Merge branch 'develop' into pr/yazeed/3091
This commit is contained in:
commit
688d657fe2
@ -1,17 +0,0 @@
|
||||
version: 1
|
||||
|
||||
update_configs:
|
||||
- package_manager: "python"
|
||||
directory: "/"
|
||||
update_schedule: "weekly"
|
||||
allowed_updates:
|
||||
- match:
|
||||
update_type: "all"
|
||||
target_branch: "develop"
|
||||
|
||||
- package_manager: "docker"
|
||||
directory: "/"
|
||||
update_schedule: "daily"
|
||||
allowed_updates:
|
||||
- match:
|
||||
update_type: "all"
|
33
.github/ISSUE_TEMPLATE.md
vendored
33
.github/ISSUE_TEMPLATE.md
vendored
@ -1,33 +0,0 @@
|
||||
## Step 1: Have you search for this issue before posting it?
|
||||
|
||||
If you have discovered a bug in the bot, please [search our issue tracker](https://github.com/freqtrade/freqtrade/issues?q=is%3Aissue).
|
||||
If it hasn't been reported, please create a new issue.
|
||||
|
||||
## Step 2: Describe your environment
|
||||
|
||||
* Operating system: ____
|
||||
* Python Version: _____ (`python -V`)
|
||||
* CCXT version: _____ (`pip freeze | grep ccxt`)
|
||||
* Branch: Master | Develop
|
||||
* Last Commit ID: _____ (`git log --format="%H" -n 1`)
|
||||
|
||||
## Step 3: Describe the problem:
|
||||
|
||||
*Explain the problem you have encountered*
|
||||
|
||||
### Steps to reproduce:
|
||||
|
||||
1. _____
|
||||
2. _____
|
||||
3. _____
|
||||
|
||||
### Observed Results:
|
||||
|
||||
* What happened?
|
||||
* What did you expect to happen?
|
||||
|
||||
### Relevant code exceptions or logs:
|
||||
|
||||
```
|
||||
// paste your log here
|
||||
```
|
48
.github/ISSUE_TEMPLATE/bug_report.md
vendored
Normal file
48
.github/ISSUE_TEMPLATE/bug_report.md
vendored
Normal file
@ -0,0 +1,48 @@
|
||||
---
|
||||
name: Bug report
|
||||
about: Create a report to help us improve
|
||||
title: ''
|
||||
labels: "Triage Needed"
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
<!--
|
||||
Have you searched for similar issues before posting it?
|
||||
|
||||
If you have discovered a bug in the bot, please [search our issue tracker](https://github.com/freqtrade/freqtrade/issues?q=is%3Aissue).
|
||||
If it hasn't been reported, please create a new issue.
|
||||
|
||||
Please do not use bug reports to request new features.
|
||||
-->
|
||||
|
||||
## Describe your environment
|
||||
|
||||
* Operating system: ____
|
||||
* Python Version: _____ (`python -V`)
|
||||
* CCXT version: _____ (`pip freeze | grep ccxt`)
|
||||
* Freqtrade Version: ____ (`freqtrade -V` or `docker-compose run --rm freqtrade -V` for Freqtrade running in docker)
|
||||
|
||||
Note: All issues other than enhancement requests will be closed without further comment if the above template is deleted or not filled out.
|
||||
|
||||
## Describe the problem:
|
||||
|
||||
*Explain the problem you have encountered*
|
||||
|
||||
### Steps to reproduce:
|
||||
|
||||
1. _____
|
||||
2. _____
|
||||
3. _____
|
||||
|
||||
### Observed Results:
|
||||
|
||||
* What happened?
|
||||
* What did you expect to happen?
|
||||
|
||||
### Relevant code exceptions or logs
|
||||
|
||||
Note: Please copy/paste text of the messages, no screenshots of logs please.
|
||||
|
||||
```
|
||||
// paste your log here
|
||||
```
|
27
.github/ISSUE_TEMPLATE/feature_request.md
vendored
Normal file
27
.github/ISSUE_TEMPLATE/feature_request.md
vendored
Normal file
@ -0,0 +1,27 @@
|
||||
---
|
||||
name: Feature request
|
||||
about: Suggest an idea for this project
|
||||
title: ''
|
||||
labels: ''
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
||||
<!--
|
||||
Note: this section will not show up in the issue.
|
||||
Have you search for this feature before requesting it? It's highly likely that a similar request was already filed.
|
||||
-->
|
||||
|
||||
## Describe your environment
|
||||
(if applicable)
|
||||
|
||||
* Operating system: ____
|
||||
* Python Version: _____ (`python -V`)
|
||||
* CCXT version: _____ (`pip freeze | grep ccxt`)
|
||||
* Freqtrade Version: ____ (`freqtrade -V` or `docker-compose run --rm freqtrade -V` for Freqtrade running in docker)
|
||||
|
||||
|
||||
## Describe the enhancement
|
||||
|
||||
*Explain the enhancement you would like*
|
||||
|
25
.github/ISSUE_TEMPLATE/question.md
vendored
Normal file
25
.github/ISSUE_TEMPLATE/question.md
vendored
Normal file
@ -0,0 +1,25 @@
|
||||
---
|
||||
name: BQuestion
|
||||
about: Ask a question you could not find an answer in the docs
|
||||
title: ''
|
||||
labels: "Question"
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
<!--
|
||||
Have you searched for similar issues before posting it?
|
||||
Did you have a VERY good look at the [documentation](https://www.freqtrade.io/en/latest/) and are sure that the question is not explained there
|
||||
|
||||
Please do not use the question template to report bugs or to request new features.
|
||||
-->
|
||||
|
||||
## Describe your environment
|
||||
|
||||
* Operating system: ____
|
||||
* Python Version: _____ (`python -V`)
|
||||
* CCXT version: _____ (`pip freeze | grep ccxt`)
|
||||
* Freqtrade Version: ____ (`freqtrade -V` or `docker-compose run --rm freqtrade -V` for Freqtrade running in docker)
|
||||
|
||||
## Your question
|
||||
|
||||
*Ask the question you have not been able to find an answer in our [Documentation](https://www.freqtrade.io/en/latest/)*
|
13
.github/dependabot.yml
vendored
Normal file
13
.github/dependabot.yml
vendored
Normal file
@ -0,0 +1,13 @@
|
||||
version: 2
|
||||
updates:
|
||||
- package-ecosystem: docker
|
||||
directory: "/"
|
||||
schedule:
|
||||
interval: daily
|
||||
open-pull-requests-limit: 10
|
||||
- package-ecosystem: pip
|
||||
directory: "/"
|
||||
schedule:
|
||||
interval: weekly
|
||||
open-pull-requests-limit: 10
|
||||
target-branch: develop
|
69
.github/workflows/ci.yml
vendored
69
.github/workflows/ci.yml
vendored
@ -100,7 +100,7 @@ jobs:
|
||||
|
||||
- name: Slack Notification
|
||||
uses: homoluctus/slatify@v1.8.0
|
||||
if: always() && ( github.event_name != 'pull_request' || github.event.pull_request.head.repo.fork == false)
|
||||
if: failure() && ( github.event_name != 'pull_request' || github.event.pull_request.head.repo.fork == false)
|
||||
with:
|
||||
type: ${{ job.status }}
|
||||
job_name: '*Freqtrade CI ${{ matrix.os }}*'
|
||||
@ -162,7 +162,7 @@ jobs:
|
||||
|
||||
- name: Slack Notification
|
||||
uses: homoluctus/slatify@v1.8.0
|
||||
if: always() && ( github.event_name != 'pull_request' || github.event.pull_request.head.repo.fork == false)
|
||||
if: failure() && ( github.event_name != 'pull_request' || github.event.pull_request.head.repo.fork == false)
|
||||
with:
|
||||
type: ${{ job.status }}
|
||||
job_name: '*Freqtrade CI windows*'
|
||||
@ -189,6 +189,29 @@ jobs:
|
||||
channel: '#notifications'
|
||||
url: ${{ secrets.SLACK_WEBHOOK }}
|
||||
|
||||
cleanup-prior-runs:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Cleanup previous runs on this branch
|
||||
uses: rokroskar/workflow-run-cleanup-action@v0.2.2
|
||||
if: "!startsWith(github.ref, 'refs/tags/') && github.ref != 'refs/heads/master' && github.repository == 'freqtrade/freqtrade'"
|
||||
env:
|
||||
GITHUB_TOKEN: "${{ secrets.GITHUB_TOKEN }}"
|
||||
|
||||
# Notify on slack only once - when CI completes (and after deploy) in case it's successfull
|
||||
notify-complete:
|
||||
needs: [ build, build_windows, docs_check ]
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Slack Notification
|
||||
uses: homoluctus/slatify@v1.8.0
|
||||
if: always() && ( github.event_name != 'pull_request' || github.event.pull_request.head.repo.fork == false)
|
||||
with:
|
||||
type: ${{ job.status }}
|
||||
job_name: '*Freqtrade CI*'
|
||||
channel: '#notifications'
|
||||
url: ${{ secrets.SLACK_WEBHOOK }}
|
||||
|
||||
deploy:
|
||||
needs: [ build, build_windows, docs_check ]
|
||||
runs-on: ubuntu-18.04
|
||||
@ -226,25 +249,45 @@ jobs:
|
||||
user: __token__
|
||||
password: ${{ secrets.pypi_password }}
|
||||
|
||||
- name: Dockerhub login
|
||||
env:
|
||||
DOCKER_PASSWORD: ${{ secrets.DOCKER_PASSWORD }}
|
||||
DOCKER_USERNAME: ${{ secrets.DOCKER_USERNAME }}
|
||||
run: |
|
||||
echo "${DOCKER_PASSWORD}" | docker login --username ${DOCKER_USERNAME} --password-stdin
|
||||
|
||||
- name: Build and test and push docker image
|
||||
env:
|
||||
IMAGE_NAME: freqtradeorg/freqtrade
|
||||
DOCKER_USERNAME: ${{ secrets.DOCKER_USERNAME }}
|
||||
DOCKER_PASSWORD: ${{ secrets.DOCKER_PASSWORD }}
|
||||
BRANCH_NAME: ${{ steps.extract_branch.outputs.branch }}
|
||||
run: |
|
||||
build_helpers/publish_docker.sh
|
||||
|
||||
- name: Build raspberry image for ${{ steps.extract_branch.outputs.branch }}_pi
|
||||
uses: elgohr/Publish-Docker-Github-Action@2.7
|
||||
# We need docker experimental to pull the ARM image.
|
||||
- name: Switch docker to experimental
|
||||
run: |
|
||||
docker version -f '{{.Server.Experimental}}'
|
||||
echo $'{\n "experimental": true\n}' | sudo tee /etc/docker/daemon.json
|
||||
sudo systemctl restart docker
|
||||
docker version -f '{{.Server.Experimental}}'
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
id: buildx
|
||||
uses: crazy-max/ghaction-docker-buildx@v1
|
||||
with:
|
||||
name: freqtradeorg/freqtrade:${{ steps.extract_branch.outputs.branch }}_pi
|
||||
username: ${{ secrets.DOCKER_USERNAME }}
|
||||
password: ${{ secrets.DOCKER_PASSWORD }}
|
||||
dockerfile: Dockerfile.pi
|
||||
# cache: true
|
||||
cache: ${{ github.event_name != 'schedule' }}
|
||||
tag_names: true
|
||||
buildx-version: latest
|
||||
qemu-version: latest
|
||||
|
||||
- name: Available platforms
|
||||
run: echo ${{ steps.buildx.outputs.platforms }}
|
||||
|
||||
- name: Build Raspberry docker image
|
||||
env:
|
||||
IMAGE_NAME: freqtradeorg/freqtrade
|
||||
BRANCH_NAME: ${{ steps.extract_branch.outputs.branch }}_pi
|
||||
run: |
|
||||
build_helpers/publish_docker_pi.sh
|
||||
|
||||
|
||||
- name: Slack Notification
|
||||
uses: homoluctus/slatify@v1.8.0
|
||||
|
1
.gitignore
vendored
1
.gitignore
vendored
@ -6,7 +6,6 @@ user_data/*
|
||||
!user_data/strategy/sample_strategy.py
|
||||
!user_data/notebooks
|
||||
user_data/notebooks/*
|
||||
!user_data/notebooks/*example.ipynb
|
||||
freqtrade-plot.html
|
||||
freqtrade-profit-plot.html
|
||||
|
||||
|
@ -1,7 +1,7 @@
|
||||
FROM python:3.8.2-slim-buster
|
||||
FROM python:3.8.5-slim-buster
|
||||
|
||||
RUN apt-get update \
|
||||
&& apt-get -y install curl build-essential libssl-dev \
|
||||
&& apt-get -y install curl build-essential libssl-dev sqlite3 \
|
||||
&& apt-get clean \
|
||||
&& pip install --upgrade pip
|
||||
|
||||
|
29
Dockerfile.armhf
Normal file
29
Dockerfile.armhf
Normal file
@ -0,0 +1,29 @@
|
||||
FROM --platform=linux/arm/v7 python:3.7.7-slim-buster
|
||||
|
||||
RUN apt-get update \
|
||||
&& apt-get -y install curl build-essential libssl-dev libatlas3-base libgfortran5 sqlite3 \
|
||||
&& apt-get clean \
|
||||
&& pip install --upgrade pip \
|
||||
&& echo "[global]\nextra-index-url=https://www.piwheels.org/simple" > /etc/pip.conf
|
||||
|
||||
# Prepare environment
|
||||
RUN mkdir /freqtrade
|
||||
WORKDIR /freqtrade
|
||||
|
||||
# Install TA-lib
|
||||
COPY build_helpers/* /tmp/
|
||||
RUN cd /tmp && /tmp/install_ta-lib.sh && rm -r /tmp/*ta-lib*
|
||||
|
||||
ENV LD_LIBRARY_PATH /usr/local/lib
|
||||
|
||||
# Install dependencies
|
||||
COPY requirements.txt requirements-common.txt /freqtrade/
|
||||
RUN pip install numpy --no-cache-dir \
|
||||
&& pip install -r requirements.txt --no-cache-dir
|
||||
|
||||
# Install and execute
|
||||
COPY . /freqtrade/
|
||||
RUN pip install -e . --no-cache-dir
|
||||
ENTRYPOINT ["freqtrade"]
|
||||
# Default to trade mode
|
||||
CMD [ "trade" ]
|
@ -1,41 +0,0 @@
|
||||
FROM balenalib/raspberrypi3-debian:stretch
|
||||
|
||||
RUN [ "cross-build-start" ]
|
||||
|
||||
RUN apt-get update \
|
||||
&& apt-get -y install wget curl build-essential libssl-dev libffi-dev \
|
||||
&& apt-get clean
|
||||
|
||||
# Prepare environment
|
||||
RUN mkdir /freqtrade
|
||||
WORKDIR /freqtrade
|
||||
|
||||
# Install TA-lib
|
||||
COPY build_helpers/ta-lib-0.4.0-src.tar.gz /freqtrade/
|
||||
RUN tar -xzf /freqtrade/ta-lib-0.4.0-src.tar.gz \
|
||||
&& cd /freqtrade/ta-lib/ \
|
||||
&& ./configure \
|
||||
&& make \
|
||||
&& make install \
|
||||
&& rm /freqtrade/ta-lib-0.4.0-src.tar.gz
|
||||
|
||||
ENV LD_LIBRARY_PATH /usr/local/lib
|
||||
|
||||
# Install berryconda
|
||||
RUN wget -q https://github.com/jjhelmus/berryconda/releases/download/v2.0.0/Berryconda3-2.0.0-Linux-armv7l.sh \
|
||||
&& bash ./Berryconda3-2.0.0-Linux-armv7l.sh -b \
|
||||
&& rm Berryconda3-2.0.0-Linux-armv7l.sh
|
||||
|
||||
# Install dependencies
|
||||
COPY requirements-common.txt /freqtrade/
|
||||
RUN ~/berryconda3/bin/conda install -y numpy pandas \
|
||||
&& ~/berryconda3/bin/pip install -r requirements-common.txt --no-cache-dir
|
||||
|
||||
# Install and execute
|
||||
COPY . /freqtrade/
|
||||
RUN ~/berryconda3/bin/pip install -e . --no-cache-dir
|
||||
|
||||
RUN [ "cross-build-end" ]
|
||||
|
||||
ENTRYPOINT ["/root/berryconda3/bin/python","./freqtrade/main.py"]
|
||||
CMD [ "trade" ]
|
51
README.md
51
README.md
@ -68,40 +68,43 @@ For any other type of installation please refer to [Installation doc](https://ww
|
||||
### Bot commands
|
||||
|
||||
```
|
||||
usage: freqtrade [-h] [-v] [--logfile FILE] [--version] [-c PATH] [-d PATH]
|
||||
[-s NAME] [--strategy-path PATH] [--dynamic-whitelist [INT]]
|
||||
[--db-url PATH] [--sd-notify]
|
||||
{backtesting,edge,hyperopt} ...
|
||||
usage: freqtrade [-h] [-V]
|
||||
{trade,create-userdir,new-config,new-hyperopt,new-strategy,download-data,convert-data,convert-trade-data,backtesting,edge,hyperopt,hyperopt-list,hyperopt-show,list-exchanges,list-hyperopts,list-markets,list-pairs,list-strategies,list-timeframes,show-trades,test-pairlist,plot-dataframe,plot-profit}
|
||||
...
|
||||
|
||||
Free, open source crypto trading bot
|
||||
|
||||
positional arguments:
|
||||
{backtesting,edge,hyperopt}
|
||||
{trade,create-userdir,new-config,new-hyperopt,new-strategy,download-data,convert-data,convert-trade-data,backtesting,edge,hyperopt,hyperopt-list,hyperopt-show,list-exchanges,list-hyperopts,list-markets,list-pairs,list-strategies,list-timeframes,show-trades,test-pairlist,plot-dataframe,plot-profit}
|
||||
trade Trade module.
|
||||
create-userdir Create user-data directory.
|
||||
new-config Create new config
|
||||
new-hyperopt Create new hyperopt
|
||||
new-strategy Create new strategy
|
||||
download-data Download backtesting data.
|
||||
convert-data Convert candle (OHLCV) data from one format to
|
||||
another.
|
||||
convert-trade-data Convert trade data from one format to another.
|
||||
backtesting Backtesting module.
|
||||
edge Edge module.
|
||||
hyperopt Hyperopt module.
|
||||
hyperopt-list List Hyperopt results
|
||||
hyperopt-show Show details of Hyperopt results
|
||||
list-exchanges Print available exchanges.
|
||||
list-hyperopts Print available hyperopt classes.
|
||||
list-markets Print markets on exchange.
|
||||
list-pairs Print pairs on exchange.
|
||||
list-strategies Print available strategies.
|
||||
list-timeframes Print available timeframes for the exchange.
|
||||
show-trades Show trades.
|
||||
test-pairlist Test your pairlist configuration.
|
||||
plot-dataframe Plot candles with indicators.
|
||||
plot-profit Generate plot showing profits.
|
||||
|
||||
optional arguments:
|
||||
-h, --help show this help message and exit
|
||||
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
|
||||
--logfile FILE Log to the file specified
|
||||
--version show program's version number and exit
|
||||
-c PATH, --config PATH
|
||||
Specify configuration file (default: None). Multiple
|
||||
--config options may be used.
|
||||
-d PATH, --datadir PATH
|
||||
Path to backtest data.
|
||||
-s NAME, --strategy NAME
|
||||
Specify strategy class name (default:
|
||||
DefaultStrategy).
|
||||
--strategy-path PATH Specify additional strategy lookup path.
|
||||
--dynamic-whitelist [INT]
|
||||
Dynamically generate and update whitelist based on 24h
|
||||
BaseVolume (default: 20). DEPRECATED.
|
||||
--db-url PATH Override trades database URL, this is useful if
|
||||
dry_run is enabled or in custom deployments (default:
|
||||
None).
|
||||
--sd-notify Notify systemd service manager.
|
||||
-V, --version show program's version number and exit
|
||||
|
||||
```
|
||||
|
||||
### Telegram RPC commands
|
||||
|
@ -1,11 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import sys
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
logger.error("DEPRECATED installation detected, please run `pip install -e .` again.")
|
||||
|
||||
sys.exit(2)
|
Binary file not shown.
Binary file not shown.
BIN
build_helpers/TA_Lib-0.4.18-cp37-cp37m-win_amd64.whl
Normal file
BIN
build_helpers/TA_Lib-0.4.18-cp37-cp37m-win_amd64.whl
Normal file
Binary file not shown.
BIN
build_helpers/TA_Lib-0.4.18-cp38-cp38-win_amd64.whl
Normal file
BIN
build_helpers/TA_Lib-0.4.18-cp38-cp38-win_amd64.whl
Normal file
Binary file not shown.
@ -7,10 +7,10 @@ python -m pip install --upgrade pip
|
||||
$pyv = python -c "import sys; print(f'{sys.version_info.major}.{sys.version_info.minor}')"
|
||||
|
||||
if ($pyv -eq '3.7') {
|
||||
pip install build_helpers\TA_Lib-0.4.17-cp37-cp37m-win_amd64.whl
|
||||
pip install build_helpers\TA_Lib-0.4.18-cp37-cp37m-win_amd64.whl
|
||||
}
|
||||
if ($pyv -eq '3.8') {
|
||||
pip install build_helpers\TA_Lib-0.4.17-cp38-cp38-win_amd64.whl
|
||||
pip install build_helpers\TA_Lib-0.4.18-cp38-cp38-win_amd64.whl
|
||||
}
|
||||
|
||||
pip install -r requirements-dev.txt
|
||||
|
@ -42,14 +42,6 @@ if [ "${TAG}" = "develop" ]; then
|
||||
docker tag freqtrade:$TAG ${IMAGE_NAME}:latest
|
||||
fi
|
||||
|
||||
# Login
|
||||
docker login -u $DOCKER_USERNAME -p $DOCKER_PASSWORD
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "failed login"
|
||||
return 1
|
||||
fi
|
||||
|
||||
# Show all available images
|
||||
docker images
|
||||
|
||||
|
36
build_helpers/publish_docker_pi.sh
Executable file
36
build_helpers/publish_docker_pi.sh
Executable file
@ -0,0 +1,36 @@
|
||||
#!/bin/sh
|
||||
|
||||
# The below assumes a correctly setup docker buildx environment
|
||||
|
||||
# Replace / with _ to create a valid tag
|
||||
TAG=$(echo "${BRANCH_NAME}" | sed -e "s/\//_/g")
|
||||
PI_PLATFORM="linux/arm/v7"
|
||||
echo "Running for ${TAG}"
|
||||
CACHE_TAG=freqtradeorg/freqtrade_cache:${TAG}_cache
|
||||
|
||||
# Add commit and commit_message to docker container
|
||||
echo "${GITHUB_SHA}" > freqtrade_commit
|
||||
|
||||
if [ "${GITHUB_EVENT_NAME}" = "schedule" ]; then
|
||||
echo "event ${GITHUB_EVENT_NAME}: full rebuild - skipping cache"
|
||||
docker buildx build \
|
||||
--cache-to=type=registry,ref=${CACHE_TAG} \
|
||||
-f Dockerfile.armhf \
|
||||
--platform ${PI_PLATFORM} \
|
||||
-t ${IMAGE_NAME}:${TAG} --push .
|
||||
else
|
||||
echo "event ${GITHUB_EVENT_NAME}: building with cache"
|
||||
# Pull last build to avoid rebuilding the whole image
|
||||
# docker pull --platform ${PI_PLATFORM} ${IMAGE_NAME}:${TAG}
|
||||
docker buildx build \
|
||||
--cache-from=type=registry,ref=${CACHE_TAG} \
|
||||
--cache-to=type=registry,ref=${CACHE_TAG} \
|
||||
-f Dockerfile.armhf \
|
||||
--platform ${PI_PLATFORM} \
|
||||
-t ${IMAGE_NAME}:${TAG} --push .
