||||||
'okx',
|
'okx',
|
||||||
|
@ -3,11 +3,11 @@
|
|||||||
Cryptocurrency Exchanges support
|
Cryptocurrency Exchanges support
|
||||||
"""
|
"""
|
||||||
import asyncio
|
import asyncio
|
||||||
import http
|
|
||||||
import inspect
|
import inspect
|
||||||
import logging
|
import logging
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
from datetime import datetime, timedelta, timezone
|
from datetime import datetime, timedelta, timezone
|
||||||
|
from math import floor
|
||||||
from threading import Lock
|
from threading import Lock
|
||||||
from typing import Any, Coroutine, Dict, List, Literal, Optional, Tuple, Union
|
from typing import Any, Coroutine, Dict, List, Literal, Optional, Tuple, Union
|
||||||
|
|
||||||
@ -24,6 +24,7 @@ from freqtrade.constants import (DEFAULT_AMOUNT_RESERVE_PERCENT, NON_OPEN_EXCHAN
|
|||||||
PairWithTimeframe)
|
PairWithTimeframe)
|
||||||
from freqtrade.data.converter import clean_ohlcv_dataframe, ohlcv_to_dataframe, trades_dict_to_list
|
from freqtrade.data.converter import clean_ohlcv_dataframe, ohlcv_to_dataframe, trades_dict_to_list
|
||||||
from freqtrade.enums import OPTIMIZE_MODES, CandleType, MarginMode, TradingMode
|
from freqtrade.enums import OPTIMIZE_MODES, CandleType, MarginMode, TradingMode
|
||||||
|
from freqtrade.enums.pricetype import PriceType
|
||||||
from freqtrade.exceptions import (DDosProtection, ExchangeError, InsufficientFundsError,
|
from freqtrade.exceptions import (DDosProtection, ExchangeError, InsufficientFundsError,
|
||||||
InvalidOrderException, OperationalException, PricingError,
|
InvalidOrderException, OperationalException, PricingError,
|
||||||
RetryableOrderError, TemporaryError)
|
RetryableOrderError, TemporaryError)
|
||||||
@ -36,7 +37,7 @@ from freqtrade.exchange.exchange_utils import (CcxtModuleType, amount_to_contrac
|
|||||||
price_to_precision, timeframe_to_minutes,
|
price_to_precision, timeframe_to_minutes,
|
||||||
timeframe_to_msecs, timeframe_to_next_date,
|
timeframe_to_msecs, timeframe_to_next_date,
|
||||||
timeframe_to_prev_date, timeframe_to_seconds)
|
timeframe_to_prev_date, timeframe_to_seconds)
|
||||||
from freqtrade.exchange.types import Ticker, Tickers
|
from freqtrade.exchange.types import OHLCVResponse, Ticker, Tickers
|
||||||
from freqtrade.misc import (chunks, deep_merge_dicts, file_dump_json, file_load_json,
|
from freqtrade.misc import (chunks, deep_merge_dicts, file_dump_json, file_load_json,
|
||||||
safe_value_fallback2)
|
safe_value_fallback2)
|
||||||
from freqtrade.plugins.pairlist.pairlist_helpers import expand_pairlist
|
from freqtrade.plugins.pairlist.pairlist_helpers import expand_pairlist
|
||||||
@ -45,12 +46,6 @@ from freqtrade.plugins.pairlist.pairlist_helpers import expand_pairlist
|
|||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
# Workaround for adding samesite support to pre 3.8 python
|
|
||||||
# Only applies to python3.7, and only on certain exchanges (kraken)
|
|
||||||
# Replicates the fix from starlette (which is actually causing this problem)
|
|
||||||
http.cookies.Morsel._reserved["samesite"] = "SameSite" # type: ignore
|
|
||||||
|
|
||||||
|
|
||||||
class Exchange:
|
class Exchange:
|
||||||
|
|
||||||
# Parameters to add directly to buy/sell calls (like agreeing to trading agreement)
|
# Parameters to add directly to buy/sell calls (like agreeing to trading agreement)
|
||||||
@ -474,7 +469,7 @@ class Exchange:
|
|||||||
try:
|
try:
|
||||||
if self._api_async:
|
if self._api_async:
|
||||||
self.loop.run_until_complete(
|
self.loop.run_until_complete(
|
||||||
self._api_async.load_markets(reload=reload))
|
self._api_async.load_markets(reload=reload, params={}))
|
||||||
|
|
||||||
except (asyncio.TimeoutError, ccxt.BaseError) as e:
|
except (asyncio.TimeoutError, ccxt.BaseError) as e:
|
||||||
logger.warning('Could not load async markets. Reason: %s', e)
|
logger.warning('Could not load async markets. Reason: %s', e)
|
||||||
@ -483,7 +478,7 @@ class Exchange:
|
|||||||
def _load_markets(self) -> None:
|
def _load_markets(self) -> None:
|
||||||
""" Initialize markets both sync and async """
|
""" Initialize markets both sync and async """
|
||||||
try:
|
try:
|
||||||
self._markets = self._api.load_markets()
|
self._markets = self._api.load_markets(params={})
|
||||||
self._load_async_markets()
|
self._load_async_markets()
|
||||||
self._last_markets_refresh = arrow.utcnow().int_timestamp
|
self._last_markets_refresh = arrow.utcnow().int_timestamp
|
||||||
if self._ft_has['needs_trading_fees']:
|
if self._ft_has['needs_trading_fees']:
|
||||||
@ -501,7 +496,7 @@ class Exchange:
|
|||||||
return None
|
return None
|
||||||
logger.debug("Performing scheduled market reload..")
|
logger.debug("Performing scheduled market reload..")
|
||||||
try:
|
try:
|
||||||
self._markets = self._api.load_markets(reload=True)
|
self._markets = self._api.load_markets(reload=True, params={})
|
||||||
# Also reload async markets to avoid issues with newly listed pairs
|
# Also reload async markets to avoid issues with newly listed pairs
|
||||||
self._load_async_markets(reload=True)
|
self._load_async_markets(reload=True)
|
||||||
self._last_markets_refresh = arrow.utcnow().int_timestamp
|
self._last_markets_refresh = arrow.utcnow().int_timestamp
|
||||||
@ -606,12 +601,27 @@ class Exchange:
|
|||||||
if not self.exchange_has('createMarketOrder'):
|
if not self.exchange_has('createMarketOrder'):
|
||||||
raise OperationalException(
|
raise OperationalException(
|
||||||
f'Exchange {self.name} does not support market orders.')
|
f'Exchange {self.name} does not support market orders.')
|
||||||
|
self.validate_stop_ordertypes(order_types)
|
||||||
|
|
||||||
|
def validate_stop_ordertypes(self, order_types: Dict) -> None:
|
||||||
|
"""
|
||||||
|
Validate stoploss order types
|
||||||
|
"""
|
||||||
if (order_types.get("stoploss_on_exchange")
|
if (order_types.get("stoploss_on_exchange")
|
||||||
and not self._ft_has.get("stoploss_on_exchange", False)):
|
and not self._ft_has.get("stoploss_on_exchange", False)):
|
||||||
raise OperationalException(
|
raise OperationalException(
|
||||||
f'On exchange stoploss is not supported for {self.name}.'
|
f'On exchange stoploss is not supported for {self.name}.'
|
||||||
)
|
)
|
||||||
|
if self.trading_mode == TradingMode.FUTURES:
|
||||||
|
price_mapping = self._ft_has.get('stop_price_type_value_mapping', {}).keys()
|
||||||
|
if (
|
||||||
|
order_types.get("stoploss_on_exchange", False) is True
|
||||||
|
and 'stoploss_price_type' in order_types
|
||||||
|
and order_types['stoploss_price_type'] not in price_mapping
|
||||||
|
):
|
||||||
|
raise OperationalException(
|
||||||
|
f'On exchange stoploss price type is not supported for {self.name}.'
|
||||||
|
)
|
||||||
|
|
||||||
def validate_pricing(self, pricing: Dict) -> None:
|
def validate_pricing(self, pricing: Dict) -> None:
|
||||||
if pricing.get('use_order_book', False) and not self.exchange_has('fetchL2OrderBook'):
|
if pricing.get('use_order_book', False) and not self.exchange_has('fetchL2OrderBook'):
|
||||||
@ -682,7 +692,7 @@ class Exchange:
|
|||||||
f"Freqtrade does not support {mm_value} {trading_mode.value} on {self.name}"
|
f"Freqtrade does not support {mm_value} {trading_mode.value} on {self.name}"
|
||||||
)
|
)
|
||||||
|
|
||||||
def get_option(self, param: str, default: Any = None) -> Any:
|
def get_option(self, param: str, default: Optional[Any] = None) -> Any:
|
||||||
"""
|
"""
|
||||||
Get parameter value from _ft_has
|
Get parameter value from _ft_has
|
||||||
"""
|
"""
|
||||||
@ -1167,6 +1177,10 @@ class Exchange:
|
|||||||
stop_price=stop_price_norm)
|
stop_price=stop_price_norm)
|
||||||
if self.trading_mode == TradingMode.FUTURES:
|
if self.trading_mode == TradingMode.FUTURES:
|
||||||
params['reduceOnly'] = True
|
params['reduceOnly'] = True
|
||||||
|
if 'stoploss_price_type' in order_types and 'stop_price_type_field' in self._ft_has:
|
||||||
|
price_type = self._ft_has['stop_price_type_value_mapping'][
|
||||||
|
order_types.get('stoploss_price_type', PriceType.LAST)]
|
||||||
|
params[self._ft_has['stop_price_type_field']] = price_type
|
||||||
|
|
||||||
amount = self.amount_to_precision(pair, self._amount_to_contracts(pair, amount))
|
amount = self.amount_to_precision(pair, self._amount_to_contracts(pair, amount))
|
||||||
|
|
||||||
@ -1357,7 +1371,7 @@ class Exchange:
|
|||||||
raise OperationalException(e) from e
|
raise OperationalException(e) from e
|
||||||
|
|
||||||
@retrier
|
@retrier
|
||||||
def fetch_positions(self, pair: str = None) -> List[Dict]:
|
def fetch_positions(self, pair: Optional[str] = None) -> List[Dict]:
|
||||||
"""
|
"""
|
||||||
Fetch positions from the exchange.
|
Fetch positions from the exchange.
|
||||||
If no pair is given, all positions are returned.
|
If no pair is given, all positions are returned.
|
||||||
@ -1705,7 +1719,7 @@ class Exchange:
|
|||||||
return self._config['fee']
|
return self._config['fee']
|
||||||
# validate that markets are loaded before trying to get fee
|
# validate that markets are loaded before trying to get fee
|
||||||
if self._api.markets is None or len(self._api.markets) == 0:
|
if self._api.markets is None or len(self._api.markets) == 0:
|
||||||
self._api.load_markets()
|
self._api.load_markets(params={})
|
||||||
|
|
||||||
return self._api.calculate_fee(symbol=symbol, type=type, side=side, amount=amount,
|
return self._api.calculate_fee(symbol=symbol, type=type, side=side, amount=amount,
|
||||||
price=price, takerOrMaker=taker_or_maker)['rate']
|
price=price, takerOrMaker=taker_or_maker)['rate']
|
||||||
@ -1801,7 +1815,7 @@ class Exchange:
|
|||||||
def get_historic_ohlcv(self, pair: str, timeframe: str,
|
def get_historic_ohlcv(self, pair: str, timeframe: str,
|
||||||
since_ms: int, candle_type: CandleType,
|
since_ms: int, candle_type: CandleType,
|
||||||
is_new_pair: bool = False,
|
is_new_pair: bool = False,
|
||||||
until_ms: int = None) -> List:
|
until_ms: Optional[int] = None) -> List:
|
||||||
"""
|
"""
|
||||||
Get candle history using asyncio and returns the list of candles.
|
Get candle history using asyncio and returns the list of candles.
|
||||||
Handles all async work for this.
|
Handles all async work for this.
|
||||||
@ -1813,32 +1827,18 @@ class Exchange:
|
|||||||
:param candle_type: '', mark, index, premiumIndex, or funding_rate
|
:param candle_type: '', mark, index, premiumIndex, or funding_rate
|
||||||
:return: List with candle (OHLCV) data
|
:return: List with candle (OHLCV) data
|
||||||
"""
|
"""
|
||||||
pair, _, _, data = self.loop.run_until_complete(
|
pair, _, _, data, _ = self.loop.run_until_complete(
|
||||||
self._async_get_historic_ohlcv(pair=pair, timeframe=timeframe,
|
self._async_get_historic_ohlcv(pair=pair, timeframe=timeframe,
|
||||||
since_ms=since_ms, until_ms=until_ms,
|
since_ms=since_ms, until_ms=until_ms,
|
||||||
is_new_pair=is_new_pair, candle_type=candle_type))
|
is_new_pair=is_new_pair, candle_type=candle_type))
|
||||||
logger.info(f"Downloaded data for {pair} with length {len(data)}.")
|
logger.info(f"Downloaded data for {pair} with length {len(data)}.")
|
||||||
return data
|
return data
|
||||||
|
|
||||||
def get_historic_ohlcv_as_df(self, pair: str, timeframe: str,
|
|
||||||
since_ms: int, candle_type: CandleType) -> DataFrame:
|
|
||||||
"""
|
|
||||||
Minimal wrapper around get_historic_ohlcv - converting the result into a dataframe
|
|
||||||
:param pair: Pair to download
|
|
||||||
:param timeframe: Timeframe to get data for
|
|
||||||
:param since_ms: Timestamp in milliseconds to get history from
|
|
||||||
:param candle_type: Any of the enum CandleType (must match trading mode!)
|
|
||||||
:return: OHLCV DataFrame
|
|
||||||
"""
|
|
||||||
ticks = self.get_historic_ohlcv(pair, timeframe, since_ms=since_ms, candle_type=candle_type)
|
|
||||||
return ohlcv_to_dataframe(ticks, timeframe, pair=pair, fill_missing=True,
|
|
||||||
drop_incomplete=self._ohlcv_partial_candle)
|
|
||||||
|
|
||||||
async def _async_get_historic_ohlcv(self, pair: str, timeframe: str,
|
async def _async_get_historic_ohlcv(self, pair: str, timeframe: str,
|
||||||
since_ms: int, candle_type: CandleType,
|
since_ms: int, candle_type: CandleType,
|
||||||
is_new_pair: bool = False, raise_: bool = False,
|
is_new_pair: bool = False, raise_: bool = False,
|
||||||
until_ms: Optional[int] = None
|
until_ms: Optional[int] = None
|
||||||
) -> Tuple[str, str, str, List]:
|
) -> OHLCVResponse:
|
||||||
"""
|
"""
|
||||||
Download historic ohlcv
|
Download historic ohlcv
|
||||||
:param is_new_pair: used by binance subclass to allow "fast" new pair downloading
|
:param is_new_pair: used by binance subclass to allow "fast" new pair downloading
|
||||||
@ -1869,15 +1869,16 @@ class Exchange:
|
|||||||
continue
|
continue
|
||||||
else:
|
else:
|
||||||
# Deconstruct tuple if it's not an exception
|
# Deconstruct tuple if it's not an exception
|
||||||
p, _, c, new_data = res
|
p, _, c, new_data, _ = res
|
||||||
if p == pair and c == candle_type:
|
if p == pair and c == candle_type:
|
||||||
data.extend(new_data)
|
data.extend(new_data)
|
||||||
# Sort data again after extending the result - above calls return in "async order"
|
# Sort data again after extending the result - above calls return in "async order"
|
||||||
data = sorted(data, key=lambda x: x[0])
|
data = sorted(data, key=lambda x: x[0])
|
||||||
return pair, timeframe, candle_type, data
|
return pair, timeframe, candle_type, data, self._ohlcv_partial_candle
|
||||||
|
|
||||||
def _build_coroutine(self, pair: str, timeframe: str, candle_type: CandleType,
|
def _build_coroutine(
|
||||||
since_ms: Optional[int], cache: bool) -> Coroutine:
|
self, pair: str, timeframe: str, candle_type: CandleType,
|
||||||
|
since_ms: Optional[int], cache: bool) -> Coroutine[Any, Any, OHLCVResponse]:
|
||||||
not_all_data = cache and self.required_candle_call_count > 1
|
not_all_data = cache and self.required_candle_call_count > 1
|
||||||
if cache and (pair, timeframe, candle_type) in self._klines:
|
if cache and (pair, timeframe, candle_type) in self._klines:
|
||||||
candle_limit = self.ohlcv_candle_limit(timeframe, candle_type)
|
candle_limit = self.ohlcv_candle_limit(timeframe, candle_type)
|
||||||
@ -1914,7 +1915,7 @@ class Exchange:
|
|||||||
"""
|
"""
|
||||||
Build Coroutines to execute as part of refresh_latest_ohlcv
|
Build Coroutines to execute as part of refresh_latest_ohlcv
|
||||||
"""
|
"""
|
||||||
input_coroutines = []
|
input_coroutines: List[Coroutine[Any, Any, OHLCVResponse]] = []
|
||||||
cached_pairs = []
|
cached_pairs = []
|
||||||
for pair, timeframe, candle_type in set(pair_list):
|
for pair, timeframe, candle_type in set(pair_list):
|
||||||
if (timeframe not in self.timeframes
|
if (timeframe not in self.timeframes
|
||||||
@ -1978,7 +1979,6 @@ class Exchange:
|
|||||||
:return: Dict of [{(pair, timeframe): Dataframe}]
|
:return: Dict of [{(pair, timeframe): Dataframe}]
|
||||||
"""
|
"""
|
||||||
logger.debug("Refreshing candle (OHLCV) data for %d pairs", len(pair_list))
|
logger.debug("Refreshing candle (OHLCV) data for %d pairs", len(pair_list))
|
||||||
drop_incomplete = self._ohlcv_partial_candle if drop_incomplete is None else drop_incomplete
|
|
||||||
|
|
||||||
# Gather coroutines to run
|
# Gather coroutines to run
|
||||||
input_coroutines, cached_pairs = self._build_ohlcv_dl_jobs(pair_list, since_ms, cache)
|
input_coroutines, cached_pairs = self._build_ohlcv_dl_jobs(pair_list, since_ms, cache)
|
||||||
@ -1996,8 +1996,9 @@ class Exchange:
|
|||||||
if isinstance(res, Exception):
|
if isinstance(res, Exception):
|
||||||
logger.warning(f"Async code raised an exception: {repr(res)}")
|
logger.warning(f"Async code raised an exception: {repr(res)}")
|
||||||
continue
|
continue
|
||||||
# Deconstruct tuple (has 4 elements)
|
# Deconstruct tuple (has 5 elements)
|
||||||
pair, timeframe, c_type, ticks = res
|
pair, timeframe, c_type, ticks, drop_hint = res
|
||||||
|
drop_incomplete = drop_hint if drop_incomplete is None else drop_incomplete
|
||||||
ohlcv_df = self._process_ohlcv_df(
|
ohlcv_df = self._process_ohlcv_df(
|
||||||
pair, timeframe, c_type, ticks, cache, drop_incomplete)
|
pair, timeframe, c_type, ticks, cache, drop_incomplete)
|
||||||
|
|
||||||
@ -2025,7 +2026,7 @@ class Exchange:
|
|||||||
timeframe: str,
|
timeframe: str,
|
||||||
candle_type: CandleType,
|
candle_type: CandleType,
|
||||||
since_ms: Optional[int] = None,
|
since_ms: Optional[int] = None,
|
||||||
) -> Tuple[str, str, str, List]:
|
) -> OHLCVResponse:
|
||||||
"""
|
"""
|
||||||
Asynchronously get candle history data using fetch_ohlcv
|
Asynchronously get candle history data using fetch_ohlcv
|
||||||
:param candle_type: '', mark, index, premiumIndex, or funding_rate
|
:param candle_type: '', mark, index, premiumIndex, or funding_rate
|
||||||
@ -2065,9 +2066,9 @@ class Exchange:
|
|||||||
data = sorted(data, key=lambda x: x[0])
|
data = sorted(data, key=lambda x: x[0])
|
||||||
except IndexError:
|
except IndexError:
|
||||||
logger.exception("Error loading %s. Result was %s.", pair, data)
|
logger.exception("Error loading %s. Result was %s.", pair, data)
|
||||||
return pair, timeframe, candle_type, []
|
return pair, timeframe, candle_type, [], self._ohlcv_partial_candle
|
||||||
logger.debug("Done fetching pair %s, interval %s ...", pair, timeframe)
|
logger.debug("Done fetching pair %s, interval %s ...", pair, timeframe)
|
||||||
return pair, timeframe, candle_type, data
|
return pair, timeframe, candle_type, data, self._ohlcv_partial_candle
|
||||||
|
|
||||||
except ccxt.NotSupported as e:
|
except ccxt.NotSupported as e:
|
||||||
raise OperationalException(
|
raise OperationalException(
|
||||||
@ -2504,7 +2505,8 @@ class Exchange:
|
|||||||
self,
|
self,
|
||||||
leverage: float,
|
leverage: float,
|
||||||
pair: Optional[str] = None,
|
pair: Optional[str] = None,
|
||||||
trading_mode: Optional[TradingMode] = None
|
trading_mode: Optional[TradingMode] = None,
|
||||||
|
accept_fail: bool = False,
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
Set's the leverage before making a trade, in order to not
|
Set's the leverage before making a trade, in order to not
|
||||||
@ -2513,12 +2515,18 @@ class Exchange:
|
|||||||
if self._config['dry_run'] or not self.exchange_has("setLeverage"):
|
if self._config['dry_run'] or not self.exchange_has("setLeverage"):
|
||||||
# Some exchanges only support one margin_mode type
|
# Some exchanges only support one margin_mode type
|
||||||
return
|
return
|
||||||
|
if self._ft_has.get('floor_leverage', False) is True:
|
||||||
|
# Rounding for binance ...
|
||||||
|
leverage = floor(leverage)
|
||||||
try:
|
try:
|
||||||
res = self._api.set_leverage(symbol=pair, leverage=leverage)
|
res = self._api.set_leverage(symbol=pair, leverage=leverage)
|
||||||
self._log_exchange_response('set_leverage', res)
|
self._log_exchange_response('set_leverage', res)
|
||||||
except ccxt.DDoSProtection as e:
|
except ccxt.DDoSProtection as e:
|
||||||
raise DDosProtection(e) from e
|
raise DDosProtection(e) from e
|
||||||
|
except ccxt.BadRequest as e:
|
||||||
|
if not accept_fail:
|
||||||
|
raise TemporaryError(
|
||||||
|
f'Could not set leverage due to {e.__class__.__name__}. Message: {e}') from e
|
||||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||||
raise TemporaryError(
|
raise TemporaryError(
|
||||||
f'Could not set leverage due to {e.__class__.__name__}. Message: {e}') from e
|
f'Could not set leverage due to {e.__class__.__name__}. Message: {e}') from e
|
||||||
@ -2540,7 +2548,8 @@ class Exchange:
|
|||||||
return open_date.minute > 0 or open_date.second > 0
|
return open_date.minute > 0 or open_date.second > 0
|
||||||
|
|
||||||
@retrier
|
@retrier
|
||||||
def set_margin_mode(self, pair: str, margin_mode: MarginMode, params: dict = {}):
|
def set_margin_mode(self, pair: str, margin_mode: MarginMode, accept_fail: bool = False,
|
||||||
|
params: dict = {}):
|
||||||
"""
|
"""
|
||||||
Set's the margin mode on the exchange to cross or isolated for a specific pair
|
Set's the margin mode on the exchange to cross or isolated for a specific pair
|
||||||
:param pair: base/quote currency pair (e.g. "ADA/USDT")
|
:param pair: base/quote currency pair (e.g. "ADA/USDT")
|
||||||
@ -2554,6 +2563,10 @@ class Exchange:
|
|||||||
self._log_exchange_response('set_margin_mode', res)
|
self._log_exchange_response('set_margin_mode', res)
|
||||||
except ccxt.DDoSProtection as e:
|
except ccxt.DDoSProtection as e:
|
||||||
raise DDosProtection(e) from e
|
raise DDosProtection(e) from e
|
||||||
|
except ccxt.BadRequest as e:
|
||||||
|
if not accept_fail:
|
||||||
|
raise TemporaryError(
|
||||||
|
f'Could not set margin mode due to {e.__class__.__name__}. Message: {e}') from e
|
||||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||||
raise TemporaryError(
|
raise TemporaryError(
|
||||||
f'Could not set margin mode due to {e.__class__.__name__}. Message: {e}') from e
|
f'Could not set margin mode due to {e.__class__.__name__}. Message: {e}') from e
|
||||||
@ -2687,7 +2700,7 @@ class Exchange:
|
|||||||
:param amount: Trade amount
|
:param amount: Trade amount
|
||||||
:param open_date: Open date of the trade
|
:param open_date: Open date of the trade
|
||||||
:return: funding fee since open_date
|
:return: funding fee since open_date
|
||||||
:raies: ExchangeError if something goes wrong.
|
:raises: ExchangeError if something goes wrong.
|
||||||
"""
|
"""
|
||||||
if self.trading_mode == TradingMode.FUTURES:
|
if self.trading_mode == TradingMode.FUTURES:
|
||||||
if self._config['dry_run']:
|
if self._config['dry_run']:
|
||||||
@ -2707,6 +2720,7 @@ class Exchange:
|
|||||||
is_short: bool,
|
is_short: bool,
|
||||||
amount: float, # Absolute value of position size
|
amount: float, # Absolute value of position size
|
||||||
stake_amount: float,
|
stake_amount: float,
|
||||||
|
leverage: float,
|
||||||
wallet_balance: float,
|
wallet_balance: float,
|
||||||
mm_ex_1: float = 0.0, # (Binance) Cross only
|
mm_ex_1: float = 0.0, # (Binance) Cross only
|
||||||
upnl_ex_1: float = 0.0, # (Binance) Cross only
|
upnl_ex_1: float = 0.0, # (Binance) Cross only
|
||||||
@ -2728,6 +2742,7 @@ class Exchange:
|
|||||||
open_rate=open_rate,
|
open_rate=open_rate,
|
||||||
is_short=is_short,
|
is_short=is_short,
|
||||||
amount=amount,
|
amount=amount,
|
||||||
|
leverage=leverage,
|
||||||
stake_amount=stake_amount,
|
stake_amount=stake_amount,
|
||||||
wallet_balance=wallet_balance,
|
wallet_balance=wallet_balance,
|
||||||
mm_ex_1=mm_ex_1,
|
mm_ex_1=mm_ex_1,
|
||||||
@ -2739,7 +2754,7 @@ class Exchange:
|
|||||||
pos = positions[0]
|
pos = positions[0]
|
||||||
isolated_liq = pos['liquidationPrice']
|
isolated_liq = pos['liquidationPrice']
|
||||||
|
|
||||||
if isolated_liq:
|
if isolated_liq is not None:
|
||||||
buffer_amount = abs(open_rate - isolated_liq) * self.liquidation_buffer
|
buffer_amount = abs(open_rate - isolated_liq) * self.liquidation_buffer
|
||||||
isolated_liq = (
|
isolated_liq = (
|
||||||
isolated_liq - buffer_amount
|
isolated_liq - buffer_amount
|
||||||
@ -2757,6 +2772,7 @@ class Exchange:
|
|||||||
is_short: bool,
|
is_short: bool,
|
||||||
amount: float,
|
amount: float,
|
||||||
stake_amount: float,
|
stake_amount: float,
|
||||||
|
leverage: float,
|
||||||
wallet_balance: float, # Or margin balance
|
wallet_balance: float, # Or margin balance
|
||||||
mm_ex_1: float = 0.0, # (Binance) Cross only
|
mm_ex_1: float = 0.0, # (Binance) Cross only
|
||||||
upnl_ex_1: float = 0.0, # (Binance) Cross only
|
upnl_ex_1: float = 0.0, # (Binance) Cross only
|
||||||
@ -2764,7 +2780,7 @@ class Exchange:
|
|||||||
"""
|
"""
|
||||||
Important: Must be fetching data from cached values as this is used by backtesting!
|
Important: Must be fetching data from cached values as this is used by backtesting!
|
||||||
PERPETUAL:
|
PERPETUAL:
|
||||||
gateio: https://www.gate.io/help/futures/futures/27724/liquidation-price-bankruptcy-price
|
gate: https://www.gate.io/help/futures/futures/27724/liquidation-price-bankruptcy-price
|
||||||
> Liquidation Price = (Entry Price ± Margin / Contract Multiplier / Size) /
|
> Liquidation Price = (Entry Price ± Margin / Contract Multiplier / Size) /
|
||||||
[ 1 ± (Maintenance Margin Ratio + Taker Rate)]
|
[ 1 ± (Maintenance Margin Ratio + Taker Rate)]
|
||||||
Wherein, "+" or "-" depends on whether the contract goes long or short:
|
Wherein, "+" or "-" depends on whether the contract goes long or short:
|
||||||
@ -2778,13 +2794,14 @@ class Exchange:
|
|||||||
:param is_short: True if the trade is a short, false otherwise
|
:param is_short: True if the trade is a short, false otherwise
|
||||||
:param amount: Absolute value of position size incl. leverage (in base currency)
|
:param amount: Absolute value of position size incl. leverage (in base currency)
|
||||||
:param stake_amount: Stake amount - Collateral in settle currency.