|
||||
fi
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "failed building image"
|
||||
return 1
|
||||
fi
|
@ -4,8 +4,9 @@
|
||||
"stake_amount": 0.05,
|
||||
"tradable_balance_ratio": 0.99,
|
||||
"fiat_display_currency": "USD",
|
||||
"ticker_interval": "5m",
|
||||
"timeframe": "5m",
|
||||
"dry_run": false,
|
||||
"cancel_open_orders_on_exit": false,
|
||||
"trailing_stop": false,
|
||||
"unfilledtimeout": {
|
||||
"buy": 10,
|
||||
@ -75,6 +76,16 @@
|
||||
"token": "your_telegram_token",
|
||||
"chat_id": "your_telegram_chat_id"
|
||||
},
|
||||
"api_server": {
|
||||
"enabled": false,
|
||||
"listen_ip_address": "127.0.0.1",
|
||||
"listen_port": 8080,
|
||||
"verbosity": "info",
|
||||
"jwt_secret_key": "somethingrandom",
|
||||
"CORS_origins": [],
|
||||
"username": "",
|
||||
"password": ""
|
||||
},
|
||||
"initial_state": "running",
|
||||
"forcebuy_enable": false,
|
||||
"internals": {
|
||||
|
@ -4,8 +4,9 @@
|
||||
"stake_amount": 0.05,
|
||||
"tradable_balance_ratio": 0.99,
|
||||
"fiat_display_currency": "USD",
|
||||
"ticker_interval": "5m",
|
||||
"timeframe": "5m",
|
||||
"dry_run": true,
|
||||
"cancel_open_orders_on_exit": false,
|
||||
"trailing_stop": false,
|
||||
"unfilledtimeout": {
|
||||
"buy": 10,
|
||||
@ -80,6 +81,16 @@
|
||||
"token": "your_telegram_token",
|
||||
"chat_id": "your_telegram_chat_id"
|
||||
},
|
||||
"api_server": {
|
||||
"enabled": false,
|
||||
"listen_ip_address": "127.0.0.1",
|
||||
"listen_port": 8080,
|
||||
"verbosity": "info",
|
||||
"jwt_secret_key": "somethingrandom",
|
||||
"CORS_origins": [],
|
||||
"username": "",
|
||||
"password": ""
|
||||
},
|
||||
"initial_state": "running",
|
||||
"forcebuy_enable": false,
|
||||
"internals": {
|
||||
|
@ -8,7 +8,8 @@
|
||||
"amend_last_stake_amount": false,
|
||||
"last_stake_amount_min_ratio": 0.5,
|
||||
"dry_run": false,
|
||||
"ticker_interval": "5m",
|
||||
"cancel_open_orders_on_exit": false,
|
||||
"timeframe": "5m",
|
||||
"trailing_stop": false,
|
||||
"trailing_stop_positive": 0.005,
|
||||
"trailing_stop_positive_offset": 0.0051,
|
||||
@ -63,8 +64,9 @@
|
||||
"sort_key": "quoteVolume",
|
||||
"refresh_period": 1800
|
||||
},
|
||||
{"method": "AgeFilter", "min_days_listed": 10},
|
||||
{"method": "PrecisionFilter"},
|
||||
{"method": "PriceFilter", "low_price_ratio": 0.01},
|
||||
{"method": "PriceFilter", "low_price_ratio": 0.01, "min_price": 0.00000010},
|
||||
{"method": "SpreadFilter", "max_spread_ratio": 0.005}
|
||||
],
|
||||
"exchange": {
|
||||
@ -120,6 +122,9 @@
|
||||
"enabled": false,
|
||||
"listen_ip_address": "127.0.0.1",
|
||||
"listen_port": 8080,
|
||||
"verbosity": "info",
|
||||
"jwt_secret_key": "somethingrandom",
|
||||
"CORS_origins": [],
|
||||
"username": "freqtrader",
|
||||
"password": "SuperSecurePassword"
|
||||
},
|
||||
@ -130,6 +135,7 @@
|
||||
"process_throttle_secs": 5,
|
||||
"heartbeat_interval": 60
|
||||
},
|
||||
"disable_dataframe_checks": false,
|
||||
"strategy": "DefaultStrategy",
|
||||
"strategy_path": "user_data/strategies/",
|
||||
"dataformat_ohlcv": "json",
|
||||
|
@ -4,8 +4,9 @@
|
||||
"stake_amount": 10,
|
||||
"tradable_balance_ratio": 0.99,
|
||||
"fiat_display_currency": "EUR",
|
||||
"ticker_interval": "5m",
|
||||
"timeframe": "5m",
|
||||
"dry_run": true,
|
||||
"cancel_open_orders_on_exit": false,
|
||||
"trailing_stop": false,
|
||||
"unfilledtimeout": {
|
||||
"buy": 10,
|
||||
@ -86,6 +87,16 @@
|
||||
"token": "your_telegram_token",
|
||||
"chat_id": "your_telegram_chat_id"
|
||||
},
|
||||
"api_server": {
|
||||
"enabled": false,
|
||||
"listen_ip_address": "127.0.0.1",
|
||||
"listen_port": 8080,
|
||||
"verbosity": "info",
|
||||
"jwt_secret_key": "somethingrandom",
|
||||
"CORS_origins": [],
|
||||
"username": "",
|
||||
"password": ""
|
||||
},
|
||||
"initial_state": "running",
|
||||
"forcebuy_enable": false,
|
||||
"internals": {
|
||||
|
@ -3,6 +3,7 @@ version: '3'
|
||||
services:
|
||||
freqtrade:
|
||||
image: freqtradeorg/freqtrade:master
|
||||
# image: freqtradeorg/freqtrade:develop
|
||||
# Build step - only needed when additional dependencies are needed
|
||||
# build:
|
||||
# context: .
|
||||
@ -14,7 +15,7 @@ services:
|
||||
# Default command used when running `docker compose up`
|
||||
command: >
|
||||
trade
|
||||
--logfile /freqtrade/user_data/freqtrade.log
|
||||
--logfile /freqtrade/user_data/logs/freqtrade.log
|
||||
--db-url sqlite:////freqtrade/user_data/tradesv3.sqlite
|
||||
--config /freqtrade/user_data/config.json
|
||||
--strategy SampleStrategy
|
||||
|
@ -63,8 +63,8 @@ class SuperDuperHyperOptLoss(IHyperOptLoss):
|
||||
* 0.25: Avoiding trade loss
|
||||
* 1.0 to total profit, compared to the expected value (`EXPECTED_MAX_PROFIT`) defined above
|
||||
"""
|
||||
total_profit = results.profit_percent.sum()
|
||||
trade_duration = results.trade_duration.mean()
|
||||
total_profit = results['profit_percent'].sum()
|
||||
trade_duration = results['trade_duration'].mean()
|
||||
|
||||
trade_loss = 1 - 0.25 * exp(-(trade_count - TARGET_TRADES) ** 2 / 10 ** 5.8)
|
||||
profit_loss = max(0, 1 - total_profit / EXPECTED_MAX_PROFIT)
|
||||
|
@ -4,6 +4,54 @@ This page explains some advanced tasks and configuration options that can be per
|
||||
|
||||
If you do not know what things mentioned here mean, you probably do not need it.
|
||||
|
||||
## Running multiple instances of Freqtrade
|
||||
|
||||
This section will show you how to run multiple bots at the same time, on the same machine.
|
||||
|
||||
### Things to consider
|
||||
|
||||
* Use different database files.
|
||||
* Use different Telegram bots (requires multiple different configuration files; applies only when Telegram is enabled).
|
||||
* Use different ports (applies only when Freqtrade REST API webserver is enabled).
|
||||
|
||||
### Different database files
|
||||
|
||||
In order to keep track of your trades, profits, etc., freqtrade is using a SQLite database where it stores various types of information such as the trades you performed in the past and the current position(s) you are holding at any time. This allows you to keep track of your profits, but most importantly, keep track of ongoing activity if the bot process would be restarted or would be terminated unexpectedly.
|
||||
|
||||
Freqtrade will, by default, use separate database files for dry-run and live bots (this assumes no database-url is given in either configuration nor via command line argument).
|
||||
For live trading mode, the default database will be `tradesv3.sqlite` and for dry-run it will be `tradesv3.dryrun.sqlite`.
|
||||
|
||||
The optional argument to the trade command used to specify the path of these files is `--db-url`, which requires a valid SQLAlchemy url.
|
||||
So when you are starting a bot with only the config and strategy arguments in dry-run mode, the following 2 commands would have the same outcome.
|
||||
|
||||
``` bash
|
||||
freqtrade trade -c MyConfig.json -s MyStrategy
|
||||
# is equivalent to
|
||||
freqtrade trade -c MyConfig.json -s MyStrategy --db-url sqlite:///tradesv3.dryrun.sqlite
|
||||
```
|
||||
|
||||
It means that if you are running the trade command in two different terminals, for example to test your strategy both for trades in USDT and in another instance for trades in BTC, you will have to run them with different databases.
|
||||
|
||||
If you specify the URL of a database which does not exist, freqtrade will create one with the name you specified. So to test your custom strategy with BTC and USDT stake currencies, you could use the following commands (in 2 separate terminals):
|
||||
|
||||
``` bash
|
||||
# Terminal 1:
|
||||
freqtrade trade -c MyConfigBTC.json -s MyCustomStrategy --db-url sqlite:///user_data/tradesBTC.dryrun.sqlite
|
||||
# Terminal 2:
|
||||
freqtrade trade -c MyConfigUSDT.json -s MyCustomStrategy --db-url sqlite:///user_data/tradesUSDT.dryrun.sqlite
|
||||
```
|
||||
|
||||
Conversely, if you wish to do the same thing in production mode, you will also have to create at least one new database (in addition to the default one) and specify the path to the "live" databases, for example:
|
||||
|
||||
``` bash
|
||||
# Terminal 1:
|
||||
freqtrade trade -c MyConfigBTC.json -s MyCustomStrategy --db-url sqlite:///user_data/tradesBTC.live.sqlite
|
||||
# Terminal 2:
|
||||
freqtrade trade -c MyConfigUSDT.json -s MyCustomStrategy --db-url sqlite:///user_data/tradesUSDT.live.sqlite
|
||||
```
|
||||
|
||||
For more information regarding usage of the sqlite databases, for example to manually enter or remove trades, please refer to the [SQL Cheatsheet](sql_cheatsheet.md).
|
||||
|
||||
## Configure the bot running as a systemd service
|
||||
|
||||
Copy the `freqtrade.service` file to your systemd user directory (usually `~/.config/systemd/user`) and update `WorkingDirectory` and `ExecStart` to match your setup.
|
||||
@ -37,30 +85,30 @@ as the watchdog.
|
||||
|
||||
## Advanced Logging
|
||||
|
||||
On many Linux systems the bot can be configured to send its log messages to `syslog` or `journald` system services. Logging to a remote `syslog` server is also available on Windows. The special values for the `--logfilename` command line option can be used for this.
|
||||
On many Linux systems the bot can be configured to send its log messages to `syslog` or `journald` system services. Logging to a remote `syslog` server is also available on Windows. The special values for the `--logfile` command line option can be used for this.
|
||||
|
||||
### Logging to syslog
|
||||
|
||||
To send Freqtrade log messages to a local or remote `syslog` service use the `--logfilename` command line option with the value in the following format:
|
||||
To send Freqtrade log messages to a local or remote `syslog` service use the `--logfile` command line option with the value in the following format:
|
||||
|
||||
* `--logfilename syslog:<syslog_address>` -- send log messages to `syslog` service using the `<syslog_address>` as the syslog address.
|
||||
* `--logfile syslog:<syslog_address>` -- send log messages to `syslog` service using the `<syslog_address>` as the syslog address.
|
||||
|
||||
The syslog address can be either a Unix domain socket (socket filename) or a UDP socket specification, consisting of IP address and UDP port, separated by the `:` character.
|
||||
|
||||
So, the following are the examples of possible usages:
|
||||
|
||||
* `--logfilename syslog:/dev/log` -- log to syslog (rsyslog) using the `/dev/log` socket, suitable for most systems.
|
||||
* `--logfilename syslog` -- same as above, the shortcut for `/dev/log`.
|
||||
* `--logfilename syslog:/var/run/syslog` -- log to syslog (rsyslog) using the `/var/run/syslog` socket. Use this on MacOS.
|
||||
* `--logfilename syslog:localhost:514` -- log to local syslog using UDP socket, if it listens on port 514.
|
||||
* `--logfilename syslog:<ip>:514` -- log to remote syslog at IP address and port 514. This may be used on Windows for remote logging to an external syslog server.
|
||||
* `--logfile syslog:/dev/log` -- log to syslog (rsyslog) using the `/dev/log` socket, suitable for most systems.
|
||||
* `--logfile syslog` -- same as above, the shortcut for `/dev/log`.
|
||||
* `--logfile syslog:/var/run/syslog` -- log to syslog (rsyslog) using the `/var/run/syslog` socket. Use this on MacOS.
|
||||
* `--logfile syslog:localhost:514` -- log to local syslog using UDP socket, if it listens on port 514.
|
||||
* `--logfile syslog:<ip>:514` -- log to remote syslog at IP address and port 514. This may be used on Windows for remote logging to an external syslog server.
|
||||
|
||||
Log messages are send to `syslog` with the `user` facility. So you can see them with the following commands:
|
||||
|
||||
* `tail -f /var/log/user`, or
|
||||
* install a comprehensive graphical viewer (for instance, 'Log File Viewer' for Ubuntu).
|
||||
|
||||
On many systems `syslog` (`rsyslog`) fetches data from `journald` (and vice versa), so both `--logfilename syslog` or `--logfilename journald` can be used and the messages be viewed with both `journalctl` and a syslog viewer utility. You can combine this in any way which suites you better.
|
||||
On many systems `syslog` (`rsyslog`) fetches data from `journald` (and vice versa), so both `--logfile syslog` or `--logfile journald` can be used and the messages be viewed with both `journalctl` and a syslog viewer utility. You can combine this in any way which suites you better.
|
||||
|
||||
For `rsyslog` the messages from the bot can be redirected into a separate dedicated log file. To achieve this, add
|
||||
```
|
||||
@ -78,9 +126,9 @@ $RepeatedMsgReduction on
|
||||
|
||||
This needs the `systemd` python package installed as the dependency, which is not available on Windows. Hence, the whole journald logging functionality is not available for a bot running on Windows.
|
||||
|
||||
To send Freqtrade log messages to `journald` system service use the `--logfilename` command line option with the value in the following format:
|
||||
To send Freqtrade log messages to `journald` system service use the `--logfile` command line option with the value in the following format:
|
||||
|
||||
* `--logfilename journald` -- send log messages to `journald`.
|
||||
* `--logfile journald` -- send log messages to `journald`.
|
||||
|
||||
Log messages are send to `journald` with the `user` facility. So you can see them with the following commands:
|
||||
|
||||
@ -89,4 +137,4 @@ Log messages are send to `journald` with the `user` facility. So you can see the
|
||||
|
||||
There are many other options in the `journalctl` utility to filter the messages, see manual pages for this utility.
|
||||
|
||||
On many systems `syslog` (`rsyslog`) fetches data from `journald` (and vice versa), so both `--logfilename syslog` or `--logfilename journald` can be used and the messages be viewed with both `journalctl` and a syslog viewer utility. You can combine this in any way which suites you better.
|
||||
On many systems `syslog` (`rsyslog`) fetches data from `journald` (and vice versa), so both `--logfile syslog` or `--logfile journald` can be used and the messages be viewed with both `journalctl` and a syslog viewer utility. You can combine this in any way which suites you better.
|
||||
|
@ -12,13 +12,17 @@ real data. This is what we call
|
||||
[backtesting](https://en.wikipedia.org/wiki/Backtesting).
|
||||
|
||||
Backtesting will use the crypto-currencies (pairs) from your config file and load historical candle (OHCLV) data from `user_data/data/<exchange>` by default.
|
||||
If no data is available for the exchange / pair / timeframe (ticker interval) combination, backtesting will ask you to download them first using `freqtrade download-data`.
|
||||
If no data is available for the exchange / pair / timeframe combination, backtesting will ask you to download them first using `freqtrade download-data`.
|
||||
For details on downloading, please refer to the [Data Downloading](data-download.md) section in the documentation.
|
||||
|
||||
The result of backtesting will confirm if your bot has better odds of making a profit than a loss.
|
||||
|
||||
!!! Tip "Using dynamic pairlists for backtesting"
|
||||
While using dynamic pairlists during backtesting is not possible, a dynamic pairlist using current data can be generated via the [`test-pairlist`](utils.md#test-pairlist) command, and needs to be specified as `"pair_whitelist"` attribute in the configuration.
|
||||
!!! Warning "Using dynamic pairlists for backtesting"
|
||||
Using dynamic pairlists is possible, however it relies on the current market conditions - which will not reflect the historic status of the pairlist.
|
||||
Also, when using pairlists other than StaticPairlist, reproducability of backtesting-results cannot be guaranteed.
|
||||
Please read the [pairlists documentation](configuration.md#pairlists) for more information.
|
||||
|
||||
To achieve reproducible results, best generate a pairlist via the [`test-pairlist`](utils.md#test-pairlist) command and use that as static pairlist.
|
||||
|
||||
### Run a backtesting against the currencies listed in your config file
|
||||
|
||||
@ -31,7 +35,7 @@ freqtrade backtesting
|
||||
#### With 1 min candle (OHLCV) data
|
||||
|
||||
```bash
|
||||
freqtrade backtesting --ticker-interval 1m
|
||||
freqtrade backtesting --timeframe 1m
|
||||
```
|
||||
|
||||
#### Using a different on-disk historical candle (OHLCV) data source
|
||||
@ -54,7 +58,7 @@ Where `-s SampleStrategy` refers to the class name within the strategy file `sam
|
||||
#### Comparing multiple Strategies
|
||||
|
||||
```bash
|
||||
freqtrade backtesting --strategy-list SampleStrategy1 AwesomeStrategy --ticker-interval 5m
|
||||
freqtrade backtesting --strategy-list SampleStrategy1 AwesomeStrategy --timeframe 5m
|
||||
```
|
||||
|
||||
Where `SampleStrategy1` and `AwesomeStrategy` refer to class names of strategies.
|
||||
@ -62,7 +66,7 @@ Where `SampleStrategy1` and `AwesomeStrategy` refer to class names of strategies
|
||||
#### Exporting trades to file
|
||||
|
||||
```bash
|
||||
freqtrade backtesting --export trades
|
||||
freqtrade backtesting --export trades --config config.json --strategy SampleStrategy
|
||||
```
|
||||
|
||||
The exported trades can be used for [further analysis](#further-backtest-result-analysis), or can be used by the plotting script `plot_dataframe.py` in the scripts directory.
|
||||
@ -198,7 +202,7 @@ Since backtesting lacks some detailed information about what happens within a ca
|
||||
|
||||
- Buys happen at open-price
|
||||
- Sell signal sells happen at open-price of the following candle
|
||||
- Low happens before high for stoploss, protecting capital first.
|
||||
- Low happens before high for stoploss, protecting capital first
|
||||
- ROI
|
||||
- sells are compared to high - but the ROI value is used (e.g. ROI = 2%, high=5% - so the sell will be at 2%)
|
||||
- sells are never "below the candle", so a ROI of 2% may result in a sell at 2.4% if low was at 2.4% profit
|
||||
@ -208,6 +212,7 @@ Since backtesting lacks some detailed information about what happens within a ca
|
||||
- High happens first - adjusting stoploss
|
||||
- Low uses the adjusted stoploss (so sells with large high-low difference are backtested correctly)
|
||||
- Sell-reason does not explain if a trade was positive or negative, just what triggered the sell (this can look odd if negative ROI values are used)
|
||||
- Stoploss (and trailing stoploss) is evaluated before ROI within one candle. So you can often see more trades with the `stoploss` and/or `trailing_stop` sell reason comparing to the results obtained with the same strategy in the Dry Run/Live Trade modes.
|
||||
|
||||
Taking these assumptions, backtesting tries to mirror real trading as closely as possible. However, backtesting will **never** replace running a strategy in dry-run mode.
|
||||
Also, keep in mind that past results don't guarantee future success.
|
||||
@ -223,13 +228,13 @@ You can then load the trades to perform further analysis as shown in our [data a
|
||||
|
||||
To compare multiple strategies, a list of Strategies can be provided to backtesting.
|
||||
|
||||
This is limited to 1 timeframe (ticker interval) value per run. However, data is only loaded once from disk so if you have multiple
|
||||
This is limited to 1 timeframe value per run. However, data is only loaded once from disk so if you have multiple
|
||||
strategies you'd like to compare, this will give a nice runtime boost.
|
||||
|
||||
All listed Strategies need to be in the same directory.
|
||||
|
||||
``` bash
|
||||
freqtrade backtesting --timerange 20180401-20180410 --ticker-interval 5m --strategy-list Strategy001 Strategy002 --export trades
|
||||
freqtrade backtesting --timerange 20180401-20180410 --timeframe 5m --strategy-list Strategy001 Strategy002 --export trades
|
||||
```
|
||||
|
||||
This will save the results to `user_data/backtest_results/backtest-result-<strategy>.json`, injecting the strategy-name into the target filename.
|
||||
|
58
docs/bot-basics.md
Normal file
58
docs/bot-basics.md
Normal file
@ -0,0 +1,58 @@
|
||||
# Freqtrade basics
|
||||
|
||||
This page provides you some basic concepts on how Freqtrade works and operates.
|
||||
|
||||
## Freqtrade terminology
|
||||
|
||||
* Trade: Open position.
|
||||
* Open Order: Order which is currently placed on the exchange, and is not yet complete.
|
||||
* Pair: Tradable pair, usually in the format of Quote/Base (e.g. XRP/USDT).
|
||||
* Timeframe: Candle length to use (e.g. `"5m"`, `"1h"`, ...).
|
||||
* Indicators: Technical indicators (SMA, EMA, RSI, ...).
|
||||
* Limit order: Limit orders which execute at the defined limit price or better.
|
||||
* Market order: Guaranteed to fill, may move price depending on the order size.
|
||||
|
||||
## Fee handling
|
||||
|
||||
All profit calculations of Freqtrade include fees. For Backtesting / Hyperopt / Dry-run modes, the exchange default fee is used (lowest tier on the exchange). For live operations, fees are used as applied by the exchange (this includes BNB rebates etc.).
|
||||
|
||||
## Bot execution logic
|
||||
|
||||
Starting freqtrade in dry-run or live mode (using `freqtrade trade`) will start the bot and start the bot iteration loop.
|
||||
By default, loop runs every few seconds (`internals.process_throttle_secs`) and does roughly the following in the following sequence:
|
||||
|
||||
* Fetch open trades from persistence.
|
||||
* Calculate current list of tradable pairs.
|
||||
* Download ohlcv data for the pairlist including all [informative pairs](strategy-customization.md#get-data-for-non-tradeable-pairs)
|
||||
This step is only executed once per Candle to avoid unnecessary network traffic.
|
||||
* Call `bot_loop_start()` strategy callback.
|
||||
* Analyze strategy per pair.
|
||||
* Call `populate_indicators()`
|
||||
* Call `populate_buy_trend()`
|
||||
* Call `populate_sell_trend()`
|
||||
* Check timeouts for open orders.
|
||||
* Calls `check_buy_timeout()` strategy callback for open buy orders.
|
||||
* Calls `check_sell_timeout()` strategy callback for open sell orders.
|
||||
* Verifies existing positions and eventually places sell orders.
|
||||
* Considers stoploss, ROI and sell-signal.
|
||||
* Determine sell-price based on `ask_strategy` configuration setting.
|
||||
* Before a sell order is placed, `confirm_trade_exit()` strategy callback is called.
|
||||
* Check if trade-slots are still available (if `max_open_trades` is reached).
|
||||
* Verifies buy signal trying to enter new positions.
|
||||
* Determine buy-price based on `bid_strategy` configuration setting.
|
||||
* Before a buy order is placed, `confirm_trade_entry()` strategy callback is called.
|
||||
|
||||
This loop will be repeated again and again until the bot is stopped.
|
||||
|
||||
## Backtesting / Hyperopt execution logic
|
||||
|
||||
[backtesting](backtesting.md) or [hyperopt](hyperopt.md) do only part of the above logic, since most of the trading operations are fully simulated.
|
||||
|
||||
* Load historic data for configured pairlist.
|
||||
* Calculate indicators (calls `populate_indicators()`).
|
||||
* Calls `populate_buy_trend()` and `populate_sell_trend()`
|
||||
* Loops per candle simulating entry and exit points.
|
||||
* Generate backtest report output
|
||||
|
||||
!!! Note
|
||||
Both Backtesting and Hyperopt include exchange default Fees in the calculation. Custom fees can be passed to backtesting / hyperopt by specifying the `--fee` argument.
|
@ -9,22 +9,35 @@ This page explains the different parameters of the bot and how to run it.
|
||||
|
||||
```
|
||||
usage: freqtrade [-h] [-V]
|
||||
{trade,backtesting,edge,hyperopt,create-userdir,list-exchanges,list-timeframes,download-data,plot-dataframe,plot-profit}
|
||||
{trade,create-userdir,new-config,new-hyperopt,new-strategy,download-data,convert-data,convert-trade-data,backtesting,edge,hyperopt,hyperopt-list,hyperopt-show,list-exchanges,list-hyperopts,list-markets,list-pairs,list-strategies,list-timeframes,show-trades,test-pairlist,plot-dataframe,plot-profit}
|
||||
...
|
||||
|
||||
Free, open source crypto trading bot
|
||||
|
||||
positional arguments:
|
||||
{trade,backtesting,edge,hyperopt,create-userdir,list-exchanges,list-timeframes,download-data,plot-dataframe,plot-profit}
|
||||
{trade,create-userdir,new-config,new-hyperopt,new-strategy,download-data,convert-data,convert-trade-data,backtesting,edge,hyperopt,hyperopt-list,hyperopt-show,list-exchanges,list-hyperopts,list-markets,list-pairs,list-strategies,list-timeframes,show-trades,test-pairlist,plot-dataframe,plot-profit}
|
||||
trade Trade module.
|
||||
create-userdir Create user-data directory.
|
||||
new-config Create new config
|
||||
new-hyperopt Create new hyperopt
|
||||
new-strategy Create new strategy
|
||||
download-data Download backtesting data.
|
||||
convert-data Convert candle (OHLCV) data from one format to
|
||||
another.
|
||||
convert-trade-data Convert trade data from one format to another.
|
||||
backtesting Backtesting module.
|
||||
edge Edge module.
|
||||
hyperopt Hyperopt module.
|
||||
create-userdir Create user-data directory.
|
||||
hyperopt-list List Hyperopt results
|
||||
hyperopt-show Show details of Hyperopt results
|
||||
list-exchanges Print available exchanges.
|
||||
list-timeframes Print available ticker intervals (timeframes) for the
|
||||
exchange.
|
||||
download-data Download backtesting data.
|
||||
list-hyperopts Print available hyperopt classes.
|
||||
list-markets Print markets on exchange.
|
||||
list-pairs Print pairs on exchange.
|
||||
list-strategies Print available strategies.
|
||||
list-timeframes Print available timeframes for the exchange.
|
||||
show-trades Show trades.
|
||||
test-pairlist Test your pairlist configuration.
|
||||
plot-dataframe Plot candles with indicators.
|
||||
plot-profit Generate plot showing profits.
|
||||
|
||||
@ -72,7 +85,6 @@ Strategy arguments:
|
||||
Specify strategy class name which will be used by the
|
||||
bot.
|
||||
--strategy-path PATH Specify additional strategy lookup path.
|
||||
.
|
||||
|
||||
```
|
||||
|
||||
@ -144,10 +156,10 @@ It is recommended to use version control to keep track of changes to your strate
|
||||
### How to use **--strategy**?
|
||||
|
||||
This parameter will allow you to load your custom strategy class.
|
||||
Per default without `--strategy` or `-s` the bot will load the
|
||||
`DefaultStrategy` included with the bot (`freqtrade/strategy/default_strategy.py`).
|
||||
To test the bot installation, you can use the `SampleStrategy` installed by the `create-userdir` subcommand (usually `user_data/strategy/sample_strategy.py`).
|
||||
|
||||
The bot will search your strategy file within `user_data/strategies` and `freqtrade/strategy`.
|
||||
The bot will search your strategy file within `user_data/strategies`.
|
||||
To use other directories, please read the next section about `--strategy-path`.
|
||||
|
||||
To load a strategy, simply pass the class name (e.g.: `CustomStrategy`) in this parameter.
|
||||
|
||||
@ -197,7 +209,7 @@ Backtesting also uses the config specified via `-c/--config`.
|
||||
```
|
||||
usage: freqtrade backtesting [-h] [-v] [--logfile FILE] [-V] [-c PATH]
|
||||
[-d PATH] [--userdir PATH] [-s NAME]
|
||||
[--strategy-path PATH] [-i TICKER_INTERVAL]
|
||||
[--strategy-path PATH] [-i TIMEFRAME]
|
||||
[--timerange TIMERANGE] [--max-open-trades INT]
|
||||
[--stake-amount STAKE_AMOUNT] [--fee FLOAT]
|
||||
[--eps] [--dmmp]
|
||||
@ -206,7 +218,7 @@ usage: freqtrade backtesting [-h] [-v] [--logfile FILE] [-V] [-c PATH]
|
||||
|
||||
optional arguments:
|
||||
-h, --help show this help message and exit
|
||||
-i TICKER_INTERVAL, --ticker-interval TICKER_INTERVAL
|
||||
-i TIMEFRAME, --timeframe TIMEFRAME, --ticker-interval TIMEFRAME
|
||||
Specify ticker interval (`1m`, `5m`, `30m`, `1h`,
|
||||
`1d`).
|
||||
--timerange TIMERANGE
|
||||
@ -280,7 +292,7 @@ to find optimal parameter values for your strategy.
|
||||
```
|
||||
usage: freqtrade hyperopt [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH]
|
||||
[--userdir PATH] [-s NAME] [--strategy-path PATH]
|
||||
[-i TICKER_INTERVAL] [--timerange TIMERANGE]
|
||||
[-i TIMEFRAME] [--timerange TIMERANGE]
|
||||
[--max-open-trades INT]
|
||||
[--stake-amount STAKE_AMOUNT] [--fee FLOAT]
|
||||
[--hyperopt NAME] [--hyperopt-path PATH] [--eps]
|
||||
@ -292,7 +304,7 @@ usage: freqtrade hyperopt [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH]
|
||||
|
||||
optional arguments:
|
||||
-h, --help show this help message and exit
|
||||
-i TICKER_INTERVAL, --ticker-interval TICKER_INTERVAL
|
||||
-i TIMEFRAME, --timeframe TIMEFRAME, --ticker-interval TIMEFRAME
|
||||
Specify ticker interval (`1m`, `5m`, `30m`, `1h`,
|
||||
`1d`).
|
||||
--timerange TIMERANGE
|
||||
@ -323,7 +335,7 @@ optional arguments:
|
||||
--print-all Print all results, not only the best ones.
|
||||
--no-color Disable colorization of hyperopt results. May be
|
||||
useful if you are redirecting output to a file.
|
||||
--print-json Print best results in JSON format.
|
||||
--print-json Print output in JSON format.
|
||||
-j JOBS, --job-workers JOBS
|
||||
The number of concurrently running jobs for
|
||||
hyperoptimization (hyperopt worker processes). If -1
|
||||
@ -341,11 +353,11 @@ optional arguments:
|
||||
class (IHyperOptLoss). Different functions can
|
||||
generate completely different results, since the
|
||||
target for optimization is different. Built-in
|
||||
Hyperopt-loss-functions are:
|
||||
DefaultHyperOptLoss, OnlyProfitHyperOptLoss,
|
||||
SharpeHyperOptLoss, SharpeHyperOptLossDaily,
|
||||
SortinoHyperOptLoss, SortinoHyperOptLossDaily.
|
||||
(default: `DefaultHyperOptLoss`).
|
||||
Hyperopt-loss-functions are: DefaultHyperOptLoss,
|
||||
OnlyProfitHyperOptLoss, SharpeHyperOptLoss,
|
||||
SharpeHyperOptLossDaily, SortinoHyperOptLoss,
|
||||
SortinoHyperOptLossDaily.(default:
|
||||
`DefaultHyperOptLoss`).
|
||||
|
||||
Common arguments:
|
||||
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
|
||||
@ -378,13 +390,13 @@ To know your trade expectancy and winrate against historical data, you can use E
|
||||
```
|
||||
usage: freqtrade edge [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH]
|
||||
[--userdir PATH] [-s NAME] [--strategy-path PATH]
|
||||
[-i TICKER_INTERVAL] [--timerange TIMERANGE]
|
||||
[-i TIMEFRAME] [--timerange TIMERANGE]
|
||||
[--max-open-trades INT] [--stake-amount STAKE_AMOUNT]
|
||||
[--fee FLOAT] [--stoplosses STOPLOSS_RANGE]
|
||||
|
||||
optional arguments:
|
||||
-h, --help show this help message and exit
|
||||
-i TICKER_INTERVAL, --ticker-interval TICKER_INTERVAL
|
||||
-i TIMEFRAME, --timeframe TIMEFRAME, --ticker-interval TIMEFRAME
|
||||
Specify ticker interval (`1m`, `5m`, `30m`, `1h`,
|
||||
`1d`).
|
||||
--timerange TIMERANGE
|
||||
|
@ -34,26 +34,27 @@ The prevelance for all Options is as follows:
|
||||
|
||||
- CLI arguments override any other option
|
||||
- Configuration files are used in sequence (last file wins), and override Strategy configurations.
|
||||
- Strategy configurations are only used if they are not set via configuration or via command line arguments. These options are market with [Strategy Override](#parameters-in-the-strategy) in the below table.
|
||||
- Strategy configurations are only used if they are not set via configuration or via command line arguments. These options are marked with [Strategy Override](#parameters-in-the-strategy) in the below table.
|
||||
|
||||
Mandatory parameters are marked as **Required**, which means that they are required to be set in one of the possible ways.
|
||||
|
||||
| Parameter | Description |
|
||||
|------------|-------------|
|
||||
| `max_open_trades` | **Required.** Number of trades open your bot will have. If -1 then it is ignored (i.e. potentially unlimited open trades). [More information below](#configuring-amount-per-trade).<br> **Datatype:** Positive integer or -1.
|
||||
| `max_open_trades` | **Required.** Number of open trades your bot is allowed to have. Only one open trade per pair is possible, so the length of your pairlist is another limitation which can apply. If -1 then it is ignored (i.e. potentially unlimited open trades, limited by the pairlist). [More information below](#configuring-amount-per-trade).<br> **Datatype:** Positive integer or -1.
|
||||
| `stake_currency` | **Required.** Crypto-currency used for trading. [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** String
|
||||
| `stake_amount` | **Required.** Amount of crypto-currency your bot will use for each trade. Set it to `"unlimited"` to allow the bot to use all available balance. [More information below](#configuring-amount-per-trade). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Positive float or `"unlimited"`.
|
||||
| `tradable_balance_ratio` | Ratio of the total account balance the bot is allowed to trade. [More information below](#configuring-amount-per-trade). <br>*Defaults to `0.99` 99%).*<br> **Datatype:** Positive float between `0.1` and `1.0`.
|
||||
| `amend_last_stake_amount` | Use reduced last stake amount if necessary. [More information below](#configuring-amount-per-trade). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
|
||||
| `last_stake_amount_min_ratio` | Defines minimum stake amount that has to be left and executed. Applies only to the last stake amount when it's amended to a reduced value (i.e. if `amend_last_stake_amount` is set to `true`). [More information below](#configuring-amount-per-trade). <br>*Defaults to `0.5`.* <br> **Datatype:** Float (as ratio)
|
||||
| `amount_reserve_percent` | Reserve some amount in min pair stake amount. The bot will reserve `amount_reserve_percent` + stoploss value when calculating min pair stake amount in order to avoid possible trade refusals. <br>*Defaults to `0.05` (5%).* <br> **Datatype:** Positive Float as ratio.
|
||||
| `ticker_interval` | The timeframe (ticker interval) to use (e.g `1m`, `5m`, `15m`, `30m`, `1h` ...). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** String
|
||||
| `timeframe` | The timeframe (former ticker interval) to use (e.g `1m`, `5m`, `15m`, `30m`, `1h` ...). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** String
|
||||
| `fiat_display_currency` | Fiat currency used to show your profits. [More information below](#what-values-can-be-used-for-fiat_display_currency). <br> **Datatype:** String
|
||||
| `dry_run` | **Required.** Define if the bot must be in Dry Run or production mode. <br>*Defaults to `true`.* <br> **Datatype:** Boolean
|
||||
| `dry_run_wallet` | Define the starting amount in stake currency for the simulated wallet used by the bot running in the Dry Run mode.<br>*Defaults to `1000`.* <br> **Datatype:** Float
|
||||
| `cancel_open_orders_on_exit` | Cancel open orders when the `/stop` RPC command is issued, `Ctrl+C` is pressed or the bot dies unexpectedly. When set to `true`, this allows you to use `/stop` to cancel unfilled and partially filled orders in the event of a market crash. It does not impact open positions. <br>*Defaults to `false`.* <br> **Datatype:** Boolean
|
||||
| `process_only_new_candles` | Enable processing of indicators only when new candles arrive. If false each loop populates the indicators, this will mean the same candle is processed many times creating system load but can be useful of your strategy depends on tick data not only candle. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
|
||||
| `minimal_roi` | **Required.** Set the threshold in percent the bot will use to sell a trade. [More information below](#understand-minimal_roi). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Dict
|
||||
| `stoploss` | **Required.** Value of the stoploss in percent used by the bot. More details in the [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Float (as ratio)
|
||||
| `minimal_roi` | **Required.** Set the threshold as ratio the bot will use to sell a trade. [More information below](#understand-minimal_roi). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Dict
|
||||
| `stoploss` | **Required.** Value as ratio of the stoploss used by the bot. More details in the [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Float (as ratio)
|
||||
| `trailing_stop` | Enables trailing stoploss (based on `stoploss` in either configuration or strategy file). More details in the [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Boolean
|
||||
| `trailing_stop_positive` | Changes stoploss once profit has been reached. More details in the [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Float
|
||||
| `trailing_stop_positive_offset` | Offset on when to apply `trailing_stop_positive`. Percentage value which should be positive. More details in the [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `0.0` (no offset).* <br> **Datatype:** Float
|
||||
@ -80,14 +81,15 @@ Mandatory parameters are marked as **Required**, which means that they are requi
|
||||
| `exchange.key` | API key to use for the exchange. Only required when you are in production mode.<br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
|
||||
| `exchange.secret` | API secret to use for the exchange. Only required when you are in production mode.<br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
|
||||
| `exchange.password` | API password to use for the exchange. Only required when you are in production mode and for exchanges that use password for API requests.<br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
|
||||
| `exchange.pair_whitelist` | List of pairs to use by the bot for trading and to check for potential trades during backtesting. Not used by VolumePairList (see [below](#dynamic-pairlists)). <br> **Datatype:** List
|
||||
| `exchange.pair_blacklist` | List of pairs the bot must absolutely avoid for trading and backtesting (see [below](#dynamic-pairlists)). <br> **Datatype:** List
|
||||
| `exchange.ccxt_config` | Additional CCXT parameters passed to the regular ccxt instance. Parameters may differ from exchange to exchange and are documented in the [ccxt documentation](https://ccxt.readthedocs.io/en/latest/manual.html#instantiation) <br> **Datatype:** Dict
|
||||
| `exchange.pair_whitelist` | List of pairs to use by the bot for trading and to check for potential trades during backtesting. Not used by VolumePairList (see [below](#pairlists-and-pairlist-handlers)). <br> **Datatype:** List
|
||||
| `exchange.pair_blacklist` | List of pairs the bot must absolutely avoid for trading and backtesting (see [below](#pairlists-and-pairlist-handlers)). <br> **Datatype:** List
|
||||
| `exchange.ccxt_config` | Additional CCXT parameters passed to both ccxt instances (sync and async). This is usually the correct place for ccxt configurations. Parameters may differ from exchange to exchange and are documented in the [ccxt documentation](https://ccxt.readthedocs.io/en/latest/manual.html#instantiation) <br> **Datatype:** Dict
|
||||
| `exchange.ccxt_sync_config` | Additional CCXT parameters passed to the regular (sync) ccxt instance. Parameters may differ from exchange to exchange and are documented in the [ccxt documentation](https://ccxt.readthedocs.io/en/latest/manual.html#instantiation) <br> **Datatype:** Dict
|
||||
| `exchange.ccxt_async_config` | Additional CCXT parameters passed to the async ccxt instance. Parameters may differ from exchange to exchange and are documented in the [ccxt documentation](https://ccxt.readthedocs.io/en/latest/manual.html#instantiation) <br> **Datatype:** Dict
|
||||
| `exchange.markets_refresh_interval` | The interval in minutes in which markets are reloaded. <br>*Defaults to `60` minutes.* <br> **Datatype:** Positive Integer
|
||||
| `edge.*` | Please refer to [edge configuration document](edge.md) for detailed explanation.
|
||||
| `experimental.block_bad_exchanges` | Block exchanges known to not work with freqtrade. Leave on default unless you want to test if that exchange works now. <br>*Defaults to `true`.* <br> **Datatype:** Boolean
|
||||
| `pairlists` | Define one or more pairlists to be used. [More information below](#dynamic-pairlists). <br>*Defaults to `StaticPairList`.* <br> **Datatype:** List of Dicts
|
||||
| `pairlists` | Define one or more pairlists to be used. [More information below](#pairlists-and-pairlist-handlers). <br>*Defaults to `StaticPairList`.* <br> **Datatype:** List of Dicts
|
||||
| `telegram.enabled` | Enable the usage of Telegram. <br> **Datatype:** Boolean
|
||||
| `telegram.token` | Your Telegram bot token. Only required if `telegram.enabled` is `true`. <br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
|
||||
| `telegram.chat_id` | Your personal Telegram account id. Only required if `telegram.enabled` is `true`. <br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
|
||||
@ -101,14 +103,16 @@ Mandatory parameters are marked as **Required**, which means that they are requi
|
||||
| `api_server.enabled` | Enable usage of API Server. See the [API Server documentation](rest-api.md) for more details. <br> **Datatype:** Boolean
|
||||
| `api_server.listen_ip_address` | Bind IP address. See the [API Server documentation](rest-api.md) for more details. <br> **Datatype:** IPv4
|
||||
| `api_server.listen_port` | Bind Port. See the [API Server documentation](rest-api.md) for more details. <br>**Datatype:** Integer between 1024 and 65535
|
||||
| `api_server.verbosity` | Logging verbosity. `info` will print all RPC Calls, while "error" will only display errors. <br>**Datatype:** Enum, either `info` or `error`. Defaults to `info`.
|
||||
| `api_server.username` | Username for API server. See the [API Server documentation](rest-api.md) for more details. <br>**Keep it in secret, do not disclose publicly.**<br> **Datatype:** String
|
||||
| `api_server.password` | Password for API server. See the [API Server documentation](rest-api.md) for more details. <br>**Keep it in secret, do not disclose publicly.**<br> **Datatype:** String
|
||||
| `db_url` | Declares database URL to use. NOTE: This defaults to `sqlite:///tradesv3.dryrun.sqlite` if `dry_run` is `true`, and to `sqlite:///tradesv3.sqlite` for production instances. <br> **Datatype:** String, SQLAlchemy connect string
|
||||
| `initial_state` | Defines the initial application state. More information below. <br>*Defaults to `stopped`.* <br> **Datatype:** Enum, either `stopped` or `running`
|
||||
| `forcebuy_enable` | Enables the RPC Commands to force a buy. More information below. <br> **Datatype:** Boolean
|
||||
| `disable_dataframe_checks` | Disable checking the OHLCV dataframe returned from the strategy methods for correctness. Only use when intentionally changing the dataframe and understand what you are doing. [Strategy Override](#parameters-in-the-strategy).<br> *Defaults to `False`*. <br> **Datatype:** Boolean
|
||||
| `strategy` | **Required** Defines Strategy class to use. Recommended to be set via `--strategy NAME`. <br> **Datatype:** ClassName
|
||||
| `strategy_path` | Adds an additional strategy lookup path (must be a directory). <br> **Datatype:** String
|
||||
| `internals.process_throttle_secs` | Set the process throttle. Value in second. <br>*Defaults to `5` seconds.* <br> **Datatype:** Positive Intege
|
||||
| `internals.process_throttle_secs` | Set the process throttle. Value in second. <br>*Defaults to `5` seconds.* <br> **Datatype:** Positive Integer
|
||||
| `internals.heartbeat_interval` | Print heartbeat message every N seconds. Set to 0 to disable heartbeat messages. <br>*Defaults to `60` seconds.* <br> **Datatype:** Positive Integer or 0
|
||||
| `internals.sd_notify` | Enables use of the sd_notify protocol to tell systemd service manager about changes in the bot state and issue keep-alive pings. See [here](installation.md#7-optional-configure-freqtrade-as-a-systemd-service) for more details. <br> **Datatype:** Boolean
|
||||
| `logfile` | Specifies logfile name. Uses a rolling strategy for log file rotation for 10 files with the 1MB limit per file. <br> **Datatype:** String
|
||||
@ -122,7 +126,7 @@ The following parameters can be set in either configuration file or strategy.
|
||||
Values set in the configuration file always overwrite values set in the strategy.
|
||||
|
||||
* `minimal_roi`
|
||||
* `ticker_interval`
|
||||
* `timeframe`
|
||||
* `stoploss`
|
||||
* `trailing_stop`
|
||||
* `trailing_stop_positive`
|
||||
@ -134,6 +138,7 @@ Values set in the configuration file always overwrite values set in the strategy
|
||||
* `stake_currency`
|
||||
* `stake_amount`
|
||||
* `unfilledtimeout`
|
||||
* `disable_dataframe_checks`
|
||||
* `use_sell_signal` (ask_strategy)
|
||||
* `sell_profit_only` (ask_strategy)
|
||||
* `ignore_roi_if_buy_signal` (ask_strategy)
|
||||
@ -213,7 +218,7 @@ To allow the bot to trade all the available `stake_currency` in your account (mi
|
||||
### Understand minimal_roi
|
||||
|
||||
The `minimal_roi` configuration parameter is a JSON object where the key is a duration
|
||||
in minutes and the value is the minimum ROI in percent.
|
||||
in minutes and the value is the minimum ROI as ratio.
|
||||
See the example below:
|
||||
|
||||
```json
|
||||
@ -267,10 +272,10 @@ the static list of pairs) if we should buy.
|
||||
|
||||
### Understand order_types
|
||||
|
||||
The `order_types` configuration parameter maps actions (`buy`, `sell`, `stoploss`) to order-types (`market`, `limit`, ...) as well as configures stoploss to be on the exchange and defines stoploss on exchange update interval in seconds.
|
||||
The `order_types` configuration parameter maps actions (`buy`, `sell`, `stoploss`, `emergencysell`) to order-types (`market`, `limit`, ...) as well as configures stoploss to be on the exchange and defines stoploss on exchange update interval in seconds.
|
||||
|
||||
This allows to buy using limit orders, sell using
|
||||
limit-orders, and create stoplosses using using market orders. It also allows to set the
|
||||
limit-orders, and create stoplosses using market orders. It also allows to set the
|
||||
stoploss "on exchange" which means stoploss order would be placed immediately once
|
||||
the buy order is fulfilled.
|
||||
If `stoploss_on_exchange` and `trailing_stop` are both set, then the bot will use `stoploss_on_exchange_interval` to check and update the stoploss on exchange periodically.
|
||||
@ -283,8 +288,12 @@ If this is configured, the following 4 values (`buy`, `sell`, `stoploss` and
|
||||
`emergencysell` is an optional value, which defaults to `market` and is used when creating stoploss on exchange orders fails.
|
||||
The below is the default which is used if this is not configured in either strategy or configuration file.
|
||||
|
||||
Since `stoploss_on_exchange` uses limit orders, the exchange needs 2 prices, the stoploss_price and the Limit price.
|
||||
`stoploss` defines the stop-price - and limit should be slightly below this. This defaults to 0.99 / 1% (configurable via `stoploss_on_exchange_limit_ratio`).
|
||||
Not all Exchanges support `stoploss_on_exchange`. If an exchange supports both limit and market stoploss orders, then the value of `stoploss` will be used to determine the stoploss type.
|
||||
|
||||
If `stoploss_on_exchange` uses limit orders, the exchange needs 2 prices, the stoploss_price and the Limit price.
|
||||
`stoploss` defines the stop-price - and limit should be slightly below this.
|
||||
|
||||
This defaults to 0.99 / 1% (configurable via `stoploss_on_exchange_limit_ratio`).
|
||||
Calculation example: we bought the asset at 100$.
|
||||
Stop-price is 95$, then limit would be `95 * 0.99 = 94.05$` - so the stoploss will happen between 95$ and 94.05$.
|
||||
|
||||
@ -326,7 +335,10 @@ Configuration:
|
||||
refer to [the stoploss documentation](stoploss.md).
|
||||
|
||||
!!! Note
|
||||
If `stoploss_on_exchange` is enabled and the stoploss is cancelled manually on the exchange, then the bot will create a new order.
|
||||
If `stoploss_on_exchange` is enabled and the stoploss is cancelled manually on the exchange, then the bot will create a new stoploss order.
|
||||
|
||||
!!! Warning "Using market orders"
|
||||
Please read the section [Market order pricing](#market-order-pricing) section when using market orders.
|
||||
|
||||
!!! Warning "Warning: stoploss_on_exchange failures"
|
||||
If stoploss on exchange creation fails for some reason, then an "emergency sell" is initiated. By default, this will sell the asset using a market order. The order-type for the emergency-sell can be changed by setting the `emergencysell` value in the `order_types` dictionary - however this is not advised.
|
||||
@ -454,6 +466,9 @@ Prices are always retrieved right before an order is placed, either by querying
|
||||
!!! Note
|
||||
Orderbook data used by Freqtrade are the data retrieved from exchange by the ccxt's function `fetch_order_book()`, i.e. are usually data from the L2-aggregated orderbook, while the ticker data are the structures returned by the ccxt's `fetch_ticker()`/`fetch_tickers()` functions. Refer to the ccxt library [documentation](https://github.com/ccxt/ccxt/wiki/Manual#market-data) for more details.