|
:param stake_amount: Stake amount - Collateral in settle currency.
|
||||||
|
:param leverage: Leverage used for this position.
|
||||||
:param trading_mode: SPOT, MARGIN, FUTURES, etc.
|
:param trading_mode: SPOT, MARGIN, FUTURES, etc.
|
||||||
:param margin_mode: Either ISOLATED or CROSS
|
:param margin_mode: Either ISOLATED or CROSS
|
||||||
:param wallet_balance: Amount of margin_mode in the wallet being used to trade
|
:param wallet_balance: Amount of margin_mode in the wallet being used to trade
|
||||||
Cross-Margin Mode: crossWalletBalance
|
Cross-Margin Mode: crossWalletBalance
|
||||||
Isolated-Margin Mode: isolatedWalletBalance
|
Isolated-Margin Mode: isolatedWalletBalance
|
||||||
|
|
||||||
# * Not required by Gateio or OKX
|
# * Not required by Gate or OKX
|
||||||
:param mm_ex_1:
|
:param mm_ex_1:
|
||||||
:param upnl_ex_1:
|
:param upnl_ex_1:
|
||||||
"""
|
"""
|
||||||
|
@ -15,18 +15,19 @@ from freqtrade.util import FtPrecise
|
|||||||
CcxtModuleType = Any
|
CcxtModuleType = Any
|
||||||
|
|
||||||
|
|
||||||
def is_exchange_known_ccxt(exchange_name: str, ccxt_module: CcxtModuleType = None) -> bool:
|
def is_exchange_known_ccxt(
|
||||||
|
exchange_name: str, ccxt_module: Optional[CcxtModuleType] = None) -> bool:
|
||||||
return exchange_name in ccxt_exchanges(ccxt_module)
|
return exchange_name in ccxt_exchanges(ccxt_module)
|
||||||
|
|
||||||
|
|
||||||
def ccxt_exchanges(ccxt_module: CcxtModuleType = None) -> List[str]:
|
def ccxt_exchanges(ccxt_module: Optional[CcxtModuleType] = None) -> List[str]:
|
||||||
"""
|
"""
|
||||||
Return the list of all exchanges known to ccxt
|
Return the list of all exchanges known to ccxt
|
||||||
"""
|
"""
|
||||||
return ccxt_module.exchanges if ccxt_module is not None else ccxt.exchanges
|
return ccxt_module.exchanges if ccxt_module is not None else ccxt.exchanges
|
||||||
|
|
||||||
|
|
||||||
def available_exchanges(ccxt_module: CcxtModuleType = None) -> List[str]:
|
def available_exchanges(ccxt_module: Optional[CcxtModuleType] = None) -> List[str]:
|
||||||
"""
|
"""
|
||||||
Return exchanges available to the bot, i.e. non-bad exchanges in the ccxt list
|
Return exchanges available to the bot, i.e. non-bad exchanges in the ccxt list
|
||||||
"""
|
"""
|
||||||
@ -86,7 +87,7 @@ def timeframe_to_msecs(timeframe: str) -> int:
|
|||||||
return ccxt.Exchange.parse_timeframe(timeframe) * 1000
|
return ccxt.Exchange.parse_timeframe(timeframe) * 1000
|
||||||
|
|
||||||
|
|
||||||
def timeframe_to_prev_date(timeframe: str, date: datetime = None) -> datetime:
|
def timeframe_to_prev_date(timeframe: str, date: Optional[datetime] = None) -> datetime:
|
||||||
"""
|
"""
|
||||||
Use Timeframe and determine the candle start date for this date.
|
Use Timeframe and determine the candle start date for this date.
|
||||||
Does not round when given a candle start date.
|
Does not round when given a candle start date.
|
||||||
@ -102,7 +103,7 @@ def timeframe_to_prev_date(timeframe: str, date: datetime = None) -> datetime:
|
|||||||
return datetime.fromtimestamp(new_timestamp, tz=timezone.utc)
|
return datetime.fromtimestamp(new_timestamp, tz=timezone.utc)
|
||||||
|
|
||||||
|
|
||||||
def timeframe_to_next_date(timeframe: str, date: datetime = None) -> datetime:
|
def timeframe_to_next_date(timeframe: str, date: Optional[datetime] = None) -> datetime:
|
||||||
"""
|
"""
|
||||||
Use Timeframe and determine next candle.
|
Use Timeframe and determine next candle.
|
||||||
:param timeframe: timeframe in string format (e.g. "5m")
|
:param timeframe: timeframe in string format (e.g. "5m")
|
||||||
|
@ -4,7 +4,7 @@ from datetime import datetime
|
|||||||
from typing import Any, Dict, List, Optional, Tuple
|
from typing import Any, Dict, List, Optional, Tuple
|
||||||
|
|
||||||
from freqtrade.constants import BuySell
|
from freqtrade.constants import BuySell
|
||||||
from freqtrade.enums import MarginMode, TradingMode
|
from freqtrade.enums import MarginMode, PriceType, TradingMode
|
||||||
from freqtrade.exceptions import OperationalException
|
from freqtrade.exceptions import OperationalException
|
||||||
from freqtrade.exchange import Exchange
|
from freqtrade.exchange import Exchange
|
||||||
from freqtrade.misc import safe_value_fallback2
|
from freqtrade.misc import safe_value_fallback2
|
||||||
@ -13,7 +13,7 @@ from freqtrade.misc import safe_value_fallback2
|
|||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
class Gateio(Exchange):
|
class Gate(Exchange):
|
||||||
"""
|
"""
|
||||||
Gate.io exchange class. Contains adjustments needed for Freqtrade to work
|
Gate.io exchange class. Contains adjustments needed for Freqtrade to work
|
||||||
with this exchange.
|
with this exchange.
|
||||||
@ -34,6 +34,12 @@ class Gateio(Exchange):
|
|||||||
"needs_trading_fees": True,
|
"needs_trading_fees": True,
|
||||||
"fee_cost_in_contracts": False, # Set explicitly to false for clarity
|
"fee_cost_in_contracts": False, # Set explicitly to false for clarity
|
||||||
"order_props_in_contracts": ['amount', 'filled', 'remaining'],
|
"order_props_in_contracts": ['amount', 'filled', 'remaining'],
|
||||||
|
"stop_price_type_field": "price_type",
|
||||||
|
"stop_price_type_value_mapping": {
|
||||||
|
PriceType.LAST: 0,
|
||||||
|
PriceType.MARK: 1,
|
||||||
|
PriceType.INDEX: 2,
|
||||||
|
},
|
||||||
}
|
}
|
||||||
|
|
||||||
_supported_trading_mode_margin_pairs: List[Tuple[TradingMode, MarginMode]] = [
|
_supported_trading_mode_margin_pairs: List[Tuple[TradingMode, MarginMode]] = [
|
||||||
@ -49,6 +55,7 @@ class Gateio(Exchange):
|
|||||||
if any(v == 'market' for k, v in order_types.items()):
|
if any(v == 'market' for k, v in order_types.items()):
|
||||||
raise OperationalException(
|
raise OperationalException(
|
||||||
f'Exchange {self.name} does not support market orders.')
|
f'Exchange {self.name} does not support market orders.')
|
||||||
|
super().validate_stop_ordertypes(order_types)
|
||||||
|
|
||||||
def _get_params(
|
def _get_params(
|
||||||
self,
|
self,
|
||||||
@ -77,7 +84,7 @@ class Gateio(Exchange):
|
|||||||
|
|
||||||
if self.trading_mode == TradingMode.FUTURES:
|
if self.trading_mode == TradingMode.FUTURES:
|
||||||
# Futures usually don't contain fees in the response.
|
# Futures usually don't contain fees in the response.
|
||||||
# As such, futures orders on gateio will not contain a fee, which causes
|
# As such, futures orders on gate will not contain a fee, which causes
|
||||||
# a repeated "update fee" cycle and wrong calculations.
|
# a repeated "update fee" cycle and wrong calculations.
|
||||||
# Therefore we patch the response with fees if it's not available.
|
# Therefore we patch the response with fees if it's not available.
|
||||||
# An alternative also contianing fees would be
|
# An alternative also contianing fees would be
|
@ -158,7 +158,8 @@ class Kraken(Exchange):
|
|||||||
self,
|
self,
|
||||||
leverage: float,
|
leverage: float,
|
||||||
pair: Optional[str] = None,
|
pair: Optional[str] = None,
|
||||||
trading_mode: Optional[TradingMode] = None
|
trading_mode: Optional[TradingMode] = None,
|
||||||
|
accept_fail: bool = False,
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
Kraken set's the leverage as an option in the order object, so we need to
|
Kraken set's the leverage as an option in the order object, so we need to
|
||||||
|
@ -36,3 +36,34 @@ class Kucoin(Exchange):
|
|||||||
'stop': 'loss'
|
'stop': 'loss'
|
||||||
})
|
})
|
||||||
return params
|
return params
|
||||||
|
|
||||||
|
def create_order(
|
||||||
|
self,
|
||||||
|
*,
|
||||||
|
pair: str,
|
||||||
|
ordertype: str,
|
||||||
|
side: BuySell,
|
||||||
|
amount: float,
|
||||||
|
rate: float,
|
||||||
|
leverage: float,
|
||||||
|
reduceOnly: bool = False,
|
||||||
|
time_in_force: str = 'GTC',
|
||||||
|
) -> Dict:
|
||||||
|
|
||||||
|
res = super().create_order(
|
||||||
|
pair=pair,
|
||||||
|
ordertype=ordertype,
|
||||||
|
side=side,
|
||||||
|
amount=amount,
|
||||||
|
rate=rate,
|
||||||
|
leverage=leverage,
|
||||||
|
reduceOnly=reduceOnly,
|
||||||
|
time_in_force=time_in_force,
|
||||||
|
)
|
||||||
|
# Kucoin returns only the order-id.
|
||||||
|
# ccxt returns status = 'closed' at the moment - which is information ccxt invented.
|
||||||
|
# Since we rely on status heavily, we must set it to 'open' here.
|
||||||
|
# ref: https://github.com/ccxt/ccxt/pull/16674, (https://github.com/ccxt/ccxt/pull/16553)
|
||||||
|
res['type'] = ordertype
|
||||||
|
res['status'] = 'open'
|
||||||
|
return res
|
||||||
|
@ -5,6 +5,7 @@ import ccxt
|
|||||||
|
|
||||||
from freqtrade.constants import BuySell
|
from freqtrade.constants import BuySell
|
||||||
from freqtrade.enums import CandleType, MarginMode, TradingMode
|
from freqtrade.enums import CandleType, MarginMode, TradingMode
|
||||||
|
from freqtrade.enums.pricetype import PriceType
|
||||||
from freqtrade.exceptions import DDosProtection, OperationalException, TemporaryError
|
from freqtrade.exceptions import DDosProtection, OperationalException, TemporaryError
|
||||||
from freqtrade.exchange import Exchange, date_minus_candles
|
from freqtrade.exchange import Exchange, date_minus_candles
|
||||||
from freqtrade.exchange.common import retrier
|
from freqtrade.exchange.common import retrier
|
||||||
@ -27,6 +28,12 @@ class Okx(Exchange):
|
|||||||
_ft_has_futures: Dict = {
|
_ft_has_futures: Dict = {
|
||||||
"tickers_have_quoteVolume": False,
|
"tickers_have_quoteVolume": False,
|
||||||
"fee_cost_in_contracts": True,
|
"fee_cost_in_contracts": True,
|
||||||
|
"stop_price_type_field": "tpTriggerPxType",
|
||||||
|
"stop_price_type_value_mapping": {
|
||||||
|
PriceType.LAST: "last",
|
||||||
|
PriceType.MARK: "index",
|
||||||
|
PriceType.INDEX: "mark",
|
||||||
|
},
|
||||||
}
|
}
|
||||||
|
|
||||||
_supported_trading_mode_margin_pairs: List[Tuple[TradingMode, MarginMode]] = [
|
_supported_trading_mode_margin_pairs: List[Tuple[TradingMode, MarginMode]] = [
|
||||||
@ -118,13 +125,15 @@ class Okx(Exchange):
|
|||||||
if self.trading_mode != TradingMode.SPOT and self.margin_mode is not None:
|
if self.trading_mode != TradingMode.SPOT and self.margin_mode is not None:
|
||||||
try:
|
try:
|
||||||
# TODO-lev: Test me properly (check mgnMode passed)
|
# TODO-lev: Test me properly (check mgnMode passed)
|
||||||
self._api.set_leverage(
|
res = self._api.set_leverage(
|
||||||
leverage=leverage,
|
leverage=leverage,
|
||||||
symbol=pair,
|
symbol=pair,
|
||||||
params={
|
params={
|
||||||
"mgnMode": self.margin_mode.value,
|
"mgnMode": self.margin_mode.value,
|
||||||
"posSide": self._get_posSide(side, False),
|
"posSide": self._get_posSide(side, False),
|
||||||
})
|
})
|
||||||
|
self._log_exchange_response('set_leverage', res)
|
||||||
|
|
||||||
except ccxt.DDoSProtection as e:
|
except ccxt.DDoSProtection as e:
|
||||||
raise DDosProtection(e) from e
|
raise DDosProtection(e) from e
|
||||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||||
|
@ -1,4 +1,6 @@
|
|||||||
from typing import Dict, Optional, TypedDict
|
from typing import Dict, List, Optional, Tuple, TypedDict
|
||||||
|
|
||||||
|
from freqtrade.enums import CandleType
|
||||||
|
|
||||||
|
|
||||||
class Ticker(TypedDict):
|
class Ticker(TypedDict):
|
||||||
@ -14,3 +16,6 @@ class Ticker(TypedDict):
|
|||||||
|
|
||||||
|
|
||||||
Tickers = Dict[str, Ticker]
|
Tickers = Dict[str, Ticker]
|
||||||
|
|
||||||
|
# pair, timeframe, candleType, OHLCV, drop last?,
|
||||||
|
OHLCVResponse = Tuple[str, str, CandleType, List, bool]
|
||||||
|
@ -45,7 +45,8 @@ class BaseEnvironment(gym.Env):
|
|||||||
def __init__(self, df: DataFrame = DataFrame(), prices: DataFrame = DataFrame(),
|
def __init__(self, df: DataFrame = DataFrame(), prices: DataFrame = DataFrame(),
|
||||||
reward_kwargs: dict = {}, window_size=10, starting_point=True,
|
reward_kwargs: dict = {}, window_size=10, starting_point=True,
|
||||||
id: str = 'baseenv-1', seed: int = 1, config: dict = {}, live: bool = False,
|
id: str = 'baseenv-1', seed: int = 1, config: dict = {}, live: bool = False,
|
||||||
fee: float = 0.0015, can_short: bool = False):
|
fee: float = 0.0015, can_short: bool = False, pair: str = "",
|
||||||
|
df_raw: DataFrame = DataFrame()):
|
||||||
"""
|
"""
|
||||||
Initializes the training/eval environment.
|
Initializes the training/eval environment.
|
||||||
:param df: dataframe of features
|
:param df: dataframe of features
|
||||||
@ -60,12 +61,14 @@ class BaseEnvironment(gym.Env):
|
|||||||
:param fee: The fee to use for environmental interactions.
|
:param fee: The fee to use for environmental interactions.
|
||||||
:param can_short: Whether or not the environment can short
|
:param can_short: Whether or not the environment can short
|
||||||
"""
|
"""
|
||||||
self.config = config
|
self.config: dict = config
|
||||||
self.rl_config = config['freqai']['rl_config']
|
self.rl_config: dict = config['freqai']['rl_config']
|
||||||
self.add_state_info = self.rl_config.get('add_state_info', False)
|
self.add_state_info: bool = self.rl_config.get('add_state_info', False)
|
||||||
self.id = id
|
self.id: str = id
|
||||||
self.max_drawdown = 1 - self.rl_config.get('max_training_drawdown_pct', 0.8)
|
self.max_drawdown: float = 1 - self.rl_config.get('max_training_drawdown_pct', 0.8)
|
||||||
self.compound_trades = config['stake_amount'] == 'unlimited'
|
self.compound_trades: bool = config['stake_amount'] == 'unlimited'
|
||||||
|
self.pair: str = pair
|
||||||
|
self.raw_features: DataFrame = df_raw
|
||||||
if self.config.get('fee', None) is not None:
|
if self.config.get('fee', None) is not None:
|
||||||
self.fee = self.config['fee']
|
self.fee = self.config['fee']
|
||||||
else:
|
else:
|
||||||
@ -74,8 +77,8 @@ class BaseEnvironment(gym.Env):
|
|||||||
# set here to default 5Ac, but all children envs can override this
|
# set here to default 5Ac, but all children envs can override this
|
||||||
self.actions: Type[Enum] = BaseActions
|
self.actions: Type[Enum] = BaseActions
|
||||||
self.tensorboard_metrics: dict = {}
|
self.tensorboard_metrics: dict = {}
|
||||||
self.can_short = can_short
|
self.can_short: bool = can_short
|
||||||
self.live = live
|
self.live: bool = live
|
||||||
if not self.live and self.add_state_info:
|
if not self.live and self.add_state_info:
|
||||||
self.add_state_info = False
|
self.add_state_info = False
|
||||||
logger.warning("add_state_info is not available in backtesting. Deactivating.")
|
logger.warning("add_state_info is not available in backtesting. Deactivating.")
|
||||||
@ -93,13 +96,12 @@ class BaseEnvironment(gym.Env):
|
|||||||
:param reward_kwargs: extra config settings assigned by user in `rl_config`
|
:param reward_kwargs: extra config settings assigned by user in `rl_config`
|
||||||
:param starting_point: start at edge of window or not
|
:param starting_point: start at edge of window or not
|
||||||
"""
|
"""
|
||||||
self.df = df
|
self.signal_features: DataFrame = df
|
||||||
self.signal_features = self.df
|
self.prices: DataFrame = prices
|
||||||
self.prices = prices
|
self.window_size: int = window_size
|
||||||
self.window_size = window_size
|
self.starting_point: bool = starting_point
|
||||||
self.starting_point = starting_point
|
self.rr: float = reward_kwargs["rr"]
|
||||||
self.rr = reward_kwargs["rr"]
|
self.profit_aim: float = reward_kwargs["profit_aim"]
|
||||||
self.profit_aim = reward_kwargs["profit_aim"]
|
|
||||||
|
|
||||||
# # spaces
|
# # spaces
|
||||||
if self.add_state_info:
|
if self.add_state_info:
|
||||||
|
@ -1,3 +1,4 @@
|
|||||||
|
import copy
|
||||||
import importlib
|
import importlib
|
||||||
import logging
|
import logging
|
||||||
from abc import abstractmethod
|
from abc import abstractmethod
|
||||||
@ -50,6 +51,7 @@ class BaseReinforcementLearningModel(IFreqaiModel):
|
|||||||
self.eval_callback: Optional[EvalCallback] = None
|
self.eval_callback: Optional[EvalCallback] = None
|
||||||
self.model_type = self.freqai_info['rl_config']['model_type']
|
self.model_type = self.freqai_info['rl_config']['model_type']
|
||||||
self.rl_config = self.freqai_info['rl_config']
|
self.rl_config = self.freqai_info['rl_config']
|
||||||
|
self.df_raw: DataFrame = DataFrame()
|
||||||
self.continual_learning = self.freqai_info.get('continual_learning', False)
|
self.continual_learning = self.freqai_info.get('continual_learning', False)
|
||||||
if self.model_type in SB3_MODELS:
|
if self.model_type in SB3_MODELS:
|
||||||
import_str = 'stable_baselines3'
|
import_str = 'stable_baselines3'
|
||||||
@ -107,6 +109,7 @@ class BaseReinforcementLearningModel(IFreqaiModel):
|
|||||||
|
|
||||||
data_dictionary: Dict[str, Any] = dk.make_train_test_datasets(
|
data_dictionary: Dict[str, Any] = dk.make_train_test_datasets(
|
||||||
features_filtered, labels_filtered)
|
features_filtered, labels_filtered)
|
||||||
|
self.df_raw = copy.deepcopy(data_dictionary["train_features"])
|
||||||
dk.fit_labels() # FIXME useless for now, but just satiating append methods
|
dk.fit_labels() # FIXME useless for now, but just satiating append methods
|
||||||
|
|
||||||
# normalize all data based on train_dataset only
|
# normalize all data based on train_dataset only
|
||||||
@ -143,7 +146,7 @@ class BaseReinforcementLearningModel(IFreqaiModel):
|
|||||||
train_df = data_dictionary["train_features"]
|
train_df = data_dictionary["train_features"]
|
||||||
test_df = data_dictionary["test_features"]
|
test_df = data_dictionary["test_features"]
|
||||||
|
|
||||||
env_info = self.pack_env_dict()
|
env_info = self.pack_env_dict(dk.pair)
|
||||||
|
|
||||||
self.train_env = self.MyRLEnv(df=train_df,
|
self.train_env = self.MyRLEnv(df=train_df,
|
||||||
prices=prices_train,
|
prices=prices_train,
|
||||||
@ -158,7 +161,7 @@ class BaseReinforcementLearningModel(IFreqaiModel):
|
|||||||
actions = self.train_env.get_actions()
|
actions = self.train_env.get_actions()
|
||||||
self.tensorboard_callback = TensorboardCallback(verbose=1, actions=actions)
|
self.tensorboard_callback = TensorboardCallback(verbose=1, actions=actions)
|
||||||
|
|
||||||
def pack_env_dict(self) -> Dict[str, Any]:
|
def pack_env_dict(self, pair: str) -> Dict[str, Any]:
|
||||||
"""
|
"""
|
||||||
Create dictionary of environment arguments
|
Create dictionary of environment arguments
|
||||||
"""
|
"""
|
||||||
@ -166,7 +169,9 @@ class BaseReinforcementLearningModel(IFreqaiModel):
|
|||||||
"reward_kwargs": self.reward_params,
|
"reward_kwargs": self.reward_params,
|
||||||
"config": self.config,
|
"config": self.config,
|
||||||
"live": self.live,
|
"live": self.live,
|
||||||
"can_short": self.can_short}
|
"can_short": self.can_short,
|
||||||
|
"pair": pair,
|
||||||
|
"df_raw": self.df_raw}
|
||||||
if self.data_provider:
|
if self.data_provider:
|
||||||
env_info["fee"] = self.data_provider._exchange \
|
env_info["fee"] = self.data_provider._exchange \
|
||||||
.get_fee(symbol=self.data_provider.current_whitelist()[0]) # type: ignore
|
.get_fee(symbol=self.data_provider.current_whitelist()[0]) # type: ignore
|
||||||
@ -280,26 +285,36 @@ class BaseReinforcementLearningModel(IFreqaiModel):
|
|||||||
train_df = data_dictionary["train_features"]
|
train_df = data_dictionary["train_features"]
|
||||||
test_df = data_dictionary["test_features"]
|
test_df = data_dictionary["test_features"]
|
||||||
|
|
||||||
|
# %-raw_volume_gen_shift-2_ETH/USDT_1h
|
||||||
# price data for model training and evaluation
|
# price data for model training and evaluation
|
||||||
tf = self.config['timeframe']
|
tf = self.config['timeframe']
|
||||||
ohlc_list = [f'%-{pair}raw_open_{tf}', f'%-{pair}raw_low_{tf}',
|
rename_dict = {'%-raw_open': 'open', '%-raw_low': 'low',
|
||||||
f'%-{pair}raw_high_{tf}', f'%-{pair}raw_close_{tf}']
|
'%-raw_high': ' high', '%-raw_close': 'close'}
|
||||||
rename_dict = {f'%-{pair}raw_open_{tf}': 'open', f'%-{pair}raw_low_{tf}': 'low',
|
rename_dict_old = {f'%-{pair}raw_open_{tf}': 'open', f'%-{pair}raw_low_{tf}': 'low',
|
||||||
f'%-{pair}raw_high_{tf}': ' high', f'%-{pair}raw_close_{tf}': 'close'}
|
f'%-{pair}raw_high_{tf}': ' high', f'%-{pair}raw_close_{tf}': 'close'}
|
||||||
|
|
||||||
|
prices_train = train_df.filter(rename_dict.keys(), axis=1)
|
||||||
|
prices_train_old = train_df.filter(rename_dict_old.keys(), axis=1)
|
||||||
|
if prices_train.empty or not prices_train_old.empty:
|
||||||
|
if not prices_train_old.empty:
|
||||||
|
prices_train = prices_train_old
|
||||||
|
rename_dict = rename_dict_old
|
||||||
|
logger.warning('Reinforcement learning module didnt find the correct raw prices '
|
||||||
|
'assigned in feature_engineering_standard(). '
|
||||||
|
'Please assign them with:\n'
|
||||||
|
'dataframe["%-raw_close"] = dataframe["close"]\n'
|
||||||
|
'dataframe["%-raw_open"] = dataframe["open"]\n'
|
||||||
|
'dataframe["%-raw_high"] = dataframe["high"]\n'
|
||||||
|
'dataframe["%-raw_low"] = dataframe["low"]\n'
|
||||||
|
'inside `feature_engineering_standard()')
|
||||||
|
elif prices_train.empty:
|
||||||
|
raise OperationalException("No prices found, please follow log warning "
|
||||||
|
"instructions to correct the strategy.")
|
||||||
|
|
||||||
prices_train = train_df.filter(ohlc_list, axis=1)
|
|
||||||
if prices_train.empty:
|
|
||||||
raise OperationalException('Reinforcement learning module didnt find the raw prices '
|
|
||||||
'assigned in populate_any_indicators. Please assign them '
|
|
||||||
'with:\n'
|
|
||||||
'informative[f"%-{pair}raw_close"] = informative["close"]\n'
|
|
||||||
'informative[f"%-{pair}raw_open"] = informative["open"]\n'
|
|
||||||
'informative[f"%-{pair}raw_high"] = informative["high"]\n'
|
|
||||||
'informative[f"%-{pair}raw_low"] = informative["low"]\n')
|
|
||||||
prices_train.rename(columns=rename_dict, inplace=True)
|
prices_train.rename(columns=rename_dict, inplace=True)
|
||||||
prices_train.reset_index(drop=True)
|
prices_train.reset_index(drop=True)
|
||||||
|
|
||||||
prices_test = test_df.filter(ohlc_list, axis=1)
|
prices_test = test_df.filter(rename_dict.keys(), axis=1)
|
||||||
prices_test.rename(columns=rename_dict, inplace=True)
|
prices_test.rename(columns=rename_dict, inplace=True)
|
||||||
prices_test.reset_index(drop=True)
|
prices_test.reset_index(drop=True)
|
||||||
|
|
||||||
@ -337,7 +352,7 @@ class BaseReinforcementLearningModel(IFreqaiModel):
|
|||||||
sets a custom reward based on profit and trade duration.
|
sets a custom reward based on profit and trade duration.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def calculate_reward(self, action: int) -> float:
|
def calculate_reward(self, action: int) -> float: # noqa: C901
|
||||||
"""
|
"""
|
||||||
An example reward function. This is the one function that users will likely
|
An example reward function. This is the one function that users will likely
|
||||||
wish to inject their own creativity into.
|
wish to inject their own creativity into.
|
||||||
@ -353,10 +368,19 @@ class BaseReinforcementLearningModel(IFreqaiModel):
|
|||||||
pnl = self.get_unrealized_profit()
|
pnl = self.get_unrealized_profit()
|
||||||
factor = 100.
|
factor = 100.