|
||||
|
||||
!!! Warning "Using market orders"
|
||||
Please read the section [Market order pricing](#market-order-pricing) section when using market orders.
|
||||
|
||||
### Buy price
|
||||
|
||||
#### Check depth of market
|
||||
@ -544,32 +559,57 @@ A fixed slot (mirroring `bid_strategy.order_book_top`) can be defined by setting
|
||||
Using `ask_strategy.order_book_max` higher than 1 will result in improper dry-run results (significantly better than real orders executed on exchange), since dry-run assumes orders to be filled almost instantly.
|
||||
It is therefore advised to not use this setting for dry-runs.
|
||||
|
||||
|
||||
#### Sell price without Orderbook enabled
|
||||
|
||||
When not using orderbook (`ask_strategy.use_order_book=False`), the price at the `ask_strategy.price_side` side (defaults to `"ask"`) from the ticker will be used as the sell price.
|
||||
|
||||
## Pairlists
|
||||
### Market order pricing
|
||||
|
||||
Pairlists define the list of pairs that the bot should trade.
|
||||
There are [`StaticPairList`](#static-pair-list) and dynamic Whitelists available.
|
||||
When using market orders, prices should be configured to use the "correct" side of the orderbook to allow realistic pricing detection.
|
||||
Assuming both buy and sell are using market orders, a configuration similar to the following might be used
|
||||
|
||||
[`PrecisionFilter`](#precision-filter) and [`PriceFilter`](#price-pair-filter) act as filters, removing low-value pairs.
|
||||
``` jsonc
|
||||
"order_types": {
|
||||
"buy": "market",
|
||||
"sell": "market"
|
||||
// ...
|
||||
},
|
||||
"bid_strategy": {
|
||||
"price_side": "ask",
|
||||
// ...
|
||||
},
|
||||
"ask_strategy":{
|
||||
"price_side": "bid",
|
||||
// ...
|
||||
},
|
||||
```
|
||||
|
||||
All pairlists can be chained, and a combination of all pairlists will become your new whitelist. Pairlists are executed in the sequence they are configured. You should always configure either `StaticPairList` or `DynamicPairList` as starting pairlists.
|
||||
Obviously, if only one side is using limit orders, different pricing combinations can be used.
|
||||
|
||||
Inactive markets and blacklisted pairs are always removed from the resulting `pair_whitelist`.
|
||||
## Pairlists and Pairlist Handlers
|
||||
|
||||
### Available Pairlists
|
||||
Pairlist Handlers define the list of pairs (pairlist) that the bot should trade. They are configured in the `pairlists` section of the configuration settings.
|
||||
|
||||
In your configuration, you can use Static Pairlist (defined by the [`StaticPairList`](#static-pair-list) Pairlist Handler) and Dynamic Pairlist (defined by the [`VolumePairList`](#volume-pair-list) Pairlist Handler).
|
||||
|
||||
Additionaly, [`AgeFilter`](#agefilter), [`PrecisionFilter`](#precisionfilter), [`PriceFilter`](#pricefilter), [`ShuffleFilter`](#shufflefilter) and [`SpreadFilter`](#spreadfilter) act as Pairlist Filters, removing certain pairs and/or moving their positions in the pairlist.
|
||||
|
||||
If multiple Pairlist Handlers are used, they are chained and a combination of all Pairlist Handlers forms the resulting pairlist the bot uses for trading and backtesting. Pairlist Handlers are executed in the sequence they are configured. You should always configure either `StaticPairList` or `VolumePairList` as the starting Pairlist Handler.
|
||||
|
||||
Inactive markets are always removed from the resulting pairlist. Explicitly blacklisted pairs (those in the `pair_blacklist` configuration setting) are also always removed from the resulting pairlist.
|
||||
|
||||
### Available Pairlist Handlers
|
||||
|
||||
* [`StaticPairList`](#static-pair-list) (default, if not configured differently)
|
||||
* [`VolumePairList`](#volume-pair-list)
|
||||
* [`PrecisionFilter`](#precision-filter)
|
||||
* [`PriceFilter`](#price-pair-filter)
|
||||
* [`SpreadFilter`](#spread-filter)
|
||||
* [`AgeFilter`](#agefilter)
|
||||
* [`PrecisionFilter`](#precisionfilter)
|
||||
* [`PriceFilter`](#pricefilter)
|
||||
* [`ShuffleFilter`](#shufflefilter)
|
||||
* [`SpreadFilter`](#spreadfilter)
|
||||
|
||||
!!! Tip "Testing pairlists"
|
||||
Pairlist configurations can be quite tricky to get right. Best use the [`test-pairlist`](utils.md#test-pairlist) subcommand to test your configuration quickly.
|
||||
Pairlist configurations can be quite tricky to get right. Best use the [`test-pairlist`](utils.md#test-pairlist) utility subcommand to test your configuration quickly.
|
||||
|
||||
#### Static Pair List
|
||||
|
||||
@ -585,16 +625,16 @@ It uses configuration from `exchange.pair_whitelist` and `exchange.pair_blacklis
|
||||
|
||||
#### Volume Pair List
|
||||
|
||||
`VolumePairList` selects `number_assets` top pairs based on `sort_key`, which can be one of `askVolume`, `bidVolume` and `quoteVolume` and defaults to `quoteVolume`.
|
||||
`VolumePairList` employs sorting/filtering of pairs by their trading volume. It selects `number_assets` top pairs with sorting based on the `sort_key` (which can only be `quoteVolume`).
|
||||
|
||||
`VolumePairList` considers outputs of previous pairlists unless it's the first configured pairlist, it does not consider `pair_whitelist`, but selects the top assets from all available markets (with matching stake-currency) on the exchange.
|
||||
When used in the chain of Pairlist Handlers in a non-leading position (after StaticPairList and other Pairlist Filters), `VolumePairList` considers outputs of previous Pairlist Handlers, adding its sorting/selection of the pairs by the trading volume.
|
||||
|
||||
`refresh_period` allows setting the period (in seconds), at which the pairlist will be refreshed. Defaults to 1800s (30 minutes).
|
||||
When used on the leading position of the chain of Pairlist Handlers, it does not consider `pair_whitelist` configuration setting, but selects the top assets from all available markets (with matching stake-currency) on the exchange.
|
||||
|
||||
`VolumePairList` is based on the ticker data, as reported by the ccxt library:
|
||||
The `refresh_period` setting allows to define the period (in seconds), at which the pairlist will be refreshed. Defaults to 1800s (30 minutes).
|
||||
|
||||
`VolumePairList` is based on the ticker data from exchange, as reported by the ccxt library:
|
||||
|
||||
* The `bidVolume` is the volume (amount) of current best bid in the orderbook.
|
||||
* The `askVolume` is the volume (amount) of current best ask in the orderbook.
|
||||
* The `quoteVolume` is the amount of quote (stake) currency traded (bought or sold) in last 24 hours.
|
||||
|
||||
```json
|
||||
@ -603,32 +643,63 @@ It uses configuration from `exchange.pair_whitelist` and `exchange.pair_blacklis
|
||||
"number_assets": 20,
|
||||
"sort_key": "quoteVolume",
|
||||
"refresh_period": 1800,
|
||||
],
|
||||
}],
|
||||
```
|
||||
|
||||
#### AgeFilter
|
||||
|
||||
Removes pairs that have been listed on the exchange for less than `min_days_listed` days (defaults to `10`).
|
||||
|
||||
When pairs are first listed on an exchange they can suffer huge price drops and volatility
|
||||
in the first few days while the pair goes through its price-discovery period. Bots can often
|
||||
be caught out buying before the pair has finished dropping in price.
|
||||
|
||||
This filter allows freqtrade to ignore pairs until they have been listed for at least `min_days_listed` days.
|
||||
|
||||
#### PrecisionFilter
|
||||
|
||||
Filters low-value coins which would not allow setting a stoploss.
|
||||
Filters low-value coins which would not allow setting stoplosses.
|
||||
|
||||
#### Price Pair Filter
|
||||
#### PriceFilter
|
||||
|
||||
The `PriceFilter` allows filtering of pairs by price.
|
||||
Currently, only `low_price_ratio` is implemented, where a raise of 1 price unit (pip) is below the `low_price_ratio` ratio.
|
||||
The `PriceFilter` allows filtering of pairs by price. Currently the following price filters are supported:
|
||||
* `min_price`
|
||||
* `max_price`
|
||||
* `low_price_ratio`
|
||||
|
||||
The `min_price` setting removes pairs where the price is below the specified price. This is useful if you wish to avoid trading very low-priced pairs.
|
||||
This option is disabled by default, and will only apply if set to <> 0.
|
||||
|
||||
The `max_price` setting removes pairs where the price is above the specified price. This is useful if you wish to trade only low-priced pairs.
|
||||
This option is disabled by default, and will only apply if set to <> 0.
|
||||
|
||||
The `low_price_ratio` setting removes pairs where a raise of 1 price unit (pip) is above the `low_price_ratio` ratio.
|
||||
This option is disabled by default, and will only apply if set to <> 0.
|
||||
|
||||
Calculation example:
|
||||
|
||||
Min price precision is 8 decimals. If price is 0.00000011 - one step would be 0.00000012 - which is almost 10% higher than the previous value.
|
||||
|
||||
These pairs are dangerous since it may be impossible to place the desired stoploss - and often result in high losses.
|
||||
|
||||
#### ShuffleFilter
|
||||
|
||||
Shuffles (randomizes) pairs in the pairlist. It can be used for preventing the bot from trading some of the pairs more frequently then others when you want all pairs be treated with the same priority.
|
||||
|
||||
!!! Tip
|
||||
You may set the `seed` value for this Pairlist to obtain reproducible results, which can be useful for repeated backtesting sessions. If `seed` is not set, the pairs are shuffled in the non-repeatable random order.
|
||||
|
||||
#### SpreadFilter
|
||||
Removes pairs that have a difference between asks and bids above the specified ratio (default `0.005`).
|
||||
|
||||
Removes pairs that have a difference between asks and bids above the specified ratio, `max_spread_ratio` (defaults to `0.005`).
|
||||
|
||||
Example:
|
||||
If `DOGE/BTC` maximum bid is 0.00000026 and minimum ask is 0.00000027 the ratio is calculated as: `1 - bid/ask ~= 0.037` which is `> 0.005`
|
||||
|
||||
### Full Pairlist example
|
||||
If `DOGE/BTC` maximum bid is 0.00000026 and minimum ask is 0.00000027, the ratio is calculated as: `1 - bid/ask ~= 0.037` which is `> 0.005` and this pair will be filtered out.
|
||||
|
||||
The below example blacklists `BNB/BTC`, uses `VolumePairList` with `20` assets, sorting by `quoteVolume` and applies both [`PrecisionFilter`](#precision-filter) and [`PriceFilter`](#price-pair-filter), filtering all assets where 1 priceunit is > 1%.
|
||||
### Full example of Pairlist Handlers
|
||||
|
||||
The below example blacklists `BNB/BTC`, uses `VolumePairList` with `20` assets, sorting pairs by `quoteVolume` and applies both [`PrecisionFilter`](#precisionfilter) and [`PriceFilter`](#price-filter), filtering all assets where 1 priceunit is > 1%. Then the `SpreadFilter` is applied and pairs are finally shuffled with the random seed set to some predefined value.
|
||||
|
||||
```json
|
||||
"exchange": {
|
||||
@ -641,8 +712,11 @@ The below example blacklists `BNB/BTC`, uses `VolumePairList` with `20` assets,
|
||||
"number_assets": 20,
|
||||
"sort_key": "quoteVolume",
|
||||
},
|
||||
{"method": "AgeFilter", "min_days_listed": 10},
|
||||
{"method": "PrecisionFilter"},
|
||||
{"method": "PriceFilter", "low_price_ratio": 0.01}
|
||||
{"method": "PriceFilter", "low_price_ratio": 0.01},
|
||||
{"method": "SpreadFilter", "max_spread_ratio": 0.005},
|
||||
{"method": "ShuffleFilter", "seed": 42}
|
||||
],
|
||||
```
|
||||
|
||||
|
@ -109,7 +109,7 @@ The following command will convert all candle (OHLCV) data available in `~/.freq
|
||||
It'll also remove original json data files (`--erase` parameter).
|
||||
|
||||
``` bash
|
||||
freqtrade convert-data --format-from json --format-to jsongz --data-dir ~/.freqtrade/data/binance -t 5m 15m --erase
|
||||
freqtrade convert-data --format-from json --format-to jsongz --datadir ~/.freqtrade/data/binance -t 5m 15m --erase
|
||||
```
|
||||
|
||||
#### Subcommand convert-trade data
|
||||
@ -155,7 +155,59 @@ The following command will convert all available trade-data in `~/.freqtrade/dat
|
||||
It'll also remove original jsongz data files (`--erase` parameter).
|
||||
|
||||
``` bash
|
||||
freqtrade convert-trade-data --format-from jsongz --format-to json --data-dir ~/.freqtrade/data/kraken --erase
|
||||
freqtrade convert-trade-data --format-from jsongz --format-to json --datadir ~/.freqtrade/data/kraken --erase
|
||||
```
|
||||
|
||||
### Subcommand list-data
|
||||
|
||||
You can get a list of downloaded data using the `list-data` subcommand.
|
||||
|
||||
```
|
||||
usage: freqtrade list-data [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH]
|
||||
[--userdir PATH] [--exchange EXCHANGE]
|
||||
[--data-format-ohlcv {json,jsongz}]
|
||||
[-p PAIRS [PAIRS ...]]
|
||||
|
||||
optional arguments:
|
||||
-h, --help show this help message and exit
|
||||
--exchange EXCHANGE Exchange name (default: `bittrex`). Only valid if no
|
||||
config is provided.
|
||||
--data-format-ohlcv {json,jsongz}
|
||||
Storage format for downloaded candle (OHLCV) data.
|
||||
(default: `json`).
|
||||
-p PAIRS [PAIRS ...], --pairs PAIRS [PAIRS ...]
|
||||
Show profits for only these pairs. Pairs are space-
|
||||
separated.
|
||||
|
||||
Common arguments:
|
||||
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
|
||||
--logfile FILE Log to the file specified. Special values are:
|
||||
'syslog', 'journald'. See the documentation for more
|
||||
details.
|
||||
-V, --version show program's version number and exit
|
||||
-c PATH, --config PATH
|
||||
Specify configuration file (default:
|
||||
`userdir/config.json` or `config.json` whichever
|
||||
exists). Multiple --config options may be used. Can be
|
||||
set to `-` to read config from stdin.
|
||||
-d PATH, --datadir PATH
|
||||
Path to directory with historical backtesting data.
|
||||
--userdir PATH, --user-data-dir PATH
|
||||
Path to userdata directory.
|
||||
```
|
||||
|
||||
#### Example list-data
|
||||
|
||||
```bash
|
||||
> freqtrade list-data --userdir ~/.freqtrade/user_data/
|
||||
|
||||
Found 33 pair / timeframe combinations.
|
||||
pairs timeframe
|
||||
---------- -----------------------------------------
|
||||
ADA/BTC 5m, 15m, 30m, 1h, 2h, 4h, 6h, 12h, 1d
|
||||
ADA/ETH 5m, 15m, 30m, 1h, 2h, 4h, 6h, 12h, 1d
|
||||
ETH/BTC 5m, 15m, 30m, 1h, 2h, 4h, 6h, 12h, 1d
|
||||
ETH/USDT 5m, 15m, 30m, 1h, 2h, 4h
|
||||
```
|
||||
|
||||
### Pairs file
|
||||
|
@ -24,3 +24,13 @@ and in freqtrade 2019.7 (master branch).
|
||||
`--live` in the context of backtesting allowed to download the latest tick data for backtesting.
|
||||
Did only download the latest 500 candles, so was ineffective in getting good backtest data.
|
||||
Removed in 2019-7-dev (develop branch) and in freqtrade 2019-8 (master branch)
|
||||
|
||||
### Allow running multiple pairlists in sequence
|
||||
|
||||
The former `"pairlist"` section in the configuration has been removed, and is replaced by `"pairlists"` - being a list to specify a sequence of pairlists.
|
||||
|
||||
The old section of configuration parameters (`"pairlist"`) has been deprecated in 2019.11 and has been removed in 2020.4.
|
||||
|
||||
### deprecation of bidVolume and askVolume from volumepairlist
|
||||
|
||||
Since only quoteVolume can be compared between assets, the other options (bidVolume, askVolume) have been deprecated in 2020.4.
|
||||
|
@ -92,13 +92,13 @@ docker-compose exec freqtrade_develop /bin/bash
|
||||
You have a great idea for a new pair selection algorithm you would like to try out? Great.
|
||||
Hopefully you also want to contribute this back upstream.
|
||||
|
||||
Whatever your motivations are - This should get you off the ground in trying to develop a new Pairlist provider.
|
||||
Whatever your motivations are - This should get you off the ground in trying to develop a new Pairlist Handler.
|
||||
|
||||
First of all, have a look at the [VolumePairList](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/pairlist/VolumePairList.py) provider, and best copy this file with a name of your new Pairlist Provider.
|
||||
First of all, have a look at the [VolumePairList](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/pairlist/VolumePairList.py) Handler, and best copy this file with a name of your new Pairlist Handler.
|
||||
|
||||
This is a simple provider, which however serves as a good example on how to start developing.
|
||||
This is a simple Handler, which however serves as a good example on how to start developing.
|
||||
|
||||
Next, modify the classname of the provider (ideally align this with the Filename).
|
||||
Next, modify the classname of the Handler (ideally align this with the module filename).
|
||||
|
||||
The base-class provides an instance of the exchange (`self._exchange`) the pairlist manager (`self._pairlistmanager`), as well as the main configuration (`self._config`), the pairlist dedicated configuration (`self._pairlistconfig`) and the absolute position within the list of pairlists.
|
||||
|
||||
@ -114,28 +114,44 @@ Now, let's step through the methods which require actions:
|
||||
|
||||
#### Pairlist configuration
|
||||
|
||||
Configuration for PairListProvider is done in the bot configuration file in the element `"pairlist"`.
|
||||
This Pairlist-object may contain configurations with additional configurations for the configured pairlist.
|
||||
By convention, `"number_assets"` is used to specify the maximum number of pairs to keep in the whitelist. Please follow this to ensure a consistent user experience.
|
||||
Configuration for the chain of Pairlist Handlers is done in the bot configuration file in the element `"pairlists"`, an array of configuration parameters for each Pairlist Handlers in the chain.
|
||||
|
||||
Additional elements can be configured as needed. `VolumePairList` uses `"sort_key"` to specify the sorting value - however feel free to specify whatever is necessary for your great algorithm to be successfull and dynamic.
|
||||
By convention, `"number_assets"` is used to specify the maximum number of pairs to keep in the pairlist. Please follow this to ensure a consistent user experience.
|
||||
|
||||
Additional parameters can be configured as needed. For instance, `VolumePairList` uses `"sort_key"` to specify the sorting value - however feel free to specify whatever is necessary for your great algorithm to be successfull and dynamic.
|
||||
|
||||
#### short_desc
|
||||
|
||||
Returns a description used for Telegram messages.
|
||||
This should contain the name of the Provider, as well as a short description containing the number of assets. Please follow the format `"PairlistName - top/bottom X pairs"`.
|
||||
|
||||
This should contain the name of the Pairlist Handler, as well as a short description containing the number of assets. Please follow the format `"PairlistName - top/bottom X pairs"`.
|
||||
|
||||
#### gen_pairlist
|
||||
|
||||
Override this method if the Pairlist Handler can be used as the leading Pairlist Handler in the chain, defining the initial pairlist which is then handled by all Pairlist Handlers in the chain. Examples are `StaticPairList` and `VolumePairList`.
|
||||
|
||||
This is called with each iteration of the bot (only if the Pairlist Handler is at the first location) - so consider implementing caching for compute/network heavy calculations.
|
||||
|
||||
It must return the resulting pairlist (which may then be passed into the chain of Pairlist Handlers).
|
||||
|
||||
Validations are optional, the parent class exposes a `_verify_blacklist(pairlist)` and `_whitelist_for_active_markets(pairlist)` to do default filtering. Use this if you limit your result to a certain number of pairs - so the endresult is not shorter than expected.
|
||||
|
||||
#### filter_pairlist
|
||||
|
||||
Override this method and run all calculations needed in this method.
|
||||
This method is called for each Pairlist Handler in the chain by the pairlist manager.
|
||||
|
||||
This is called with each iteration of the bot - so consider implementing caching for compute/network heavy calculations.
|
||||
|
||||
It get's passed a pairlist (which can be the result of previous pairlists) as well as `tickers`, a pre-fetched version of `get_tickers()`.
|
||||
|
||||
It must return the resulting pairlist (which may then be passed into the next pairlist filter).
|
||||
The default implementation in the base class simply calls the `_validate_pair()` method for each pair in the pairlist, but you may override it. So you should either implement the `_validate_pair()` in your Pairlist Handler or override `filter_pairlist()` to do something else.
|
||||
|
||||
If overridden, it must return the resulting pairlist (which may then be passed into the next Pairlist Handler in the chain).
|
||||
|
||||
Validations are optional, the parent class exposes a `_verify_blacklist(pairlist)` and `_whitelist_for_active_markets(pairlist)` to do default filters. Use this if you limit your result to a certain number of pairs - so the endresult is not shorter than expected.
|
||||
|
||||
In `VolumePairList`, this implements different methods of sorting, does early validation so only the expected number of pairs is returned.
|
||||
|
||||
##### sample
|
||||
|
||||
``` python
|
||||
@ -145,11 +161,6 @@ Validations are optional, the parent class exposes a `_verify_blacklist(pairlist
|
||||
return pairs
|
||||
```
|
||||
|
||||
#### _gen_pair_whitelist
|
||||
|
||||
This is a simple method used by `VolumePairList` - however serves as a good example.
|
||||
In VolumePairList, this implements different methods of sorting, does early validation so only the expected number of pairs is returned.
|
||||
|
||||
## Implement a new Exchange (WIP)
|
||||
|
||||
!!! Note
|
||||
|
@ -22,6 +22,9 @@ Freqtrade provides an official Docker image on [Dockerhub](https://hub.docker.co
|
||||
!!! Note
|
||||
All below comands use relative directories and will have to be executed from the directory containing the `docker-compose.yml` file.
|
||||
|
||||
!!! Note "Docker on Raspberry"
|
||||
If you're running freqtrade on a Raspberry PI, you must change the image from `freqtradeorg/freqtrade:master` to `freqtradeorg/freqtrade:master_pi` or `freqtradeorg/freqtrade:develop_pi`, otherwise the image will not work.
|
||||
|
||||
### Docker quick start
|
||||
|
||||
Create a new directory and place the [docker-compose file](https://github.com/freqtrade/freqtrade/blob/develop/docker-compose.yml) in this directory.
|
||||
@ -65,7 +68,7 @@ docker-compose up -d
|
||||
|
||||
#### Docker-compose logs
|
||||
|
||||
Logs will be written to `user_data/freqtrade.log`.
|
||||
Logs will be written to `user_data/logs/freqtrade.log`.
|
||||
Alternatively, you can check the latest logs using `docker-compose logs -f`.
|
||||
|
||||
#### Database
|
||||
|
@ -79,7 +79,7 @@ So lets say your Win rate is 28% and your Risk Reward Ratio is 5:
|
||||
Expectancy = (5 X 0.28) – 0.72 = 0.68
|
||||
```
|
||||
|
||||
Superficially, this means that on average you expect this strategy’s trades to return .68 times the size of your loses. This is important for two reasons: First, it may seem obvious, but you know right away that you have a positive return. Second, you now have a number you can compare to other candidate systems to make decisions about which ones you employ.
|
||||
Superficially, this means that on average you expect this strategy’s trades to return 1.68 times the size of your loses. Said another way, you can expect to win $1.68 for every $1 you lose. This is important for two reasons: First, it may seem obvious, but you know right away that you have a positive return. Second, you now have a number you can compare to other candidate systems to make decisions about which ones you employ.
|
||||
|
||||
It is important to remember that any system with an expectancy greater than 0 is profitable using past data. The key is finding one that will be profitable in the future.