|
||||||
|
|
||||||
|
# you can use feature values from dataframe
|
||||||
|
rsi_now = self.raw_features[f"%-rsi-period-10_shift-1_{self.pair}_"
|
||||||
|
f"{self.config['timeframe']}"].iloc[self._current_tick]
|
||||||
|
|
||||||
# reward agent for entering trades
|
# reward agent for entering trades
|
||||||
if (action in (Actions.Long_enter.value, Actions.Short_enter.value)
|
if (action in (Actions.Long_enter.value, Actions.Short_enter.value)
|
||||||
and self._position == Positions.Neutral):
|
and self._position == Positions.Neutral):
|
||||||
return 25
|
if rsi_now < 40:
|
||||||
|
factor = 40 / rsi_now
|
||||||
|
else:
|
||||||
|
factor = 1
|
||||||
|
return 25 * factor
|
||||||
|
|
||||||
# discourage agent from not entering trades
|
# discourage agent from not entering trades
|
||||||
if action == Actions.Neutral.value and self._position == Positions.Neutral:
|
if action == Actions.Neutral.value and self._position == Positions.Neutral:
|
||||||
return -1
|
return -1
|
||||||
|
@ -59,7 +59,7 @@ class FreqaiDataDrawer:
|
|||||||
Juha Nykänen @suikula, Wagner Costa @wagnercosta, Johan Vlugt @Jooopieeert
|
Juha Nykänen @suikula, Wagner Costa @wagnercosta, Johan Vlugt @Jooopieeert
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, full_path: Path, config: Config, follow_mode: bool = False):
|
def __init__(self, full_path: Path, config: Config):
|
||||||
|
|
||||||
self.config = config
|
self.config = config
|
||||||
self.freqai_info = config.get("freqai", {})
|
self.freqai_info = config.get("freqai", {})
|
||||||
@ -84,9 +84,6 @@ class FreqaiDataDrawer:
|
|||||||
self.pair_dictionary_path = Path(self.full_path / "pair_dictionary.json")
|
self.pair_dictionary_path = Path(self.full_path / "pair_dictionary.json")
|
||||||
self.global_metadata_path = Path(self.full_path / "global_metadata.json")
|
self.global_metadata_path = Path(self.full_path / "global_metadata.json")
|
||||||
self.metric_tracker_path = Path(self.full_path / "metric_tracker.json")
|
self.metric_tracker_path = Path(self.full_path / "metric_tracker.json")
|
||||||
self.follow_mode = follow_mode
|
|
||||||
if follow_mode:
|
|
||||||
self.create_follower_dict()
|
|
||||||
self.load_drawer_from_disk()
|
self.load_drawer_from_disk()
|
||||||
self.load_historic_predictions_from_disk()
|
self.load_historic_predictions_from_disk()
|
||||||
self.metric_tracker: Dict[str, Dict[str, Dict[str, list]]] = {}
|
self.metric_tracker: Dict[str, Dict[str, Dict[str, list]]] = {}
|
||||||
@ -149,13 +146,8 @@ class FreqaiDataDrawer:
|
|||||||
if exists:
|
if exists:
|
||||||
with open(self.pair_dictionary_path, "r") as fp:
|
with open(self.pair_dictionary_path, "r") as fp:
|
||||||
self.pair_dict = rapidjson.load(fp, number_mode=rapidjson.NM_NATIVE)
|
self.pair_dict = rapidjson.load(fp, number_mode=rapidjson.NM_NATIVE)
|
||||||
elif not self.follow_mode:
|
|
||||||
logger.info("Could not find existing datadrawer, starting from scratch")
|
|
||||||
else:
|
else:
|
||||||
logger.warning(
|
logger.info("Could not find existing datadrawer, starting from scratch")
|
||||||
f"Follower could not find pair_dictionary at {self.full_path} "
|
|
||||||
"sending null values back to strategy"
|
|
||||||
)
|
|
||||||
|
|
||||||
def load_metric_tracker_from_disk(self):
|
def load_metric_tracker_from_disk(self):
|
||||||
"""
|
"""
|
||||||
@ -193,13 +185,8 @@ class FreqaiDataDrawer:
|
|||||||
self.historic_predictions = cloudpickle.load(fp)
|
self.historic_predictions = cloudpickle.load(fp)
|
||||||
logger.warning('FreqAI successfully loaded the backup historical predictions file.')
|
logger.warning('FreqAI successfully loaded the backup historical predictions file.')
|
||||||
|
|
||||||
elif not self.follow_mode:
|
|
||||||
logger.info("Could not find existing historic_predictions, starting from scratch")
|
|
||||||
else:
|
else:
|
||||||
logger.warning(
|
logger.info("Could not find existing historic_predictions, starting from scratch")
|
||||||
f"Follower could not find historic predictions at {self.full_path} "
|
|
||||||
"sending null values back to strategy"
|
|
||||||
)
|
|
||||||
|
|
||||||
return exists
|
return exists
|
||||||
|
|
||||||
@ -248,23 +235,6 @@ class FreqaiDataDrawer:
|
|||||||
rapidjson.dump(metadata, fp, default=self.np_encoder,
|
rapidjson.dump(metadata, fp, default=self.np_encoder,
|
||||||
number_mode=rapidjson.NM_NATIVE)
|
number_mode=rapidjson.NM_NATIVE)
|
||||||
|
|
||||||
def create_follower_dict(self):
|
|
||||||
"""
|
|
||||||
Create or dictionary for each follower to maintain unique persistent prediction targets
|
|
||||||
"""
|
|
||||||
|
|
||||||
whitelist_pairs = self.config.get("exchange", {}).get("pair_whitelist")
|
|
||||||
|
|
||||||
exists = self.follower_dict_path.is_file()
|
|
||||||
|
|
||||||
if exists:
|
|
||||||
logger.info("Found an existing follower dictionary")
|
|
||||||
|
|
||||||
for pair in whitelist_pairs:
|
|
||||||
self.follower_dict[pair] = {}
|
|
||||||
|
|
||||||
self.save_follower_dict_to_disk()
|
|
||||||
|
|
||||||
def np_encoder(self, object):
|
def np_encoder(self, object):
|
||||||
if isinstance(object, np.generic):
|
if isinstance(object, np.generic):
|
||||||
return object.item()
|
return object.item()
|
||||||
@ -282,27 +252,17 @@ class FreqaiDataDrawer:
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
pair_dict = self.pair_dict.get(pair)
|
pair_dict = self.pair_dict.get(pair)
|
||||||
data_path_set = self.pair_dict.get(pair, self.empty_pair_dict).get("data_path", "")
|
# data_path_set = self.pair_dict.get(pair, self.empty_pair_dict).get("data_path", "")
|
||||||
return_null_array = False
|
return_null_array = False
|
||||||
|
|
||||||
if pair_dict:
|
if pair_dict:
|
||||||
model_filename = pair_dict["model_filename"]
|
model_filename = pair_dict["model_filename"]
|
||||||
trained_timestamp = pair_dict["trained_timestamp"]
|
trained_timestamp = pair_dict["trained_timestamp"]
|
||||||
elif not self.follow_mode:
|
else:
|
||||||
self.pair_dict[pair] = self.empty_pair_dict.copy()
|
self.pair_dict[pair] = self.empty_pair_dict.copy()
|
||||||
model_filename = ""
|
model_filename = ""
|
||||||
trained_timestamp = 0
|
trained_timestamp = 0
|
||||||
|
|
||||||
if not data_path_set and self.follow_mode:
|
|
||||||
logger.warning(
|
|
||||||
f"Follower could not find current pair {pair} in "
|
|
||||||
f"pair_dictionary at path {self.full_path}, sending null values "
|
|
||||||
"back to strategy."
|
|
||||||
)
|
|
||||||
trained_timestamp = 0
|
|
||||||
model_filename = ''
|
|
||||||
return_null_array = True
|
|
||||||
|
|
||||||
return model_filename, trained_timestamp, return_null_array
|
return model_filename, trained_timestamp, return_null_array
|
||||||
|
|
||||||
def set_pair_dict_info(self, metadata: dict) -> None:
|
def set_pair_dict_info(self, metadata: dict) -> None:
|
||||||
@ -311,7 +271,6 @@ class FreqaiDataDrawer:
|
|||||||
return
|
return
|
||||||
else:
|
else:
|
||||||
self.pair_dict[metadata["pair"]] = self.empty_pair_dict.copy()
|
self.pair_dict[metadata["pair"]] = self.empty_pair_dict.copy()
|
||||||
|
|
||||||
return
|
return
|
||||||
|
|
||||||
def set_initial_return_values(self, pair: str, pred_df: DataFrame) -> None:
|
def set_initial_return_values(self, pair: str, pred_df: DataFrame) -> None:
|
||||||
|
@ -1,10 +1,11 @@
|
|||||||
import copy
|
import copy
|
||||||
|
import inspect
|
||||||
import logging
|
import logging
|
||||||
import shutil
|
import shutil
|
||||||
from datetime import datetime, timezone
|
from datetime import datetime, timezone
|
||||||
from math import cos, sin
|
from math import cos, sin
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Any, Dict, List, Tuple
|
from typing import Any, Dict, List, Optional, Tuple
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import numpy.typing as npt
|
import numpy.typing as npt
|
||||||
@ -23,6 +24,7 @@ from freqtrade.constants import Config
|
|||||||
from freqtrade.data.converter import reduce_dataframe_footprint
|
from freqtrade.data.converter import reduce_dataframe_footprint
|
||||||
from freqtrade.exceptions import OperationalException
|
from freqtrade.exceptions import OperationalException
|
||||||
from freqtrade.exchange import timeframe_to_seconds
|
from freqtrade.exchange import timeframe_to_seconds
|
||||||
|
from freqtrade.strategy import merge_informative_pair
|
||||||
from freqtrade.strategy.interface import IStrategy
|
from freqtrade.strategy.interface import IStrategy
|
||||||
|
|
||||||
|
|
||||||
@ -110,7 +112,7 @@ class FreqaiDataKitchen:
|
|||||||
def set_paths(
|
def set_paths(
|
||||||
self,
|
self,
|
||||||
pair: str,
|
pair: str,
|
||||||
trained_timestamp: int = None,
|
trained_timestamp: Optional[int] = None,
|
||||||
) -> None:
|
) -> None:
|
||||||
"""
|
"""
|
||||||
Set the paths to the data for the present coin/botloop
|
Set the paths to the data for the present coin/botloop
|
||||||
@ -1145,9 +1147,9 @@ class FreqaiDataKitchen:
|
|||||||
|
|
||||||
for pair in pairs:
|
for pair in pairs:
|
||||||
pair = pair.replace(':', '') # lightgbm doesnt like colons
|
pair = pair.replace(':', '') # lightgbm doesnt like colons
|
||||||
valid_strs = [f"%-{pair}", f"%{pair}", f"%_{pair}"]
|
pair_cols = [col for col in dataframe.columns if col.startswith("%")
|
||||||
pair_cols = [col for col in dataframe.columns if
|
and f"{pair}_" in col]
|
||||||
any(substr in col for substr in valid_strs)]
|
|
||||||
if pair_cols:
|
if pair_cols:
|
||||||
pair_cols.insert(0, 'date')
|
pair_cols.insert(0, 'date')
|
||||||
corr_dataframes[pair] = dataframe.filter(pair_cols, axis=1)
|
corr_dataframes[pair] = dataframe.filter(pair_cols, axis=1)
|
||||||
@ -1176,6 +1178,105 @@ class FreqaiDataKitchen:
|
|||||||
|
|
||||||
return dataframe
|
return dataframe
|
||||||
|
|
||||||
|
def get_pair_data_for_features(self,
|
||||||
|
pair: str,
|
||||||
|
tf: str,
|
||||||
|
strategy: IStrategy,
|
||||||
|
corr_dataframes: dict = {},
|
||||||
|
base_dataframes: dict = {},
|
||||||
|
is_corr_pairs: bool = False) -> DataFrame:
|
||||||
|
"""
|
||||||
|
Get the data for the pair. If it's not in the dictionary, get it from the data provider
|
||||||
|
:param pair: str = pair to get data for
|
||||||
|
:param tf: str = timeframe to get data for
|
||||||
|
:param strategy: IStrategy = user defined strategy object
|
||||||
|
:param corr_dataframes: dict = dict containing the df pair dataframes
|
||||||
|
(for user defined timeframes)
|
||||||
|
:param base_dataframes: dict = dict containing the current pair dataframes
|
||||||
|
(for user defined timeframes)
|
||||||
|
:param is_corr_pairs: bool = whether the pair is a corr pair or not
|
||||||
|
:return: dataframe = dataframe containing the pair data
|
||||||
|
"""
|
||||||
|
if is_corr_pairs:
|
||||||
|
dataframe = corr_dataframes[pair][tf]
|
||||||
|
if not dataframe.empty:
|
||||||
|
return dataframe
|
||||||
|
else:
|
||||||
|
dataframe = strategy.dp.get_pair_dataframe(pair=pair, timeframe=tf)
|
||||||
|
return dataframe
|
||||||
|
else:
|
||||||
|
dataframe = base_dataframes[tf]
|
||||||
|
if not dataframe.empty:
|
||||||
|
return dataframe
|
||||||
|
else:
|
||||||
|
dataframe = strategy.dp.get_pair_dataframe(pair=pair, timeframe=tf)
|
||||||
|
return dataframe
|
||||||
|
|
||||||
|
def merge_features(self, df_main: DataFrame, df_to_merge: DataFrame,
|
||||||
|
tf: str, timeframe_inf: str, suffix: str) -> DataFrame:
|
||||||
|
"""
|
||||||
|
Merge the features of the dataframe and remove HLCV and date added columns
|
||||||
|
:param df_main: DataFrame = main dataframe
|
||||||
|
:param df_to_merge: DataFrame = dataframe to merge
|
||||||
|
:param tf: str = timeframe of the main dataframe
|
||||||
|
:param timeframe_inf: str = timeframe of the dataframe to merge
|
||||||
|
:param suffix: str = suffix to add to the columns of the dataframe to merge
|
||||||
|
:return: dataframe = merged dataframe
|
||||||
|
"""
|
||||||
|
dataframe = merge_informative_pair(df_main, df_to_merge, tf, timeframe_inf=timeframe_inf,
|
||||||
|
append_timeframe=False, suffix=suffix, ffill=True)
|
||||||
|
skip_columns = [
|
||||||
|
(f"{s}_{suffix}") for s in ["date", "open", "high", "low", "close", "volume"]
|
||||||
|
]
|
||||||
|
dataframe = dataframe.drop(columns=skip_columns)
|
||||||
|
return dataframe
|
||||||
|
|
||||||
|
def populate_features(self, dataframe: DataFrame, pair: str, strategy: IStrategy,
|
||||||
|
corr_dataframes: dict, base_dataframes: dict,
|
||||||
|
is_corr_pairs: bool = False) -> DataFrame:
|
||||||
|
"""
|
||||||
|
Use the user defined strategy functions for populating features
|
||||||
|
:param dataframe: DataFrame = dataframe to populate
|
||||||
|
:param pair: str = pair to populate
|
||||||
|
:param strategy: IStrategy = user defined strategy object
|
||||||
|
:param corr_dataframes: dict = dict containing the df pair dataframes
|
||||||
|
:param base_dataframes: dict = dict containing the current pair dataframes
|
||||||
|
:param is_corr_pairs: bool = whether the pair is a corr pair or not
|
||||||
|
:return: dataframe = populated dataframe
|
||||||
|
"""
|
||||||
|
tfs: List[str] = self.freqai_config["feature_parameters"].get("include_timeframes")
|
||||||
|
|
||||||
|
for tf in tfs:
|
||||||
|
metadata = {"pair": pair, "tf": tf}
|
||||||
|
informative_df = self.get_pair_data_for_features(
|
||||||
|
pair, tf, strategy, corr_dataframes, base_dataframes, is_corr_pairs)
|
||||||
|
informative_copy = informative_df.copy()
|
||||||
|
|
||||||
|
for t in self.freqai_config["feature_parameters"]["indicator_periods_candles"]:
|
||||||
|
df_features = strategy.feature_engineering_expand_all(
|
||||||
|
informative_copy.copy(), t, metadata=metadata)
|
||||||
|
suffix = f"{t}"
|
||||||
|
informative_df = self.merge_features(informative_df, df_features, tf, tf, suffix)
|
||||||
|
|
||||||
|
generic_df = strategy.feature_engineering_expand_basic(
|
||||||
|
informative_copy.copy(), metadata=metadata)
|
||||||
|
suffix = "gen"
|
||||||
|
|
||||||
|
informative_df = self.merge_features(informative_df, generic_df, tf, tf, suffix)
|
||||||
|
|
||||||
|
indicators = [col for col in informative_df if col.startswith("%")]
|
||||||
|
for n in range(self.freqai_config["feature_parameters"]["include_shifted_candles"] + 1):
|
||||||
|
if n == 0:
|
||||||
|
continue
|
||||||
|
df_shift = informative_df[indicators].shift(n)
|
||||||
|
df_shift = df_shift.add_suffix("_shift-" + str(n))
|
||||||
|
informative_df = pd.concat((informative_df, df_shift), axis=1)
|
||||||
|
|
||||||
|
dataframe = self.merge_features(dataframe.copy(), informative_df,
|
||||||
|
self.config["timeframe"], tf, f'{pair}_{tf}')
|
||||||
|
|
||||||
|
return dataframe
|
||||||
|
|
||||||
def use_strategy_to_populate_indicators(
|
def use_strategy_to_populate_indicators(
|
||||||
self,
|
self,
|
||||||
strategy: IStrategy,
|
strategy: IStrategy,
|
||||||
@ -1188,7 +1289,87 @@ class FreqaiDataKitchen:
|
|||||||
"""
|
"""
|
||||||
Use the user defined strategy for populating indicators during retrain
|
Use the user defined strategy for populating indicators during retrain
|
||||||
:param strategy: IStrategy = user defined strategy object
|
:param strategy: IStrategy = user defined strategy object
|
||||||
:param corr_dataframes: dict = dict containing the informative pair dataframes
|
:param corr_dataframes: dict = dict containing the df pair dataframes
|
||||||
|
(for user defined timeframes)
|
||||||
|
:param base_dataframes: dict = dict containing the current pair dataframes
|
||||||
|
(for user defined timeframes)
|
||||||
|
:param pair: str = pair to populate
|
||||||
|
:param prediction_dataframe: DataFrame = dataframe containing the pair data
|
||||||
|
used for prediction
|
||||||
|
:param do_corr_pairs: bool = whether to populate corr pairs or not
|
||||||
|
:return:
|
||||||
|
dataframe: DataFrame = dataframe containing populated indicators
|
||||||
|
"""
|
||||||
|
|
||||||
|
# this is a hack to check if the user is using the populate_any_indicators function
|
||||||
|
new_version = inspect.getsource(strategy.populate_any_indicators) == (
|
||||||
|
inspect.getsource(IStrategy.populate_any_indicators))
|
||||||
|
|
||||||
|
if new_version:
|
||||||
|
tfs: List[str] = self.freqai_config["feature_parameters"].get("include_timeframes")
|
||||||
|
pairs: List[str] = self.freqai_config["feature_parameters"].get(
|
||||||
|
"include_corr_pairlist", [])
|
||||||
|
|
||||||
|
for tf in tfs:
|
||||||
|
if tf not in base_dataframes:
|
||||||
|
base_dataframes[tf] = pd.DataFrame()
|
||||||
|
for p in pairs:
|
||||||
|
if p not in corr_dataframes:
|
||||||
|
corr_dataframes[p] = {}
|
||||||
|
if tf not in corr_dataframes[p]:
|
||||||
|
corr_dataframes[p][tf] = pd.DataFrame()
|
||||||
|
|
||||||
|
if not prediction_dataframe.empty:
|
||||||
|
dataframe = prediction_dataframe.copy()
|
||||||
|
else:
|
||||||
|
dataframe = base_dataframes[self.config["timeframe"]].copy()
|
||||||
|
|
||||||
|
corr_pairs: List[str] = self.freqai_config["feature_parameters"].get(
|
||||||
|
"include_corr_pairlist", [])
|
||||||
|
dataframe = self.populate_features(dataframe.copy(), pair, strategy,
|
||||||
|
corr_dataframes, base_dataframes)
|
||||||
|
metadata = {"pair": pair}
|
||||||
|
dataframe = strategy.feature_engineering_standard(dataframe.copy(), metadata=metadata)
|
||||||
|
# ensure corr pairs are always last
|
||||||
|
for corr_pair in corr_pairs:
|
||||||
|
if pair == corr_pair:
|
||||||
|
continue # dont repeat anything from whitelist
|
||||||
|
if corr_pairs and do_corr_pairs:
|
||||||
|
dataframe = self.populate_features(dataframe.copy(), corr_pair, strategy,
|
||||||
|
corr_dataframes, base_dataframes, True)
|
||||||
|
|
||||||
|
dataframe = strategy.set_freqai_targets(dataframe.copy(), metadata=metadata)
|
||||||
|
|
||||||
|
self.get_unique_classes_from_labels(dataframe)
|
||||||
|
|
||||||
|
dataframe = self.remove_special_chars_from_feature_names(dataframe)
|
||||||
|
|
||||||
|
if self.config.get('reduce_df_footprint', False):
|
||||||
|
dataframe = reduce_dataframe_footprint(dataframe)
|
||||||
|
|
||||||
|
return dataframe
|
||||||
|
|
||||||
|
else:
|
||||||
|
# the user is using the populate_any_indicators functions which is deprecated
|
||||||
|
|
||||||
|
df = self.use_strategy_to_populate_indicators_old_version(
|
||||||
|
strategy, corr_dataframes, base_dataframes, pair,
|
||||||
|
prediction_dataframe, do_corr_pairs)
|
||||||
|
return df
|
||||||
|
|
||||||
|
def use_strategy_to_populate_indicators_old_version(
|
||||||
|
self,
|
||||||
|
strategy: IStrategy,
|
||||||
|
corr_dataframes: dict = {},
|
||||||
|
base_dataframes: dict = {},
|
||||||
|
pair: str = "",
|
||||||
|
prediction_dataframe: DataFrame = pd.DataFrame(),
|
||||||
|
do_corr_pairs: bool = True,
|
||||||
|
) -> DataFrame:
|
||||||
|
"""
|
||||||
|
Use the user defined strategy for populating indicators during retrain
|
||||||
|
:param strategy: IStrategy = user defined strategy object
|
||||||
|
:param corr_dataframes: dict = dict containing the df pair dataframes
|
||||||
(for user defined timeframes)
|
(for user defined timeframes)
|
||||||
:param base_dataframes: dict = dict containing the current pair dataframes
|
:param base_dataframes: dict = dict containing the current pair dataframes
|
||||||
(for user defined timeframes)
|
(for user defined timeframes)
|
||||||
|
@ -1,3 +1,4 @@
|
|||||||
|
import inspect
|
||||||
import logging
|
import logging
|
||||||
import threading
|
import threading
|
||||||
import time
|
import time
|
||||||
@ -65,12 +66,11 @@ class IFreqaiModel(ABC):
|
|||||||
self.retrain = False
|
self.retrain = False
|
||||||
self.first = True
|
self.first = True
|
||||||
self.set_full_path()
|
self.set_full_path()
|
||||||
self.follow_mode: bool = self.freqai_info.get("follow_mode", False)
|
|
||||||
self.save_backtest_models: bool = self.freqai_info.get("save_backtest_models", True)
|
self.save_backtest_models: bool = self.freqai_info.get("save_backtest_models", True)
|
||||||
if self.save_backtest_models:
|
if self.save_backtest_models:
|
||||||
logger.info('Backtesting module configured to save all models.')
|
logger.info('Backtesting module configured to save all models.')
|
||||||
|
|
||||||
self.dd = FreqaiDataDrawer(Path(self.full_path), self.config, self.follow_mode)
|
self.dd = FreqaiDataDrawer(Path(self.full_path), self.config)
|
||||||
# set current candle to arbitrary historical date
|
# set current candle to arbitrary historical date
|
||||||
self.current_candle: datetime = datetime.fromtimestamp(637887600, tz=timezone.utc)
|
self.current_candle: datetime = datetime.fromtimestamp(637887600, tz=timezone.utc)
|
||||||
self.dd.current_candle = self.current_candle
|
self.dd.current_candle = self.current_candle
|
||||||
@ -106,6 +106,8 @@ class IFreqaiModel(ABC):
|
|||||||
self.max_system_threads = max(int(psutil.cpu_count() * 2 - 2), 1)
|
self.max_system_threads = max(int(psutil.cpu_count() * 2 - 2), 1)
|
||||||
self.can_short = True # overridden in start() with strategy.can_short
|
self.can_short = True # overridden in start() with strategy.can_short
|
||||||
|
|
||||||
|
self.warned_deprecated_populate_any_indicators = False
|
||||||
|
|
||||||
record_params(config, self.full_path)
|
record_params(config, self.full_path)
|
||||||
|
|
||||||
def __getstate__(self):
|
def __getstate__(self):
|
||||||
@ -136,6 +138,9 @@ class IFreqaiModel(ABC):
|
|||||||
self.data_provider = strategy.dp
|
self.data_provider = strategy.dp
|
||||||
self.can_short = strategy.can_short
|
self.can_short = strategy.can_short
|
||||||
|
|
||||||
|
# check if the strategy has deprecated populate_any_indicators function
|
||||||
|
self.check_deprecated_populate_any_indicators(strategy)
|
||||||
|
|
||||||
if self.live:
|
if self.live:
|
||||||
self.inference_timer('start')
|
self.inference_timer('start')
|
||||||
self.dk = FreqaiDataKitchen(self.config, self.live, metadata["pair"])
|
self.dk = FreqaiDataKitchen(self.config, self.live, metadata["pair"])
|
||||||
@ -147,14 +152,11 @@ class IFreqaiModel(ABC):
|
|||||||
# (backtest window, i.e. window immediately following the training window).
|
# (backtest window, i.e. window immediately following the training window).
|
||||||
# FreqAI slides the window and sequentially builds the backtesting results before returning
|
# FreqAI slides the window and sequentially builds the backtesting results before returning
|
||||||
# the concatenated results for the full backtesting period back to the strategy.
|
# the concatenated results for the full backtesting period back to the strategy.
|
||||||
elif not self.follow_mode:
|
else:
|
||||||
self.dk = FreqaiDataKitchen(self.config, self.live, metadata["pair"])
|
self.dk = FreqaiDataKitchen(self.config, self.live, metadata["pair"])
|
||||||
dataframe = self.dk.use_strategy_to_populate_indicators(
|
|
||||||
strategy, prediction_dataframe=dataframe, pair=metadata["pair"]
|
|
||||||
)
|
|
||||||
if not self.config.get("freqai_backtest_live_models", False):
|
if not self.config.get("freqai_backtest_live_models", False):
|
||||||
logger.info(f"Training {len(self.dk.training_timeranges)} timeranges")
|
logger.info(f"Training {len(self.dk.training_timeranges)} timeranges")
|
||||||
dk = self.start_backtesting(dataframe, metadata, self.dk)
|
dk = self.start_backtesting(dataframe, metadata, self.dk, strategy)
|
||||||
dataframe = dk.remove_features_from_df(dk.return_dataframe)
|
dataframe = dk.remove_features_from_df(dk.return_dataframe)
|
||||||
else:
|
else:
|
||||||
logger.info(
|
logger.info(
|
||||||
@ -255,7 +257,7 @@ class IFreqaiModel(ABC):
|
|||||||
self.dd.save_metric_tracker_to_disk()
|
self.dd.save_metric_tracker_to_disk()
|
||||||
|
|
||||||
def start_backtesting(
|
def start_backtesting(
|
||||||
self, dataframe: DataFrame, metadata: dict, dk: FreqaiDataKitchen
|
self, dataframe: DataFrame, metadata: dict, dk: FreqaiDataKitchen, strategy: IStrategy
|
||||||
) -> FreqaiDataKitchen:
|
) -> FreqaiDataKitchen:
|
||||||
"""
|
"""
|
||||||
The main broad execution for backtesting. For backtesting, each pair enters and then gets
|
The main broad execution for backtesting. For backtesting, each pair enters and then gets
|
||||||
@ -267,19 +269,22 @@ class IFreqaiModel(ABC):
|
|||||||
:param dataframe: DataFrame = strategy passed dataframe
|
:param dataframe: DataFrame = strategy passed dataframe
|
||||||
:param metadata: Dict = pair metadata
|
:param metadata: Dict = pair metadata
|
||||||
:param dk: FreqaiDataKitchen = Data management/analysis tool associated to present pair only
|
:param dk: FreqaiDataKitchen = Data management/analysis tool associated to present pair only
|
||||||
|
:param strategy: Strategy to train on
|
||||||
:return:
|
:return:
|
||||||
FreqaiDataKitchen = Data management/analysis tool associated to present pair only
|
FreqaiDataKitchen = Data management/analysis tool associated to present pair only
|
||||||
"""
|
"""
|
||||||
|
|
||||||
self.pair_it += 1
|
self.pair_it += 1
|
||||||
train_it = 0
|
train_it = 0
|
||||||
|
pair = metadata["pair"]
|
||||||
|
populate_indicators = True
|
||||||
|
check_features = True
|
||||||
# Loop enforcing the sliding window training/backtesting paradigm
|
# Loop enforcing the sliding window training/backtesting paradigm
|
||||||
# tr_train is the training time range e.g. 1 historical month
|
# tr_train is the training time range e.g. 1 historical month
|
||||||
# tr_backtest is the backtesting time range e.g. the week directly
|
# tr_backtest is the backtesting time range e.g. the week directly
|
||||||
# following tr_train. Both of these windows slide through the
|
# following tr_train. Both of these windows slide through the
|
||||||
# entire backtest
|
# entire backtest
|
||||||
for tr_train, tr_backtest in zip(dk.training_timeranges, dk.backtesting_timeranges):
|
for tr_train, tr_backtest in zip(dk.training_timeranges, dk.backtesting_timeranges):
|
||||||
pair = metadata["pair"]
|
|
||||||
(_, _, _) = self.dd.get_pair_dict_info(pair)
|
(_, _, _) = self.dd.get_pair_dict_info(pair)
|
||||||
train_it += 1
|
train_it += 1
|
||||||
total_trains = len(dk.backtesting_timeranges)
|
total_trains = len(dk.backtesting_timeranges)
|
||||||
@ -301,18 +306,44 @@ class IFreqaiModel(ABC):
|
|||||||
dk.set_new_model_names(pair, timestamp_model_id)
|
dk.set_new_model_names(pair, timestamp_model_id)
|
||||||
|
|
||||||
if dk.check_if_backtest_prediction_is_valid(len_backtest_df):
|
if dk.check_if_backtest_prediction_is_valid(len_backtest_df):
|
||||||
self.dd.load_metadata(dk)
|
if check_features:
|
||||||
dk.find_features(dataframe)
|
self.dd.load_metadata(dk)
|
||||||
self.check_if_feature_list_matches_strategy(dk)
|
dataframe_dummy_features = self.dk.use_strategy_to_populate_indicators(
|
||||||
|
strategy, prediction_dataframe=dataframe.tail(1), pair=metadata["pair"]
|
||||||
|
)
|
||||||
|
dk.find_features(dataframe_dummy_features)
|
||||||
|
self.check_if_feature_list_matches_strategy(dk)
|
||||||
|
check_features = False
|
||||||
append_df = dk.get_backtesting_prediction()
|
append_df = dk.get_backtesting_prediction()
|
||||||
dk.append_predictions(append_df)
|
dk.append_predictions(append_df)
|
||||||
else:
|
else:
|
||||||
dataframe_train = dk.slice_dataframe(tr_train, dataframe)
|
if populate_indicators:
|
||||||
dataframe_backtest = dk.slice_dataframe(tr_backtest, dataframe)
|
dataframe = self.dk.use_strategy_to_populate_indicators(
|
||||||
|
strategy, prediction_dataframe=dataframe, pair=metadata["pair"]
|
||||||
|
)
|
||||||
|
populate_indicators = False
|
||||||
|
|
||||||
|
dataframe_base_train = dataframe.loc[dataframe["date"] < tr_train.stopdt, :]
|
||||||
|
dataframe_base_train = strategy.set_freqai_targets(
|
||||||
|
dataframe_base_train, metadata=metadata)
|
||||||
|
dataframe_base_backtest = dataframe.loc[dataframe["date"] < tr_backtest.stopdt, :]
|
||||||
|
dataframe_base_backtest = strategy.set_freqai_targets(
|
||||||
|
dataframe_base_backtest, metadata=metadata)
|
||||||
|
|
||||||
|
dataframe_train = dk.slice_dataframe(tr_train, dataframe_base_train)
|
||||||
|
dataframe_backtest = dk.slice_dataframe(tr_backtest, dataframe_base_backtest)
|
||||||
|
|
||||||
if not self.model_exists(dk):
|
if not self.model_exists(dk):
|
||||||
dk.find_features(dataframe_train)
|
dk.find_features(dataframe_train)
|
||||||
dk.find_labels(dataframe_train)
|
dk.find_labels(dataframe_train)
|
||||||
self.model = self.train(dataframe_train, pair, dk)
|
|
||||||
|
try:
|
||||||
|
self.model = self.train(dataframe_train, pair, dk)
|
||||||
|
except Exception as msg:
|
||||||
|
logger.warning(
|
||||||
|
f"Training {pair} raised exception {msg.__class__.__name__}. "
|
||||||
|
f"Message: {msg}, skipping.")
|
||||||
|
|
||||||
self.dd.pair_dict[pair]["trained_timestamp"] = int(
|
self.dd.pair_dict[pair]["trained_timestamp"] = int(
|
||||||
tr_train.stopts)
|
tr_train.stopts)
|
||||||
if self.plot_features:
|
if self.plot_features:
|
||||||
@ -350,46 +381,27 @@ class IFreqaiModel(ABC):
|
|||||||
dk: FreqaiDataKitchen = Data management/analysis tool associated to present pair only
|
dk: FreqaiDataKitchen = Data management/analysis tool associated to present pair only
|
||||||
"""
|
"""
|
||||||
|
|
||||||
# update follower
|
|
||||||
if self.follow_mode:
|
|
||||||
self.dd.update_follower_metadata()
|
|
||||||
|
|
||||||
# get the model metadata associated with the current pair
|
# get the model metadata associated with the current pair
|
||||||
(_, trained_timestamp, return_null_array) = self.dd.get_pair_dict_info(metadata["pair"])
|
(_, trained_timestamp, return_null_array) = self.dd.get_pair_dict_info(metadata["pair"])
|
||||||
|
|
||||||
# if the metadata doesn't exist, the follower returns null arrays to strategy
|
|
||||||
if self.follow_mode and return_null_array:
|
|
||||||
logger.info("Returning null array from follower to strategy")
|
|
||||||
self.dd.return_null_values_to_strategy(dataframe, dk)
|
|
||||||
return dk
|
|
||||||
|
|
||||||
# append the historic data once per round
|
# append the historic data once per round
|
||||||
if self.dd.historic_data:
|
if self.dd.historic_data:
|
||||||
self.dd.update_historic_data(strategy, dk)
|
self.dd.update_historic_data(strategy, dk)
|
||||||
logger.debug(f'Updating historic data on pair {metadata["pair"]}')
|
logger.debug(f'Updating historic data on pair {metadata["pair"]}')
|
||||||
self.track_current_candle()
|
self.track_current_candle()
|
||||||
|
|
||||||
if not self.follow_mode:
|
(_, new_trained_timerange, data_load_timerange) = dk.check_if_new_training_required(
|
||||||
|
trained_timestamp
|
||||||
|
)
|
||||||
|
dk.set_paths(metadata["pair"], new_trained_timerange.stopts)
|
||||||
|
|
||||||
(_, new_trained_timerange, data_load_timerange) = dk.check_if_new_training_required(
|
# load candle history into memory if it is not yet.
|
||||||
trained_timestamp
|
if not self.dd.historic_data:
|
||||||
)
|
self.dd.load_all_pair_histories(data_load_timerange, dk)
|
||||||
dk.set_paths(metadata["pair"], new_trained_timerange.stopts)
|
|
||||||
|
|
||||||
# load candle history into memory if it is not yet.
|
if not self.scanning:
|
||||||
if not self.dd.historic_data:
|
self.scanning = True
|
||||||
self.dd.load_all_pair_histories(data_load_timerange, dk)
|
self.start_scanning(strategy)
|
||||||
|
|
||||||
if not self.scanning:
|
|
||||||
self.scanning = True
|
|
||||||
self.start_scanning(strategy)
|
|
||||||
|
|
||||||
elif self.follow_mode:
|
|
||||||
dk.set_paths(metadata["pair"], trained_timestamp)
|
|
||||||
logger.info(
|
|
||||||
"FreqAI instance set to follow_mode, finding existing pair "
|
|
||||||
f"using { self.identifier }"
|
|
||||||
)
|
|
||||||
|
|
||||||
# load the model and associated data into the data kitchen
|
# load the model and associated data into the data kitchen
|
||||||
self.model = self.dd.load_data(metadata["pair"], dk)
|
self.model = self.dd.load_data(metadata["pair"], dk)
|
||||||
@ -913,9 +925,28 @@ class IFreqaiModel(ABC):
|
|||||||
dk.return_dataframe = dk.return_dataframe.drop(columns=list(columns_to_drop))
|
dk.return_dataframe = dk.return_dataframe.drop(columns=list(columns_to_drop))
|
||||||
dk.return_dataframe = pd.merge(
|
dk.return_dataframe = pd.merge(
|
||||||
dk.return_dataframe, saved_dataframe, how='left', left_on='date', right_on="date_pred")
|
dk.return_dataframe, saved_dataframe, how='left', left_on='date', right_on="date_pred")
|
||||||
# dk.return_dataframe = dk.return_dataframe[saved_dataframe.columns].fillna(0)
|
|
||||||
return dk
|
return dk
|
||||||
|
|
||||||
|
def check_deprecated_populate_any_indicators(self, strategy: IStrategy):
|
||||||
|
"""
|
||||||
|
Check and warn if the deprecated populate_any_indicators function is used.
|
||||||
|
:param strategy: strategy object
|
||||||
|
"""
|
||||||
|
|
||||||
|
if not self.warned_deprecated_populate_any_indicators:
|
||||||
|
self.warned_deprecated_populate_any_indicators = True
|
||||||
|
old_version = inspect.getsource(strategy.populate_any_indicators) != (
|
||||||
|
inspect.getsource(IStrategy.populate_any_indicators))
|
||||||
|
|
||||||
|
if old_version:
|
||||||
|
logger.warning("DEPRECATION WARNING: "
|
||||||
|
"You are using the deprecated populate_any_indicators function. "
|
||||||
|
"This function will raise an error on March 1 2023. "
|
||||||
|
"Please update your strategy by using "
|
||||||
|
"the new feature_engineering functions. See \n"
|
||||||
|
"https://www.freqtrade.io/en/latest/freqai-feature-engineering/"
|
||||||
|
"for details.")
|
||||||
|
|
||||||
# Following methods which are overridden by user made prediction models.
|
# Following methods which are overridden by user made prediction models.
|
||||||
# See freqai/prediction_models/CatboostPredictionModel.py for an example.
|
# See freqai/prediction_models/CatboostPredictionModel.py for an example.
|
||||||
|
|
||||||
|
@ -34,7 +34,7 @@ class ReinforcementLearner_multiproc(ReinforcementLearner):
|
|||||||
train_df = data_dictionary["train_features"]
|
train_df = data_dictionary["train_features"]
|
||||||
test_df = data_dictionary["test_features"]
|
test_df = data_dictionary["test_features"]
|
||||||
|
|
||||||
env_info = self.pack_env_dict()
|
env_info = self.pack_env_dict(dk.pair)
|
||||||
|
|
||||||
env_id = "train_env"
|
env_id = "train_env"
|
||||||
self.train_env = SubprocVecEnv([make_env(self.MyRLEnv, env_id, i, 1,
|
self.train_env = SubprocVecEnv([make_env(self.MyRLEnv, env_id, i, 1,
|
||||||
|
@ -33,6 +33,7 @@ from freqtrade.rpc.external_message_consumer import ExternalMessageConsumer
|
|||||||
from freqtrade.strategy.interface import IStrategy
|
from freqtrade.strategy.interface import IStrategy
|
||||||
from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper
|
from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper
|
||||||
from freqtrade.util import FtPrecise
|
from freqtrade.util import FtPrecise
|
||||||
|
from freqtrade.util.binance_mig import migrate_binance_futures_names
|
||||||
from freqtrade.wallets import Wallets
|
from freqtrade.wallets import Wallets
|
||||||
|
|
||||||
|
|
||||||
@ -177,6 +178,8 @@ class FreqtradeBot(LoggingMixin):
|
|||||||
Called on startup and after reloading the bot - triggers notifications and
|
Called on startup and after reloading the bot - triggers notifications and
|
||||||
performs startup tasks
|
performs startup tasks
|
||||||
"""
|
"""
|
||||||
|
migrate_binance_futures_names(self.config)
|
||||||
|
|
||||||
self.rpc.startup_messages(self.config, self.pairlists, self.protections)
|
self.rpc.startup_messages(self.config, self.pairlists, self.protections)
|
||||||
# Update older trades with precision and precision mode
|
# Update older trades with precision and precision mode
|
||||||
self.startup_backpopulate_precision()
|
self.startup_backpopulate_precision()
|
||||||
@ -341,7 +344,15 @@ class FreqtradeBot(LoggingMixin):
|
|||||||
try:
|
try:
|
||||||
fo = self.exchange.fetch_order_or_stoploss_order(order.order_id, order.ft_pair,
|
fo = self.exchange.fetch_order_or_stoploss_order(order.order_id, order.ft_pair,
|
||||||
order.ft_order_side == 'stoploss')
|
order.ft_order_side == 'stoploss')
|
||||||
|
if not order.trade:
|
||||||
|
# This should not happen, but it does if trades were deleted manually.
|
||||||
|
# This can only incur on sqlite, which doesn't enforce foreign constraints.
|
||||||
|
logger.warning(
|
||||||
|
f"Order {order.order_id} has no trade attached. "
|
||||||
|
"This may suggest a database corruption. "
|
||||||
|
f"The expected trade ID is {order.ft_trade_id}. Ignoring this order."
|
||||||
|
)
|
||||||
|
continue
|
||||||
self.update_trade_state(order.trade, order.order_id, fo,
|
self.update_trade_state(order.trade, order.order_id, fo,
|
||||||
stoploss_order=(order.ft_order_side == 'stoploss'))
|
stoploss_order=(order.ft_order_side == 'stoploss'))
|
||||||
|
|
||||||
@ -352,7 +363,7 @@ class FreqtradeBot(LoggingMixin):
|
|||||||
"Order is older than 5 days. Assuming order was fully cancelled.")
|
"Order is older than 5 days. Assuming order was fully cancelled.")
|
||||||
fo = order.to_ccxt_object()
|
fo = order.to_ccxt_object()
|
||||||
fo['status'] = 'canceled'
|
fo['status'] = 'canceled'
|
||||||
self.handle_timedout_order(fo, order.trade)
|
self.handle_cancel_order(fo, order.trade, constants.CANCEL_REASON['TIMEOUT'])
|
||||||
|
|
||||||
except ExchangeError as e:
|
except ExchangeError as e:
|
||||||
|
|
||||||
@ -374,7 +385,7 @@ class FreqtradeBot(LoggingMixin):
|
|||||||
for trade in trades:
|
for trade in trades:
|
||||||
if not trade.is_open and not trade.fee_updated(trade.exit_side):
|
if not trade.is_open and not trade.fee_updated(trade.exit_side):
|
||||||
# Get sell fee
|
# Get sell fee
|
||||||
order = trade.select_order(trade.exit_side, False)
|
order = trade.select_order(trade.exit_side, False, only_filled=True)
|
||||||
if not order:
|
if not order:
|
||||||
order = trade.select_order('stoploss', False)
|
order = trade.select_order('stoploss', False)
|
||||||
if order:
|
if order:
|
||||||
@ -390,7 +401,7 @@ class FreqtradeBot(LoggingMixin):
|
|||||||
for trade in trades:
|
for trade in trades:
|
||||||
with self._exit_lock:
|
with self._exit_lock:
|
||||||
if trade.is_open and not trade.fee_updated(trade.entry_side):
|
if trade.is_open and not trade.fee_updated(trade.entry_side):
|
||||||
order = trade.select_order(trade.entry_side, False)
|
order = trade.select_order(trade.entry_side, False, only_filled=True)
|
||||||
open_order = trade.select_order(trade.entry_side, True)
|
open_order = trade.select_order(trade.entry_side, True)
|
||||||
if order and open_order is None:
|
if order and open_order is None:
|
||||||
logger.info(
|
logger.info(
|
||||||
@ -720,7 +731,7 @@ class FreqtradeBot(LoggingMixin):
|
|||||||
time_in_force=time_in_force,
|
time_in_force=time_in_force,
|
||||||
leverage=leverage
|
leverage=leverage
|
||||||
)
|
)
|
||||||
order_obj = Order.parse_from_ccxt_object(order, pair, side)
|
order_obj = Order.parse_from_ccxt_object(order, pair, side, amount, enter_limit_requested)
|
||||||
order_id = order['id']
|
order_id = order['id']
|
||||||
order_status = order.get('status')
|
order_status = order.get('status')
|
||||||
logger.info(f"Order #{order_id} was created for {pair} and status is {order_status}.")
|
logger.info(f"Order #{order_id} was created for {pair} and status is {order_status}.")
|
||||||
@ -747,13 +758,15 @@ class FreqtradeBot(LoggingMixin):
|
|||||||
self.exchange.name, order['filled'], order['amount'],
|
self.exchange.name, order['filled'], order['amount'],
|
||||||
order['remaining']
|
order['remaining']
|
||||||
)
|
)
|
||||||
amount = safe_value_fallback(order, 'filled', 'amount')
|
amount = safe_value_fallback(order, 'filled', 'amount', amount)
|
||||||
enter_limit_filled_price = safe_value_fallback(order, 'average', 'price')
|
enter_limit_filled_price = safe_value_fallback(
|
||||||
|
order, 'average', 'price', enter_limit_filled_price)
|
||||||
|
|
||||||
# in case of FOK the order may be filled immediately and fully
|
# in case of FOK the order may be filled immediately and fully
|
||||||
elif order_status == 'closed':
|
elif order_status == 'closed':
|
||||||
amount = safe_value_fallback(order, 'filled', 'amount')
|
amount = safe_value_fallback(order, 'filled', 'amount', amount)
|
||||||
enter_limit_filled_price = safe_value_fallback(order, 'average', 'price')
|
enter_limit_filled_price = safe_value_fallback(
|
||||||
|
order, 'average', 'price', enter_limit_requested)
|
||||||
|
|
||||||
# Fee is applied twice because we make a LIMIT_BUY and LIMIT_SELL
|
# Fee is applied twice because we make a LIMIT_BUY and LIMIT_SELL
|
||||||
fee = self.exchange.get_fee(symbol=pair, taker_or_maker='maker')
|
fee = self.exchange.get_fee(symbol=pair, taker_or_maker='maker')
|
||||||
@ -1094,7 +1107,8 @@ class FreqtradeBot(LoggingMixin):
|
|||||||
leverage=trade.leverage
|
leverage=trade.leverage
|
||||||
)
|
)
|
||||||
|
|
||||||
order_obj = Order.parse_from_ccxt_object(stoploss_order, trade.pair, 'stoploss')
|
order_obj = Order.parse_from_ccxt_object(stoploss_order, trade.pair, 'stoploss',
|
||||||
|
trade.amount, stop_price)
|
||||||
trade.orders.append(order_obj)
|
trade.orders.append(order_obj)
|
||||||
trade.stoploss_order_id = str(stoploss_order['id'])
|
trade.stoploss_order_id = str(stoploss_order['id'])
|
||||||
trade.stoploss_last_update = datetime.now(timezone.utc)
|
trade.stoploss_last_update = datetime.now(timezone.utc)
|
||||||
@ -1156,15 +1170,13 @@ class FreqtradeBot(LoggingMixin):
|
|||||||
|
|
||||||
# If enter order is fulfilled but there is no stoploss, we add a stoploss on exchange
|
# If enter order is fulfilled but there is no stoploss, we add a stoploss on exchange
|
||||||
if not stoploss_order:
|
if not stoploss_order:
|
||||||
stoploss = (
|
stop_price = trade.stoploss_or_liquidation
|
||||||
self.edge.stoploss(pair=trade.pair)
|
if self.edge:
|
||||||
if self.edge else
|
stoploss = self.edge.stoploss(pair=trade.pair)
|
||||||
trade.stop_loss_pct / trade.leverage
|
stop_price = (
|
||||||
)
|
trade.open_rate * (1 - stoploss) if trade.is_short
|
||||||
if trade.is_short:
|
else trade.open_rate * (1 + stoploss)
|
||||||
stop_price = trade.open_rate * (1 - stoploss)
|
)
|
||||||
else:
|
|
||||||
stop_price = trade.open_rate * (1 + stoploss)
|
|
||||||
|
|
||||||
if self.create_stoploss_order(trade=trade, stop_price=stop_price):
|
if self.create_stoploss_order(trade=trade, stop_price=stop_price):
|
||||||
# The above will return False if the placement failed and the trade was force-sold.
|
# The above will return False if the placement failed and the trade was force-sold.
|
||||||
@ -1249,11 +1261,11 @@ class FreqtradeBot(LoggingMixin):
|
|||||||
if not_closed:
|
if not_closed:
|
||||||
if fully_cancelled or (order_obj and self.strategy.ft_check_timed_out(
|
if fully_cancelled or (order_obj and self.strategy.ft_check_timed_out(
|
||||||
trade, order_obj, datetime.now(timezone.utc))):
|
trade, order_obj, datetime.now(timezone.utc))):
|
||||||
self.handle_timedout_order(order, trade)
|
self.handle_cancel_order(order, trade, constants.CANCEL_REASON['TIMEOUT'])
|
||||||
else:
|
else:
|
||||||
self.replace_order(order, order_obj, trade)
|
self.replace_order(order, order_obj, trade)
|
||||||
|
|
||||||
def handle_timedout_order(self, order: Dict, trade: Trade) -> None:
|
def handle_cancel_order(self, order: Dict, trade: Trade, reason: str) -> None:
|
||||||
"""
|
"""
|
||||||
Check if current analyzed order timed out and cancel if necessary.
|
Check if current analyzed order timed out and cancel if necessary.
|
||||||
:param order: Order dict grabbed with exchange.fetch_order()
|
:param order: Order dict grabbed with exchange.fetch_order()
|
||||||
@ -1261,10 +1273,10 @@ class FreqtradeBot(LoggingMixin):
|
|||||||
:return: None
|
:return: None
|
||||||
"""
|
"""
|
||||||
if order['side'] == trade.entry_side:
|
if order['side'] == trade.entry_side:
|
||||||
self.handle_cancel_enter(trade, order, constants.CANCEL_REASON['TIMEOUT'])
|
self.handle_cancel_enter(trade, order, reason)
|
||||||
else:
|
else:
|
||||||
canceled = self.handle_cancel_exit(
|
canceled = self.handle_cancel_exit(
|
||||||
trade, order, constants.CANCEL_REASON['TIMEOUT'])
|
trade, order, reason)
|
||||||
canceled_count = trade.get_exit_order_count()
|
canceled_count = trade.get_exit_order_count()
|
||||||
max_timeouts = self.config.get('unfilledtimeout', {}).get('exit_timeout_count', 0)
|
max_timeouts = self.config.get('unfilledtimeout', {}).get('exit_timeout_count', 0)
|
||||||
if canceled and max_timeouts > 0 and canceled_count >= max_timeouts:
|
if canceled and max_timeouts > 0 and canceled_count >= max_timeouts:
|
||||||
@ -1518,7 +1530,7 @@ class FreqtradeBot(LoggingMixin):
|
|||||||
*,
|
*,
|
||||||
exit_tag: Optional[str] = None,
|
exit_tag: Optional[str] = None,
|
||||||
ordertype: Optional[str] = None,
|
ordertype: Optional[str] = None,
|
||||||
sub_trade_amt: float = None,
|
sub_trade_amt: Optional[float] = None,
|
||||||
) -> bool:
|
) -> bool:
|
||||||
"""
|
"""
|
||||||
Executes a trade exit for the given trade and limit
|
Executes a trade exit for the given trade and limit
|
||||||
@ -1595,7 +1607,7 @@ class FreqtradeBot(LoggingMixin):
|
|||||||
self.handle_insufficient_funds(trade)
|
self.handle_insufficient_funds(trade)
|
||||||
return False
|
return False
|
||||||
|
|
||||||
order_obj = Order.parse_from_ccxt_object(order, trade.pair, trade.exit_side)
|
order_obj = Order.parse_from_ccxt_object(order, trade.pair, trade.exit_side, amount, limit)
|
||||||
trade.orders.append(order_obj)
|
trade.orders.append(order_obj)
|
||||||
|
|
||||||
trade.open_order_id = order['id']
|
trade.open_order_id = order['id']
|
||||||
@ -1612,7 +1624,7 @@ class FreqtradeBot(LoggingMixin):
|
|||||||
return True
|
return True
|
||||||
|
|
||||||
def _notify_exit(self, trade: Trade, order_type: str, fill: bool = False,
|
def _notify_exit(self, trade: Trade, order_type: str, fill: bool = False,
|
||||||
sub_trade: bool = False, order: Order = None) -> None:
|
sub_trade: bool = False, order: Optional[Order] = None) -> None:
|
||||||
"""
|
"""
|
||||||
Sends rpc notification when a sell occurred.
|
Sends rpc notification when a sell occurred.
|
||||||
"""
|
"""
|
||||||
@ -1622,7 +1634,7 @@ class FreqtradeBot(LoggingMixin):
|
|||||||
|
|
||||||
# second condition is for mypy only; order will always be passed during sub trade
|
# second condition is for mypy only; order will always be passed during sub trade
|
||||||
if sub_trade and order is not None:
|
if sub_trade and order is not None:
|
||||||
amount = order.safe_filled if fill else order.amount
|
amount = order.safe_filled if fill else order.safe_amount
|
||||||
order_rate: float = order.safe_price
|
order_rate: float = order.safe_price
|
||||||
|
|
||||||
profit = trade.calc_profit(rate=order_rate, amount=amount, open_rate=trade.open_rate)
|
profit = trade.calc_profit(rate=order_rate, amount=amount, open_rate=trade.open_rate)
|
||||||
@ -1725,8 +1737,9 @@ class FreqtradeBot(LoggingMixin):
|
|||||||
# Common update trade state methods
|
# Common update trade state methods
|
||||||
#
|
#
|
||||||
|
|
||||||
def update_trade_state(self, trade: Trade, order_id: str, action_order: Dict[str, Any] = None,
|
def update_trade_state(
|
||||||
stoploss_order: bool = False, send_msg: bool = True) -> bool:
|
self, trade: Trade, order_id: str, action_order: Optional[Dict[str, Any]] = None,
|
||||||
|
stoploss_order: bool = False, send_msg: bool = True) -> bool:
|
||||||
"""
|
"""
|
||||||
Checks trades with open orders and updates the amount if necessary
|
Checks trades with open orders and updates the amount if necessary
|
||||||
Handles closing both buy and sell orders.
|
Handles closing both buy and sell orders.
|
||||||
@ -1784,6 +1797,7 @@ class FreqtradeBot(LoggingMixin):
|
|||||||
is_short=trade.is_short,
|
is_short=trade.is_short,
|
||||||
amount=trade.amount,
|
amount=trade.amount,
|
||||||
stake_amount=trade.stake_amount,
|
stake_amount=trade.stake_amount,
|
||||||
|
leverage=trade.leverage,
|
||||||
wallet_balance=trade.stake_amount,
|
wallet_balance=trade.stake_amount,
|
||||||
))
|
))
|
||||||
|
|
||||||
|
@ -5,7 +5,7 @@ Read the documentation to know what cli arguments you need.
|
|||||||
"""
|
"""
|
||||||
import logging
|
import logging
|
||||||
import sys
|
import sys
|
||||||
from typing import Any, List
|
from typing import Any, List, Optional
|
||||||
|
|
||||||
from freqtrade.util.gc_setup import gc_set_threshold
|
from freqtrade.util.gc_setup import gc_set_threshold
|
||||||
|
|
||||||
@ -23,7 +23,7 @@ from freqtrade.loggers import setup_logging_pre
|
|||||||
logger = logging.getLogger('freqtrade')
|
logger = logging.getLogger('freqtrade')
|
||||||
|
|
||||||
|
|
||||||
def main(sysargv: List[str] = None) -> None:
|
def main(sysargv: Optional[List[str]] = None) -> None:
|
||||||
"""
|
"""
|
||||||
This function will initiate the bot and start the trading loop.
|
This function will initiate the bot and start the trading loop.