|
||||
|
||||
@ -148,7 +148,6 @@ Edge module has following configuration options:
|
||||
| `enabled` | If true, then Edge will run periodically. <br>*Defaults to `false`.* <br> **Datatype:** Boolean
|
||||
| `process_throttle_secs` | How often should Edge run in seconds. <br>*Defaults to `3600` (once per hour).* <br> **Datatype:** Integer
|
||||
| `calculate_since_number_of_days` | Number of days of data against which Edge calculates Win Rate, Risk Reward and Expectancy. <br> **Note** that it downloads historical data so increasing this number would lead to slowing down the bot. <br>*Defaults to `7`.* <br> **Datatype:** Integer
|
||||
| `capital_available_percentage` | **DEPRECATED - [replaced with `tradable_balance_ratio`](configuration.md#Available balance)** This is the percentage of the total capital on exchange in stake currency. <br>As an example if you have 10 ETH available in your wallet on the exchange and this value is 0.5 (which is 50%), then the bot will use a maximum amount of 5 ETH for trading and considers it as available capital. <br>*Defaults to `0.5`.* <br> **Datatype:** Float
|
||||
| `allowed_risk` | Ratio of allowed risk per trade. <br>*Defaults to `0.01` (1%)).* <br> **Datatype:** Float
|
||||
| `stoploss_range_min` | Minimum stoploss. <br>*Defaults to `-0.01`.* <br> **Datatype:** Float
|
||||
| `stoploss_range_max` | Maximum stoploss. <br>*Defaults to `-0.10`.* <br> **Datatype:** Float
|
||||
@ -156,7 +155,7 @@ Edge module has following configuration options:
|
||||
| `minimum_winrate` | It filters out pairs which don't have at least minimum_winrate. <br>This comes handy if you want to be conservative and don't comprise win rate in favour of risk reward ratio. <br>*Defaults to `0.60`.* <br> **Datatype:** Float
|
||||
| `minimum_expectancy` | It filters out pairs which have the expectancy lower than this number. <br>Having an expectancy of 0.20 means if you put 10$ on a trade you expect a 12$ return. <br>*Defaults to `0.20`.* <br> **Datatype:** Float
|
||||
| `min_trade_number` | When calculating *W*, *R* and *E* (expectancy) against historical data, you always want to have a minimum number of trades. The more this number is the more Edge is reliable. <br>Having a win rate of 100% on a single trade doesn't mean anything at all. But having a win rate of 70% over past 100 trades means clearly something. <br>*Defaults to `10` (it is highly recommended not to decrease this number).* <br> **Datatype:** Integer
|
||||
| `max_trade_duration_minute` | Edge will filter out trades with long duration. If a trade is profitable after 1 month, it is hard to evaluate the strategy based on it. But if most of trades are profitable and they have maximum duration of 30 minutes, then it is clearly a good sign.<br>**NOTICE:** While configuring this value, you should take into consideration your timeframe (ticker interval). As an example filtering out trades having duration less than one day for a strategy which has 4h interval does not make sense. Default value is set assuming your strategy interval is relatively small (1m or 5m, etc.).<br>*Defaults to `1440` (one day).* <br> **Datatype:** Integer
|
||||
| `max_trade_duration_minute` | Edge will filter out trades with long duration. If a trade is profitable after 1 month, it is hard to evaluate the strategy based on it. But if most of trades are profitable and they have maximum duration of 30 minutes, then it is clearly a good sign.<br>**NOTICE:** While configuring this value, you should take into consideration your timeframe. As an example filtering out trades having duration less than one day for a strategy which has 4h interval does not make sense. Default value is set assuming your strategy interval is relatively small (1m or 5m, etc.).<br>*Defaults to `1440` (one day).* <br> **Datatype:** Integer
|
||||
| `remove_pumps` | Edge will remove sudden pumps in a given market while going through historical data. However, given that pumps happen very often in crypto markets, we recommend you keep this off.<br>*Defaults to `false`.* <br> **Datatype:** Boolean
|
||||
|
||||
## Running Edge independently
|
||||
|
@ -30,6 +30,15 @@ Binance has been split into 3, and users must use the correct ccxt exchange ID f
|
||||
The Kraken API does only provide 720 historic candles, which is sufficient for Freqtrade dry-run and live trade modes, but is a problem for backtesting.
|
||||
To download data for the Kraken exchange, using `--dl-trades` is mandatory, otherwise the bot will download the same 720 candles over and over, and you'll not have enough backtest data.
|
||||
|
||||
Due to the heavy rate-limiting applied by Kraken, the following configuration section should be used to download data:
|
||||
|
||||
``` json
|
||||
"ccxt_async_config": {
|
||||
"enableRateLimit": true,
|
||||
"rateLimit": 3100
|
||||
},
|
||||
```
|
||||
|
||||
## Bittrex
|
||||
|
||||
### Order types
|
||||
@ -62,6 +71,30 @@ res = [ f"{x['MarketCurrency']}/{x['BaseCurrency']}" for x in ct.publicGetMarket
|
||||
print(res)
|
||||
```
|
||||
|
||||
## FTX
|
||||
|
||||
!!! Tip "Stoploss on Exchange"
|
||||
FTX supports `stoploss_on_exchange` and can use both stop-loss-market and stop-loss-limit orders. It provides great advantages, so we recommend to benefit from it.
|
||||
You can use either `"limit"` or `"market"` in the `order_types.stoploss` configuration setting to decide.
|
||||
|
||||
|
||||
### Using subaccounts
|
||||
|
||||
To use subaccounts with FTX, you need to edit the configuration and add the following:
|
||||
|
||||
``` json
|
||||
"exchange": {
|
||||
"ccxt_config": {
|
||||
"headers": {
|
||||
"FTX-SUBACCOUNT": "name"
|
||||
}
|
||||
},
|
||||
}
|
||||
```
|
||||
|
||||
!!! Note
|
||||
Older versions of freqtrade may require this key to be added to `"ccxt_async_config"` as well.
|
||||
|
||||
## All exchanges
|
||||
|
||||
Should you experience constant errors with Nonce (like `InvalidNonce`), it is best to regenerate the API keys. Resetting Nonce is difficult and it's usually easier to regenerate the API keys.
|
||||
@ -74,23 +107,13 @@ Should you experience constant errors with Nonce (like `InvalidNonce`), it is be
|
||||
$ pip3 install web3
|
||||
```
|
||||
|
||||
### Send incomplete candles to the strategy
|
||||
### Getting latest price / Incomplete candles
|
||||
|
||||
Most exchanges return current incomplete candle via their OHLCV/klines API interface.
|
||||
By default, Freqtrade assumes that incomplete candle is fetched from the exchange and removes the last candle assuming it's the incomplete candle.
|
||||
|
||||
Whether your exchange returns incomplete candles or not can be checked using [the helper script](developer.md#Incomplete-candles) from the Contributor documentation.
|
||||
|
||||
If the exchange does return incomplete candles and you would like to have incomplete candles in your strategy, you can set the following parameter in the configuration file.
|
||||
Due to the danger of repainting, Freqtrade does not allow you to use this incomplete candle.
|
||||
|
||||
``` json
|
||||
{
|
||||
|
||||
"exchange": {
|
||||
"_ft_has_params": {"ohlcv_partial_candle": false}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
!!! Warning "Danger of repainting"
|
||||
Changing this parameter makes the strategy responsible to avoid repainting and handle this accordingly. Doing this is therefore not recommended, and should only be performed by experienced users who are fully aware of the impact this setting has.
|
||||
However, if it is based on the need for the latest price for your strategy - then this requirement can be acquired using the [data provider](strategy-customization.md#possible-options-for-dataprovider) from within the strategy.
|
||||
|
16
docs/faq.md
16
docs/faq.md
@ -45,6 +45,20 @@ the tutorial [here|Testing-new-strategies-with-Hyperopt](bot-usage.md#hyperopt-c
|
||||
|
||||
You can use the `/forcesell all` command from Telegram.
|
||||
|
||||
### I want to run multiple bots on the same machine
|
||||
|
||||
Please look at the [advanced setup documentation Page](advanced-setup.md#running-multiple-instances-of-freqtrade).
|
||||
|
||||
### I'm getting "Missing data fillup" messages in the log
|
||||
|
||||
This message is just a warning that the latest candles had missing candles in them.
|
||||
Depending on the exchange, this can indicate that the pair didn't have a trade for the timeframe you are using - and the exchange does only return candles with volume.
|
||||
On low volume pairs, this is a rather common occurance.
|
||||
|
||||
If this happens for all pairs in the pairlist, this might indicate a recent exchange downtime. Please check your exchange's public channels for details.
|
||||
|
||||
Irrespectively of the reason, Freqtrade will fill up these candles with "empty" candles, where open, high, low and close are set to the previous candle close - and volume is empty. In a chart, this will look like a `_` - and is aligned with how exchanges usually represent 0 volume candles.
|
||||
|
||||
### I'm getting the "RESTRICTED_MARKET" message in the log
|
||||
|
||||
Currently known to happen for US Bittrex users.
|
||||
@ -100,7 +114,7 @@ $ tail -f /path/to/mylogfile.log | grep 'something'
|
||||
```
|
||||
from a separate terminal window.
|
||||
|
||||
On Windows, the `--logfilename` option is also supported by Freqtrade and you can use the `findstr` command to search the log for the string of interest:
|
||||
On Windows, the `--logfile` option is also supported by Freqtrade and you can use the `findstr` command to search the log for the string of interest:
|
||||
```
|
||||
> type \path\to\mylogfile.log | findstr "something"
|
||||
```
|
||||
|
@ -6,9 +6,7 @@ algorithms included in the `scikit-optimize` package to accomplish this. The
|
||||
search will burn all your CPU cores, make your laptop sound like a fighter jet
|
||||
and still take a long time.
|
||||
|
||||
In general, the search for best parameters starts with a few random combinations and then uses Bayesian search with a
|
||||
ML regressor algorithm (currently ExtraTreesRegressor) to quickly find a combination of parameters in the search hyperspace
|
||||
that minimizes the value of the [loss function](#loss-functions).
|
||||
In general, the search for best parameters starts with a few random combinations (see [below](#reproducible-results) for more details) and then uses Bayesian search with a ML regressor algorithm (currently ExtraTreesRegressor) to quickly find a combination of parameters in the search hyperspace that minimizes the value of the [loss function](#loss-functions).
|
||||
|
||||
Hyperopt requires historic data to be available, just as backtesting does.
|
||||
To learn how to get data for the pairs and exchange you're interested in, head over to the [Data Downloading](data-download.md) section of the documentation.
|
||||
@ -16,6 +14,24 @@ To learn how to get data for the pairs and exchange you're interested in, head o
|
||||
!!! Bug
|
||||
Hyperopt can crash when used with only 1 CPU Core as found out in [Issue #1133](https://github.com/freqtrade/freqtrade/issues/1133)
|
||||
|
||||
## Install hyperopt dependencies
|
||||
|
||||
Since Hyperopt dependencies are not needed to run the bot itself, are heavy, can not be easily built on some platforms (like Raspberry PI), they are not installed by default. Before you run Hyperopt, you need to install the corresponding dependencies, as described in this section below.
|
||||
|
||||
!!! Note
|
||||
Since Hyperopt is a resource intensive process, running it on a Raspberry Pi is not recommended nor supported.
|
||||
|
||||
### Docker
|
||||
|
||||
The docker-image includes hyperopt dependencies, no further action needed.
|
||||
|
||||
### Easy installation script (setup.sh) / Manual installation
|
||||
|
||||
```bash
|
||||
source .env/bin/activate
|
||||
pip install -r requirements-hyperopt.txt
|
||||
```
|
||||
|
||||
## Prepare Hyperopting
|
||||
|
||||
Before we start digging into Hyperopt, we recommend you to take a look at
|
||||
@ -47,6 +63,9 @@ Optional - can also be loaded from a strategy:
|
||||
!!! Note
|
||||
Assuming the optional methods are not in your hyperopt file, please use `--strategy AweSomeStrategy` which contains these methods so hyperopt can use these methods instead.
|
||||
|
||||
!!! Note
|
||||
You always have to provide a strategy to Hyperopt, even if your custom Hyperopt class contains all methods.
|
||||
|
||||
Rarely you may also need to override:
|
||||
|
||||
* `roi_space` - for custom ROI optimization (if you need the ranges for the ROI parameters in the optimization hyperspace that differ from default)
|
||||
@ -105,9 +124,9 @@ To avoid naming collisions in the search-space, please prefix all sell-spaces wi
|
||||
|
||||
#### Using timeframe as a part of the Strategy
|
||||
|
||||
The Strategy class exposes the timeframe (ticker interval) value as the `self.ticker_interval` attribute.
|
||||
The same value is available as class-attribute `HyperoptName.ticker_interval`.
|
||||
In the case of the linked sample-value this would be `SampleHyperOpt.ticker_interval`.
|
||||
The Strategy class exposes the timeframe value as the `self.timeframe` attribute.
|
||||
The same value is available as class-attribute `HyperoptName.timeframe`.
|
||||
In the case of the linked sample-value this would be `SampleHyperOpt.timeframe`.
|
||||
|
||||
## Solving a Mystery
|
||||
|
||||
@ -246,7 +265,7 @@ freqtrade hyperopt --timerange 20180401-20180501
|
||||
Hyperopt can reuse `populate_indicators`, `populate_buy_trend`, `populate_sell_trend` from your strategy, assuming these methods are **not** in your custom hyperopt file, and a strategy is provided.
|
||||
|
||||
```bash
|
||||
freqtrade hyperopt --strategy SampleStrategy --customhyperopt SampleHyperopt
|
||||
freqtrade hyperopt --strategy SampleStrategy --hyperopt SampleHyperopt
|
||||
```
|
||||
|
||||
### Running Hyperopt with Smaller Search Space
|
||||
@ -293,7 +312,7 @@ You can also enable position stacking in the configuration file by explicitly se
|
||||
|
||||
### Reproducible results
|
||||
|
||||
The search for optimal parameters starts with a few (currently 30) random combinations in the hyperspace of parameters, random Hyperopt epochs. These random epochs are marked with a leading asterisk sign at the Hyperopt output.
|
||||
The search for optimal parameters starts with a few (currently 30) random combinations in the hyperspace of parameters, random Hyperopt epochs. These random epochs are marked with an asterisk character (`*`) in the first column in the Hyperopt output.
|
||||
|
||||
The initial state for generation of these random values (random state) is controlled by the value of the `--random-state` command line option. You can set it to some arbitrary value of your choice to obtain reproducible results.
|
||||
|
||||
@ -384,7 +403,7 @@ As stated in the comment, you can also use it as the value of the `minimal_roi`
|
||||
|
||||
#### Default ROI Search Space
|
||||
|
||||
If you are optimizing ROI, Freqtrade creates the 'roi' optimization hyperspace for you -- it's the hyperspace of components for the ROI tables. By default, each ROI table generated by the Freqtrade consists of 4 rows (steps). Hyperopt implements adaptive ranges for ROI tables with ranges for values in the ROI steps that depend on the ticker_interval used. By default the values vary in the following ranges (for some of the most used timeframes, values are rounded to 5 digits after the decimal point):
|
||||
If you are optimizing ROI, Freqtrade creates the 'roi' optimization hyperspace for you -- it's the hyperspace of components for the ROI tables. By default, each ROI table generated by the Freqtrade consists of 4 rows (steps). Hyperopt implements adaptive ranges for ROI tables with ranges for values in the ROI steps that depend on the timeframe used. By default the values vary in the following ranges (for some of the most used timeframes, values are rounded to 5 digits after the decimal point):
|
||||
|
||||
| # step | 1m | | 5m | | 1h | | 1d | |
|
||||
| ------ | ------ | ----------------- | -------- | ----------- | ---------- | ----------------- | ------------ | ----------------- |
|
||||
@ -393,7 +412,7 @@ If you are optimizing ROI, Freqtrade creates the 'roi' optimization hyperspace f
|
||||
| 3 | 4...20 | 0.00387...0.01547 | 20...100 | 0.01...0.04 | 240...1200 | 0.02294...0.09177 | 5760...28800 | 0.04059...0.16237 |
|
||||
| 4 | 6...44 | 0.0 | 30...220 | 0.0 | 360...2640 | 0.0 | 8640...63360 | 0.0 |
|
||||
|
||||
These ranges should be sufficient in most cases. The minutes in the steps (ROI dict keys) are scaled linearly depending on the timeframe (ticker interval) used. The ROI values in the steps (ROI dict values) are scaled logarithmically depending on the timeframe used.
|
||||
These ranges should be sufficient in most cases. The minutes in the steps (ROI dict keys) are scaled linearly depending on the timeframe used. The ROI values in the steps (ROI dict values) are scaled logarithmically depending on the timeframe used.
|
||||
|
||||
If you have the `generate_roi_table()` and `roi_space()` methods in your custom hyperopt file, remove them in order to utilize these adaptive ROI tables and the ROI hyperoptimization space generated by Freqtrade by default.
|
||||
|
||||
@ -468,7 +487,7 @@ As stated in the comment, you can also use it as the values of the corresponding
|
||||
|
||||
If you are optimizing trailing stop values, Freqtrade creates the 'trailing' optimization hyperspace for you. By default, the `trailing_stop` parameter is always set to True in that hyperspace, the value of the `trailing_only_offset_is_reached` vary between True and False, the values of the `trailing_stop_positive` and `trailing_stop_positive_offset` parameters vary in the ranges 0.02...0.35 and 0.01...0.1 correspondingly, which is sufficient in most cases.
|
||||
|
||||
Override the `trailing_space()` method and define the desired range in it if you need values of the trailing stop parameters to vary in other ranges during hyperoptimization. A sample for this method can be found in [user_data/hyperopts/sample_hyperopt_advanced.py](https://github.com/freqtrade/freqtrade/blob/develop/user_data/hyperopts/sample_hyperopt_advanced.py).
|
||||
Override the `trailing_space()` method and define the desired range in it if you need values of the trailing stop parameters to vary in other ranges during hyperoptimization. A sample for this method can be found in [user_data/hyperopts/sample_hyperopt_advanced.py](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/templates/sample_hyperopt_advanced.py).
|
||||
|
||||
## Show details of Hyperopt results
|
||||
|
||||
@ -479,8 +498,3 @@ After you run Hyperopt for the desired amount of epochs, you can later list all
|
||||
Once the optimized strategy has been implemented into your strategy, you should backtest this strategy to make sure everything is working as expected.
|
||||
|
||||
To achieve same results (number of trades, their durations, profit, etc.) than during Hyperopt, please use same set of arguments `--dmmp`/`--disable-max-market-positions` and `--eps`/`--enable-position-stacking` for Backtesting.
|
||||
|
||||
## Next Step
|
||||
|
||||
Now you have a perfect bot and want to control it from Telegram. Your
|
||||
next step is to learn the [Telegram usage](telegram-usage.md).
|
||||
|
@ -13,7 +13,7 @@ Click each one for install guide:
|
||||
* [Python >= 3.6.x](http://docs.python-guide.org/en/latest/starting/installation/)
|
||||
* [pip](https://pip.pypa.io/en/stable/installing/)
|
||||
* [git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git)
|
||||
* [virtualenv](https://virtualenv.pypa.io/en/stable/installation/) (Recommended)
|
||||
* [virtualenv](https://virtualenv.pypa.io/en/stable/installation.html) (Recommended)
|
||||
* [TA-Lib](https://mrjbq7.github.io/ta-lib/install.html) (install instructions below)
|
||||
|
||||
We also recommend a [Telegram bot](telegram-usage.md#setup-your-telegram-bot), which is optional but recommended.
|
||||
@ -248,14 +248,14 @@ git clone https://github.com/freqtrade/freqtrade.git
|
||||
|
||||
Install ta-lib according to the [ta-lib documentation](https://github.com/mrjbq7/ta-lib#windows).
|
||||
|
||||
As compiling from source on windows has heavy dependencies (requires a partial visual studio installation), there is also a repository of unofficial precompiled windows Wheels [here](https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib), which needs to be downloaded and installed using `pip install TA_Lib‑0.4.17‑cp36‑cp36m‑win32.whl` (make sure to use the version matching your python version)
|
||||
As compiling from source on windows has heavy dependencies (requires a partial visual studio installation), there is also a repository of unofficial precompiled windows Wheels [here](https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib), which needs to be downloaded and installed using `pip install TA_Lib‑0.4.18‑cp38‑cp38‑win_amd64.whl` (make sure to use the version matching your python version)
|
||||
|
||||
```cmd
|
||||
>cd \path\freqtrade-develop
|
||||
>python -m venv .env
|
||||
>.env\Scripts\activate.bat
|
||||
REM optionally install ta-lib from wheel
|
||||
REM >pip install TA_Lib‑0.4.17‑cp36‑cp36m‑win32.whl
|
||||
REM >pip install TA_Lib‑0.4.18‑cp38‑cp38‑win_amd64.whl
|
||||
>pip install -r requirements.txt
|
||||
>pip install -e .
|
||||
>freqtrade
|
||||
|
@ -31,7 +31,7 @@ usage: freqtrade plot-dataframe [-h] [-v] [--logfile FILE] [-V] [-c PATH]
|
||||
[--plot-limit INT] [--db-url PATH]
|
||||
[--trade-source {DB,file}] [--export EXPORT]
|
||||
[--export-filename PATH]
|
||||
[--timerange TIMERANGE] [-i TICKER_INTERVAL]
|
||||
[--timerange TIMERANGE] [-i TIMEFRAME]
|
||||
[--no-trades]
|
||||
|
||||
optional arguments:
|
||||
@ -65,7 +65,7 @@ optional arguments:
|
||||
_today.json`
|
||||
--timerange TIMERANGE
|
||||
Specify what timerange of data to use.
|
||||
-i TICKER_INTERVAL, --ticker-interval TICKER_INTERVAL
|
||||
-i TIMEFRAME, --timeframe TIMEFRAME, --ticker-interval TIMEFRAME
|
||||
Specify ticker interval (`1m`, `5m`, `30m`, `1h`,
|
||||
`1d`).
|
||||
--no-trades Skip using trades from backtesting file and DB.
|
||||
@ -227,7 +227,7 @@ usage: freqtrade plot-profit [-h] [-v] [--logfile FILE] [-V] [-c PATH]
|
||||
[-d PATH] [--userdir PATH] [-p PAIRS [PAIRS ...]]
|
||||
[--timerange TIMERANGE] [--export EXPORT]
|
||||
[--export-filename PATH] [--db-url PATH]
|
||||
[--trade-source {DB,file}] [-i TICKER_INTERVAL]
|
||||
[--trade-source {DB,file}] [-i TIMEFRAME]
|
||||
|
||||
optional arguments:
|
||||
-h, --help show this help message and exit
|
||||
@ -250,7 +250,7 @@ optional arguments:
|
||||
--trade-source {DB,file}
|
||||
Specify the source for trades (Can be DB or file
|
||||
(backtest file)) Default: file
|
||||
-i TICKER_INTERVAL, --ticker-interval TICKER_INTERVAL
|
||||
-i TIMEFRAME, --timeframe TIMEFRAME, --ticker-interval TIMEFRAME
|
||||
Specify ticker interval (`1m`, `5m`, `30m`, `1h`,
|
||||
`1d`).
|
||||
|
||||
@ -261,9 +261,10 @@ Common arguments:
|
||||
details.
|
||||
-V, --version show program's version number and exit
|
||||
-c PATH, --config PATH
|
||||
Specify configuration file (default: `config.json`).
|
||||
Multiple --config options may be used. Can be set to
|
||||
`-` to read config from stdin.
|
||||
Specify configuration file (default:
|
||||
`userdir/config.json` or `config.json` whichever
|
||||
exists). Multiple --config options may be used. Can be
|
||||
set to `-` to read config from stdin.
|
||||
-d PATH, --datadir PATH
|
||||
Path to directory with historical backtesting data.
|
||||
--userdir PATH, --user-data-dir PATH
|
||||
|
@ -1,2 +1,2 @@
|
||||
mkdocs-material==4.6.3
|
||||
mkdocs-material==5.5.3
|
||||
mdx_truly_sane_lists==1.2
|
||||
|
105
docs/rest-api.md
105
docs/rest-api.md
@ -11,6 +11,9 @@ Sample configuration:
|
||||
"enabled": true,
|
||||
"listen_ip_address": "127.0.0.1",
|
||||
"listen_port": 8080,
|
||||
"verbosity": "info",
|
||||
"jwt_secret_key": "somethingrandom",
|
||||
"CORS_origins": [],
|
||||
"username": "Freqtrader",
|
||||
"password": "SuperSecret1!"
|
||||
},
|
||||
@ -29,7 +32,7 @@ This should return the response:
|
||||
{"status":"pong"}
|
||||
```
|
||||
|
||||
All other endpoints return sensitive info and require authentication, so are not available through a web browser.
|
||||
All other endpoints return sensitive info and require authentication and are therefore not available through a web browser.
|
||||
|
||||
To generate a secure password, either use a password manager, or use the below code snipped.
|
||||
|
||||
@ -38,9 +41,12 @@ import secrets
|
||||
secrets.token_hex()
|
||||
```
|
||||
|
||||
!!! Hint
|
||||
Use the same method to also generate a JWT secret key (`jwt_secret_key`).
|
||||
|
||||
### Configuration with docker
|
||||
|
||||
If you run your bot using docker, you'll need to have the bot listen to incomming connections. The security is then handled by docker.
|
||||
If you run your bot using docker, you'll need to have the bot listen to incoming connections. The security is then handled by docker.