|
||||||
:return: None
|
:return: None
|
||||||
|
@ -6,7 +6,7 @@ import logging
|
|||||||
import re
|
import re
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Any, Dict, Iterator, List, Mapping, Union
|
from typing import Any, Dict, Iterator, List, Mapping, Optional, Union
|
||||||
from typing.io import IO
|
from typing.io import IO
|
||||||
from urllib.parse import urlparse
|
from urllib.parse import urlparse
|
||||||
|
|
||||||
@ -205,7 +205,7 @@ def safe_value_fallback2(dict1: dictMap, dict2: dictMap, key1: str, key2: str, d
|
|||||||
return default_value
|
return default_value
|
||||||
|
|
||||||
|
|
||||||
def plural(num: float, singular: str, plural: str = None) -> str:
|
def plural(num: float, singular: str, plural: Optional[str] = None) -> str:
|
||||||
return singular if (num == 1 or num == -1) else plural or singular + 's'
|
return singular if (num == 1 or num == -1) else plural or singular + 's'
|
||||||
|
|
||||||
|
|
||||||
@ -269,6 +269,8 @@ def dataframe_to_json(dataframe: pd.DataFrame) -> str:
|
|||||||
def default(z):
|
def default(z):
|
||||||
if isinstance(z, pd.Timestamp):
|
if isinstance(z, pd.Timestamp):
|
||||||
return z.timestamp() * 1e3
|
return z.timestamp() * 1e3
|
||||||
|
if z is pd.NaT:
|
||||||
|
return 'NaT'
|
||||||
raise TypeError
|
raise TypeError
|
||||||
|
|
||||||
return str(orjson.dumps(dataframe.to_dict(orient='split'), default=default), 'utf-8')
|
return str(orjson.dumps(dataframe.to_dict(orient='split'), default=default), 'utf-8')
|
||||||
|
@ -15,7 +15,7 @@ from pandas import DataFrame
|
|||||||
|
|
||||||
from freqtrade import constants
|
from freqtrade import constants
|
||||||
from freqtrade.configuration import TimeRange, validate_config_consistency
|
from freqtrade.configuration import TimeRange, validate_config_consistency
|
||||||
from freqtrade.constants import DATETIME_PRINT_FORMAT, Config, LongShort
|
from freqtrade.constants import DATETIME_PRINT_FORMAT, Config, IntOrInf, LongShort
|
||||||
from freqtrade.data import history
|
from freqtrade.data import history
|
||||||
from freqtrade.data.btanalysis import find_existing_backtest_stats, trade_list_to_dataframe
|
from freqtrade.data.btanalysis import find_existing_backtest_stats, trade_list_to_dataframe
|
||||||
from freqtrade.data.converter import trim_dataframe, trim_dataframes
|
from freqtrade.data.converter import trim_dataframe, trim_dataframes
|
||||||
@ -37,6 +37,7 @@ from freqtrade.plugins.protectionmanager import ProtectionManager
|
|||||||
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
|
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
|
||||||
from freqtrade.strategy.interface import IStrategy
|
from freqtrade.strategy.interface import IStrategy
|
||||||
from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper
|
from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper
|
||||||
|
from freqtrade.util.binance_mig import migrate_binance_futures_data
|
||||||
from freqtrade.wallets import Wallets
|
from freqtrade.wallets import Wallets
|
||||||
|
|
||||||
|
|
||||||
@ -157,6 +158,7 @@ class Backtesting:
|
|||||||
self._can_short = self.trading_mode != TradingMode.SPOT
|
self._can_short = self.trading_mode != TradingMode.SPOT
|
||||||
self._position_stacking: bool = self.config.get('position_stacking', False)
|
self._position_stacking: bool = self.config.get('position_stacking', False)
|
||||||
self.enable_protections: bool = self.config.get('enable_protections', False)
|
self.enable_protections: bool = self.config.get('enable_protections', False)
|
||||||
|
migrate_binance_futures_data(config)
|
||||||
|
|
||||||
self.init_backtest()
|
self.init_backtest()
|
||||||
|
|
||||||
@ -573,26 +575,6 @@ class Backtesting:
|
|||||||
""" Rate is within candle, therefore filled"""
|
""" Rate is within candle, therefore filled"""
|
||||||
return row[LOW_IDX] <= rate <= row[HIGH_IDX]
|
return row[LOW_IDX] <= rate <= row[HIGH_IDX]
|
||||||
|
|
||||||
def _get_exit_trade_entry_for_candle(self, trade: LocalTrade,
|
|
||||||
row: Tuple) -> Optional[LocalTrade]:
|
|
||||||
|
|
||||||
# Check if we need to adjust our current positions
|
|
||||||
if self.strategy.position_adjustment_enable:
|
|
||||||
trade = self._get_adjust_trade_entry_for_candle(trade, row)
|
|
||||||
|
|
||||||
enter = row[SHORT_IDX] if trade.is_short else row[LONG_IDX]
|
|
||||||
exit_sig = row[ESHORT_IDX] if trade.is_short else row[ELONG_IDX]
|
|
||||||
exits = self.strategy.should_exit(
|
|
||||||
trade, row[OPEN_IDX], row[DATE_IDX].to_pydatetime(), # type: ignore
|
|
||||||
enter=enter, exit_=exit_sig,
|
|
||||||
low=row[LOW_IDX], high=row[HIGH_IDX]
|
|
||||||
)
|
|
||||||
for exit_ in exits:
|
|
||||||
t = self._get_exit_for_signal(trade, row, exit_)
|
|
||||||
if t:
|
|
||||||
return t
|
|
||||||
return None
|
|
||||||
|
|
||||||
def _get_exit_for_signal(
|
def _get_exit_for_signal(
|
||||||
self, trade: LocalTrade, row: Tuple, exit_: ExitCheckTuple,
|
self, trade: LocalTrade, row: Tuple, exit_: ExitCheckTuple,
|
||||||
amount: Optional[float] = None) -> Optional[LocalTrade]:
|
amount: Optional[float] = None) -> Optional[LocalTrade]:
|
||||||
@ -662,7 +644,7 @@ class Backtesting:
|
|||||||
return None
|
return None
|
||||||
|
|
||||||
def _exit_trade(self, trade: LocalTrade, sell_row: Tuple,
|
def _exit_trade(self, trade: LocalTrade, sell_row: Tuple,
|
||||||
close_rate: float, amount: float = None) -> Optional[LocalTrade]:
|
close_rate: float, amount: Optional[float] = None) -> Optional[LocalTrade]:
|
||||||
self.order_id_counter += 1
|
self.order_id_counter += 1
|
||||||
exit_candle_time = sell_row[DATE_IDX].to_pydatetime()
|
exit_candle_time = sell_row[DATE_IDX].to_pydatetime()
|
||||||
order_type = self.strategy.order_types['exit']
|
order_type = self.strategy.order_types['exit']
|
||||||
@ -692,11 +674,10 @@ class Backtesting:
|
|||||||
trade.orders.append(order)
|
trade.orders.append(order)
|
||||||
return trade
|
return trade
|
||||||
|
|
||||||
def _get_exit_trade_entry(
|
def _check_trade_exit(self, trade: LocalTrade, row: Tuple) -> Optional[LocalTrade]:
|
||||||
self, trade: LocalTrade, row: Tuple, is_first: bool) -> Optional[LocalTrade]:
|
|
||||||
exit_candle_time: datetime = row[DATE_IDX].to_pydatetime()
|
exit_candle_time: datetime = row[DATE_IDX].to_pydatetime()
|
||||||
|
|
||||||
if is_first and self.trading_mode == TradingMode.FUTURES:
|
if self.trading_mode == TradingMode.FUTURES:
|
||||||
trade.funding_fees = self.exchange.calculate_funding_fees(
|
trade.funding_fees = self.exchange.calculate_funding_fees(
|
||||||
self.futures_data[trade.pair],
|
self.futures_data[trade.pair],
|
||||||
amount=trade.amount,
|
amount=trade.amount,
|
||||||
@ -705,7 +686,22 @@ class Backtesting:
|
|||||||
close_date=exit_candle_time,
|
close_date=exit_candle_time,
|
||||||
)
|
)
|
||||||
|
|
||||||
return self._get_exit_trade_entry_for_candle(trade, row)
|
# Check if we need to adjust our current positions
|
||||||
|
if self.strategy.position_adjustment_enable:
|
||||||
|
trade = self._get_adjust_trade_entry_for_candle(trade, row)
|
||||||
|
|
||||||
|
enter = row[SHORT_IDX] if trade.is_short else row[LONG_IDX]
|
||||||
|
exit_sig = row[ESHORT_IDX] if trade.is_short else row[ELONG_IDX]
|
||||||
|
exits = self.strategy.should_exit(
|
||||||
|
trade, row[OPEN_IDX], row[DATE_IDX].to_pydatetime(), # type: ignore
|
||||||
|
enter=enter, exit_=exit_sig,
|
||||||
|
low=row[LOW_IDX], high=row[HIGH_IDX]
|
||||||
|
)
|
||||||
|
for exit_ in exits:
|
||||||
|
t = self._get_exit_for_signal(trade, row, exit_)
|
||||||
|
if t:
|
||||||
|
return t
|
||||||
|
return None
|
||||||
|
|
||||||
def get_valid_price_and_stake(
|
def get_valid_price_and_stake(
|
||||||
self, pair: str, row: Tuple, propose_rate: float, stake_amount: float,
|
self, pair: str, row: Tuple, propose_rate: float, stake_amount: float,
|
||||||
@ -779,6 +775,11 @@ class Backtesting:
|
|||||||
trade: Optional[LocalTrade] = None,
|
trade: Optional[LocalTrade] = None,
|
||||||
requested_rate: Optional[float] = None,
|
requested_rate: Optional[float] = None,
|
||||||
requested_stake: Optional[float] = None) -> Optional[LocalTrade]:
|
requested_stake: Optional[float] = None) -> Optional[LocalTrade]:
|
||||||
|
"""
|
||||||
|
:param trade: Trade to adjust - initial entry if None
|
||||||
|
:param requested_rate: Adjusted entry rate
|
||||||
|
:param requested_stake: Stake amount for adjusted orders (`adjust_entry_price`).
|
||||||
|
"""
|
||||||
|
|
||||||
current_time = row[DATE_IDX].to_pydatetime()
|
current_time = row[DATE_IDX].to_pydatetime()
|
||||||
entry_tag = row[ENTER_TAG_IDX] if len(row) >= ENTER_TAG_IDX + 1 else None
|
entry_tag = row[ENTER_TAG_IDX] if len(row) >= ENTER_TAG_IDX + 1 else None
|
||||||
@ -804,7 +805,7 @@ class Backtesting:
|
|||||||
return trade
|
return trade
|
||||||
time_in_force = self.strategy.order_time_in_force['entry']
|
time_in_force = self.strategy.order_time_in_force['entry']
|
||||||
|
|
||||||
if stake_amount and (not min_stake_amount or stake_amount > min_stake_amount):
|
if stake_amount and (not min_stake_amount or stake_amount >= min_stake_amount):
|
||||||
self.order_id_counter += 1
|
self.order_id_counter += 1
|
||||||
base_currency = self.exchange.get_pair_base_currency(pair)
|
base_currency = self.exchange.get_pair_base_currency(pair)
|
||||||
amount_p = (stake_amount / propose_rate) * leverage
|
amount_p = (stake_amount / propose_rate) * leverage
|
||||||
@ -867,6 +868,7 @@ class Backtesting:
|
|||||||
open_rate=propose_rate,
|
open_rate=propose_rate,
|
||||||
amount=amount,
|
amount=amount,
|
||||||
stake_amount=trade.stake_amount,
|
stake_amount=trade.stake_amount,
|
||||||
|
leverage=trade.leverage,
|
||||||
wallet_balance=trade.stake_amount,
|
wallet_balance=trade.stake_amount,
|
||||||
is_short=is_short,
|
is_short=is_short,
|
||||||
))
|
))
|
||||||
@ -920,8 +922,9 @@ class Backtesting:
|
|||||||
trade.close(exit_row[OPEN_IDX], show_msg=False)
|
trade.close(exit_row[OPEN_IDX], show_msg=False)
|
||||||
LocalTrade.close_bt_trade(trade)
|
LocalTrade.close_bt_trade(trade)
|
||||||
|
|
||||||
def trade_slot_available(self, max_open_trades: int, open_trade_count: int) -> bool:
|
def trade_slot_available(self, open_trade_count: int) -> bool:
|
||||||
# Always allow trades when max_open_trades is enabled.
|
# Always allow trades when max_open_trades is enabled.
|
||||||
|
max_open_trades: IntOrInf = self.config['max_open_trades']
|
||||||
if max_open_trades <= 0 or open_trade_count < max_open_trades:
|
if max_open_trades <= 0 or open_trade_count < max_open_trades:
|
||||||
return True
|
return True
|
||||||
# Rejected trade
|
# Rejected trade
|
||||||
@ -1051,7 +1054,8 @@ class Backtesting:
|
|||||||
|
|
||||||
def backtest_loop(
|
def backtest_loop(
|
||||||
self, row: Tuple, pair: str, current_time: datetime, end_date: datetime,
|
self, row: Tuple, pair: str, current_time: datetime, end_date: datetime,
|
||||||
max_open_trades: int, open_trade_count_start: int, is_first: bool = True) -> int:
|
open_trade_count_start: int, trade_dir: Optional[LongShort],
|
||||||
|
is_first: bool = True) -> int:
|
||||||
"""
|
"""
|
||||||
NOTE: This method is used by Hyperopt at each iteration. Please keep it optimized.
|
NOTE: This method is used by Hyperopt at each iteration. Please keep it optimized.
|
||||||
|
|
||||||
@ -1070,11 +1074,10 @@ class Backtesting:
|
|||||||
# max_open_trades must be respected
|
# max_open_trades must be respected
|
||||||
# don't open on the last row
|
# don't open on the last row
|
||||||
# We only open trades on the main candle, not on detail candles
|
# We only open trades on the main candle, not on detail candles
|
||||||
trade_dir = self.check_for_trade_entry(row)
|
|
||||||
if (
|
if (
|
||||||
(self._position_stacking or len(LocalTrade.bt_trades_open_pp[pair]) == 0)
|
(self._position_stacking or len(LocalTrade.bt_trades_open_pp[pair]) == 0)
|
||||||
and is_first
|
and is_first
|
||||||
and self.trade_slot_available(max_open_trades, open_trade_count_start)
|
and self.trade_slot_available(open_trade_count_start)
|
||||||
and current_time != end_date
|
and current_time != end_date
|
||||||
and trade_dir is not None
|
and trade_dir is not None
|
||||||
and not PairLocks.is_pair_locked(pair, row[DATE_IDX], trade_dir)
|
and not PairLocks.is_pair_locked(pair, row[DATE_IDX], trade_dir)
|
||||||
@ -1099,7 +1102,7 @@ class Backtesting:
|
|||||||
|
|
||||||
# 4. Create exit orders (if any)
|
# 4. Create exit orders (if any)
|
||||||
if not trade.open_order_id:
|
if not trade.open_order_id:
|
||||||
self._get_exit_trade_entry(trade, row, is_first) # Place exit order if necessary
|
self._check_trade_exit(trade, row) # Place exit order if necessary
|
||||||
|
|
||||||
# 5. Process exit orders.
|
# 5. Process exit orders.
|
||||||
order = trade.select_order(trade.exit_side, is_open=True)
|
order = trade.select_order(trade.exit_side, is_open=True)
|
||||||
@ -1121,8 +1124,7 @@ class Backtesting:
|
|||||||
return open_trade_count_start
|
return open_trade_count_start
|
||||||
|
|
||||||
def backtest(self, processed: Dict,
|
def backtest(self, processed: Dict,
|
||||||
start_date: datetime, end_date: datetime,
|
start_date: datetime, end_date: datetime) -> Dict[str, Any]:
|
||||||
max_open_trades: int = 0) -> Dict[str, Any]:
|
|
||||||
"""
|
"""
|
||||||
Implement backtesting functionality
|
Implement backtesting functionality
|
||||||
|
|
||||||
@ -1134,7 +1136,6 @@ class Backtesting:
|
|||||||
optimize memory usage!
|
optimize memory usage!
|
||||||
:param start_date: backtesting timerange start datetime
|
:param start_date: backtesting timerange start datetime
|
||||||
:param end_date: backtesting timerange end datetime
|
:param end_date: backtesting timerange end datetime
|
||||||
:param max_open_trades: maximum number of concurrent trades, <= 0 means unlimited
|
|
||||||
:return: DataFrame with trades (results of backtesting)
|
:return: DataFrame with trades (results of backtesting)
|
||||||
"""
|
"""
|
||||||
self.prepare_backtest(self.enable_protections)
|
self.prepare_backtest(self.enable_protections)
|
||||||
@ -1164,7 +1165,15 @@ class Backtesting:
|
|||||||
indexes[pair] = row_index
|
indexes[pair] = row_index
|
||||||
self.dataprovider._set_dataframe_max_index(row_index)
|
self.dataprovider._set_dataframe_max_index(row_index)
|
||||||
current_detail_time: datetime = row[DATE_IDX].to_pydatetime()
|
current_detail_time: datetime = row[DATE_IDX].to_pydatetime()
|
||||||
if self.timeframe_detail and pair in self.detail_data:
|
trade_dir: Optional[LongShort] = self.check_for_trade_entry(row)
|
||||||
|
|
||||||
|
if (
|
||||||
|
(trade_dir is not None or len(LocalTrade.bt_trades_open_pp[pair]) > 0)
|
||||||
|
and self.timeframe_detail and pair in self.detail_data
|
||||||
|
):
|
||||||
|
# Spread out into detail timeframe.
|
||||||
|
# Should only happen when we are either in a trade for this pair
|
||||||
|
# or when we got the signal for a new trade.
|
||||||
exit_candle_end = current_detail_time + timedelta(minutes=self.timeframe_min)
|
exit_candle_end = current_detail_time + timedelta(minutes=self.timeframe_min)
|
||||||
|
|
||||||
detail_data = self.detail_data[pair]
|
detail_data = self.detail_data[pair]
|
||||||
@ -1175,8 +1184,8 @@ class Backtesting:
|
|||||||
if len(detail_data) == 0:
|
if len(detail_data) == 0:
|
||||||
# Fall back to "regular" data if no detail data was found for this candle
|
# Fall back to "regular" data if no detail data was found for this candle
|
||||||
open_trade_count_start = self.backtest_loop(
|
open_trade_count_start = self.backtest_loop(
|
||||||
row, pair, current_time, end_date, max_open_trades,
|
row, pair, current_time, end_date,
|
||||||
open_trade_count_start)
|
open_trade_count_start, trade_dir)
|
||||||
continue
|
continue
|
||||||
detail_data.loc[:, 'enter_long'] = row[LONG_IDX]
|
detail_data.loc[:, 'enter_long'] = row[LONG_IDX]
|
||||||
detail_data.loc[:, 'exit_long'] = row[ELONG_IDX]
|
detail_data.loc[:, 'exit_long'] = row[ELONG_IDX]
|
||||||
@ -1188,13 +1197,14 @@ class Backtesting:
|
|||||||
current_time_det = current_time
|
current_time_det = current_time
|
||||||
for det_row in detail_data[HEADERS].values.tolist():
|
for det_row in detail_data[HEADERS].values.tolist():
|
||||||
open_trade_count_start = self.backtest_loop(
|
open_trade_count_start = self.backtest_loop(
|
||||||
det_row, pair, current_time_det, end_date, max_open_trades,
|
det_row, pair, current_time_det, end_date,
|
||||||
open_trade_count_start, is_first)
|
open_trade_count_start, trade_dir, is_first)
|
||||||
current_time_det += timedelta(minutes=self.timeframe_detail_min)
|
current_time_det += timedelta(minutes=self.timeframe_detail_min)
|
||||||
is_first = False
|
is_first = False
|
||||||
else:
|
else:
|
||||||
open_trade_count_start = self.backtest_loop(
|
open_trade_count_start = self.backtest_loop(
|
||||||
row, pair, current_time, end_date, max_open_trades, open_trade_count_start)
|
row, pair, current_time, end_date,
|
||||||
|
open_trade_count_start, trade_dir)
|
||||||
|
|
||||||
# Move time one configured time_interval ahead.
|
# Move time one configured time_interval ahead.
|
||||||
self.progress.increment()
|
self.progress.increment()
|
||||||
@ -1226,13 +1236,11 @@ class Backtesting:
|
|||||||
self._set_strategy(strat)
|
self._set_strategy(strat)
|
||||||
|
|
||||||
# Use max_open_trades in backtesting, except --disable-max-market-positions is set
|
# Use max_open_trades in backtesting, except --disable-max-market-positions is set
|
||||||
if self.config.get('use_max_market_positions', True):
|
if not self.config.get('use_max_market_positions', True):
|
||||||
# Must come from strategy config, as the strategy may modify this setting.
|
|
||||||
max_open_trades = self.strategy.config['max_open_trades']
|
|
||||||
else:
|
|
||||||
logger.info(
|
logger.info(
|
||||||
'Ignoring max_open_trades (--disable-max-market-positions was used) ...')
|
'Ignoring max_open_trades (--disable-max-market-positions was used) ...')
|
||||||
max_open_trades = 0
|
self.strategy.max_open_trades = float('inf')
|
||||||
|
self.config.update({'max_open_trades': self.strategy.max_open_trades})
|
||||||
|
|
||||||
# need to reprocess data every time to populate signals
|
# need to reprocess data every time to populate signals
|
||||||
preprocessed = self.strategy.advise_all_indicators(data)
|
preprocessed = self.strategy.advise_all_indicators(data)
|
||||||
@ -1255,7 +1263,6 @@ class Backtesting:
|
|||||||
processed=preprocessed,
|
processed=preprocessed,
|
||||||
start_date=min_date,
|
start_date=min_date,
|
||||||
end_date=max_date,
|
end_date=max_date,
|
||||||
max_open_trades=max_open_trades,
|
|
||||||
)
|
)
|
||||||
backtest_end_time = datetime.now(timezone.utc)
|
backtest_end_time = datetime.now(timezone.utc)
|
||||||
results.update({
|
results.update({
|
||||||
|
@ -74,6 +74,7 @@ class Hyperopt:
|
|||||||
self.roi_space: List[Dimension] = []
|
self.roi_space: List[Dimension] = []
|
||||||
self.stoploss_space: List[Dimension] = []
|
self.stoploss_space: List[Dimension] = []
|
||||||
self.trailing_space: List[Dimension] = []
|
self.trailing_space: List[Dimension] = []
|
||||||
|
self.max_open_trades_space: List[Dimension] = []
|
||||||
self.dimensions: List[Dimension] = []
|
self.dimensions: List[Dimension] = []
|
||||||
|
|
||||||
self.config = config
|
self.config = config
|
||||||
@ -117,11 +118,10 @@ class Hyperopt:
|
|||||||
self.current_best_epoch: Optional[Dict[str, Any]] = None
|
self.current_best_epoch: Optional[Dict[str, Any]] = None
|
||||||
|
|
||||||
# Use max_open_trades for hyperopt as well, except --disable-max-market-positions is set
|
# Use max_open_trades for hyperopt as well, except --disable-max-market-positions is set
|
||||||
if self.config.get('use_max_market_positions', True):
|
if not self.config.get('use_max_market_positions', True):
|
||||||
self.max_open_trades = self.config['max_open_trades']
|
|
||||||
else:
|
|
||||||
logger.debug('Ignoring max_open_trades (--disable-max-market-positions was used) ...')
|
logger.debug('Ignoring max_open_trades (--disable-max-market-positions was used) ...')
|
||||||
self.max_open_trades = 0
|
self.backtesting.strategy.max_open_trades = float('inf')
|
||||||
|
config.update({'max_open_trades': self.backtesting.strategy.max_open_trades})
|
||||||
|
|
||||||
if HyperoptTools.has_space(self.config, 'sell'):
|
if HyperoptTools.has_space(self.config, 'sell'):
|
||||||
# Make sure use_exit_signal is enabled
|
# Make sure use_exit_signal is enabled
|
||||||
@ -209,6 +209,10 @@ class Hyperopt:
|
|||||||
result['stoploss'] = {p.name: params.get(p.name) for p in self.stoploss_space}
|
result['stoploss'] = {p.name: params.get(p.name) for p in self.stoploss_space}
|
||||||
if HyperoptTools.has_space(self.config, 'trailing'):
|
if HyperoptTools.has_space(self.config, 'trailing'):
|
||||||
result['trailing'] = self.custom_hyperopt.generate_trailing_params(params)
|
result['trailing'] = self.custom_hyperopt.generate_trailing_params(params)
|
||||||
|
if HyperoptTools.has_space(self.config, 'trades'):
|
||||||
|
result['max_open_trades'] = {
|
||||||
|
'max_open_trades': self.backtesting.strategy.max_open_trades
|
||||||
|
if self.backtesting.strategy.max_open_trades != float('inf') else -1}
|
||||||
|
|
||||||
return result
|
return result
|
||||||
|
|
||||||
@ -229,6 +233,8 @@ class Hyperopt:
|
|||||||
'trailing_stop_positive_offset': strategy.trailing_stop_positive_offset,
|
'trailing_stop_positive_offset': strategy.trailing_stop_positive_offset,
|
||||||
'trailing_only_offset_is_reached': strategy.trailing_only_offset_is_reached,
|
'trailing_only_offset_is_reached': strategy.trailing_only_offset_is_reached,
|
||||||
}
|
}
|
||||||
|
if not HyperoptTools.has_space(self.config, 'trades'):
|
||||||
|
result['max_open_trades'] = {'max_open_trades': strategy.max_open_trades}
|
||||||
return result
|
return result
|
||||||
|
|
||||||
def print_results(self, results) -> None:
|
def print_results(self, results) -> None:
|
||||||
@ -280,8 +286,13 @@ class Hyperopt:
|
|||||||
logger.debug("Hyperopt has 'trailing' space")
|
logger.debug("Hyperopt has 'trailing' space")
|
||||||
self.trailing_space = self.custom_hyperopt.trailing_space()
|
self.trailing_space = self.custom_hyperopt.trailing_space()
|
||||||
|
|
||||||
|
if HyperoptTools.has_space(self.config, 'trades'):
|
||||||
|
logger.debug("Hyperopt has 'trades' space")
|
||||||
|
self.max_open_trades_space = self.custom_hyperopt.max_open_trades_space()
|
||||||
|
|
||||||
self.dimensions = (self.buy_space + self.sell_space + self.protection_space
|
self.dimensions = (self.buy_space + self.sell_space + self.protection_space
|
||||||
+ self.roi_space + self.stoploss_space + self.trailing_space)
|
+ self.roi_space + self.stoploss_space + self.trailing_space
|
||||||
|
+ self.max_open_trades_space)
|
||||||
|
|
||||||
def assign_params(self, params_dict: Dict, category: str) -> None:
|
def assign_params(self, params_dict: Dict, category: str) -> None:
|
||||||
"""
|
"""
|
||||||
@ -328,6 +339,20 @@ class Hyperopt:
|
|||||||
self.backtesting.strategy.trailing_only_offset_is_reached = \
|
self.backtesting.strategy.trailing_only_offset_is_reached = \
|
||||||
d['trailing_only_offset_is_reached']
|
d['trailing_only_offset_is_reached']
|
||||||
|
|
||||||
|
if HyperoptTools.has_space(self.config, 'trades'):
|
||||||
|
if self.config["stake_amount"] == "unlimited" and \
|
||||||
|
(params_dict['max_open_trades'] == -1 or params_dict['max_open_trades'] == 0):
|
||||||
|
# Ignore unlimited max open trades if stake amount is unlimited
|
||||||
|
params_dict.update({'max_open_trades': self.config['max_open_trades']})
|
||||||
|
|
||||||
|
updated_max_open_trades = int(params_dict['max_open_trades']) \
|
||||||
|
if (params_dict['max_open_trades'] != -1
|
||||||
|
and params_dict['max_open_trades'] != 0) else float('inf')
|
||||||
|
|
||||||
|
self.config.update({'max_open_trades': updated_max_open_trades})
|
||||||
|
|
||||||
|
self.backtesting.strategy.max_open_trades = updated_max_open_trades
|
||||||
|
|
||||||
with self.data_pickle_file.open('rb') as f:
|
with self.data_pickle_file.open('rb') as f:
|
||||||
processed = load(f, mmap_mode='r')
|
processed = load(f, mmap_mode='r')
|
||||||
if self.analyze_per_epoch:
|
if self.analyze_per_epoch:
|
||||||
@ -337,8 +362,7 @@ class Hyperopt:
|
|||||||
bt_results = self.backtesting.backtest(
|
bt_results = self.backtesting.backtest(
|
||||||
processed=processed,
|
processed=processed,
|
||||||
start_date=self.min_date,
|
start_date=self.min_date,
|
||||||
end_date=self.max_date,
|
end_date=self.max_date
|
||||||
max_open_trades=self.max_open_trades,
|
|
||||||
)
|
)
|
||||||
backtest_end_time = datetime.now(timezone.utc)
|
backtest_end_time = datetime.now(timezone.utc)
|
||||||
bt_results.update({
|
bt_results.update({
|
||||||
|
@ -91,5 +91,8 @@ class HyperOptAuto(IHyperOpt):
|
|||||||
def trailing_space(self) -> List['Dimension']:
|
def trailing_space(self) -> List['Dimension']:
|
||||||
return self._get_func('trailing_space')()
|
return self._get_func('trailing_space')()
|
||||||
|
|
||||||
|
def max_open_trades_space(self) -> List['Dimension']:
|
||||||
|
return self._get_func('max_open_trades_space')()
|
||||||
|
|
||||||
def generate_estimator(self, dimensions: List['Dimension'], **kwargs) -> EstimatorType:
|
def generate_estimator(self, dimensions: List['Dimension'], **kwargs) -> EstimatorType:
|
||||||
return self._get_func('generate_estimator')(dimensions=dimensions, **kwargs)
|
return self._get_func('generate_estimator')(dimensions=dimensions, **kwargs)
|
||||||
|
@ -191,6 +191,16 @@ class IHyperOpt(ABC):
|
|||||||
Categorical([True, False], name='trailing_only_offset_is_reached'),
|
Categorical([True, False], name='trailing_only_offset_is_reached'),
|
||||||
]
|
]
|
||||||
|
|
||||||
|
def max_open_trades_space(self) -> List[Dimension]:
|
||||||
|
"""
|
||||||
|
Create a max open trades space.
|
||||||
|
|
||||||
|
You may override it in your custom Hyperopt class.
|
||||||
|
"""
|
||||||
|
return [
|
||||||
|
Integer(-1, 10, name='max_open_trades'),
|
||||||
|
]
|
||||||
|
|
||||||
# This is needed for proper unpickling the class attribute timeframe
|
# This is needed for proper unpickling the class attribute timeframe
|
||||||
# which is set to the actual value by the resolver.
|
# which is set to the actual value by the resolver.
|
||||||
# Why do I still need such shamanic mantras in modern python?
|
# Why do I still need such shamanic mantras in modern python?
|
||||||
|
@ -5,13 +5,11 @@ This module defines the alternative HyperOptLoss class which can be used for
|
|||||||
Hyperoptimization.
|
Hyperoptimization.
|
||||||
"""
|
"""
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
from math import sqrt as msqrt
|
|
||||||
from typing import Any, Dict
|
|
||||||
|
|
||||||
from pandas import DataFrame
|
from pandas import DataFrame
|
||||||
|
|
||||||
from freqtrade.constants import Config
|
from freqtrade.constants import Config
|
||||||
from freqtrade.data.metrics import calculate_max_drawdown
|
from freqtrade.data.metrics import calculate_calmar
|
||||||
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||||
|
|
||||||
|
|
||||||
@ -23,42 +21,15 @@ class CalmarHyperOptLoss(IHyperOptLoss):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def hyperopt_loss_function(
|
def hyperopt_loss_function(results: DataFrame, trade_count: int,
|
||||||
results: DataFrame,
|
min_date: datetime, max_date: datetime,
|
||||||
trade_count: int,
|
config: Config, *args, **kwargs) -> float:
|
||||||
min_date: datetime,
|
|
||||||
max_date: datetime,
|
|
||||||
config: Config,
|
|
||||||
processed: Dict[str, DataFrame],
|
|
||||||
backtest_stats: Dict[str, Any],
|
|
||||||
*args,
|
|
||||||
**kwargs
|
|
||||||
) -> float:
|
|
||||||
"""
|
"""
|
||||||
Objective function, returns smaller number for more optimal results.
|
Objective function, returns smaller number for more optimal results.
|
||||||
|
|
||||||
Uses Calmar Ratio calculation.
|
Uses Calmar Ratio calculation.
|
||||||
"""
|
"""
|
||||||
total_profit = backtest_stats["profit_total"]
|
starting_balance = config['dry_run_wallet']
|
||||||
days_period = (max_date - min_date).days
|
calmar_ratio = calculate_calmar(results, min_date, max_date, starting_balance)
|
||||||
|
|
||||||
# adding slippage of 0.1% per trade
|
|
||||||
total_profit = total_profit - 0.0005
|
|
||||||
expected_returns_mean = total_profit.sum() / days_period * 100
|
|
||||||
|
|
||||||
# calculate max drawdown
|
|
||||||
try:
|
|
||||||
_, _, _, _, _, max_drawdown = calculate_max_drawdown(
|
|
||||||
results, value_col="profit_abs"
|
|
||||||
)
|
|
||||||
except ValueError:
|
|
||||||
max_drawdown = 0
|
|
||||||
|
|
||||||
if max_drawdown != 0:
|
|
||||||
calmar_ratio = expected_returns_mean / max_drawdown * msqrt(365)
|
|
||||||
else:
|
|
||||||
# Define high (negative) calmar ratio to be clear that this is NOT optimal.
|
|
||||||
calmar_ratio = -20.0
|
|
||||||
|
|
||||||
# print(expected_returns_mean, max_drawdown, calmar_ratio)
|
# print(expected_returns_mean, max_drawdown, calmar_ratio)
|
||||||
return -calmar_ratio
|
return -calmar_ratio
|
||||||
|
@ -6,9 +6,10 @@ Hyperoptimization.
|
|||||||
"""
|
"""
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
from pandas import DataFrame
|
from pandas import DataFrame
|
||||||
|
|
||||||
|
from freqtrade.constants import Config
|
||||||
|
from freqtrade.data.metrics import calculate_sharpe
|
||||||
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||||
|
|
||||||
|
|
||||||
@ -22,25 +23,13 @@ class SharpeHyperOptLoss(IHyperOptLoss):
|
|||||||
@staticmethod
|
@staticmethod
|
||||||
def hyperopt_loss_function(results: DataFrame, trade_count: int,
|
def hyperopt_loss_function(results: DataFrame, trade_count: int,
|
||||||
min_date: datetime, max_date: datetime,
|
min_date: datetime, max_date: datetime,
|
||||||
*args, **kwargs) -> float:
|
config: Config, *args, **kwargs) -> float:
|
||||||
"""
|
"""
|
||||||
Objective function, returns smaller number for more optimal results.
|
Objective function, returns smaller number for more optimal results.
|
||||||
|
|
||||||
Uses Sharpe Ratio calculation.
|
Uses Sharpe Ratio calculation.
|
||||||
"""
|
"""
|
||||||
total_profit = results["profit_ratio"]
|
starting_balance = config['dry_run_wallet']
|
||||||
days_period = (max_date - min_date).days
|
sharp_ratio = calculate_sharpe(results, min_date, max_date, starting_balance)
|
||||||
|
|
||||||
# adding slippage of 0.1% per trade
|
|
||||||
total_profit = total_profit - 0.0005
|
|
||||||
expected_returns_mean = total_profit.sum() / days_period
|
|
||||||
up_stdev = np.std(total_profit)
|
|
||||||
|
|
||||||
if up_stdev != 0:
|
|
||||||
sharp_ratio = expected_returns_mean / up_stdev * np.sqrt(365)
|
|
||||||
else:
|
|
||||||
# Define high (negative) sharpe ratio to be clear that this is NOT optimal.
|
|
||||||
sharp_ratio = -20.
|
|
||||||
|
|
||||||
# print(expected_returns_mean, up_stdev, sharp_ratio)
|
# print(expected_returns_mean, up_stdev, sharp_ratio)
|
||||||
return -sharp_ratio
|
return -sharp_ratio
|
||||||
|
@ -44,7 +44,7 @@ class SharpeHyperOptLossDaily(IHyperOptLoss):
|
|||||||
|
|
||||||
sum_daily = (
|
sum_daily = (
|
||||||
results.resample(resample_freq, on='close_date').agg(
|
results.resample(resample_freq, on='close_date').agg(
|
||||||
{"profit_ratio_after_slippage": sum}).reindex(t_index).fillna(0)
|
{"profit_ratio_after_slippage": 'sum'}).reindex(t_index).fillna(0)
|
||||||
)
|
)
|
||||||
|
|
||||||
total_profit = sum_daily["profit_ratio_after_slippage"] - risk_free_rate
|
total_profit = sum_daily["profit_ratio_after_slippage"] - risk_free_rate
|
||||||
|
@ -6,9 +6,10 @@ Hyperoptimization.
|
|||||||
"""
|
"""
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
from pandas import DataFrame
|
from pandas import DataFrame
|
||||||
|
|
||||||
|
from freqtrade.constants import Config
|
||||||
|
from freqtrade.data.metrics import calculate_sortino
|
||||||
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||||
|
|
||||||
|
|
||||||
@ -22,28 +23,13 @@ class SortinoHyperOptLoss(IHyperOptLoss):
|
|||||||
@staticmethod
|
@staticmethod
|
||||||
def hyperopt_loss_function(results: DataFrame, trade_count: int,
|
def hyperopt_loss_function(results: DataFrame, trade_count: int,
|
||||||
min_date: datetime, max_date: datetime,
|
min_date: datetime, max_date: datetime,
|
||||||
*args, **kwargs) -> float:
|
config: Config, *args, **kwargs) -> float:
|
||||||
"""
|
"""
|
||||||
Objective function, returns smaller number for more optimal results.
|
Objective function, returns smaller number for more optimal results.
|
||||||
|
|
||||||
Uses Sortino Ratio calculation.
|
Uses Sortino Ratio calculation.
|
||||||
"""
|
"""
|
||||||
total_profit = results["profit_ratio"]
|
starting_balance = config['dry_run_wallet']
|
||||||
days_period = (max_date - min_date).days
|
sortino_ratio = calculate_sortino(results, min_date, max_date, starting_balance)
|
||||||
|
|
||||||
# adding slippage of 0.1% per trade
|
|
||||||
total_profit = total_profit - 0.0005
|
|
||||||
expected_returns_mean = total_profit.sum() / days_period
|
|
||||||
|
|
||||||
results['downside_returns'] = 0
|
|
||||||
results.loc[total_profit < 0, 'downside_returns'] = results['profit_ratio']
|
|
||||||
down_stdev = np.std(results['downside_returns'])
|
|
||||||
|
|
||||||
if down_stdev != 0:
|
|
||||||
sortino_ratio = expected_returns_mean / down_stdev * np.sqrt(365)
|
|
||||||
else:
|
|
||||||
# Define high (negative) sortino ratio to be clear that this is NOT optimal.
|
|
||||||
sortino_ratio = -20.
|
|
||||||
|
|
||||||
# print(expected_returns_mean, down_stdev, sortino_ratio)
|
# print(expected_returns_mean, down_stdev, sortino_ratio)
|
||||||
return -sortino_ratio
|
return -sortino_ratio
|
||||||
|
@ -46,7 +46,7 @@ class SortinoHyperOptLossDaily(IHyperOptLoss):
|
|||||||
|
|
||||||
sum_daily = (
|
sum_daily = (
|
||||||
results.resample(resample_freq, on='close_date').agg(
|
results.resample(resample_freq, on='close_date').agg(
|
||||||
{"profit_ratio_after_slippage": sum}).reindex(t_index).fillna(0)
|
{"profit_ratio_after_slippage": 'sum'}).reindex(t_index).fillna(0)
|
||||||
)
|
)
|
||||||
|
|
||||||
total_profit = sum_daily["profit_ratio_after_slippage"] - minimum_acceptable_return
|
total_profit = sum_daily["profit_ratio_after_slippage"] - minimum_acceptable_return
|
||||||
|
@ -96,7 +96,7 @@ class HyperoptTools():
|
|||||||
Tell if the space value is contained in the configuration
|
Tell if the space value is contained in the configuration
|
||||||
"""
|
"""
|
||||||
# 'trailing' and 'protection spaces are not included in the 'default' set of spaces
|
# 'trailing' and 'protection spaces are not included in the 'default' set of spaces
|
||||||
if space in ('trailing', 'protection'):
|
if space in ('trailing', 'protection', 'trades'):
|
||||||
return any(s in config['spaces'] for s in [space, 'all'])
|
return any(s in config['spaces'] for s in [space, 'all'])
|
||||||
else:
|
else:
|
||||||
return any(s in config['spaces'] for s in [space, 'all', 'default'])
|
return any(s in config['spaces'] for s in [space, 'all', 'default'])
|
||||||
@ -170,7 +170,7 @@ class HyperoptTools():
|
|||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def show_epoch_details(results, total_epochs: int, print_json: bool,
|
def show_epoch_details(results, total_epochs: int, print_json: bool,
|
||||||
no_header: bool = False, header_str: str = None) -> None:
|
no_header: bool = False, header_str: Optional[str] = None) -> None:
|
||||||
"""
|
"""
|
||||||
Display details of the hyperopt result
|
Display details of the hyperopt result
|
||||||
"""
|
"""
|
||||||
@ -187,7 +187,8 @@ class HyperoptTools():
|
|||||||
|
|
||||||
if print_json:
|
if print_json:
|
||||||
result_dict: Dict = {}
|
result_dict: Dict = {}
|
||||||
for s in ['buy', 'sell', 'protection', 'roi', 'stoploss', 'trailing']:
|
for s in ['buy', 'sell', 'protection',
|
||||||
|
'roi', 'stoploss', 'trailing', 'max_open_trades']:
|
||||||
HyperoptTools._params_update_for_json(result_dict, params, non_optimized, s)
|
HyperoptTools._params_update_for_json(result_dict, params, non_optimized, s)
|
||||||
print(rapidjson.dumps(result_dict, default=str, number_mode=rapidjson.NM_NATIVE))
|
print(rapidjson.dumps(result_dict, default=str, number_mode=rapidjson.NM_NATIVE))
|
||||||
|
|
||||||
@ -201,6 +202,8 @@ class HyperoptTools():
|
|||||||
HyperoptTools._params_pretty_print(params, 'roi', "ROI table:", non_optimized)
|
HyperoptTools._params_pretty_print(params, 'roi', "ROI table:", non_optimized)
|
||||||
HyperoptTools._params_pretty_print(params, 'stoploss', "Stoploss:", non_optimized)
|
HyperoptTools._params_pretty_print(params, 'stoploss', "Stoploss:", non_optimized)
|
||||||
HyperoptTools._params_pretty_print(params, 'trailing', "Trailing stop:", non_optimized)
|
HyperoptTools._params_pretty_print(params, 'trailing', "Trailing stop:", non_optimized)
|
||||||
|
HyperoptTools._params_pretty_print(
|
||||||
|
params, 'max_open_trades', "Max Open Trades:", non_optimized)
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def _params_update_for_json(result_dict, params, non_optimized, space: str) -> None:
|
def _params_update_for_json(result_dict, params, non_optimized, space: str) -> None:
|
||||||
@ -239,7 +242,9 @@ class HyperoptTools():
|
|||||||
if space == "stoploss":
|
if space == "stoploss":
|
||||||
stoploss = safe_value_fallback2(space_params, no_params, space, space)
|
stoploss = safe_value_fallback2(space_params, no_params, space, space)
|
||||||
result += (f"stoploss = {stoploss}{appendix}")
|
result += (f"stoploss = {stoploss}{appendix}")
|
||||||
|
elif space == "max_open_trades":
|
||||||
|
max_open_trades = safe_value_fallback2(space_params, no_params, space, space)
|
||||||
|
result += (f"max_open_trades = {max_open_trades}{appendix}")
|
||||||
elif space == "roi":
|
elif space == "roi":
|
||||||
result = result[:-1] + f'{appendix}\n'
|
result = result[:-1] + f'{appendix}\n'
|
||||||
minimal_roi_result = rapidjson.dumps({
|
minimal_roi_result = rapidjson.dumps({
|
||||||
@ -259,7 +264,7 @@ class HyperoptTools():
|
|||||||
print(result)
|
print(result)
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def _space_params(params, space: str, r: int = None) -> Dict:
|
def _space_params(params, space: str, r: Optional[int] = None) -> Dict:
|
||||||
d = params.get(space)
|
d = params.get(space)
|
||||||
if d:
|
if d:
|
||||||
# Round floats to `r` digits after the decimal point if requested
|
# Round floats to `r` digits after the decimal point if requested
|
||||||
|
@ -8,7 +8,7 @@ from pandas import DataFrame, to_datetime
|
|||||||
from tabulate import tabulate
|
from tabulate import tabulate
|
||||||
|
|
||||||
from freqtrade.constants import (DATETIME_PRINT_FORMAT, LAST_BT_RESULT_FN, UNLIMITED_STAKE_AMOUNT,
|
from freqtrade.constants import (DATETIME_PRINT_FORMAT, LAST_BT_RESULT_FN, UNLIMITED_STAKE_AMOUNT,
|
||||||
Config)
|
Config, IntOrInf)
|
||||||
from freqtrade.data.metrics import (calculate_cagr, calculate_calmar, calculate_csum,
|
from freqtrade.data.metrics import (calculate_cagr, calculate_calmar, calculate_csum,
|
||||||
calculate_expectancy, calculate_market_change,
|
calculate_expectancy, calculate_market_change,
|
||||||
calculate_max_drawdown, calculate_sharpe, calculate_sortino)
|
calculate_max_drawdown, calculate_sharpe, calculate_sortino)
|
||||||
@ -191,7 +191,7 @@ def generate_tag_metrics(tag_type: str,
|
|||||||
return []
|
return []
|
||||||
|
|
||||||
|
|
||||||
def generate_exit_reason_stats(max_open_trades: int, results: DataFrame) -> List[Dict]:
|
def generate_exit_reason_stats(max_open_trades: IntOrInf, results: DataFrame) -> List[Dict]:
|
||||||
"""
|
"""
|
||||||
Generate small table outlining Backtest results
|
Generate small table outlining Backtest results
|
||||||
:param max_open_trades: Max_open_trades parameter
|
:param max_open_trades: Max_open_trades parameter
|
||||||
|
@ -214,17 +214,22 @@ def migrate_orders_table(engine, table_back_name: str, cols_order: List):
|
|||||||
average = get_column_def(cols_order, 'average', 'null')
|
average = get_column_def(cols_order, 'average', 'null')
|
||||||
stop_price = get_column_def(cols_order, 'stop_price', 'null')
|
stop_price = get_column_def(cols_order, 'stop_price', 'null')
|
||||||
funding_fee = get_column_def(cols_order, 'funding_fee', '0.0')
|
funding_fee = get_column_def(cols_order, 'funding_fee', '0.0')
|
||||||
|
ft_amount = get_column_def(cols_order, 'ft_amount', 'coalesce(amount, 0.0)')
|
||||||
|
ft_price = get_column_def(cols_order, 'ft_price', 'coalesce(price, 0.0)')
|
||||||
|
|
||||||
# sqlite does not support literals for booleans
|
# sqlite does not support literals for booleans
|
||||||
with engine.begin() as connection:
|
with engine.begin() as connection:
|
||||||
connection.execute(text(f"""
|
connection.execute(text(f"""
|
||||||
insert into orders (id, ft_trade_id, ft_order_side, ft_pair, ft_is_open, order_id,
|
insert into orders (id, ft_trade_id, ft_order_side, ft_pair, ft_is_open, order_id,
|
||||||
status, symbol, order_type, side, price, amount, filled, average, remaining, cost,
|
status, symbol, order_type, side, price, amount, filled, average, remaining, cost,
|
||||||
stop_price, order_date, order_filled_date, order_update_date, ft_fee_base, funding_fee)
|
stop_price, order_date, order_filled_date, order_update_date, ft_fee_base, funding_fee,
|
||||||
|
ft_amount, ft_price
|
||||||
|
)
|
||||||
select id, ft_trade_id, ft_order_side, ft_pair, ft_is_open, order_id,
|
select id, ft_trade_id, ft_order_side, ft_pair, ft_is_open, order_id,
|
||||||
status, symbol, order_type, side, price, amount, filled, {average} average, remaining,
|
status, symbol, order_type, side, price, amount, filled, {average} average, remaining,
|
||||||
cost, {stop_price} stop_price, order_date, order_filled_date,
|
cost, {stop_price} stop_price, order_date, order_filled_date,
|
||||||
order_update_date, {ft_fee_base} ft_fee_base, {funding_fee} funding_fee
|
order_update_date, {ft_fee_base} ft_fee_base, {funding_fee} funding_fee,
|
||||||
|
{ft_amount} ft_amount, {ft_price} ft_price
|
||||||
from {table_back_name}
|
from {table_back_name}
|
||||||
"""))
|
"""))
|
||||||
|
|
||||||
@ -311,8 +316,8 @@ def check_migrate(engine, decl_base, previous_tables) -> None:
|
|||||||
# if ('orders' not in previous_tables
|
# if ('orders' not in previous_tables
|
||||||
# or not has_column(cols_orders, 'funding_fee')):
|
# or not has_column(cols_orders, 'funding_fee')):
|
||||||
migrating = False
|
migrating = False
|
||||||
# if not has_column(cols_orders, 'funding_fee'):
|
# if not has_column(cols_trades, 'max_stake_amount'):
|
||||||
if not has_column(cols_trades, 'max_stake_amount'):
|
if not has_column(cols_orders, 'ft_price'):
|
||||||
migrating = True
|
migrating = True
|
||||||
logger.info(f"Running database migration for trades - "
|
logger.info(f"Running database migration for trades - "
|
||||||
f"backup: {table_back_name}, {order_table_bak_name}")
|
f"backup: {table_back_name}, {order_table_bak_name}")
|
||||||
|
@ -21,9 +21,9 @@ class PairLock(_DECL_BASE):
|
|||||||
side = Column(String(25), nullable=False, default="*")
|
side = Column(String(25), nullable=False, default="*")
|
||||||
reason = Column(String(255), nullable=True)
|
reason = Column(String(255), nullable=True)
|
||||||
# Time the pair was locked (start time)
|
# Time the pair was locked (start time)
|
||||||
lock_time = Column(DateTime, nullable=False)
|
lock_time = Column(DateTime(), nullable=False)
|
||||||
# Time until the pair is locked (end time)
|
# Time until the pair is locked (end time)
|
||||||
lock_end_time = Column(DateTime, nullable=False, index=True)
|
lock_end_time = Column(DateTime(), nullable=False, index=True)
|
||||||
|
|
||||||
active = Column(Boolean, nullable=False, default=True, index=True)
|
active = Column(Boolean, nullable=False, default=True, index=True)
|
||||||
|
|
||||||
|
@ -30,8 +30,8 @@ class PairLocks():
|
|||||||
PairLocks.locks = []
|
PairLocks.locks = []
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def lock_pair(pair: str, until: datetime, reason: str = None, *,
|
def lock_pair(pair: str, until: datetime, reason: Optional[str] = None, *,
|
||||||
now: datetime = None, side: str = '*') -> PairLock:
|
now: Optional[datetime] = None, side: str = '*') -> PairLock:
|
||||||
"""
|
"""
|
||||||
Create PairLock from now to "until".
|
Create PairLock from now to "until".
|
||||||
Uses database by default, unless PairLocks.use_db is set to False,
|
Uses database by default, unless PairLocks.use_db is set to False,
|
||||||
|
@ -46,29 +46,31 @@ class Order(_DECL_BASE):
|
|||||||
trade = relationship("Trade", back_populates="orders")
|
trade = relationship("Trade", back_populates="orders")
|
||||||
|
|
||||||
# order_side can only be 'buy', 'sell' or 'stoploss'
|
# order_side can only be 'buy', 'sell' or 'stoploss'
|
||||||
ft_order_side: str = Column(String(25), nullable=False)
|
ft_order_side = Column(String(25), nullable=False)
|
||||||
ft_pair: str = Column(String(25), nullable=False)
|
ft_pair = Column(String(25), nullable=False)
|
||||||
ft_is_open = Column(Boolean, nullable=False, default=True, index=True)
|
ft_is_open = Column(Boolean, nullable=False, default=True, index=True)
|
||||||
|
ft_amount = Column(Float(), nullable=False)
|
||||||
|
ft_price = Column(Float(), nullable=False)
|
||||||
|
|
||||||
order_id: str = Column(String(255), nullable=False, index=True)
|
order_id = Column(String(255), nullable=False, index=True)
|
||||||
status = Column(String(255), nullable=True)
|
status = Column(String(255), nullable=True)
|
||||||
symbol = Column(String(25), nullable=True)
|
symbol = Column(String(25), nullable=True)
|
||||||
order_type: str = Column(String(50), nullable=True)
|
order_type = Column(String(50), nullable=True)
|
||||||
side = Column(String(25), nullable=True)
|
side = Column(String(25), nullable=True)
|
||||||
price = Column(Float, nullable=True)
|
price = Column(Float(), nullable=True)
|
||||||
average = Column(Float, nullable=True)
|
average = Column(Float(), nullable=True)
|
||||||
amount = Column(Float, nullable=True)
|
amount = Column(Float(), nullable=True)
|
||||||
filled = Column(Float, nullable=True)
|
filled = Column(Float(), nullable=True)
|
||||||
remaining = Column(Float, nullable=True)
|
remaining = Column(Float(), nullable=True)
|
||||||
cost = Column(Float, nullable=True)
|
cost = Column(Float(), nullable=True)
|
||||||
stop_price = Column(Float, nullable=True)
|
stop_price = Column(Float(), nullable=True)
|
||||||
order_date = Column(DateTime, nullable=True, default=datetime.utcnow)
|
order_date = Column(DateTime(), nullable=True, default=datetime.utcnow)
|
||||||
order_filled_date = Column(DateTime, nullable=True)
|
order_filled_date = Column(DateTime(), nullable=True)
|
||||||
order_update_date = Column(DateTime, nullable=True)
|
order_update_date = Column(DateTime(), nullable=True)
|
||||||
|
|
||||||
funding_fee = Column(Float, nullable=True)
|
funding_fee = Column(Float(), nullable=True)
|
||||||
|
|
||||||
ft_fee_base = Column(Float, nullable=True)
|
ft_fee_base = Column(Float(), nullable=True)
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def order_date_utc(self) -> datetime:
|
def order_date_utc(self) -> datetime:
|
||||||
@ -82,9 +84,13 @@ class Order(_DECL_BASE):
|
|||||||
self.order_filled_date.replace(tzinfo=timezone.utc) if self.order_filled_date else None
|
self.order_filled_date.replace(tzinfo=timezone.utc) if self.order_filled_date else None
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def safe_amount(self) -> float:
|
||||||
|
return self.amount or self.ft_amount
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def safe_price(self) -> float:
|
def safe_price(self) -> float:
|
||||||
return self.average or self.price or self.stop_price
|
return self.average or self.price or self.stop_price or self.ft_price
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def safe_filled(self) -> float:
|
def safe_filled(self) -> float:
|
||||||
@ -94,7 +100,7 @@ class Order(_DECL_BASE):
|
|||||||
def safe_remaining(self) -> float:
|
def safe_remaining(self) -> float:
|
||||||
return (
|
return (
|
||||||
self.remaining if self.remaining is not None else
|
self.remaining if self.remaining is not None else
|
||||||
self.amount - (self.filled or 0.0)
|
self.safe_amount - (self.filled or 0.0)
|
||||||
)
|
)
|
||||||
|
|
||||||
@property
|
@property
|
||||||
@ -140,7 +146,7 @@ class Order(_DECL_BASE):
|
|||||||
# Assign funding fee up to this point
|
# Assign funding fee up to this point
|
||||||
# (represents the funding fee since the last order)
|
# (represents the funding fee since the last order)
|
||||||
self.funding_fee = self.trade.funding_fees
|
self.funding_fee = self.trade.funding_fees
|
||||||
if (order.get('filled', 0.0) or 0.0) > 0:
|
if (order.get('filled', 0.0) or 0.0) > 0 and not self.order_filled_date:
|
||||||
self.order_filled_date = datetime.now(timezone.utc)
|
self.order_filled_date = datetime.now(timezone.utc)
|
||||||
self.order_update_date = datetime.now(timezone.utc)
|
self.order_update_date = datetime.now(timezone.utc)
|
||||||
|
|
||||||
@ -166,7 +172,7 @@ class Order(_DECL_BASE):
|
|||||||
|
|
||||||
def to_json(self, entry_side: str, minified: bool = False) -> Dict[str, Any]:
|
def to_json(self, entry_side: str, minified: bool = False) -> Dict[str, Any]:
|
||||||
resp = {
|
resp = {
|
||||||
'amount': self.amount,
|
'amount': self.safe_amount,
|
||||||
'safe_price': self.safe_price,
|
'safe_price': self.safe_price,
|
||||||
'ft_order_side': self.ft_order_side,
|
'ft_order_side': self.ft_order_side,
|
||||||
'order_filled_timestamp': int(self.order_filled_date.replace(
|
'order_filled_timestamp': int(self.order_filled_date.replace(
|
||||||
@ -227,11 +233,20 @@ class Order(_DECL_BASE):
|
|||||||
logger.warning(f"Did not find order for {order}.")
|
logger.warning(f"Did not find order for {order}.")