|
||||
|
||||
``` json
|
||||
"api_server": {
|
||||
@ -100,26 +106,29 @@ python3 scripts/rest_client.py --config rest_config.json <command> [optional par
|
||||
|
||||
## Available commands
|
||||
|
||||
| Command | Default | Description |
|
||||
|----------|---------|-------------|
|
||||
| `start` | | Starts the trader
|
||||
| `stop` | | Stops the trader
|
||||
| `stopbuy` | | Stops the trader from opening new trades. Gracefully closes open trades according to their rules.
|
||||
| `reload_conf` | | Reloads the configuration file
|
||||
| `show_config` | | Shows part of the current configuration with relevant settings to operation
|
||||
| `status` | | Lists all open trades
|
||||
| `count` | | Displays number of trades used and available
|
||||
| `profit` | | Display a summary of your profit/loss from close trades and some stats about your performance
|
||||
| `forcesell <trade_id>` | | Instantly sells the given trade (Ignoring `minimum_roi`).
|
||||
| `forcesell all` | | Instantly sells all open trades (Ignoring `minimum_roi`).
|
||||
| `forcebuy <pair> [rate]` | | Instantly buys the given pair. Rate is optional. (`forcebuy_enable` must be set to True)
|
||||
| `performance` | | Show performance of each finished trade grouped by pair
|
||||
| `balance` | | Show account balance per currency
|
||||
| `daily <n>` | 7 | Shows profit or loss per day, over the last n days
|
||||
| `whitelist` | | Show the current whitelist
|
||||
| `blacklist [pair]` | | Show the current blacklist, or adds a pair to the blacklist.
|
||||
| `edge` | | Show validated pairs by Edge if it is enabled.
|
||||
| `version` | | Show version
|
||||
| Command | Description |
|
||||
|----------|-------------|
|
||||
| `ping` | Simple command testing the API Readiness - requires no authentication.
|
||||
| `start` | Starts the trader
|
||||
| `stop` | Stops the trader
|
||||
| `stopbuy` | Stops the trader from opening new trades. Gracefully closes open trades according to their rules.
|
||||
| `reload_config` | Reloads the configuration file
|
||||
| `trades` | List last trades.
|
||||
| `delete_trade <trade_id>` | Remove trade from the database. Tries to close open orders. Requires manual handling of this trade on the exchange.
|
||||
| `show_config` | Shows part of the current configuration with relevant settings to operation
|
||||
| `status` | Lists all open trades
|
||||
| `count` | Displays number of trades used and available
|
||||
| `profit` | Display a summary of your profit/loss from close trades and some stats about your performance
|
||||
| `forcesell <trade_id>` | Instantly sells the given trade (Ignoring `minimum_roi`).
|
||||
| `forcesell all` | Instantly sells all open trades (Ignoring `minimum_roi`).
|
||||
| `forcebuy <pair> [rate]` | Instantly buys the given pair. Rate is optional. (`forcebuy_enable` must be set to True)
|
||||
| `performance` | Show performance of each finished trade grouped by pair
|
||||
| `balance` | Show account balance per currency
|
||||
| `daily <n>` | Shows profit or loss per day, over the last n days (n defaults to 7)
|
||||
| `whitelist` | Show the current whitelist
|
||||
| `blacklist [pair]` | Show the current blacklist, or adds a pair to the blacklist.
|
||||
| `edge` | Show validated pairs by Edge if it is enabled.
|
||||
| `version` | Show version
|
||||
|
||||
Possible commands can be listed from the rest-client script using the `help` command.
|
||||
|
||||
@ -169,7 +178,7 @@ profit
|
||||
Returns the profit summary
|
||||
:returns: json object
|
||||
|
||||
reload_conf
|
||||
reload_config
|
||||
Reload configuration
|
||||
:returns: json object
|
||||
|
||||
@ -191,7 +200,7 @@ stop
|
||||
|
||||
stopbuy
|
||||
Stop buying (but handle sells gracefully).
|
||||
use reload_conf to reset
|
||||
use reload_config to reset
|
||||
:returns: json object
|
||||
|
||||
version
|
||||
@ -202,3 +211,51 @@ whitelist
|
||||
Show the current whitelist
|
||||
:returns: json object
|
||||
```
|
||||
|
||||
## Advanced API usage using JWT tokens
|
||||
|
||||
!!! Note
|
||||
The below should be done in an application (a Freqtrade REST API client, which fetches info via API), and is not intended to be used on a regular basis.
|
||||
|
||||
Freqtrade's REST API also offers JWT (JSON Web Tokens).
|
||||
You can login using the following command, and subsequently use the resulting access_token.
|
||||
|
||||
``` bash
|
||||
> curl -X POST --user Freqtrader http://localhost:8080/api/v1/token/login
|
||||
{"access_token":"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpYXQiOjE1ODkxMTk2ODEsIm5iZiI6MTU4OTExOTY4MSwianRpIjoiMmEwYmY0NWUtMjhmOS00YTUzLTlmNzItMmM5ZWVlYThkNzc2IiwiZXhwIjoxNTg5MTIwNTgxLCJpZGVudGl0eSI6eyJ1IjoiRnJlcXRyYWRlciJ9LCJmcmVzaCI6ZmFsc2UsInR5cGUiOiJhY2Nlc3MifQ.qt6MAXYIa-l556OM7arBvYJ0SDI9J8bIk3_glDujF5g","refresh_token":"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpYXQiOjE1ODkxMTk2ODEsIm5iZiI6MTU4OTExOTY4MSwianRpIjoiZWQ1ZWI3YjAtYjMwMy00YzAyLTg2N2MtNWViMjIxNWQ2YTMxIiwiZXhwIjoxNTkxNzExNjgxLCJpZGVudGl0eSI6eyJ1IjoiRnJlcXRyYWRlciJ9LCJ0eXBlIjoicmVmcmVzaCJ9.d1AT_jYICyTAjD0fiQAr52rkRqtxCjUGEMwlNuuzgNQ"}
|
||||
|
||||
> access_token="eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpYXQiOjE1ODkxMTk2ODEsIm5iZiI6MTU4OTExOTY4MSwianRpIjoiMmEwYmY0NWUtMjhmOS00YTUzLTlmNzItMmM5ZWVlYThkNzc2IiwiZXhwIjoxNTg5MTIwNTgxLCJpZGVudGl0eSI6eyJ1IjoiRnJlcXRyYWRlciJ9LCJmcmVzaCI6ZmFsc2UsInR5cGUiOiJhY2Nlc3MifQ.qt6MAXYIa-l556OM7arBvYJ0SDI9J8bIk3_glDujF5g"
|
||||
# Use access_token for authentication
|
||||
> curl -X GET --header "Authorization: Bearer ${access_token}" http://localhost:8080/api/v1/count
|
||||
|
||||
```
|
||||
|
||||
Since the access token has a short timeout (15 min) - the `token/refresh` request should be used periodically to get a fresh access token:
|
||||
|
||||
``` bash
|
||||
> curl -X POST --header "Authorization: Bearer ${refresh_token}"http://localhost:8080/api/v1/token/refresh
|
||||
{"access_token":"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpYXQiOjE1ODkxMTk5NzQsIm5iZiI6MTU4OTExOTk3NCwianRpIjoiMDBjNTlhMWUtMjBmYS00ZTk0LTliZjAtNWQwNTg2MTdiZDIyIiwiZXhwIjoxNTg5MTIwODc0LCJpZGVudGl0eSI6eyJ1IjoiRnJlcXRyYWRlciJ9LCJmcmVzaCI6ZmFsc2UsInR5cGUiOiJhY2Nlc3MifQ.1seHlII3WprjjclY6DpRhen0rqdF4j6jbvxIhUFaSbs"}
|
||||
```
|
||||
|
||||
## CORS
|
||||
|
||||
All web-based frontends are subject to [CORS](https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS) - Cross-Origin Resource Sharing.
|
||||
Since most of the requests to the Freqtrade API must be authenticated, a proper CORS policy is key to avoid security problems.
|
||||
Also, the standard disallows `*` CORS policies for requests with credentials, so this setting must be set appropriately.
|
||||
|
||||
Users can configure this themselves via the `CORS_origins` configuration setting.
|
||||
It consists of a list of allowed sites that are allowed to consume resources from the bot's API.
|
||||
|
||||
Assuming your application is deployed as `https://frequi.freqtrade.io/home/` - this would mean that the following configuration becomes necessary:
|
||||
|
||||
```jsonc
|
||||
{
|
||||
//...
|
||||
"jwt_secret_key": "somethingrandom",
|
||||
"CORS_origins": ["https://frequi.freqtrade.io"],
|
||||
//...
|
||||
}
|
||||
```
|
||||
|
||||
!!! Note
|
||||
We strongly recommend to also set `jwt_secret_key` to something random and known only to yourself to avoid unauthorized access to your bot.
|
||||
|
@ -1,13 +1,29 @@
|
||||
# SQL Helper
|
||||
|
||||
This page contains some help if you want to edit your sqlite db.
|
||||
|
||||
## Install sqlite3
|
||||
**Ubuntu/Debian installation**
|
||||
|
||||
Sqlite3 is a terminal based sqlite application.
|
||||
Feel free to use a visual Database editor like SqliteBrowser if you feel more comfortable with that.
|
||||
|
||||
### Ubuntu/Debian installation
|
||||
|
||||
```bash
|
||||
sudo apt-get install sqlite3
|
||||
```
|
||||
|
||||
### Using sqlite3 via docker-compose
|
||||
|
||||
The freqtrade docker image does contain sqlite3, so you can edit the database without having to install anything on the host system.
|
||||
|
||||
``` bash
|
||||
docker-compose exec freqtrade /bin/bash
|
||||
sqlite3 <databasefile>.sqlite
|
||||
```
|
||||
|
||||
## Open the DB
|
||||
|
||||
```bash
|
||||
sqlite3
|
||||
.open <filepath>
|
||||
@ -16,45 +32,61 @@ sqlite3
|
||||
## Table structure
|
||||
|
||||
### List tables
|
||||
|
||||
```bash
|
||||
.tables
|
||||
```
|
||||
|
||||
### Display table structure
|
||||
|
||||
```bash
|
||||
.schema <table_name>
|
||||
```
|
||||
|
||||
### Trade table structure
|
||||
|
||||
```sql
|
||||
CREATE TABLE trades (
|
||||
CREATE TABLE trades
|
||||
id INTEGER NOT NULL,
|
||||
exchange VARCHAR NOT NULL,
|
||||
pair VARCHAR NOT NULL,
|
||||
is_open BOOLEAN NOT NULL,
|
||||
fee_open FLOAT NOT NULL,
|
||||
fee_open_cost FLOAT,
|
||||
fee_open_currency VARCHAR,
|
||||
fee_close FLOAT NOT NULL,
|
||||
fee_close_cost FLOAT,
|
||||
fee_close_currency VARCHAR,
|
||||
open_rate FLOAT,
|
||||
open_rate_requested FLOAT,
|
||||
open_trade_price FLOAT,
|
||||
close_rate FLOAT,
|
||||
close_rate_requested FLOAT,
|
||||
close_profit FLOAT,
|
||||
close_profit_abs FLOAT,
|
||||
stake_amount FLOAT NOT NULL,
|
||||
amount FLOAT,
|
||||
open_date DATETIME NOT NULL,
|
||||
close_date DATETIME,
|
||||
open_order_id VARCHAR,
|
||||
stop_loss FLOAT,
|
||||
stop_loss_pct FLOAT,
|
||||
initial_stop_loss FLOAT,
|
||||
initial_stop_loss_pct FLOAT,
|
||||
stoploss_order_id VARCHAR,
|
||||
stoploss_last_update DATETIME,
|
||||
max_rate FLOAT,
|
||||
min_rate FLOAT,
|
||||
sell_reason VARCHAR,
|
||||
strategy VARCHAR,
|
||||
ticker_interval INTEGER,
|
||||
timeframe INTEGER,
|
||||
PRIMARY KEY (id),
|
||||
CHECK (is_open IN (0, 1))
|
||||
);
|
||||
CREATE INDEX ix_trades_stoploss_order_id ON trades (stoploss_order_id);
|
||||
CREATE INDEX ix_trades_pair ON trades (pair);
|
||||
CREATE INDEX ix_trades_is_open ON trades (is_open);
|
||||
|
||||
```
|
||||
|
||||
## Get all trades in the table
|
||||
@ -74,35 +106,53 @@ SELECT * FROM trades;
|
||||
|
||||
```sql
|
||||
UPDATE trades
|
||||
SET is_open=0, close_date=<close_date>, close_rate=<close_rate>, close_profit=close_rate/open_rate-1, sell_reason=<sell_reason>
|
||||
SET is_open=0,
|
||||
close_date=<close_date>,
|
||||
close_rate=<close_rate>,
|
||||
close_profit = close_rate / open_rate - 1,
|
||||
close_profit_abs = (amount * <close_rate> * (1 - fee_close) - (amount * (open_rate * 1 - fee_open))),
|
||||
sell_reason=<sell_reason>
|
||||
WHERE id=<trade_ID_to_update>;
|
||||
```
|
||||
|
||||
##### Example
|
||||
### Example
|
||||
|
||||
```sql
|
||||
UPDATE trades
|
||||
SET is_open=0, close_date='2017-12-20 03:08:45.103418', close_rate=0.19638016, close_profit=0.0496, sell_reason='force_sell'
|
||||
SET is_open=0,
|
||||
close_date='2020-06-20 03:08:45.103418',
|
||||
close_rate=0.19638016,
|
||||
close_profit=0.0496,
|
||||
close_profit_abs = (amount * 0.19638016 * (1 - fee_close) - (amount * open_rate * (1 - fee_open))),
|
||||
sell_reason='force_sell'
|
||||
WHERE id=31;
|
||||
```
|
||||
|
||||
## Insert manually a new trade
|
||||
## Manually insert a new trade
|
||||
|
||||
```sql
|
||||
INSERT INTO trades (exchange, pair, is_open, fee_open, fee_close, open_rate, stake_amount, amount, open_date)
|
||||
VALUES ('bittrex', 'ETH/BTC', 1, 0.0025, 0.0025, <open_rate>, <stake_amount>, <amount>, '<datetime>')
|
||||
VALUES ('binance', 'ETH/BTC', 1, 0.0025, 0.0025, <open_rate>, <stake_amount>, <amount>, '<datetime>')
|
||||
```
|
||||
|
||||
##### Example:
|
||||
### Insert trade example
|
||||
|
||||
```sql
|
||||
INSERT INTO trades (exchange, pair, is_open, fee_open, fee_close, open_rate, stake_amount, amount, open_date)
|
||||
VALUES ('bittrex', 'ETH/BTC', 1, 0.0025, 0.0025, 0.00258580, 0.002, 0.7715262081, '2017-11-28 12:44:24.000000')
|
||||
VALUES ('binance', 'ETH/BTC', 1, 0.0025, 0.0025, 0.00258580, 0.002, 0.7715262081, '2020-06-28 12:44:24.000000')
|
||||
```
|
||||
|
||||
## Fix wrong fees in the table
|
||||
If your DB was created before [PR#200](https://github.com/freqtrade/freqtrade/pull/200) was merged (before 12/23/17).
|
||||
## Remove trade from the database
|
||||
|
||||
Maybe you'd like to remove a trade from the database, because something went wrong.
|
||||
|
||||
```sql
|
||||
UPDATE trades SET fee=0.0025 WHERE fee=0.005;
|
||||
DELETE FROM trades WHERE id = <tradeid>;
|
||||
```
|
||||
|
||||
```sql
|
||||
DELETE FROM trades WHERE id = 31;
|
||||
```
|
||||
|
||||
!!! Warning
|
||||
This will remove this trade from the database. Please make sure you got the correct id and **NEVER** run this query without the `where` clause.
|
||||
|
@ -1,6 +1,6 @@
|
||||
# Stop Loss
|
||||
|
||||
The `stoploss` configuration parameter is loss in percentage that should trigger a sale.
|
||||
The `stoploss` configuration parameter is loss as ratio that should trigger a sale.
|
||||
For example, value `-0.10` will cause immediate sell if the profit dips below -10% for a given trade. This parameter is optional.
|
||||
|
||||
Most of the strategy files already include the optimal `stoploss` value.
|
||||
@ -27,7 +27,7 @@ So this parameter will tell the bot how often it should update the stoploss orde
|
||||
This same logic will reapply a stoploss order on the exchange should you cancel it accidentally.
|
||||
|
||||
!!! Note
|
||||
Stoploss on exchange is only supported for Binance (stop-loss-limit) and Kraken (stop-loss-market) as of now.
|
||||
Stoploss on exchange is only supported for Binance (stop-loss-limit), Kraken (stop-loss-market) and FTX (stop limit and stop-market) as of now.
|
||||
|
||||
## Static Stop Loss
|
||||
|
||||
@ -84,7 +84,7 @@ This option can be used with or without `trailing_stop_positive`, but uses `trai
|
||||
|
||||
``` python
|
||||
trailing_stop_positive_offset = 0.011
|
||||
trailing_only_offset_is_reached = true
|
||||
trailing_only_offset_is_reached = True
|
||||
```
|
||||
|
||||
Simplified example:
|
||||
@ -101,7 +101,7 @@ Simplified example:
|
||||
|
||||
## Changing stoploss on open trades
|
||||
|
||||
A stoploss on an open trade can be changed by changing the value in the configuration or strategy and use the `/reload_conf` command (alternatively, completely stopping and restarting the bot also works).
|
||||
A stoploss on an open trade can be changed by changing the value in the configuration or strategy and use the `/reload_config` command (alternatively, completely stopping and restarting the bot also works).
|
||||
|
||||
The new stoploss value will be applied to open trades (and corresponding log-messages will be generated).
|
||||
|
||||
|
201
docs/strategy-advanced.md
Normal file
201
docs/strategy-advanced.md
Normal file
@ -0,0 +1,201 @@
|
||||
# Advanced Strategies
|
||||
|
||||
This page explains some advanced concepts available for strategies.
|
||||
If you're just getting started, please be familiar with the methods described in the [Strategy Customization](strategy-customization.md) documentation and with the [Freqtrade basics](bot-basics.md) first.
|
||||
|
||||
[Freqtrade basics](bot-basics.md) describes in which sequence each method described below is called, which can be helpful to understand which method to use for your custom needs.
|
||||
|
||||
!!! Note
|
||||
All callback methods described below should only be implemented in a strategy if they are actually used.
|
||||
|
||||
## Custom order timeout rules
|
||||
|
||||
Simple, timebased order-timeouts can be configured either via strategy or in the configuration in the `unfilledtimeout` section.
|
||||
|
||||
However, freqtrade also offers a custom callback for both ordertypes, which allows you to decide based on custom criteria if a order did time out or not.
|
||||
|
||||
!!! Note
|
||||
Unfilled order timeouts are not relevant during backtesting or hyperopt, and are only relevant during real (live) trading. Therefore these methods are only called in these circumstances.
|
||||
|
||||
### Custom order timeout example
|
||||
|
||||
A simple example, which applies different unfilled-timeouts depending on the price of the asset can be seen below.
|
||||
It applies a tight timeout for higher priced assets, while allowing more time to fill on cheap coins.
|
||||
|
||||
The function must return either `True` (cancel order) or `False` (keep order alive).
|
||||
|
||||
``` python
|
||||
from datetime import datetime, timedelta
|
||||
from freqtrade.persistence import Trade
|
||||
|
||||
class Awesomestrategy(IStrategy):
|
||||
|
||||
# ... populate_* methods
|
||||
|
||||
# Set unfilledtimeout to 25 hours, since our maximum timeout from below is 24 hours.
|
||||
unfilledtimeout = {
|
||||
'buy': 60 * 25,
|
||||
'sell': 60 * 25
|
||||
}
|
||||
|
||||
def check_buy_timeout(self, pair: str, trade: 'Trade', order: dict, **kwargs) -> bool:
|
||||
if trade.open_rate > 100 and trade.open_date < datetime.utcnow() - timedelta(minutes=5):
|
||||
return True
|
||||
elif trade.open_rate > 10 and trade.open_date < datetime.utcnow() - timedelta(minutes=3):
|
||||
return True
|
||||
elif trade.open_rate < 1 and trade.open_date < datetime.utcnow() - timedelta(hours=24):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def check_sell_timeout(self, pair: str, trade: 'Trade', order: dict, **kwargs) -> bool:
|
||||
if trade.open_rate > 100 and trade.open_date < datetime.utcnow() - timedelta(minutes=5):
|
||||
return True
|
||||
elif trade.open_rate > 10 and trade.open_date < datetime.utcnow() - timedelta(minutes=3):
|
||||
return True
|
||||
elif trade.open_rate < 1 and trade.open_date < datetime.utcnow() - timedelta(hours=24):
|
||||
return True
|
||||
return False
|
||||
```
|
||||
|
||||
!!! Note
|
||||
For the above example, `unfilledtimeout` must be set to something bigger than 24h, otherwise that type of timeout will apply first.
|
||||
|
||||
### Custom order timeout example (using additional data)
|
||||
|
||||
``` python
|
||||
from datetime import datetime
|
||||
from freqtrade.persistence import Trade
|
||||
|
||||
class Awesomestrategy(IStrategy):
|
||||
|
||||
# ... populate_* methods
|
||||
|
||||
# Set unfilledtimeout to 25 hours, since our maximum timeout from below is 24 hours.
|
||||
unfilledtimeout = {
|
||||
'buy': 60 * 25,
|
||||
'sell': 60 * 25
|
||||
}
|
||||
|
||||
def check_buy_timeout(self, pair: str, trade: Trade, order: dict, **kwargs) -> bool:
|
||||
ob = self.dp.orderbook(pair, 1)
|
||||
current_price = ob['bids'][0][0]
|
||||
# Cancel buy order if price is more than 2% above the order.
|
||||
if current_price > order['price'] * 1.02:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def check_sell_timeout(self, pair: str, trade: Trade, order: dict, **kwargs) -> bool:
|
||||
ob = self.dp.orderbook(pair, 1)
|
||||
current_price = ob['asks'][0][0]
|
||||
# Cancel sell order if price is more than 2% below the order.
|
||||
if current_price < order['price'] * 0.98:
|
||||
return True
|
||||
return False
|
||||
```
|
||||
|
||||
## Bot loop start callback
|
||||
|
||||
A simple callback which is called once at the start of every bot throttling iteration.
|
||||
This can be used to perform calculations which are pair independent (apply to all pairs), loading of external data, etc.
|
||||
|
||||
``` python
|
||||
import requests
|
||||
|
||||
class Awesomestrategy(IStrategy):
|
||||
|
||||
# ... populate_* methods
|
||||
|
||||
def bot_loop_start(self, **kwargs) -> None:
|
||||
"""
|
||||
Called at the start of the bot iteration (one loop).
|
||||
Might be used to perform pair-independent tasks
|
||||
(e.g. gather some remote resource for comparison)
|
||||
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
|
||||
"""
|
||||
if self.config['runmode'].value in ('live', 'dry_run'):
|
||||
# Assign this to the class by using self.*
|
||||
# can then be used by populate_* methods
|
||||
self.remote_data = requests.get('https://some_remote_source.example.com')
|
||||
|
||||
```
|
||||
|
||||
## Bot order confirmation
|
||||
|
||||
### Trade entry (buy order) confirmation
|
||||
|
||||
`confirm_trade_entry()` can be used to abort a trade entry at the latest second (maybe because the price is not what we expect).
|
||||
|
||||
``` python
|
||||
class Awesomestrategy(IStrategy):
|
||||
|
||||
# ... populate_* methods
|
||||
|
||||
def confirm_trade_entry(self, pair: str, order_type: str, amount: float, rate: float,
|
||||
time_in_force: str, **kwargs) -> bool:
|
||||
"""
|
||||
Called right before placing a buy order.
|
||||
Timing for this function is critical, so avoid doing heavy computations or
|
||||
network requests in this method.
|
||||
|
||||
For full documentation please go to https://www.freqtrade.io/en/latest/strategy-advanced/
|
||||
|
||||
When not implemented by a strategy, returns True (always confirming).
|
||||
|
||||
:param pair: Pair that's about to be bought.
|
||||
:param order_type: Order type (as configured in order_types). usually limit or market.
|
||||
:param amount: Amount in target (quote) currency that's going to be traded.
|
||||
:param rate: Rate that's going to be used when using limit orders
|
||||
:param time_in_force: Time in force. Defaults to GTC (Good-til-cancelled).
|
||||
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
|
||||
:return bool: When True is returned, then the buy-order is placed on the exchange.
|
||||
False aborts the process
|
||||
"""
|
||||
return True
|
||||
|
||||
```
|
||||
|
||||
### Trade exit (sell order) confirmation
|
||||
|
||||
`confirm_trade_exit()` can be used to abort a trade exit (sell) at the latest second (maybe because the price is not what we expect).