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def parse_from_ccxt_object(order: Dict[str, Any], pair: str, side: str) -> 'Order':
|
def parse_from_ccxt_object(
|
||||||
|
order: Dict[str, Any], pair: str, side: str,
|
||||||
|
amount: Optional[float] = None, price: Optional[float] = None) -> 'Order':
|
||||||
"""
|
"""
|
||||||
Parse an order from a ccxt object and return a new order Object.
|
Parse an order from a ccxt object and return a new order Object.
|
||||||
|
Optional support for overriding amount and price is only used for test simplification.
|
||||||
"""
|
"""
|
||||||
o = Order(order_id=str(order['id']), ft_order_side=side, ft_pair=pair)
|
o = Order(
|
||||||
|
order_id=str(order['id']),
|
||||||
|
ft_order_side=side,
|
||||||
|
ft_pair=pair,
|
||||||
|
ft_amount=amount if amount else order['amount'],
|
||||||
|
ft_price=price if price else order['price'],
|
||||||
|
)
|
||||||
|
|
||||||
o.update_from_ccxt_object(order)
|
o.update_from_ccxt_object(order)
|
||||||
return o
|
return o
|
||||||
@ -784,7 +799,7 @@ class LocalTrade():
|
|||||||
else:
|
else:
|
||||||
return close_trade - fees
|
return close_trade - fees
|
||||||
|
|
||||||
def calc_close_trade_value(self, rate: float, amount: float = None) -> float:
|
def calc_close_trade_value(self, rate: float, amount: Optional[float] = None) -> float:
|
||||||
"""
|
"""
|
||||||
Calculate the Trade's close value including fees
|
Calculate the Trade's close value including fees
|
||||||
:param rate: rate to compare with.
|
:param rate: rate to compare with.
|
||||||
@ -822,7 +837,8 @@ class LocalTrade():
|
|||||||
raise OperationalException(
|
raise OperationalException(
|
||||||
f"{self.trading_mode.value} trading is not yet available using freqtrade")
|
f"{self.trading_mode.value} trading is not yet available using freqtrade")
|
||||||
|
|
||||||
def calc_profit(self, rate: float, amount: float = None, open_rate: float = None) -> float:
|
def calc_profit(self, rate: float, amount: Optional[float] = None,
|
||||||
|
open_rate: Optional[float] = None) -> float:
|
||||||
"""
|
"""
|
||||||
Calculate the absolute profit in stake currency between Close and Open trade
|
Calculate the absolute profit in stake currency between Close and Open trade
|
||||||
:param rate: close rate to compare with.
|
:param rate: close rate to compare with.
|
||||||
@ -843,7 +859,8 @@ class LocalTrade():
|
|||||||
return float(f"{profit:.8f}")
|
return float(f"{profit:.8f}")
|
||||||
|
|
||||||
def calc_profit_ratio(
|
def calc_profit_ratio(
|
||||||
self, rate: float, amount: float = None, open_rate: float = None) -> float:
|
self, rate: float, amount: Optional[float] = None,
|
||||||
|
open_rate: Optional[float] = None) -> float:
|
||||||
"""
|
"""
|
||||||
Calculates the profit as ratio (including fee).
|
Calculates the profit as ratio (including fee).
|
||||||
:param rate: rate to compare with.
|
:param rate: rate to compare with.
|
||||||
@ -956,11 +973,12 @@ class LocalTrade():
|
|||||||
return None
|
return None
|
||||||
|
|
||||||
def select_order(self, order_side: Optional[str] = None,
|
def select_order(self, order_side: Optional[str] = None,
|
||||||
is_open: Optional[bool] = None) -> Optional[Order]:
|
is_open: Optional[bool] = None, only_filled: bool = False) -> Optional[Order]:
|
||||||
"""
|
"""
|
||||||
Finds latest order for this orderside and status
|
Finds latest order for this orderside and status
|
||||||
:param order_side: ft_order_side of the order (either 'buy', 'sell' or 'stoploss')
|
:param order_side: ft_order_side of the order (either 'buy', 'sell' or 'stoploss')
|
||||||
:param is_open: Only search for open orders?
|
:param is_open: Only search for open orders?
|
||||||
|
:param only_filled: Only search for Filled orders (only valid with is_open=False).
|
||||||
:return: latest Order object if it exists, else None
|
:return: latest Order object if it exists, else None
|
||||||
"""
|
"""
|
||||||
orders = self.orders
|
orders = self.orders
|
||||||
@ -968,6 +986,8 @@ class LocalTrade():
|
|||||||
orders = [o for o in orders if o.ft_order_side == order_side]
|
orders = [o for o in orders if o.ft_order_side == order_side]
|
||||||
if is_open is not None:
|
if is_open is not None:
|
||||||
orders = [o for o in orders if o.ft_is_open == is_open]
|
orders = [o for o in orders if o.ft_is_open == is_open]
|
||||||
|
if is_open is False and only_filled:
|
||||||
|
orders = [o for o in orders if o.filled and o.status in NON_OPEN_EXCHANGE_STATES]
|
||||||
if len(orders) > 0:
|
if len(orders) > 0:
|
||||||
return orders[-1]
|
return orders[-1]
|
||||||
else:
|
else:
|
||||||
@ -1041,8 +1061,9 @@ class LocalTrade():
|
|||||||
return self.exit_reason
|
return self.exit_reason
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def get_trades_proxy(*, pair: str = None, is_open: bool = None,
|
def get_trades_proxy(*, pair: Optional[str] = None, is_open: Optional[bool] = None,
|
||||||
open_date: datetime = None, close_date: datetime = None,
|
open_date: Optional[datetime] = None,
|
||||||
|
close_date: Optional[datetime] = None,
|
||||||
) -> List['LocalTrade']:
|
) -> List['LocalTrade']:
|
||||||
"""
|
"""
|
||||||
Helper function to query Trades.
|
Helper function to query Trades.
|
||||||
@ -1156,44 +1177,44 @@ class Trade(_DECL_BASE, LocalTrade):
|
|||||||
base_currency = Column(String(25), nullable=True)
|
base_currency = Column(String(25), nullable=True)
|
||||||
stake_currency = Column(String(25), nullable=True)
|
stake_currency = Column(String(25), nullable=True)
|
||||||
is_open = Column(Boolean, nullable=False, default=True, index=True)
|
is_open = Column(Boolean, nullable=False, default=True, index=True)
|
||||||
fee_open = Column(Float, nullable=False, default=0.0)
|
fee_open = Column(Float(), nullable=False, default=0.0)
|
||||||
fee_open_cost = Column(Float, nullable=True)
|
fee_open_cost = Column(Float(), nullable=True)
|
||||||
fee_open_currency = Column(String(25), nullable=True)
|
fee_open_currency = Column(String(25), nullable=True)
|
||||||
fee_close = Column(Float, nullable=False, default=0.0)
|
fee_close = Column(Float(), nullable=False, default=0.0)
|
||||||
fee_close_cost = Column(Float, nullable=True)
|
fee_close_cost = Column(Float(), nullable=True)
|
||||||
fee_close_currency = Column(String(25), nullable=True)
|
fee_close_currency = Column(String(25), nullable=True)
|
||||||
open_rate: float = Column(Float)
|
open_rate: float = Column(Float())
|
||||||
open_rate_requested = Column(Float)
|
open_rate_requested = Column(Float())
|
||||||
# open_trade_value - calculated via _calc_open_trade_value
|
# open_trade_value - calculated via _calc_open_trade_value
|
||||||
open_trade_value = Column(Float)
|
open_trade_value = Column(Float())
|
||||||
close_rate: Optional[float] = Column(Float)
|
close_rate: Optional[float] = Column(Float())
|
||||||
close_rate_requested = Column(Float)
|
close_rate_requested = Column(Float())
|
||||||
realized_profit = Column(Float, default=0.0)
|
realized_profit = Column(Float(), default=0.0)
|
||||||
close_profit = Column(Float)
|
close_profit = Column(Float())
|
||||||
close_profit_abs = Column(Float)
|
close_profit_abs = Column(Float())
|
||||||
stake_amount = Column(Float, nullable=False)
|
stake_amount = Column(Float(), nullable=False)
|
||||||
max_stake_amount = Column(Float)
|
max_stake_amount = Column(Float())
|
||||||
amount = Column(Float)
|
amount = Column(Float())
|
||||||
amount_requested = Column(Float)
|
amount_requested = Column(Float())
|
||||||
open_date = Column(DateTime, nullable=False, default=datetime.utcnow)
|
open_date = Column(DateTime(), nullable=False, default=datetime.utcnow)
|
||||||
close_date = Column(DateTime)
|
close_date = Column(DateTime())
|
||||||
open_order_id = Column(String(255))
|
open_order_id = Column(String(255))
|
||||||
# absolute value of the stop loss
|
# absolute value of the stop loss
|
||||||
stop_loss = Column(Float, nullable=True, default=0.0)
|
stop_loss = Column(Float(), nullable=True, default=0.0)
|
||||||
# percentage value of the stop loss
|
# percentage value of the stop loss
|
||||||
stop_loss_pct = Column(Float, nullable=True)
|
stop_loss_pct = Column(Float(), nullable=True)
|
||||||
# absolute value of the initial stop loss
|
# absolute value of the initial stop loss
|
||||||
initial_stop_loss = Column(Float, nullable=True, default=0.0)
|
initial_stop_loss = Column(Float(), nullable=True, default=0.0)
|
||||||
# percentage value of the initial stop loss
|
# percentage value of the initial stop loss
|
||||||
initial_stop_loss_pct = Column(Float, nullable=True)
|
initial_stop_loss_pct = Column(Float(), nullable=True)
|
||||||
# stoploss order id which is on exchange
|
# stoploss order id which is on exchange
|
||||||
stoploss_order_id = Column(String(255), nullable=True, index=True)
|
stoploss_order_id = Column(String(255), nullable=True, index=True)
|
||||||
# last update time of the stoploss order on exchange
|
# last update time of the stoploss order on exchange
|
||||||
stoploss_last_update = Column(DateTime, nullable=True)
|
stoploss_last_update = Column(DateTime(), nullable=True)
|
||||||
# absolute value of the highest reached price
|
# absolute value of the highest reached price
|
||||||
max_rate = Column(Float, nullable=True, default=0.0)
|
max_rate = Column(Float(), nullable=True, default=0.0)
|
||||||
# Lowest price reached
|
# Lowest price reached
|
||||||
min_rate = Column(Float, nullable=True)
|
min_rate = Column(Float(), nullable=True)
|
||||||
exit_reason = Column(String(100), nullable=True)
|
exit_reason = Column(String(100), nullable=True)
|
||||||
exit_order_status = Column(String(100), nullable=True)
|
exit_order_status = Column(String(100), nullable=True)
|
||||||
strategy = Column(String(100), nullable=True)
|
strategy = Column(String(100), nullable=True)
|
||||||
@ -1201,21 +1222,21 @@ class Trade(_DECL_BASE, LocalTrade):
|
|||||||
timeframe = Column(Integer, nullable=True)
|
timeframe = Column(Integer, nullable=True)
|
||||||
|
|
||||||
trading_mode = Column(Enum(TradingMode), nullable=True)
|
trading_mode = Column(Enum(TradingMode), nullable=True)
|
||||||
amount_precision = Column(Float, nullable=True)
|
amount_precision = Column(Float(), nullable=True)
|
||||||
price_precision = Column(Float, nullable=True)
|
price_precision = Column(Float(), nullable=True)
|
||||||
precision_mode = Column(Integer, nullable=True)
|
precision_mode = Column(Integer, nullable=True)
|
||||||
contract_size = Column(Float, nullable=True)
|
contract_size = Column(Float(), nullable=True)
|
||||||
|
|
||||||
# Leverage trading properties
|
# Leverage trading properties
|
||||||
leverage = Column(Float, nullable=True, default=1.0)
|
leverage = Column(Float(), nullable=True, default=1.0)
|
||||||
is_short = Column(Boolean, nullable=False, default=False)
|
is_short = Column(Boolean, nullable=False, default=False)
|
||||||
liquidation_price = Column(Float, nullable=True)
|
liquidation_price = Column(Float(), nullable=True)
|
||||||
|
|
||||||
# Margin Trading Properties
|
# Margin Trading Properties
|
||||||
interest_rate = Column(Float, nullable=False, default=0.0)
|
interest_rate = Column(Float(), nullable=False, default=0.0)
|
||||||
|
|
||||||
# Futures properties
|
# Futures properties
|
||||||
funding_fees = Column(Float, nullable=True, default=None)
|
funding_fees = Column(Float(), nullable=True, default=None)
|
||||||
|
|
||||||
def __init__(self, **kwargs):
|
def __init__(self, **kwargs):
|
||||||
super().__init__(**kwargs)
|
super().__init__(**kwargs)
|
||||||
@ -1239,8 +1260,9 @@ class Trade(_DECL_BASE, LocalTrade):
|
|||||||
Trade.query.session.rollback()
|
Trade.query.session.rollback()
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def get_trades_proxy(*, pair: str = None, is_open: bool = None,
|
def get_trades_proxy(*, pair: Optional[str] = None, is_open: Optional[bool] = None,
|
||||||
open_date: datetime = None, close_date: datetime = None,
|
open_date: Optional[datetime] = None,
|
||||||
|
close_date: Optional[datetime] = None,
|
||||||
) -> List['LocalTrade']:
|
) -> List['LocalTrade']:
|
||||||
"""
|
"""
|
||||||
Helper function to query Trades.j
|
Helper function to query Trades.j
|
||||||
|
@ -436,11 +436,11 @@ def create_scatter(
|
|||||||
return None
|
return None
|
||||||
|
|
||||||
|
|
||||||
def generate_candlestick_graph(pair: str, data: pd.DataFrame, trades: pd.DataFrame = None, *,
|
def generate_candlestick_graph(
|
||||||
indicators1: List[str] = [],
|
pair: str, data: pd.DataFrame, trades: Optional[pd.DataFrame] = None, *,
|
||||||
indicators2: List[str] = [],
|
indicators1: List[str] = [], indicators2: List[str] = [],
|
||||||
plot_config: Dict[str, Dict] = {},
|
plot_config: Dict[str, Dict] = {},
|
||||||
) -> go.Figure:
|
) -> go.Figure:
|
||||||
"""
|
"""
|
||||||
Generate the graph from the data generated by Backtesting or from DB
|
Generate the graph from the data generated by Backtesting or from DB
|
||||||
Volume will always be ploted in row2, so Row 1 and 3 are to our disposal for custom indicators
|
Volume will always be ploted in row2, so Row 1 and 3 are to our disposal for custom indicators
|
||||||
|
@ -23,7 +23,8 @@ logger = logging.getLogger(__name__)
|
|||||||
|
|
||||||
class PairListManager(LoggingMixin):
|
class PairListManager(LoggingMixin):
|
||||||
|
|
||||||
def __init__(self, exchange, config: Config, dataprovider: DataProvider = None) -> None:
|
def __init__(
|
||||||
|
self, exchange, config: Config, dataprovider: Optional[DataProvider] = None) -> None:
|
||||||
self._exchange = exchange
|
self._exchange = exchange
|
||||||
self._config = config
|
self._config = config
|
||||||
self._whitelist = self._config['exchange'].get('pair_whitelist')
|
self._whitelist = self._config['exchange'].get('pair_whitelist')
|
||||||
@ -153,7 +154,8 @@ class PairListManager(LoggingMixin):
|
|||||||
return []
|
return []
|
||||||
return whitelist
|
return whitelist
|
||||||
|
|
||||||
def create_pair_list(self, pairs: List[str], timeframe: str = None) -> ListPairsWithTimeframes:
|
def create_pair_list(
|
||||||
|
self, pairs: List[str], timeframe: Optional[str] = None) -> ListPairsWithTimeframes:
|
||||||
"""
|
"""
|
||||||
Create list of pair tuples with (pair, timeframe)
|
Create list of pair tuples with (pair, timeframe)
|
||||||
"""
|
"""
|
||||||
|
@ -89,7 +89,8 @@ class IResolver:
|
|||||||
module = importlib.util.module_from_spec(spec)
|
module = importlib.util.module_from_spec(spec)
|
||||||
try:
|
try:
|
||||||
spec.loader.exec_module(module) # type: ignore # importlib does not use typehints
|
spec.loader.exec_module(module) # type: ignore # importlib does not use typehints
|
||||||
except (ModuleNotFoundError, SyntaxError, ImportError, NameError) as err:
|
except (AttributeError, ModuleNotFoundError, SyntaxError,
|
||||||
|
ImportError, NameError) as err:
|
||||||
# Catch errors in case a specific module is not installed
|
# Catch errors in case a specific module is not installed
|
||||||
logger.warning(f"Could not import {module_path} due to '{err}'")
|
logger.warning(f"Could not import {module_path} due to '{err}'")
|
||||||
if enum_failed:
|
if enum_failed:
|
||||||
|
@ -33,7 +33,7 @@ class StrategyResolver(IResolver):
|
|||||||
extra_path = "strategy_path"
|
extra_path = "strategy_path"
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def load_strategy(config: Config = None) -> IStrategy:
|
def load_strategy(config: Optional[Config] = None) -> IStrategy:
|
||||||
"""
|
"""
|
||||||
Load the custom class from config parameter
|
Load the custom class from config parameter
|
||||||
:param config: configuration dictionary or None
|
:param config: configuration dictionary or None
|
||||||
@ -76,6 +76,7 @@ class StrategyResolver(IResolver):
|
|||||||
("ignore_buying_expired_candle_after", 0),
|
("ignore_buying_expired_candle_after", 0),
|
||||||
("position_adjustment_enable", False),
|
("position_adjustment_enable", False),
|
||||||
("max_entry_position_adjustment", -1),
|
("max_entry_position_adjustment", -1),
|
||||||
|
("max_open_trades", -1)
|
||||||
]
|
]
|
||||||
for attribute, default in attributes:
|
for attribute, default in attributes:
|
||||||
StrategyResolver._override_attribute_helper(strategy, config,
|
StrategyResolver._override_attribute_helper(strategy, config,
|
||||||
@ -110,7 +111,11 @@ class StrategyResolver(IResolver):
|
|||||||
val = getattr(strategy, attribute)
|
val = getattr(strategy, attribute)
|
||||||
# None's cannot exist in the config, so do not copy them
|
# None's cannot exist in the config, so do not copy them
|
||||||
if val is not None:
|
if val is not None:
|
||||||
config[attribute] = val
|
# max_open_trades set to -1 in the strategy will be copied as infinity in the config
|
||||||
|
if attribute == 'max_open_trades' and val == -1:
|
||||||
|
config[attribute] = float('inf')
|
||||||
|
else:
|
||||||
|
config[attribute] = val
|
||||||
# Explicitly check for None here as other "falsy" values are possible
|
# Explicitly check for None here as other "falsy" values are possible
|
||||||
elif default is not None:
|
elif default is not None:
|
||||||
setattr(strategy, attribute, default)
|
setattr(strategy, attribute, default)
|
||||||
@ -128,6 +133,8 @@ class StrategyResolver(IResolver):
|
|||||||
key=lambda t: t[0]))
|
key=lambda t: t[0]))
|
||||||
if hasattr(strategy, 'stoploss'):
|
if hasattr(strategy, 'stoploss'):
|
||||||
strategy.stoploss = float(strategy.stoploss)
|
strategy.stoploss = float(strategy.stoploss)
|
||||||
|
if hasattr(strategy, 'max_open_trades') and strategy.max_open_trades < 0:
|
||||||
|
strategy.max_open_trades = float('inf')
|
||||||
return strategy
|
return strategy
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
|
@ -3,7 +3,7 @@ from typing import Any, Dict, List, Optional, Union
|
|||||||
|
|
||||||
from pydantic import BaseModel
|
from pydantic import BaseModel
|
||||||
|
|
||||||
from freqtrade.constants import DATETIME_PRINT_FORMAT
|
from freqtrade.constants import DATETIME_PRINT_FORMAT, IntOrInf
|
||||||
from freqtrade.enums import OrderTypeValues, SignalDirection, TradingMode
|
from freqtrade.enums import OrderTypeValues, SignalDirection, TradingMode
|
||||||
|
|
||||||
|
|
||||||
@ -165,9 +165,10 @@ class ShowConfig(BaseModel):
|
|||||||
stake_amount: str
|
stake_amount: str
|
||||||
available_capital: Optional[float]
|
available_capital: Optional[float]
|
||||||
stake_currency_decimals: int
|
stake_currency_decimals: int
|
||||||
max_open_trades: int
|
max_open_trades: IntOrInf
|
||||||
minimal_roi: Dict[str, Any]
|
minimal_roi: Dict[str, Any]
|
||||||
stoploss: Optional[float]
|
stoploss: Optional[float]
|
||||||
|
stoploss_on_exchange: bool
|
||||||
trailing_stop: Optional[bool]
|
trailing_stop: Optional[bool]
|
||||||
trailing_stop_positive: Optional[float]
|
trailing_stop_positive: Optional[float]
|
||||||
trailing_stop_positive_offset: Optional[float]
|
trailing_stop_positive_offset: Optional[float]
|
||||||
@ -422,7 +423,7 @@ class BacktestRequest(BaseModel):
|
|||||||
timeframe: Optional[str]
|
timeframe: Optional[str]
|
||||||
timeframe_detail: Optional[str]
|
timeframe_detail: Optional[str]
|
||||||
timerange: Optional[str]
|
timerange: Optional[str]
|
||||||
max_open_trades: Optional[int]
|
max_open_trades: Optional[IntOrInf]
|
||||||
stake_amount: Optional[str]
|
stake_amount: Optional[str]
|
||||||
enable_protections: bool
|
enable_protections: bool
|
||||||
dry_run_wallet: Optional[float]
|
dry_run_wallet: Optional[float]
|
||||||
|
@ -40,7 +40,9 @@ logger = logging.getLogger(__name__)
|
|||||||
# 2.20: Add websocket endpoints
|
# 2.20: Add websocket endpoints
|
||||||
# 2.21: Add new_candle messagetype
|
# 2.21: Add new_candle messagetype
|
||||||
# 2.22: Add FreqAI to backtesting
|
# 2.22: Add FreqAI to backtesting
|
||||||
API_VERSION = 2.22
|
# 2.23: Allow plot config request in webserver mode
|
||||||
|
# 2.24: Add cancel_open_order endpoint
|
||||||
|
API_VERSION = 2.24
|
||||||
|
|
||||||
# Public API, requires no auth.
|
# Public API, requires no auth.
|
||||||
router_public = APIRouter()
|
router_public = APIRouter()
|
||||||
@ -122,6 +124,12 @@ def trades_delete(tradeid: int, rpc: RPC = Depends(get_rpc)):
|
|||||||
return rpc._rpc_delete(tradeid)
|
return rpc._rpc_delete(tradeid)
|
||||||
|
|
||||||
|
|
||||||
|
@router.delete('/trades/{tradeid}/open-order', response_model=OpenTradeSchema, tags=['trading'])
|
||||||
|
def cancel_open_order(tradeid: int, rpc: RPC = Depends(get_rpc)):
|
||||||
|
rpc._rpc_cancel_open_order(tradeid)
|
||||||
|
return rpc._rpc_trade_status([tradeid])[0]
|
||||||
|
|
||||||
|
|
||||||
# TODO: Missing response model
|
# TODO: Missing response model
|
||||||
@router.get('/edge', tags=['info'])
|
@router.get('/edge', tags=['info'])
|
||||||
def edge(rpc: RPC = Depends(get_rpc)):
|
def edge(rpc: RPC = Depends(get_rpc)):
|
||||||
@ -248,8 +256,18 @@ def pair_history(pair: str, timeframe: str, timerange: str, strategy: str,
|
|||||||
|
|
||||||
|
|
||||||
@router.get('/plot_config', response_model=PlotConfig, tags=['candle data'])
|
@router.get('/plot_config', response_model=PlotConfig, tags=['candle data'])
|
||||||
def plot_config(rpc: RPC = Depends(get_rpc)):
|
def plot_config(strategy: Optional[str] = None, config=Depends(get_config),
|
||||||
return PlotConfig.parse_obj(rpc._rpc_plot_config())
|
rpc: Optional[RPC] = Depends(get_rpc_optional)):
|
||||||
|
if not strategy:
|
||||||
|
if not rpc:
|
||||||
|
raise RPCException("Strategy is mandatory in webserver mode.")
|
||||||
|
return PlotConfig.parse_obj(rpc._rpc_plot_config())
|
||||||
|
else:
|
||||||
|
config1 = deepcopy(config)
|
||||||
|
config1.update({
|
||||||
|
'strategy': strategy
|
||||||
|
})
|
||||||
|
return PlotConfig.parse_obj(RPC._rpc_plot_config_with_strategy(config1))
|
||||||
|
|
||||||
|
|
||||||
@router.get('/strategies', response_model=StrategyListResponse, tags=['strategy'])
|
@router.get('/strategies', response_model=StrategyListResponse, tags=['strategy'])
|
||||||
|
@ -90,7 +90,7 @@ async def _process_consumer_request(
|
|||||||
|
|
||||||
elif type == RPCRequestType.ANALYZED_DF:
|
elif type == RPCRequestType.ANALYZED_DF:
|
||||||
# Limit the amount of candles per dataframe to 'limit' or 1500
|
# Limit the amount of candles per dataframe to 'limit' or 1500
|
||||||
limit = min(data.get('limit', 1500), 1500) if data else None
|
limit = int(min(data.get('limit', 1500), 1500)) if data else None
|
||||||
pair = data.get('pair', None) if data else None
|
pair = data.get('pair', None) if data else None
|
||||||
|
|
||||||
# For every pair in the generator, send a separate message
|
# For every pair in the generator, send a separate message
|
||||||
|
@ -122,6 +122,7 @@ class RPC:
|
|||||||
if config['max_open_trades'] != float('inf') else -1),
|
if config['max_open_trades'] != float('inf') else -1),
|
||||||
'minimal_roi': config['minimal_roi'].copy() if 'minimal_roi' in config else {},
|
'minimal_roi': config['minimal_roi'].copy() if 'minimal_roi' in config else {},
|
||||||
'stoploss': config.get('stoploss'),
|
'stoploss': config.get('stoploss'),
|
||||||
|
'stoploss_on_exchange': config.get('stoploss_on_exchange', False),
|
||||||
'trailing_stop': config.get('trailing_stop'),
|
'trailing_stop': config.get('trailing_stop'),
|
||||||
'trailing_stop_positive': config.get('trailing_stop_positive'),
|
'trailing_stop_positive': config.get('trailing_stop_positive'),
|
||||||
'trailing_stop_positive_offset': config.get('trailing_stop_positive_offset'),
|
'trailing_stop_positive_offset': config.get('trailing_stop_positive_offset'),
|
||||||
@ -673,6 +674,7 @@ class RPC:
|
|||||||
if self._freqtrade.state == State.RUNNING:
|
if self._freqtrade.state == State.RUNNING:
|
||||||
# Set 'max_open_trades' to 0
|
# Set 'max_open_trades' to 0
|
||||||
self._freqtrade.config['max_open_trades'] = 0
|
self._freqtrade.config['max_open_trades'] = 0
|
||||||
|
self._freqtrade.strategy.max_open_trades = 0
|
||||||
|
|
||||||
return {'status': 'No more entries will occur from now. Run /reload_config to reset.'}
|
return {'status': 'No more entries will occur from now. Run /reload_config to reset.'}
|
||||||
|
|
||||||
@ -811,6 +813,29 @@ class RPC:
|
|||||||
else:
|
else:
|
||||||
raise RPCException(f'Failed to enter position for {pair}.')
|
raise RPCException(f'Failed to enter position for {pair}.')
|
||||||
|
|
||||||
|
def _rpc_cancel_open_order(self, trade_id: int):
|
||||||
|
if self._freqtrade.state != State.RUNNING:
|
||||||
|
raise RPCException('trader is not running')
|
||||||
|
with self._freqtrade._exit_lock:
|
||||||
|
# Query for trade
|
||||||
|
trade = Trade.get_trades(
|
||||||
|
trade_filter=[Trade.id == trade_id, Trade.is_open.is_(True), ]
|
||||||
|
).first()
|
||||||
|
if not trade:
|
||||||
|
logger.warning('cancel_open_order: Invalid trade_id received.')
|
||||||
|
raise RPCException('Invalid trade_id.')
|
||||||
|
if not trade.open_order_id:
|
||||||
|
logger.warning('cancel_open_order: No open order for trade_id.')
|
||||||
|
raise RPCException('No open order for trade_id.')
|
||||||
|
|
||||||
|
try:
|
||||||
|
order = self._freqtrade.exchange.fetch_order(trade.open_order_id, trade.pair)
|
||||||
|
except ExchangeError as e:
|
||||||
|
logger.info(f"Cannot query order for {trade} due to {e}.", exc_info=True)
|
||||||
|
raise RPCException("Order not found.")
|
||||||
|
self._freqtrade.handle_cancel_order(order, trade, CANCEL_REASON['USER_CANCEL'])
|
||||||
|
Trade.commit()
|
||||||
|
|
||||||
def _rpc_delete(self, trade_id: int) -> Dict[str, Union[str, int]]:
|
def _rpc_delete(self, trade_id: int) -> Dict[str, Union[str, int]]:
|
||||||
"""
|
"""
|
||||||
Handler for delete <id>.
|
Handler for delete <id>.
|
||||||
@ -944,7 +969,7 @@ class RPC:
|
|||||||
resp['errors'] = errors
|
resp['errors'] = errors
|
||||||
return resp
|
return resp
|
||||||
|
|
||||||
def _rpc_blacklist(self, add: List[str] = None) -> Dict:
|
def _rpc_blacklist(self, add: Optional[List[str]] = None) -> Dict:
|
||||||
""" Returns the currently active blacklist"""
|
""" Returns the currently active blacklist"""
|
||||||
errors = {}
|
errors = {}
|
||||||
if add:
|
if add:
|
||||||
@ -1126,12 +1151,12 @@ class RPC:
|
|||||||
return self._freqtrade.active_pair_whitelist
|
return self._freqtrade.active_pair_whitelist
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def _rpc_analysed_history_full(config, pair: str, timeframe: str,
|
def _rpc_analysed_history_full(config: Config, pair: str, timeframe: str,
|
||||||
timerange: str, exchange) -> Dict[str, Any]:
|
timerange: str, exchange) -> Dict[str, Any]:
|
||||||
timerange_parsed = TimeRange.parse_timerange(timerange)
|
timerange_parsed = TimeRange.parse_timerange(timerange)
|
||||||
|
|
||||||
_data = load_data(
|
_data = load_data(
|
||||||
datadir=config.get("datadir"),
|
datadir=config["datadir"],
|
||||||
pairs=[pair],
|
pairs=[pair],
|
||||||
timeframe=timeframe,
|
timeframe=timeframe,
|
||||||
timerange=timerange_parsed,
|
timerange=timerange_parsed,
|
||||||
@ -1156,6 +1181,16 @@ class RPC:
|
|||||||
self._freqtrade.strategy.plot_config['subplots'] = {}
|
self._freqtrade.strategy.plot_config['subplots'] = {}
|
||||||
return self._freqtrade.strategy.plot_config
|
return self._freqtrade.strategy.plot_config
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _rpc_plot_config_with_strategy(config: Config) -> Dict[str, Any]:
|
||||||
|
|
||||||
|
from freqtrade.resolvers.strategy_resolver import StrategyResolver
|
||||||
|
strategy = StrategyResolver.load_strategy(config)
|
||||||
|
|
||||||
|
if (strategy.plot_config and 'subplots' not in strategy.plot_config):
|
||||||
|
strategy.plot_config['subplots'] = {}
|
||||||
|
return strategy.plot_config
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def _rpc_sysinfo() -> Dict[str, Any]:
|
def _rpc_sysinfo() -> Dict[str, Any]:
|
||||||
return {
|
return {
|
||||||
|
@ -174,6 +174,7 @@ class Telegram(RPCHandler):
|
|||||||
self._force_enter, order_side=SignalDirection.SHORT)),
|
self._force_enter, order_side=SignalDirection.SHORT)),
|
||||||
CommandHandler('trades', self._trades),
|
CommandHandler('trades', self._trades),
|
||||||
CommandHandler('delete', self._delete_trade),
|
CommandHandler('delete', self._delete_trade),
|
||||||
|
CommandHandler(['coo', 'cancel_open_order'], self._cancel_open_order),
|
||||||
CommandHandler('performance', self._performance),
|
CommandHandler('performance', self._performance),
|
||||||
CommandHandler(['buys', 'entries'], self._enter_tag_performance),
|
CommandHandler(['buys', 'entries'], self._enter_tag_performance),
|
||||||
CommandHandler(['sells', 'exits'], self._exit_reason_performance),
|
CommandHandler(['sells', 'exits'], self._exit_reason_performance),
|
||||||
@ -1144,10 +1145,25 @@ class Telegram(RPCHandler):
|
|||||||
raise RPCException("Trade-id not set.")
|
raise RPCException("Trade-id not set.")
|
||||||
trade_id = int(context.args[0])
|
trade_id = int(context.args[0])
|
||||||
msg = self._rpc._rpc_delete(trade_id)
|
msg = self._rpc._rpc_delete(trade_id)
|
||||||
self._send_msg((
|
self._send_msg(
|
||||||
f"`{msg['result_msg']}`\n"
|
f"`{msg['result_msg']}`\n"
|
||||||
'Please make sure to take care of this asset on the exchange manually.'
|
'Please make sure to take care of this asset on the exchange manually.'
|
||||||
))
|
)
|
||||||
|
|
||||||
|
@authorized_only
|
||||||
|
def _cancel_open_order(self, update: Update, context: CallbackContext) -> None:
|
||||||
|
"""
|
||||||
|
Handler for /cancel_open_order <id>.
|
||||||
|
Cancel open order for tradeid
|
||||||
|
:param bot: telegram bot
|
||||||
|
:param update: message update
|
||||||
|
:return: None
|
||||||
|
"""
|
||||||
|
if not context.args or len(context.args) == 0:
|
||||||
|
raise RPCException("Trade-id not set.")
|
||||||
|
trade_id = int(context.args[0])
|
||||||
|
self._rpc._rpc_cancel_open_order(trade_id)
|
||||||
|
self._send_msg('Open order canceled.')
|
||||||
|
|
||||||
@authorized_only
|
@authorized_only
|
||||||
def _performance(self, update: Update, context: CallbackContext) -> None:
|
def _performance(self, update: Update, context: CallbackContext) -> None:
|
||||||
@ -1456,6 +1472,10 @@ class Telegram(RPCHandler):
|
|||||||
"*/fx <trade_id>|all:* `Alias to /forceexit`\n"
|
"*/fx <trade_id>|all:* `Alias to /forceexit`\n"
|
||||||
f"{force_enter_text if self._config.get('force_entry_enable', False) else ''}"
|
f"{force_enter_text if self._config.get('force_entry_enable', False) else ''}"
|
||||||
"*/delete <trade_id>:* `Instantly delete the given trade in the database`\n"
|
"*/delete <trade_id>:* `Instantly delete the given trade in the database`\n"
|
||||||
|
"*/cancel_open_order <trade_id>:* `Cancels open orders for trade. "
|
||||||
|
"Only valid when the trade has open orders.`\n"
|
||||||
|
"*/coo <trade_id>|all:* `Alias to /cancel_open_order`\n"
|
||||||
|
|
||||||
"*/whitelist [sorted] [baseonly]:* `Show current whitelist. Optionally in "
|
"*/whitelist [sorted] [baseonly]:* `Show current whitelist. Optionally in "
|
||||||
"order and/or only displaying the base currency of each pairing.`\n"
|
"order and/or only displaying the base currency of each pairing.`\n"
|
||||||
"*/blacklist [pair]:* `Show current blacklist, or adds one or more pairs "
|
"*/blacklist [pair]:* `Show current blacklist, or adds one or more pairs "
|
||||||
@ -1605,7 +1625,7 @@ class Telegram(RPCHandler):
|
|||||||
|
|
||||||
def _send_msg(self, msg: str, parse_mode: str = ParseMode.MARKDOWN,
|
def _send_msg(self, msg: str, parse_mode: str = ParseMode.MARKDOWN,
|
||||||
disable_notification: bool = False,
|
disable_notification: bool = False,
|
||||||
keyboard: List[List[InlineKeyboardButton]] = None,
|
keyboard: Optional[List[List[InlineKeyboardButton]]] = None,
|
||||||
callback_path: str = "",
|
callback_path: str = "",
|
||||||
reload_able: bool = False,
|
reload_able: bool = False,
|
||||||
query: Optional[CallbackQuery] = None) -> None:
|
query: Optional[CallbackQuery] = None) -> None:
|
||||||
|
@ -4,7 +4,7 @@ This module defines a base class for auto-hyperoptable strategies.
|
|||||||
"""
|
"""
|
||||||
import logging
|
import logging
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Any, Dict, Iterator, List, Tuple, Type, Union
|
from typing import Any, Dict, Iterator, List, Optional, Tuple, Type, Union
|
||||||
|
|
||||||
from freqtrade.constants import Config
|
from freqtrade.constants import Config
|
||||||
from freqtrade.exceptions import OperationalException
|
from freqtrade.exceptions import OperationalException
|
||||||
@ -36,7 +36,8 @@ class HyperStrategyMixin:
|
|||||||
self._ft_params_from_file = params
|
self._ft_params_from_file = params
|
||||||
# Init/loading of parameters is done as part of ft_bot_start().
|
# Init/loading of parameters is done as part of ft_bot_start().
|
||||||
|
|
||||||
def enumerate_parameters(self, category: str = None) -> Iterator[Tuple[str, BaseParameter]]:
|
def enumerate_parameters(
|
||||||
|
self, category: Optional[str] = None) -> Iterator[Tuple[str, BaseParameter]]:
|
||||||
"""
|
"""
|
||||||
Find all optimizable parameters and return (name, attr) iterator.
|
Find all optimizable parameters and return (name, attr) iterator.
|
||||||
:param category:
|
:param category:
|
||||||
@ -80,6 +81,8 @@ class HyperStrategyMixin:
|
|||||||
|
|
||||||
self.stoploss = params.get('stoploss', {}).get(
|
self.stoploss = params.get('stoploss', {}).get(
|
||||||
'stoploss', getattr(self, 'stoploss', -0.1))
|
'stoploss', getattr(self, 'stoploss', -0.1))
|
||||||
|
self.max_open_trades = params.get('max_open_trades', {}).get(
|
||||||
|
'max_open_trades', getattr(self, 'max_open_trades', -1))
|
||||||
trailing = params.get('trailing', {})
|
trailing = params.get('trailing', {})
|
||||||
self.trailing_stop = trailing.get(
|
self.trailing_stop = trailing.get(
|
||||||
'trailing_stop', getattr(self, 'trailing_stop', False))
|
'trailing_stop', getattr(self, 'trailing_stop', False))
|
||||||
|
@ -10,7 +10,7 @@ from typing import Dict, List, Optional, Tuple, Union
|
|||||||
import arrow
|
import arrow
|
||||||
from pandas import DataFrame
|
from pandas import DataFrame
|
||||||
|
|
||||||
from freqtrade.constants import Config, ListPairsWithTimeframes
|
from freqtrade.constants import Config, IntOrInf, ListPairsWithTimeframes
|
||||||
from freqtrade.data.dataprovider import DataProvider
|
from freqtrade.data.dataprovider import DataProvider
|
||||||
from freqtrade.enums import (CandleType, ExitCheckTuple, ExitType, RunMode, SignalDirection,
|
from freqtrade.enums import (CandleType, ExitCheckTuple, ExitType, RunMode, SignalDirection,
|
||||||
SignalTagType, SignalType, TradingMode)
|
SignalTagType, SignalType, TradingMode)
|
||||||
@ -54,6 +54,9 @@ class IStrategy(ABC, HyperStrategyMixin):
|
|||||||
# associated stoploss
|
# associated stoploss
|
||||||
stoploss: float
|
stoploss: float
|
||||||
|
|
||||||
|
# max open trades for the strategy
|
||||||
|
max_open_trades: IntOrInf
|
||||||
|
|
||||||
# trailing stoploss
|
# trailing stoploss
|
||||||
trailing_stop: bool = False
|
trailing_stop: bool = False
|
||||||
trailing_stop_positive: Optional[float] = None
|
trailing_stop_positive: Optional[float] = None
|
||||||
@ -595,9 +598,10 @@ class IStrategy(ABC, HyperStrategyMixin):
|
|||||||
return None
|
return None
|
||||||
|
|
||||||
def populate_any_indicators(self, pair: str, df: DataFrame, tf: str,
|
def populate_any_indicators(self, pair: str, df: DataFrame, tf: str,
|
||||||
informative: DataFrame = None,
|
informative: Optional[DataFrame] = None,
|
||||||
set_generalized_indicators: bool = False) -> DataFrame:
|
set_generalized_indicators: bool = False) -> DataFrame:
|
||||||
"""
|
"""
|
||||||
|
DEPRECATED - USE FEATURE ENGINEERING FUNCTIONS INSTEAD
|
||||||
Function designed to automatically generate, name and merge features
|
Function designed to automatically generate, name and merge features
|
||||||
from user indicated timeframes in the configuration file. User can add
|
from user indicated timeframes in the configuration file. User can add
|
||||||
additional features here, but must follow the naming convention.
|
additional features here, but must follow the naming convention.
|
||||||
@ -610,6 +614,102 @@ class IStrategy(ABC, HyperStrategyMixin):
|
|||||||
"""
|
"""
|
||||||
return df
|
return df
|
||||||
|
|
||||||
|
def feature_engineering_expand_all(self, dataframe: DataFrame, period: int,
|
||||||
|
metadata: Dict, **kwargs):
|
||||||
|
"""
|
||||||
|
*Only functional with FreqAI enabled strategies*
|
||||||
|
This function will automatically expand the defined features on the config defined
|
||||||
|
`indicator_periods_candles`, `include_timeframes`, `include_shifted_candles`, and
|
||||||
|
`include_corr_pairs`. In other words, a single feature defined in this function
|
||||||
|
will automatically expand to a total of
|
||||||
|
`indicator_periods_candles` * `include_timeframes` * `include_shifted_candles` *
|
||||||
|
`include_corr_pairs` numbers of features added to the model.
|
||||||
|
|
||||||
|
All features must be prepended with `%` to be recognized by FreqAI internals.
|
||||||
|
|
||||||
|
More details on how these config defined parameters accelerate feature engineering
|
||||||
|
in the documentation at:
|
||||||
|
|
||||||
|
https://www.freqtrade.io/en/latest/freqai-parameter-table/#feature-parameters
|
||||||
|
|
||||||
|
https://www.freqtrade.io/en/latest/freqai-feature-engineering/#defining-the-features
|
||||||
|
|
||||||
|
:param dataframe: strategy dataframe which will receive the features
|
||||||
|
:param period: period of the indicator - usage example:
|
||||||
|
:param metadata: metadata of current pair
|
||||||
|
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
|
||||||
|
"""
|
||||||
|
return dataframe
|
||||||
|
|
||||||
|
def feature_engineering_expand_basic(self, dataframe: DataFrame, metadata: Dict, **kwargs):
|
||||||
|
"""
|
||||||
|
*Only functional with FreqAI enabled strategies*
|
||||||
|
This function will automatically expand the defined features on the config defined
|
||||||
|
`include_timeframes`, `include_shifted_candles`, and `include_corr_pairs`.
|
||||||
|
In other words, a single feature defined in this function
|
||||||
|
will automatically expand to a total of
|
||||||
|
`include_timeframes` * `include_shifted_candles` * `include_corr_pairs`
|
||||||
|
numbers of features added to the model.
|
||||||
|
|
||||||
|
Features defined here will *not* be automatically duplicated on user defined
|
||||||
|
`indicator_periods_candles`
|
||||||
|
|
||||||
|
All features must be prepended with `%` to be recognized by FreqAI internals.
|
||||||
|
|
||||||
|
More details on how these config defined parameters accelerate feature engineering
|
||||||
|
in the documentation at:
|
||||||
|
|
||||||
|
https://www.freqtrade.io/en/latest/freqai-parameter-table/#feature-parameters
|
||||||
|
|
||||||
|
https://www.freqtrade.io/en/latest/freqai-feature-engineering/#defining-the-features
|
||||||
|
|
||||||
|
:param dataframe: strategy dataframe which will receive the features
|
||||||
|
:param metadata: metadata of current pair
|
||||||
|
dataframe["%-pct-change"] = dataframe["close"].pct_change()
|
||||||
|
dataframe["%-ema-200"] = ta.EMA(dataframe, timeperiod=200)
|
||||||
|
"""
|
||||||
|
return dataframe
|
||||||
|
|
||||||
|
def feature_engineering_standard(self, dataframe: DataFrame, metadata: Dict, **kwargs):
|
||||||
|
"""
|
||||||
|
*Only functional with FreqAI enabled strategies*
|
||||||
|
This optional function will be called once with the dataframe of the base timeframe.
|
||||||
|
This is the final function to be called, which means that the dataframe entering this
|
||||||
|
function will contain all the features and columns created by all other
|
||||||
|
freqai_feature_engineering_* functions.
|
||||||
|
|
||||||
|
This function is a good place to do custom exotic feature extractions (e.g. tsfresh).
|
||||||
|
This function is a good place for any feature that should not be auto-expanded upon
|
||||||
|
(e.g. day of the week).
|
||||||
|
|
||||||
|
All features must be prepended with `%` to be recognized by FreqAI internals.
|
||||||
|
|
||||||
|
More details about feature engineering available:
|
||||||
|
|
||||||
|
https://www.freqtrade.io/en/latest/freqai-feature-engineering
|
||||||
|
|
||||||
|
:param dataframe: strategy dataframe which will receive the features
|
||||||
|
:param metadata: metadata of current pair
|
||||||
|
usage example: dataframe["%-day_of_week"] = (dataframe["date"].dt.dayofweek + 1) / 7
|
||||||
|
"""
|
||||||
|
return dataframe
|
||||||
|
|
||||||
|
def set_freqai_targets(self, dataframe: DataFrame, metadata: Dict, **kwargs):
|
||||||
|
"""
|
||||||
|
*Only functional with FreqAI enabled strategies*
|
||||||
|
Required function to set the targets for the model.
|
||||||
|
All targets must be prepended with `&` to be recognized by the FreqAI internals.
|
||||||
|
|
||||||
|
More details about feature engineering available:
|
||||||
|
|
||||||
|
https://www.freqtrade.io/en/latest/freqai-feature-engineering
|
||||||
|
|
||||||
|
:param dataframe: strategy dataframe which will receive the targets
|
||||||
|
:param metadata: metadata of current pair
|
||||||
|
usage example: dataframe["&-target"] = dataframe["close"].shift(-1) / dataframe["close"]
|
||||||
|
"""
|
||||||
|
return dataframe
|
||||||
|
|
||||||
###
|
###
|
||||||
# END - Intended to be overridden by strategy
|
# END - Intended to be overridden by strategy
|
||||||
###
|
###
|
||||||
@ -663,7 +763,8 @@ class IStrategy(ABC, HyperStrategyMixin):
|
|||||||
"""
|
"""
|
||||||
return self.__class__.__name__
|
return self.__class__.__name__
|
||||||
|
|
||||||
def lock_pair(self, pair: str, until: datetime, reason: str = None, side: str = '*') -> None:
|
def lock_pair(self, pair: str, until: datetime,
|
||||||
|
reason: Optional[str] = None, side: str = '*') -> None:
|
||||||
"""
|
"""
|
||||||
Locks pair until a given timestamp happens.
|
Locks pair until a given timestamp happens.
|
||||||
Locked pairs are not analyzed, and are prevented from opening new trades.
|
Locked pairs are not analyzed, and are prevented from opening new trades.
|
||||||
@ -695,7 +796,8 @@ class IStrategy(ABC, HyperStrategyMixin):
|
|||||||
"""
|
"""
|
||||||
PairLocks.unlock_reason(reason, datetime.now(timezone.utc))
|
PairLocks.unlock_reason(reason, datetime.now(timezone.utc))
|
||||||
|
|
||||||
def is_pair_locked(self, pair: str, *, candle_date: datetime = None, side: str = '*') -> bool:
|
def is_pair_locked(self, pair: str, *, candle_date: Optional[datetime] = None,
|
||||||
|
side: str = '*') -> bool:
|
||||||
"""
|
"""
|
||||||
Checks if a pair is currently locked
|
Checks if a pair is currently locked
|
||||||
The 2nd, optional parameter ensures that locks are applied until the new candle arrives,
|
The 2nd, optional parameter ensures that locks are applied until the new candle arrives,
|
||||||
@ -866,7 +968,7 @@ class IStrategy(ABC, HyperStrategyMixin):
|
|||||||
pair: str,
|
pair: str,
|
||||||
timeframe: str,
|
timeframe: str,
|
||||||
dataframe: DataFrame,
|
dataframe: DataFrame,
|
||||||
is_short: bool = None
|
is_short: Optional[bool] = None
|
||||||
) -> Tuple[bool, bool, Optional[str]]:
|
) -> Tuple[bool, bool, Optional[str]]:
|
||||||
"""
|
"""
|
||||||
Calculates current exit signal based based on the dataframe
|
Calculates current exit signal based based on the dataframe
|
||||||
@ -965,7 +1067,7 @@ class IStrategy(ABC, HyperStrategyMixin):
|
|||||||
|
|
||||||
def should_exit(self, trade: Trade, rate: float, current_time: datetime, *,
|
def should_exit(self, trade: Trade, rate: float, current_time: datetime, *,
|
||||||
enter: bool, exit_: bool,
|
enter: bool, exit_: bool,
|
||||||
low: float = None, high: float = None,
|
low: Optional[float] = None, high: Optional[float] = None,
|
||||||
force_stoploss: float = 0) -> List[ExitCheckTuple]:
|
force_stoploss: float = 0) -> List[ExitCheckTuple]:
|
||||||
"""
|
"""
|
||||||
This function evaluates if one of the conditions required to trigger an exit order
|
This function evaluates if one of the conditions required to trigger an exit order
|
||||||
@ -1053,8 +1155,8 @@ class IStrategy(ABC, HyperStrategyMixin):
|
|||||||
|
|
||||||
def stop_loss_reached(self, current_rate: float, trade: Trade,
|
def stop_loss_reached(self, current_rate: float, trade: Trade,
|
||||||
current_time: datetime, current_profit: float,
|
current_time: datetime, current_profit: float,
|
||||||
force_stoploss: float, low: float = None,
|
force_stoploss: float, low: Optional[float] = None,
|
||||||
high: float = None) -> ExitCheckTuple:
|
high: Optional[float] = None) -> ExitCheckTuple:
|
||||||
"""
|
"""
|
||||||
Based on current profit of the trade and configured (trailing) stoploss,
|
Based on current profit of the trade and configured (trailing) stoploss,
|
||||||
decides to exit or not
|
decides to exit or not
|
||||||
|
@ -1,4 +1,5 @@
|
|||||||
import logging
|
import logging
|
||||||
|
from typing import Dict
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
@ -95,65 +96,137 @@ class FreqaiExampleHybridStrategy(IStrategy):
|
|||||||
short_rsi = IntParameter(low=51, high=100, default=70, space='sell', optimize=True, load=True)
|
short_rsi = IntParameter(low=51, high=100, default=70, space='sell', optimize=True, load=True)
|
||||||
exit_short_rsi = IntParameter(low=1, high=50, default=30, space='buy', optimize=True, load=True)
|
exit_short_rsi = IntParameter(low=1, high=50, default=30, space='buy', optimize=True, load=True)
|
||||||
|
|
||||||
# FreqAI required function, user can add or remove indicators, but general structure
|
def feature_engineering_expand_all(self, dataframe: DataFrame, period: int,
|
||||||
# must stay the same.
|
metadata: Dict, **kwargs):
|
||||||
def populate_any_indicators(
|
|
||||||
self, pair, df, tf, informative=None, set_generalized_indicators=False
|
|
||||||
):
|
|
||||||
"""
|
"""
|
||||||
User feeds these indicators to FreqAI to train a classifier to decide
|
*Only functional with FreqAI enabled strategies*
|
||||||
if the market will go up or down.
|
This function will automatically expand the defined features on the config defined
|
||||||
|
`indicator_periods_candles`, `include_timeframes`, `include_shifted_candles`, and
|
||||||
|
`include_corr_pairs`. In other words, a single feature defined in this function
|
||||||
|
will automatically expand to a total of
|
||||||
|
`indicator_periods_candles` * `include_timeframes` * `include_shifted_candles` *
|
||||||
|
`include_corr_pairs` numbers of features added to the model.
|
||||||
|
|
||||||
:param pair: pair to be used as informative
|
All features must be prepended with `%` to be recognized by FreqAI internals.
|
||||||
:param df: strategy dataframe which will receive merges from informatives
|
|
||||||
:param tf: timeframe of the dataframe which will modify the feature names
|
More details on how these config defined parameters accelerate feature engineering
|
||||||
:param informative: the dataframe associated with the informative pair
|
in the documentation at:
|
||||||
|
|
||||||
|
https://www.freqtrade.io/en/latest/freqai-parameter-table/#feature-parameters
|
||||||
|
|
||||||
|
https://www.freqtrade.io/en/latest/freqai-feature-engineering/#defining-the-features
|
||||||
|
|
||||||
|
:param dataframe: strategy dataframe which will receive the features
|
||||||
|
:param period: period of the indicator - usage example:
|
||||||
|
:param metadata: metadata of current pair
|
||||||
|
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
|
||||||
"""
|
"""
|
||||||
|
|
||||||
if informative is None:
|
dataframe["%-rsi-period"] = ta.RSI(dataframe, timeperiod=period)
|
||||||
informative = self.dp.get_pair_dataframe(pair, tf)
|
dataframe["%-mfi-period"] = ta.MFI(dataframe, timeperiod=period)
|
||||||
|
dataframe["%-adx-period"] = ta.ADX(dataframe, timeperiod=period)
|
||||||
|
dataframe["%-sma-period"] = ta.SMA(dataframe, timeperiod=period)
|
||||||
|
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
|
||||||
|
|
||||||
# first loop is automatically duplicating indicators for time periods
|
bollinger = qtpylib.bollinger_bands(
|
||||||
for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]:
|
qtpylib.typical_price(dataframe), window=period, stds=2.2
|
||||||
|
)
|
||||||
|
dataframe["bb_lowerband-period"] = bollinger["lower"]
|
||||||
|
dataframe["bb_middleband-period"] = bollinger["mid"]
|
||||||
|
dataframe["bb_upperband-period"] = bollinger["upper"]
|
||||||
|
|
||||||
t = int(t)
|
dataframe["%-bb_width-period"] = (
|
||||||
informative[f"%-{pair}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t)
|
dataframe["bb_upperband-period"]
|
||||||
informative[f"%-{pair}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
|
- dataframe["bb_lowerband-period"]
|
||||||
informative[f"%-{pair}adx-period_{t}"] = ta.ADX(informative, timeperiod=t)
|
) / dataframe["bb_middleband-period"]
|
||||||
informative[f"%-{pair}sma-period_{t}"] = ta.SMA(informative, timeperiod=t)
|
dataframe["%-close-bb_lower-period"] = (
|
||||||
informative[f"%-{pair}ema-period_{t}"] = ta.EMA(informative, timeperiod=t)
|
dataframe["close"] / dataframe["bb_lowerband-period"]
|
||||||
informative[f"%-{pair}roc-period_{t}"] = ta.ROC(informative, timeperiod=t)
|
)
|
||||||
informative[f"%-{pair}relative_volume-period_{t}"] = (
|
|
||||||
informative["volume"] / informative["volume"].rolling(t).mean()
|
|
||||||
)
|
|
||||||
|
|
||||||
# FreqAI needs the following lines in order to detect features and automatically
|
dataframe["%-roc-period"] = ta.ROC(dataframe, timeperiod=period)
|
||||||
# expand upon them.
|
|
||||||
indicators = [col for col in informative if col.startswith("%")]
|
|
||||||
# This loop duplicates and shifts all indicators to add a sense of recency to data
|
|
||||||
for n in range(self.freqai_info["feature_parameters"]["include_shifted_candles"] + 1):
|
|
||||||
if n == 0:
|
|
||||||
continue
|
|
||||||
informative_shift = informative[indicators].shift(n)
|
|
||||||
informative_shift = informative_shift.add_suffix("_shift-" + str(n))
|
|
||||||
informative = pd.concat((informative, informative_shift), axis=1)
|
|
||||||
|
|
||||||
df = merge_informative_pair(df, informative, self.config["timeframe"], tf, ffill=True)
|
dataframe["%-relative_volume-period"] = (
|
||||||
skip_columns = [
|
dataframe["volume"] / dataframe["volume"].rolling(period).mean()
|
||||||
(s + "_" + tf) for s in ["date", "open", "high", "low", "close", "volume"]
|
)
|
||||||
]
|
|
||||||
df = df.drop(columns=skip_columns)
|
|
||||||
|
|
||||||
# User can set the "target" here (in present case it is the
|
return dataframe
|
||||||
# "up" or "down")
|
|
||||||
if set_generalized_indicators:
|
|
||||||
# User "looks into the future" here to figure out if the future
|
|
||||||
# will be "up" or "down". This same column name is available to
|
|
||||||
# the user
|
|
||||||
df['&s-up_or_down'] = np.where(df["close"].shift(-50) >
|
|
||||||
df["close"], 'up', 'down')
|
|
||||||
|
|
||||||
return df
|
def feature_engineering_expand_basic(self, dataframe: DataFrame, metadata: Dict, **kwargs):
|
||||||
|
"""
|
||||||
|
*Only functional with FreqAI enabled strategies*
|
||||||
|
This function will automatically expand the defined features on the config defined
|
||||||
|
`include_timeframes`, `include_shifted_candles`, and `include_corr_pairs`.
|
||||||
|
In other words, a single feature defined in this function
|
||||||
|
will automatically expand to a total of
|
||||||
|
`include_timeframes` * `include_shifted_candles` * `include_corr_pairs`
|
||||||
|
numbers of features added to the model.
|
||||||
|
|
||||||
|
Features defined here will *not* be automatically duplicated on user defined
|
||||||
|
`indicator_periods_candles`
|
||||||
|
|
||||||
|
All features must be prepended with `%` to be recognized by FreqAI internals.
|
||||||
|
|
||||||
|
More details on how these config defined parameters accelerate feature engineering
|
||||||
|
in the documentation at:
|
||||||
|
|
||||||
|
https://www.freqtrade.io/en/latest/freqai-parameter-table/#feature-parameters
|
||||||
|
|
||||||
|
https://www.freqtrade.io/en/latest/freqai-feature-engineering/#defining-the-features
|
||||||
|
|
||||||
|
:param dataframe: strategy dataframe which will receive the features
|
||||||
|
:param metadata: metadata of current pair
|
||||||
|
dataframe["%-pct-change"] = dataframe["close"].pct_change()
|
||||||
|
dataframe["%-ema-200"] = ta.EMA(dataframe, timeperiod=200)
|
||||||
|
"""
|
||||||
|
dataframe["%-pct-change"] = dataframe["close"].pct_change()
|
||||||
|
dataframe["%-raw_volume"] = dataframe["volume"]
|
||||||
|
dataframe["%-raw_price"] = dataframe["close"]
|
||||||
|
return dataframe
|
||||||
|
|
||||||
|
def feature_engineering_standard(self, dataframe: DataFrame, metadata: Dict, **kwargs):
|
||||||
|
"""
|
||||||
|
*Only functional with FreqAI enabled strategies*
|
||||||
|
This optional function will be called once with the dataframe of the base timeframe.
|
||||||
|
This is the final function to be called, which means that the dataframe entering this
|
||||||
|
function will contain all the features and columns created by all other
|
||||||
|
freqai_feature_engineering_* functions.
|
||||||
|
|
||||||
|
This function is a good place to do custom exotic feature extractions (e.g. tsfresh).
|
||||||
|
This function is a good place for any feature that should not be auto-expanded upon
|
||||||
|
(e.g. day of the week).
|
||||||
|
|
||||||
|
All features must be prepended with `%` to be recognized by FreqAI internals.
|
||||||
|
|
||||||
|
More details about feature engineering available:
|
||||||
|
|
||||||
|
https://www.freqtrade.io/en/latest/freqai-feature-engineering
|
||||||
|
|
||||||
|
:param dataframe: strategy dataframe which will receive the features
|
||||||
|
:param metadata: metadata of current pair
|
||||||
|
usage example: dataframe["%-day_of_week"] = (dataframe["date"].dt.dayofweek + 1) / 7
|
||||||
|
"""
|
||||||
|
dataframe["%-day_of_week"] = dataframe["date"].dt.dayofweek
|
||||||
|
dataframe["%-hour_of_day"] = dataframe["date"].dt.hour
|
||||||
|
return dataframe
|
||||||
|
|
||||||
|
def set_freqai_targets(self, dataframe: DataFrame, metadata: Dict, **kwargs):
|
||||||
|
"""
|
||||||
|
*Only functional with FreqAI enabled strategies*
|
||||||
|
Required function to set the targets for the model.
|
||||||
|
All targets must be prepended with `&` to be recognized by the FreqAI internals.
|
||||||
|
|
||||||
|
More details about feature engineering available:
|
||||||
|
|
||||||
|
https://www.freqtrade.io/en/latest/freqai-feature-engineering
|
||||||
|
|
||||||
|
:param dataframe: strategy dataframe which will receive the targets
|
||||||
|
:param metadata: metadata of current pair
|
||||||
|
usage example: dataframe["&-target"] = dataframe["close"].shift(-1) / dataframe["close"]
|
||||||
|
"""
|
||||||
|
dataframe['&s-up_or_down'] = np.where(dataframe["close"].shift(-50) >
|
||||||
|
dataframe["close"], 'up', 'down')
|
||||||
|
|
||||||
|
return dataframe
|
||||||
|
|
||||||
# flake8: noqa: C901
|
# flake8: noqa: C901
|
||||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user