|
||||
|
||||
``` python
|
||||
from freqtrade.persistence import Trade
|
||||
|
||||
|
||||
class Awesomestrategy(IStrategy):
|
||||
|
||||
# ... populate_* methods
|
||||
|
||||
def confirm_trade_exit(self, pair: str, trade: Trade, order_type: str, amount: float,
|
||||
rate: float, time_in_force: str, sell_reason: str, **kwargs) -> bool:
|
||||
"""
|
||||
Called right before placing a regular sell order.
|
||||
Timing for this function is critical, so avoid doing heavy computations or
|
||||
network requests in this method.
|
||||
|
||||
For full documentation please go to https://www.freqtrade.io/en/latest/strategy-advanced/
|
||||
|
||||
When not implemented by a strategy, returns True (always confirming).
|
||||
|
||||
:param pair: Pair that's about to be sold.
|
||||
:param order_type: Order type (as configured in order_types). usually limit or market.
|
||||
:param amount: Amount in quote currency.
|
||||
:param rate: Rate that's going to be used when using limit orders
|
||||
:param time_in_force: Time in force. Defaults to GTC (Good-til-cancelled).
|
||||
:param sell_reason: Sell reason.
|
||||
Can be any of ['roi', 'stop_loss', 'stoploss_on_exchange', 'trailing_stop_loss',
|
||||
'sell_signal', 'force_sell', 'emergency_sell']
|
||||
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
|
||||
:return bool: When True is returned, then the sell-order is placed on the exchange.
|
||||
False aborts the process
|
||||
"""
|
||||
if sell_reason == 'force_sell' and trade.calc_profit_ratio(rate) < 0:
|
||||
# Reject force-sells with negative profit
|
||||
# This is just a sample, please adjust to your needs
|
||||
# (this does not necessarily make sense, assuming you know when you're force-selling)
|
||||
return False
|
||||
return True
|
||||
|
||||
```
|
@ -1,7 +1,8 @@
|
||||
# Strategy Customization
|
||||
|
||||
This page explains where to customize your strategies, and add new
|
||||
indicators.
|
||||
This page explains how to customize your strategies, add new indicators and set up trading rules.
|
||||
|
||||
Please familiarize yourself with [Freqtrade basics](bot-basics.md) first, which provides overall info on how the bot operates.
|
||||
|
||||
## Install a custom strategy file
|
||||
|
||||
@ -140,10 +141,10 @@ By letting the bot know how much history is needed, backtest trades can start at
|
||||
|
||||
#### Example
|
||||
|
||||
Let's try to backtest 1 month (January 2019) of 5m candles using the an example strategy with EMA100, as above.
|
||||
Let's try to backtest 1 month (January 2019) of 5m candles using an example strategy with EMA100, as above.
|
||||
|
||||
``` bash
|
||||
freqtrade backtesting --timerange 20190101-20190201 --ticker-interval 5m
|
||||
freqtrade backtesting --timerange 20190101-20190201 --timeframe 5m
|
||||
```
|
||||
|
||||
Assuming `startup_candle_count` is set to 100, backtesting knows it needs 100 candles to generate valid buy signals. It will load data from `20190101 - (100 * 5m)` - which is ~2019-12-31 15:30:00.
|
||||
@ -249,7 +250,7 @@ minimal_roi = {
|
||||
|
||||
While technically not completely disabled, this would sell once the trade reaches 10000% Profit.
|
||||
|
||||
To use times based on candle duration (ticker_interval or timeframe), the following snippet can be handy.
|
||||
To use times based on candle duration (timeframe), the following snippet can be handy.
|
||||
This will allow you to change the ticket_interval for the strategy, and ROI times will still be set as candles (e.g. after 3 candles ...)
|
||||
|
||||
``` python
|
||||
@ -257,12 +258,12 @@ from freqtrade.exchange import timeframe_to_minutes
|
||||
|
||||
class AwesomeStrategy(IStrategy):
|
||||
|
||||
ticker_interval = "1d"
|
||||
ticker_interval_mins = timeframe_to_minutes(ticker_interval)
|
||||
timeframe = "1d"
|
||||
timeframe_mins = timeframe_to_minutes(timeframe)
|
||||
minimal_roi = {
|
||||
"0": 0.05, # 5% for the first 3 candles
|
||||
str(ticker_interval_mins * 3)): 0.02, # 2% after 3 candles
|
||||
str(ticker_interval_mins * 6)): 0.01, # 1% After 6 candles
|
||||
str(timeframe_mins * 3)): 0.02, # 2% after 3 candles
|
||||
str(timeframe_mins * 6)): 0.01, # 1% After 6 candles
|
||||
}
|
||||
```
|
||||
|
||||
@ -291,7 +292,7 @@ Common values are `"1m"`, `"5m"`, `"15m"`, `"1h"`, however all values supported
|
||||
|
||||
Please note that the same buy/sell signals may work well with one timeframe, but not with the others.
|
||||
|
||||
This setting is accessible within the strategy methods as the `self.ticker_interval` attribute.
|
||||
This setting is accessible within the strategy methods as the `self.timeframe` attribute.
|
||||
|
||||
### Metadata dict
|
||||
|
||||
@ -325,67 +326,14 @@ class Awesomestrategy(IStrategy):
|
||||
!!! Note
|
||||
If the data is pair-specific, make sure to use pair as one of the keys in the dictionary.
|
||||
|
||||
### Additional data (DataProvider)
|
||||
***
|
||||
|
||||
The strategy provides access to the `DataProvider`. This allows you to get additional data to use in your strategy.
|
||||
|
||||
All methods return `None` in case of failure (do not raise an exception).
|
||||
|
||||
Please always check the mode of operation to select the correct method to get data (samples see below).
|
||||
|
||||
#### Possible options for DataProvider
|
||||
|
||||
- `available_pairs` - Property with tuples listing cached pairs with their intervals (pair, interval).
|
||||
- `ohlcv(pair, timeframe)` - Currently cached candle (OHLCV) data for the pair, returns DataFrame or empty DataFrame.
|
||||
- `historic_ohlcv(pair, timeframe)` - Returns historical data stored on disk.
|
||||
- `get_pair_dataframe(pair, timeframe)` - This is a universal method, which returns either historical data (for backtesting) or cached live data (for the Dry-Run and Live-Run modes).
|
||||
- `orderbook(pair, maximum)` - Returns latest orderbook data for the pair, a dict with bids/asks with a total of `maximum` entries.
|
||||
- `market(pair)` - Returns market data for the pair: fees, limits, precisions, activity flag, etc. See [ccxt documentation](https://github.com/ccxt/ccxt/wiki/Manual#markets) for more details on Market data structure.
|
||||
- `runmode` - Property containing the current runmode.
|
||||
|
||||
#### Example: fetch live / historical candle (OHLCV) data for the first informative pair
|
||||
|
||||
``` python
|
||||
if self.dp:
|
||||
inf_pair, inf_timeframe = self.informative_pairs()[0]
|
||||
informative = self.dp.get_pair_dataframe(pair=inf_pair,
|
||||
timeframe=inf_timeframe)
|
||||
```
|
||||
|
||||
!!! Warning "Warning about backtesting"
|
||||
Be carefull when using dataprovider in backtesting. `historic_ohlcv()` (and `get_pair_dataframe()`
|
||||
for the backtesting runmode) provides the full time-range in one go,
|
||||
so please be aware of it and make sure to not "look into the future" to avoid surprises when running in dry/live mode).
|
||||
|
||||
!!! Warning "Warning in hyperopt"
|
||||
This option cannot currently be used during hyperopt.
|
||||
|
||||
#### Orderbook
|
||||
|
||||
``` python
|
||||
if self.dp:
|
||||
if self.dp.runmode.value in ('live', 'dry_run'):
|
||||
ob = self.dp.orderbook(metadata['pair'], 1)
|
||||
dataframe['best_bid'] = ob['bids'][0][0]
|
||||
dataframe['best_ask'] = ob['asks'][0][0]
|
||||
```
|
||||
|
||||
!!! Warning
|
||||
The order book is not part of the historic data which means backtesting and hyperopt will not work if this
|
||||
method is used.
|
||||
|
||||
#### Available Pairs
|
||||
|
||||
``` python
|
||||
if self.dp:
|
||||
for pair, timeframe in self.dp.available_pairs:
|
||||
print(f"available {pair}, {timeframe}")
|
||||
```
|
||||
### Additional data (informative_pairs)
|
||||
|
||||
#### Get data for non-tradeable pairs
|
||||
|
||||
Data for additional, informative pairs (reference pairs) can be beneficial for some strategies.
|
||||
Ohlcv data for these pairs will be downloaded as part of the regular whitelist refresh process and is available via `DataProvider` just as other pairs (see above).
|
||||
Ohlcv data for these pairs will be downloaded as part of the regular whitelist refresh process and is available via `DataProvider` just as other pairs (see below).
|
||||
These parts will **not** be traded unless they are also specified in the pair whitelist, or have been selected by Dynamic Whitelisting.
|
||||
|
||||
The pairs need to be specified as tuples in the format `("pair", "interval")`, with pair as the first and time interval as the second argument.
|
||||
@ -405,6 +353,178 @@ def informative_pairs(self):
|
||||
It is however better to use resampling to longer time-intervals when possible
|
||||
to avoid hammering the exchange with too many requests and risk being blocked.
|
||||
|
||||
***
|
||||
|
||||
### Additional data (DataProvider)
|
||||
|
||||
The strategy provides access to the `DataProvider`. This allows you to get additional data to use in your strategy.
|
||||
|
||||
All methods return `None` in case of failure (do not raise an exception).
|
||||
|
||||
Please always check the mode of operation to select the correct method to get data (samples see below).
|
||||
|
||||
#### Possible options for DataProvider
|
||||
|
||||
- [`available_pairs`](#available_pairs) - Property with tuples listing cached pairs with their intervals (pair, interval).
|
||||
- [`current_whitelist()`](#current_whitelist) - Returns a current list of whitelisted pairs. Useful for accessing dynamic whitelists (ie. VolumePairlist)
|
||||
- [`get_pair_dataframe(pair, timeframe)`](#get_pair_dataframepair-timeframe) - This is a universal method, which returns either historical data (for backtesting) or cached live data (for the Dry-Run and Live-Run modes).
|
||||
- [`get_analyzed_dataframe(pair, timeframe)`](#get_analyzed_dataframepair-timeframe) - Returns the analyzed dataframe (after calling `populate_indicators()`, `populate_buy()`, `populate_sell()`) and the time of the latest analysis.
|
||||
- `historic_ohlcv(pair, timeframe)` - Returns historical data stored on disk.
|
||||
- `market(pair)` - Returns market data for the pair: fees, limits, precisions, activity flag, etc. See [ccxt documentation](https://github.com/ccxt/ccxt/wiki/Manual#markets) for more details on the Market data structure.
|
||||
- `ohlcv(pair, timeframe)` - Currently cached candle (OHLCV) data for the pair, returns DataFrame or empty DataFrame.
|
||||
- [`orderbook(pair, maximum)`](#orderbookpair-maximum) - Returns latest orderbook data for the pair, a dict with bids/asks with a total of `maximum` entries.
|
||||
- [`ticker(pair)`](#tickerpair) - Returns current ticker data for the pair. See [ccxt documentation](https://github.com/ccxt/ccxt/wiki/Manual#price-tickers) for more details on the Ticker data structure.
|
||||
- `runmode` - Property containing the current runmode.
|
||||
|
||||
#### Example Usages:
|
||||
|
||||
#### *available_pairs*
|
||||
|
||||
``` python
|
||||
if self.dp:
|
||||
for pair, timeframe in self.dp.available_pairs:
|
||||
print(f"available {pair}, {timeframe}")
|
||||
```
|
||||
|
||||
#### *current_whitelist()*
|
||||
|
||||
Imagine you've developed a strategy that trades the `5m` timeframe using signals generated from a `1d` timeframe on the top 10 volume pairs by volume.
|
||||
|
||||
The strategy might look something like this:
|
||||
|
||||
*Scan through the top 10 pairs by volume using the `VolumePairList` every 5 minutes and use a 14 day RSI to buy and sell.*
|
||||
|
||||
Due to the limited available data, it's very difficult to resample our `5m` candles into daily candles for use in a 14 day RSI. Most exchanges limit us to just 500 candles which effectively gives us around 1.74 daily candles. We need 14 days at least!
|
||||
|
||||
Since we can't resample our data we will have to use an informative pair; and since our whitelist will be dynamic we don't know which pair(s) to use.
|
||||
|
||||
This is where calling `self.dp.current_whitelist()` comes in handy.
|
||||
|
||||
```python
|
||||
class SampleStrategy(IStrategy):
|
||||
# strategy init stuff...
|
||||
|
||||
timeframe = '5m'
|
||||
|
||||
# more strategy init stuff..
|
||||
|
||||
def informative_pairs(self):
|
||||
|
||||
# get access to all pairs available in whitelist.
|
||||
pairs = self.dp.current_whitelist()
|
||||
# Assign tf to each pair so they can be downloaded and cached for strategy.
|
||||
informative_pairs = [(pair, '1d') for pair in pairs]
|
||||
return informative_pairs
|
||||
|
||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
|
||||
inf_tf = '1d'
|
||||
# Get the informative pair
|
||||
informative = self.dp.get_pair_dataframe(pair=metadata['pair'], timeframe='1d')
|
||||
# Get the 14 day rsi
|
||||
informative['rsi'] = ta.RSI(informative, timeperiod=14)
|
||||
|
||||
# Rename columns to be unique
|
||||
informative.columns = [f"{col}_{inf_tf}" for col in informative.columns]
|
||||
# Assuming inf_tf = '1d' - then the columns will now be:
|
||||
# date_1d, open_1d, high_1d, low_1d, close_1d, rsi_1d
|
||||
|
||||
# Combine the 2 dataframes
|
||||
# all indicators on the informative sample MUST be calculated before this point
|
||||
dataframe = pd.merge(dataframe, informative, left_on='date', right_on=f'date_{inf_tf}', how='left')
|
||||
# FFill to have the 1d value available in every row throughout the day.
|
||||
# Without this, comparisons would only work once per day.
|
||||
dataframe = dataframe.ffill()
|
||||
# Calculate rsi of the original dataframe (5m timeframe)
|
||||
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
|
||||
|
||||
# Do other stuff
|
||||
# ...
|
||||
|
||||
return dataframe
|
||||
|
||||
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
|
||||
dataframe.loc[
|
||||
(
|
||||
(qtpylib.crossed_above(dataframe['rsi'], 30)) & # Signal: RSI crosses above 30
|
||||
(dataframe['rsi_1d'] < 30) & # Ensure daily RSI is < 30
|
||||
(dataframe['volume'] > 0) # Ensure this candle had volume (important for backtesting)
|
||||
),
|
||||
'buy'] = 1
|
||||
|
||||
```
|
||||
|
||||
#### *get_pair_dataframe(pair, timeframe)*
|
||||
|
||||
``` python
|
||||
# fetch live / historical candle (OHLCV) data for the first informative pair
|
||||
if self.dp:
|
||||
inf_pair, inf_timeframe = self.informative_pairs()[0]
|
||||
informative = self.dp.get_pair_dataframe(pair=inf_pair,
|
||||
timeframe=inf_timeframe)
|
||||
```
|
||||
|
||||
!!! Warning "Warning about backtesting"
|
||||
Be careful when using dataprovider in backtesting. `historic_ohlcv()` (and `get_pair_dataframe()`
|
||||
for the backtesting runmode) provides the full time-range in one go,
|
||||
so please be aware of it and make sure to not "look into the future" to avoid surprises when running in dry/live mode).
|
||||
|
||||
!!! Warning "Warning in hyperopt"
|
||||
This option cannot currently be used during hyperopt.
|
||||
|
||||
#### *get_analyzed_dataframe(pair, timeframe)*
|
||||
|
||||
This method is used by freqtrade internally to determine the last signal.
|
||||
It can also be used in specific callbacks to get the signal that caused the action (see [Advanced Strategy Documentation](strategy-advanced.md) for more details on available callbacks).
|
||||
|
||||
``` python
|
||||
# fetch current dataframe
|
||||
if self.dp:
|
||||
dataframe, last_updated = self.dp.get_analyzed_dataframe(pair=metadata['pair'],
|
||||
timeframe=self.ticker_interval)
|
||||
```
|
||||
|
||||
!!! Note "No data available"
|
||||
Returns an empty dataframe if the requested pair was not cached.
|
||||
This should not happen when using whitelisted pairs.
|
||||
|
||||
!!! Warning "Warning in hyperopt"
|
||||
This option cannot currently be used during hyperopt.
|
||||
|
||||
#### *orderbook(pair, maximum)*
|
||||
|
||||
``` python
|
||||
if self.dp:
|
||||
if self.dp.runmode.value in ('live', 'dry_run'):
|
||||
ob = self.dp.orderbook(metadata['pair'], 1)
|
||||
dataframe['best_bid'] = ob['bids'][0][0]
|
||||
dataframe['best_ask'] = ob['asks'][0][0]
|
||||
```
|
||||
|
||||
!!! Warning
|
||||
The order book is not part of the historic data which means backtesting and hyperopt will not work if this
|
||||
method is used.
|
||||
|
||||
#### *ticker(pair)*
|
||||
|
||||
``` python
|
||||
if self.dp:
|
||||
if self.dp.runmode.value in ('live', 'dry_run'):
|
||||
ticker = self.dp.ticker(metadata['pair'])
|
||||
dataframe['last_price'] = ticker['last']
|
||||
dataframe['volume24h'] = ticker['quoteVolume']
|
||||
dataframe['vwap'] = ticker['vwap']
|
||||
```
|
||||
|
||||
!!! Warning
|
||||
Although the ticker data structure is a part of the ccxt Unified Interface, the values returned by this method can
|
||||
vary for different exchanges. For instance, many exchanges do not return `vwap` values, the FTX exchange
|
||||
does not always fills in the `last` field (so it can be None), etc. So you need to carefully verify the ticker
|
||||
data returned from the exchange and add appropriate error handling / defaults.
|
||||
|
||||
***
|
||||
|
||||
### Additional data (Wallets)
|
||||
|
||||
The strategy provides access to the `Wallets` object. This contains the current balances on the exchange.
|
||||
@ -427,6 +547,8 @@ if self.wallets:
|
||||
- `get_used(asset)` - currently tied up balance (open orders)
|
||||
- `get_total(asset)` - total available balance - sum of the 2 above
|
||||
|
||||
***
|
||||
|
||||
### Additional data (Trades)
|
||||
|
||||
A history of Trades can be retrieved in the strategy by querying the database.
|
||||
@ -491,7 +613,7 @@ Locks can also be lifted manually, by calling `self.unlock_pair(pair)`.
|
||||
To verify if a pair is currently locked, use `self.is_pair_locked(pair)`.
|
||||
|
||||
!!! Note
|
||||
Locked pairs are not persisted, so a restart of the bot, or calling `/reload_conf` will reset locked pairs.
|
||||
Locked pairs are not persisted, so a restart of the bot, or calling `/reload_config` will reset locked pairs.
|
||||
|
||||
!!! Warning
|
||||
Locking pairs is not functioning during backtesting.
|
||||
|
@ -18,7 +18,7 @@ config = Configuration.from_files([])
|
||||
# config = Configuration.from_files(["config.json"])
|
||||
|
||||
# Define some constants
|
||||
config["ticker_interval"] = "5m"
|
||||
config["timeframe"] = "5m"
|
||||
# Name of the strategy class
|
||||
config["strategy"] = "SampleStrategy"
|
||||
# Location of the data
|
||||
@ -33,7 +33,7 @@ pair = "BTC_USDT"
|
||||
from freqtrade.data.history import load_pair_history
|
||||
|
||||
candles = load_pair_history(datadir=data_location,
|
||||
timeframe=config["ticker_interval"],
|
||||
timeframe=config["timeframe"],
|
||||
pair=pair)
|
||||
|
||||
# Confirm success
|
||||
|
@ -47,28 +47,30 @@ Per default, the Telegram bot shows predefined commands. Some commands
|
||||
are only available by sending them to the bot. The table below list the
|
||||
official commands. You can ask at any moment for help with `/help`.
|
||||
|
||||
| Command | Default | Description |
|
||||
|----------|---------|-------------|
|
||||
| `/start` | | Starts the trader
|
||||
| `/stop` | | Stops the trader
|
||||
| `/stopbuy` | | Stops the trader from opening new trades. Gracefully closes open trades according to their rules.
|
||||
| `/reload_conf` | | Reloads the configuration file
|
||||
| `/show_config` | | Shows part of the current configuration with relevant settings to operation
|
||||
| `/status` | | Lists all open trades
|
||||
| `/status table` | | List all open trades in a table format. Pending buy orders are marked with an asterisk (*) Pending sell orders are marked with a double asterisk (**)
|
||||
| `/count` | | Displays number of trades used and available
|
||||
| `/profit` | | Display a summary of your profit/loss from close trades and some stats about your performance
|
||||
| `/forcesell <trade_id>` | | Instantly sells the given trade (Ignoring `minimum_roi`).
|
||||
| `/forcesell all` | | Instantly sells all open trades (Ignoring `minimum_roi`).
|
||||
| `/forcebuy <pair> [rate]` | | Instantly buys the given pair. Rate is optional. (`forcebuy_enable` must be set to True)
|
||||
| `/performance` | | Show performance of each finished trade grouped by pair
|
||||
| `/balance` | | Show account balance per currency
|
||||
| `/daily <n>` | 7 | Shows profit or loss per day, over the last n days
|
||||
| `/whitelist` | | Show the current whitelist
|
||||
| `/blacklist [pair]` | | Show the current blacklist, or adds a pair to the blacklist.
|
||||
| `/edge` | | Show validated pairs by Edge if it is enabled.
|
||||
| `/help` | | Show help message
|
||||
| `/version` | | Show version
|
||||
| Command | Description |
|
||||
|----------|-------------|
|
||||
| `/start` | Starts the trader
|
||||
| `/stop` | Stops the trader
|
||||
| `/stopbuy` | Stops the trader from opening new trades. Gracefully closes open trades according to their rules.
|
||||
| `/reload_config` | Reloads the configuration file
|
||||
| `/show_config` | Shows part of the current configuration with relevant settings to operation
|
||||
| `/status` | Lists all open trades
|
||||
| `/status table` | List all open trades in a table format. Pending buy orders are marked with an asterisk (*) Pending sell orders are marked with a double asterisk (**)
|
||||
| `/trades [limit]` | List all recently closed trades in a table format.
|
||||
| `/delete <trade_id>` | Delete a specific trade from the Database. Tries to close open orders. Requires manual handling of this trade on the exchange.
|
||||
| `/count` | Displays number of trades used and available
|
||||
| `/profit` | Display a summary of your profit/loss from close trades and some stats about your performance
|
||||
| `/forcesell <trade_id>` | Instantly sells the given trade (Ignoring `minimum_roi`).
|
||||
| `/forcesell all` | Instantly sells all open trades (Ignoring `minimum_roi`).
|
||||
| `/forcebuy <pair> [rate]` | Instantly buys the given pair. Rate is optional. (`forcebuy_enable` must be set to True)
|
||||
| `/performance` | Show performance of each finished trade grouped by pair
|
||||
| `/balance` | Show account balance per currency
|
||||
| `/daily <n>` | Shows profit or loss per day, over the last n days (n defaults to 7)
|
||||
| `/whitelist` | Show the current whitelist
|
||||
| `/blacklist [pair]` | Show the current blacklist, or adds a pair to the blacklist.
|
||||
| `/edge` | Show validated pairs by Edge if it is enabled.
|
||||
| `/help` | Show help message
|
||||
| `/version` | Show version
|
||||
|
||||
## Telegram commands in action
|
||||
|
||||
@ -85,14 +87,14 @@ Below, example of Telegram message you will receive for each command.
|
||||
|
||||
### /stopbuy
|
||||
|
||||
> **status:** `Setting max_open_trades to 0. Run /reload_conf to reset.`
|
||||
> **status:** `Setting max_open_trades to 0. Run /reload_config to reset.`
|
||||
|
||||
Prevents the bot from opening new trades by temporarily setting "max_open_trades" to 0. Open trades will be handled via their regular rules (ROI / Sell-signal, stoploss, ...).
|
||||
|
||||
After this, give the bot time to close off open trades (can be checked via `/status table`).
|
||||
Once all positions are sold, run `/stop` to completely stop the bot.
|
||||
|
||||
`/reload_conf` resets "max_open_trades" to the value set in the configuration and resets this command.
|
||||
`/reload_config` resets "max_open_trades" to the value set in the configuration and resets this command.
|
||||
|
||||
!!! Warning
|
||||
The stop-buy signal is ONLY active while the bot is running, and is not persisted anyway, so restarting the bot will cause this to reset.
|
||||
@ -113,6 +115,7 @@ For each open trade, the bot will send you the following message.
|
||||
### /status table
|
||||
|
||||
Return the status of all open trades in a table format.
|
||||
|
||||
```
|
||||
ID Pair Since Profit
|
||||
---- -------- ------- --------
|
||||
@ -123,6 +126,7 @@ Return the status of all open trades in a table format.
|
||||
### /count
|
||||
|
||||
Return the number of trades used and available.
|
||||
|
||||
```
|
||||
current max
|
||||
--------- -----
|
||||
@ -208,15 +212,15 @@ Shows the current whitelist
|
||||
|
||||
Shows the current blacklist.
|
||||
If Pair is set, then this pair will be added to the pairlist.
|
||||
Also supports multiple pairs, seperated by a space.
|
||||
Use `/reload_conf` to reset the blacklist.
|
||||
Also supports multiple pairs, separated by a space.
|
||||
Use `/reload_config` to reset the blacklist.
|
||||
|
||||
> Using blacklist `StaticPairList` with 2 pairs
|
||||
>`DODGE/BTC`, `HOT/BTC`.
|
||||
|
||||
### /edge
|
||||
|
||||
Shows pairs validated by Edge along with their corresponding winrate, expectancy and stoploss values.
|
||||
Shows pairs validated by Edge along with their corresponding win-rate, expectancy and stoploss values.
|
||||
|
||||
> **Edge only validated following pairs:**
|
||||
```
|
||||
|
@ -62,7 +62,7 @@ $ freqtrade new-config --config config_binance.json
|
||||
? Please insert your stake currency: BTC
|
||||
? Please insert your stake amount: 0.05
|
||||
? Please insert max_open_trades (Integer or 'unlimited'): 3
|
||||
? Please insert your timeframe (ticker interval): 5m
|
||||
? Please insert your desired timeframe (e.g. 5m): 5m
|
||||
? Please insert your display Currency (for reporting): USD
|
||||
? Select exchange binance
|
||||
? Do you want to enable Telegram? No
|
||||
@ -77,7 +77,7 @@ Results will be located in `user_data/strategies/<strategyclassname>.py`.
|
||||
|
||||
``` output
|
||||
usage: freqtrade new-strategy [-h] [--userdir PATH] [-s NAME]
|
||||
[--template {full,minimal}]
|
||||
[--template {full,minimal,advanced}]
|
||||
|
||||
optional arguments:
|
||||
-h, --help show this help message and exit
|
||||
@ -86,10 +86,10 @@ optional arguments:
|
||||
-s NAME, --strategy NAME
|
||||
Specify strategy class name which will be used by the
|
||||
bot.
|
||||
--template {full,minimal}
|
||||
Use a template which is either `minimal` or `full`
|
||||
(containing multiple sample indicators). Default:
|
||||
`full`.
|
||||
--template {full,minimal,advanced}
|
||||
Use a template which is either `minimal`, `full`
|
||||
(containing multiple sample indicators) or `advanced`.
|
||||
Default: `full`.
|
||||
|
||||
```
|
||||
|
||||
@ -105,6 +105,12 @@ With custom user directory
|
||||
freqtrade new-strategy --userdir ~/.freqtrade/ --strategy AwesomeStrategy
|
||||
```
|
||||
|
||||
Using the advanced template (populates all optional functions and methods)
|
||||
|
||||
```bash
|
||||
freqtrade new-strategy --strategy AwesomeStrategy --template advanced
|
||||
```
|
||||
|
||||
## Create new hyperopt
|
||||
|
||||
Creates a new hyperopt from a template similar to SampleHyperopt.
|
||||
@ -114,7 +120,7 @@ Results will be located in `user_data/hyperopts/<classname>.py`.
|
||||
|
||||
``` output
|
||||
usage: freqtrade new-hyperopt [-h] [--userdir PATH] [--hyperopt NAME]
|
||||
[--template {full,minimal}]
|
||||
[--template {full,minimal,advanced}]
|
||||
|
||||
optional arguments:
|
||||
-h, --help show this help message and exit
|
||||
@ -122,10 +128,10 @@ optional arguments:
|
||||
Path to userdata directory.
|
||||
--hyperopt NAME Specify hyperopt class name which will be used by the
|
||||
bot.
|
||||
--template {full,minimal}
|
||||
Use a template which is either `minimal` or `full`
|
||||
(containing multiple sample indicators). Default:
|
||||
`full`.
|
||||
--template {full,minimal,advanced}
|
||||
Use a template which is either `minimal`, `full`
|
||||
(containing multiple sample indicators) or `advanced`.
|
||||
Default: `full`.
|
||||
```
|
||||
|
||||
### Sample usage of new-hyperopt
|
||||
@ -519,3 +525,48 @@ Prints JSON data with details for the last best epoch (i.e., the best of all epo
|
||||
```
|
||||
freqtrade hyperopt-show --best -n -1 --print-json --no-header
|
||||
```
|
||||
|
||||
## Show trades
|
||||
|
||||
Print selected (or all) trades from database to screen.
|
||||
|
||||
```
|
||||
usage: freqtrade show-trades [-h] [-v] [--logfile FILE] [-V] [-c PATH]
|
||||
[-d PATH] [--userdir PATH] [--db-url PATH]
|
||||
[--trade-ids TRADE_IDS [TRADE_IDS ...]]
|
||||
[--print-json]
|
||||
|
||||
optional arguments:
|
||||
-h, --help show this help message and exit
|
||||
--db-url PATH Override trades database URL, this is useful in custom
|
||||
deployments (default: `sqlite:///tradesv3.sqlite` for
|
||||
Live Run mode, `sqlite:///tradesv3.dryrun.sqlite` for
|
||||
Dry Run).
|
||||
--trade-ids TRADE_IDS [TRADE_IDS ...]
|
||||
Specify the list of trade ids.
|
||||
--print-json Print output in JSON format.
|
||||
|
||||
Common arguments:
|
||||
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
|
||||
--logfile FILE Log to the file specified. Special values are:
|
||||
'syslog', 'journald'. See the documentation for more
|
||||
details.
|
||||
-V, --version show program's version number and exit
|
||||
-c PATH, --config PATH
|
||||
Specify configuration file (default:
|
||||
`userdir/config.json` or `config.json` whichever
|
||||
exists). Multiple --config options may be used. Can be
|
||||
set to `-` to read config from stdin.
|
||||
-d PATH, --datadir PATH
|
||||
Path to directory with historical backtesting data.
|
||||
--userdir PATH, --user-data-dir PATH
|
||||
Path to userdata directory.
|
||||
```
|
||||
|
||||
### Examples
|
||||
|
||||
Print trades with id 2 and 3 as json
|
||||
|
||||
``` bash
|
||||
freqtrade show-trades --db-url sqlite:///tradesv3.sqlite --trade-ids 2 3 --print-json
|
||||
```
|
||||
|
@ -47,6 +47,7 @@ Different payloads can be configured for different events. Not all fields are ne
|
||||
The fields in `webhook.webhookbuy` are filled when the bot executes a buy. Parameters are filled using string.format.
|
||||
Possible parameters are:
|
||||
|
||||
* `trade_id`
|
||||
* `exchange`
|
||||
* `pair`
|
||||
* `limit`
|
||||
@ -63,6 +64,7 @@ Possible parameters are:
|
||||
The fields in `webhook.webhookbuycancel` are filled when the bot cancels a buy order. Parameters are filled using string.format.
|
||||
Possible parameters are:
|
||||
|
||||
* `trade_id`
|
||||
* `exchange`
|
||||
* `pair`
|
||||
* `limit`
|
||||
@ -79,6 +81,7 @@ Possible parameters are:
|
||||
The fields in `webhook.webhooksell` are filled when the bot sells a trade. Parameters are filled using string.format.
|
||||
Possible parameters are:
|
||||
|
||||
* `trade_id`
|
||||
* `exchange`
|
||||
* `pair`
|
||||
* `gain`
|
||||
@ -100,6 +103,7 @@ Possible parameters are:
|
||||
The fields in `webhook.webhooksellcancel` are filled when the bot cancels a sell order. Parameters are filled using string.format.
|
||||
Possible parameters are:
|
||||
|
||||
* `trade_id`
|
||||
* `exchange`
|
||||
* `pair`
|
||||
* `gain`
|
||||
|
@ -24,4 +24,11 @@ if __version__ == 'develop':
|
||||
# stderr=subprocess.DEVNULL).decode("utf-8").rstrip().strip('"')
|
||||
except Exception:
|
||||
# git not available, ignore
|
||||
try:
|
||||
# Try Fallback to freqtrade_commit file (created by CI while building docker image)
|
||||
from pathlib import Path
|
||||
versionfile = Path('./freqtrade_commit')
|
||||
if versionfile.is_file():
|
||||
__version__ = f"docker-{versionfile.read_text()[:8]}"
|
||||
except Exception:
|
||||
pass
|
||||
|
@ -9,7 +9,8 @@ Note: Be careful with file-scoped imports in these subfiles.
|
||||
from freqtrade.commands.arguments import Arguments
|
||||
from freqtrade.commands.build_config_commands import start_new_config
|
||||
from freqtrade.commands.data_commands import (start_convert_data,
|
||||
start_download_data)
|
||||
start_download_data,
|
||||
start_list_data)
|
||||
from freqtrade.commands.deploy_commands import (start_create_userdir,
|
||||
start_new_hyperopt,
|
||||
start_new_strategy)
|
||||
@ -19,7 +20,8 @@ from freqtrade.commands.list_commands import (start_list_exchanges,
|
||||
start_list_hyperopts,
|
||||
start_list_markets,
|
||||
start_list_strategies,
|
||||
start_list_timeframes)
|
||||
start_list_timeframes,
|
||||
start_show_trades)
|
||||
from freqtrade.commands.optimize_commands import (start_backtesting,
|
||||
start_edge, start_hyperopt)
|
||||
from freqtrade.commands.pairlist_commands import start_test_pairlist
|
||||
|
@ -15,7 +15,7 @@ ARGS_STRATEGY = ["strategy", "strategy_path"]
|
||||
|
||||
ARGS_TRADE = ["db_url", "sd_notify", "dry_run"]
|
||||
|
||||
ARGS_COMMON_OPTIMIZE = ["ticker_interval", "timerange",
|
||||
ARGS_COMMON_OPTIMIZE = ["timeframe", "timerange",
|
||||
"max_open_trades", "stake_amount", "fee"]
|
||||
|
||||
ARGS_BACKTEST = ARGS_COMMON_OPTIMIZE + ["position_stacking", "use_max_market_positions",
|
||||
@ -54,15 +54,19 @@ ARGS_BUILD_HYPEROPT = ["user_data_dir", "hyperopt", "template"]
|
||||
ARGS_CONVERT_DATA = ["pairs", "format_from", "format_to", "erase"]
|
||||
ARGS_CONVERT_DATA_OHLCV = ARGS_CONVERT_DATA + ["timeframes"]
|
||||
|
||||
ARGS_LIST_DATA = ["exchange", "dataformat_ohlcv", "pairs"]
|
||||
|
||||
ARGS_DOWNLOAD_DATA = ["pairs", "pairs_file", "days", "download_trades", "exchange",
|
||||
"timeframes", "erase", "dataformat_ohlcv", "dataformat_trades"]
|
||||
|
||||
ARGS_PLOT_DATAFRAME = ["pairs", "indicators1", "indicators2", "plot_limit",
|
||||
"db_url", "trade_source", "export", "exportfilename",
|
||||
"timerange", "ticker_interval", "no_trades"]
|
||||
"timerange", "timeframe", "no_trades"]
|
||||
|
||||
ARGS_PLOT_PROFIT = ["pairs", "timerange", "export", "exportfilename", "db_url",
|
||||
"trade_source", "ticker_interval"]
|
||||
"trade_source", "timeframe"]
|
||||
|
||||
ARGS_SHOW_TRADES = ["db_url", "trade_ids", "print_json"]
|
||||
|
||||
ARGS_HYPEROPT_LIST = ["hyperopt_list_best", "hyperopt_list_profitable",
|
||||
"hyperopt_list_min_trades", "hyperopt_list_max_trades",
|
||||
@ -77,9 +81,9 @@ ARGS_HYPEROPT_SHOW = ["hyperopt_list_best", "hyperopt_list_profitable", "hyperop
|
||||
"print_json", "hyperopt_show_no_header"]
|
||||
|
||||
NO_CONF_REQURIED = ["convert-data", "convert-trade-data", "download-data", "list-timeframes",
|
||||
"list-markets", "list-pairs", "list-strategies",
|
||||
"list-markets", "list-pairs", "list-strategies", "list-data",
|
||||
"list-hyperopts", "hyperopt-list", "hyperopt-show",
|
||||
"plot-dataframe", "plot-profit"]
|
||||
"plot-dataframe", "plot-profit", "show-trades"]
|
||||
|
||||
NO_CONF_ALLOWED = ["create-userdir", "list-exchanges", "new-hyperopt", "new-strategy"]
|
||||
|
||||
@ -158,13 +162,13 @@ class Arguments:
|
||||
self._build_args(optionlist=['version'], parser=self.parser)
|
||||
|
||||
from freqtrade.commands import (start_create_userdir, start_convert_data,
|
||||
start_download_data,
|
||||
start_download_data, start_list_data,
|
||||
start_hyperopt_list, start_hyperopt_show,
|
||||
start_list_exchanges, start_list_hyperopts,
|
||||
start_list_markets, start_list_strategies,
|
||||
start_list_timeframes, start_new_config,
|
||||
start_new_hyperopt, start_new_strategy,
|
||||
start_plot_dataframe, start_plot_profit,
|
||||
start_plot_dataframe, start_plot_profit, start_show_trades,
|
||||
start_backtesting, start_hyperopt, start_edge,
|
||||
start_test_pairlist, start_trading)
|
||||
|
||||
@ -180,25 +184,6 @@ class Arguments:
|
||||
trade_cmd.set_defaults(func=start_trading)
|
||||
self._build_args(optionlist=ARGS_TRADE, parser=trade_cmd)
|
||||
|
||||
# Add backtesting subcommand
|
||||
backtesting_cmd = subparsers.add_parser('backtesting', help='Backtesting module.',
|
||||
parents=[_common_parser, _strategy_parser])
|
||||
backtesting_cmd.set_defaults(func=start_backtesting)
|
||||
self._build_args(optionlist=ARGS_BACKTEST, parser=backtesting_cmd)
|
||||
|
||||
# Add edge subcommand
|
||||
edge_cmd = subparsers.add_parser('edge', help='Edge module.',
|
||||
parents=[_common_parser, _strategy_parser])
|
||||
edge_cmd.set_defaults(func=start_edge)
|
||||
self._build_args(optionlist=ARGS_EDGE, parser=edge_cmd)
|
||||
|
||||
# Add hyperopt subcommand
|
||||
hyperopt_cmd = subparsers.add_parser('hyperopt', help='Hyperopt module.',
|
||||
parents=[_common_parser, _strategy_parser],
|
||||
)
|
||||
hyperopt_cmd.set_defaults(func=start_hyperopt)
|
||||
self._build_args(optionlist=ARGS_HYPEROPT, parser=hyperopt_cmd)
|
||||
|
||||
# add create-userdir subcommand
|
||||
create_userdir_cmd = subparsers.add_parser('create-userdir',
|
||||
help="Create user-data directory.",
|
||||
@ -212,79 +197,17 @@ class Arguments:
|
||||
build_config_cmd.set_defaults(func=start_new_config)
|
||||
self._build_args(optionlist=ARGS_BUILD_CONFIG, parser=build_config_cmd)
|
||||
|
||||
# add new-strategy subcommand
|
||||
build_strategy_cmd = subparsers.add_parser('new-strategy',
|
||||
help="Create new strategy")
|
||||
build_strategy_cmd.set_defaults(func=start_new_strategy)
|
||||
self._build_args(optionlist=ARGS_BUILD_STRATEGY, parser=build_strategy_cmd)
|
||||
|
||||
# add new-hyperopt subcommand
|
||||
build_hyperopt_cmd = subparsers.add_parser('new-hyperopt',
|
||||
help="Create new hyperopt")
|
||||
build_hyperopt_cmd.set_defaults(func=start_new_hyperopt)
|
||||
self._build_args(optionlist=ARGS_BUILD_HYPEROPT, parser=build_hyperopt_cmd)
|
||||
|
||||
# Add list-strategies subcommand
|
||||
list_strategies_cmd = subparsers.add_parser(
|
||||
'list-strategies',
|
||||
help='Print available strategies.',
|
||||
parents=[_common_parser],
|
||||
)
|
||||
list_strategies_cmd.set_defaults(func=start_list_strategies)
|
||||
self._build_args(optionlist=ARGS_LIST_STRATEGIES, parser=list_strategies_cmd)
|
||||
|
||||
# Add list-hyperopts subcommand
|
||||
list_hyperopts_cmd = subparsers.add_parser(
|
||||
'list-hyperopts',
|
||||
help='Print available hyperopt classes.',
|
||||
parents=[_common_parser],
|
||||
)
|
||||
list_hyperopts_cmd.set_defaults(func=start_list_hyperopts)
|
||||
self._build_args(optionlist=ARGS_LIST_HYPEROPTS, parser=list_hyperopts_cmd)
|
||||
|
||||
# Add list-exchanges subcommand
|
||||
list_exchanges_cmd = subparsers.add_parser(
|
||||
'list-exchanges',
|
||||
help='Print available exchanges.',
|
||||
parents=[_common_parser],
|
||||
)
|
||||
list_exchanges_cmd.set_defaults(func=start_list_exchanges)
|
||||
self._build_args(optionlist=ARGS_LIST_EXCHANGES, parser=list_exchanges_cmd)
|
||||
|
||||
# Add list-timeframes subcommand
|
||||
list_timeframes_cmd = subparsers.add_parser(
|
||||
'list-timeframes',
|
||||
help='Print available ticker intervals (timeframes) for the exchange.',
|
||||
parents=[_common_parser],
|
||||
)
|
||||
list_timeframes_cmd.set_defaults(func=start_list_timeframes)
|
||||
self._build_args(optionlist=ARGS_LIST_TIMEFRAMES, parser=list_timeframes_cmd)
|
||||
|
||||
# Add list-markets subcommand
|
||||
list_markets_cmd = subparsers.add_parser(
|
||||
'list-markets',
|
||||
help='Print markets on exchange.',
|
||||
parents=[_common_parser],
|
||||
)
|
||||
list_markets_cmd.set_defaults(func=partial(start_list_markets, pairs_only=False))
|
||||
self._build_args(optionlist=ARGS_LIST_PAIRS, parser=list_markets_cmd)
|
||||
|
||||
# Add list-pairs subcommand
|
||||
list_pairs_cmd = subparsers.add_parser(
|
||||
'list-pairs',
|
||||
help='Print pairs on exchange.',
|
||||
parents=[_common_parser],
|
||||
)
|
||||
list_pairs_cmd.set_defaults(func=partial(start_list_markets, pairs_only=True))
|
||||
self._build_args(optionlist=ARGS_LIST_PAIRS, parser=list_pairs_cmd)
|
||||
|
||||
# Add test-pairlist subcommand
|
||||
test_pairlist_cmd = subparsers.add_parser(
|
||||
'test-pairlist',
|
||||
help='Test your pairlist configuration.',
|
||||
)
|
||||
test_pairlist_cmd.set_defaults(func=start_test_pairlist)
|
||||
self._build_args(optionlist=ARGS_TEST_PAIRLIST, parser=test_pairlist_cmd)
|
||||
# add new-strategy subcommand
|
||||
build_strategy_cmd = subparsers.add_parser('new-strategy',
|
||||
help="Create new strategy")
|
||||
build_strategy_cmd.set_defaults(func=start_new_strategy)
|
||||
self._build_args(optionlist=ARGS_BUILD_STRATEGY, parser=build_strategy_cmd)
|
||||
|
||||
# Add download-data subcommand
|
||||
download_data_cmd = subparsers.add_parser(
|
||||
@ -313,23 +236,33 @@ class Arguments:
|
||||
convert_trade_data_cmd.set_defaults(func=partial(start_convert_data, ohlcv=False))
|
||||
self._build_args(optionlist=ARGS_CONVERT_DATA, parser=convert_trade_data_cmd)
|
||||
|
||||
# Add Plotting subcommand
|
||||
plot_dataframe_cmd = subparsers.add_parser(
|
||||
'plot-dataframe',
|
||||
help='Plot candles with indicators.',
|
||||
parents=[_common_parser, _strategy_parser],
|
||||
)
|
||||
plot_dataframe_cmd.set_defaults(func=start_plot_dataframe)
|
||||
self._build_args(optionlist=ARGS_PLOT_DATAFRAME, parser=plot_dataframe_cmd)
|
||||
|
||||
# Plot profit
|
||||
plot_profit_cmd = subparsers.add_parser(
|
||||
'plot-profit',
|
||||
help='Generate plot showing profits.',
|
||||
# Add list-data subcommand
|
||||
list_data_cmd = subparsers.add_parser(
|
||||
'list-data',
|
||||
help='List downloaded data.',
|
||||
parents=[_common_parser],
|
||||
)
|
||||
plot_profit_cmd.set_defaults(func=start_plot_profit)
|
||||
self._build_args(optionlist=ARGS_PLOT_PROFIT, parser=plot_profit_cmd)
|
||||
list_data_cmd.set_defaults(func=start_list_data)
|
||||
self._build_args(optionlist=ARGS_LIST_DATA, parser=list_data_cmd)
|
||||
|
||||
# Add backtesting subcommand
|
||||
backtesting_cmd = subparsers.add_parser('backtesting', help='Backtesting module.',
|
||||
parents=[_common_parser, _strategy_parser])
|
||||
backtesting_cmd.set_defaults(func=start_backtesting)
|
||||
self._build_args(optionlist=ARGS_BACKTEST, parser=backtesting_cmd)
|
||||
|
||||
# Add edge subcommand
|
||||
edge_cmd = subparsers.add_parser('edge', help='Edge module.',
|
||||
parents=[_common_parser, _strategy_parser])
|
||||
edge_cmd.set_defaults(func=start_edge)
|
||||
self._build_args(optionlist=ARGS_EDGE, parser=edge_cmd)
|
||||
|
||||
# Add hyperopt subcommand
|
||||
hyperopt_cmd = subparsers.add_parser('hyperopt', help='Hyperopt module.',
|
||||
parents=[_common_parser, _strategy_parser],
|
||||
)
|
||||
hyperopt_cmd.set_defaults(func=start_hyperopt)
|
||||
self._build_args(optionlist=ARGS_HYPEROPT, parser=hyperopt_cmd)
|
||||
|
||||
# Add hyperopt-list subcommand
|
||||
hyperopt_list_cmd = subparsers.add_parser(
|
||||
@ -348,3 +281,92 @@ class Arguments:
|
||||
)
|
||||
hyperopt_show_cmd.set_defaults(func=start_hyperopt_show)
|
||||
self._build_args(optionlist=ARGS_HYPEROPT_SHOW, parser=hyperopt_show_cmd)
|
||||
|
||||
# Add list-exchanges subcommand
|
||||
list_exchanges_cmd = subparsers.add_parser(
|
||||
'list-exchanges',
|
||||
help='Print available exchanges.',
|
||||
parents=[_common_parser],
|
||||
)
|
||||
list_exchanges_cmd.set_defaults(func=start_list_exchanges)
|
||||
self._build_args(optionlist=ARGS_LIST_EXCHANGES, parser=list_exchanges_cmd)
|
||||
|
||||
# Add list-hyperopts subcommand
|
||||
list_hyperopts_cmd = subparsers.add_parser(
|
||||
'list-hyperopts',
|
||||
help='Print available hyperopt classes.',
|
||||
parents=[_common_parser],
|
||||
)
|
||||
list_hyperopts_cmd.set_defaults(func=start_list_hyperopts)
|
||||
self._build_args(optionlist=ARGS_LIST_HYPEROPTS, parser=list_hyperopts_cmd)
|
||||
|
||||
# Add list-markets subcommand
|
||||
list_markets_cmd = subparsers.add_parser(
|
||||
'list-markets',
|
||||
help='Print markets on exchange.',
|
||||
parents=[_common_parser],
|
||||
)
|
||||
list_markets_cmd.set_defaults(func=partial(start_list_markets, pairs_only=False))
|
||||
self._build_args(optionlist=ARGS_LIST_PAIRS, parser=list_markets_cmd)
|
||||
|
||||
# Add list-pairs subcommand
|
||||
list_pairs_cmd = subparsers.add_parser(
|
||||
'list-pairs',
|
||||
help='Print pairs on exchange.',
|
||||
parents=[_common_parser],
|
||||
)
|
||||
list_pairs_cmd.set_defaults(func=partial(start_list_markets, pairs_only=True))
|
||||
self._build_args(optionlist=ARGS_LIST_PAIRS, parser=list_pairs_cmd)
|
||||
|
||||
# Add list-strategies subcommand
|
||||
list_strategies_cmd = subparsers.add_parser(
|
||||
'list-strategies',
|
||||
help='Print available strategies.',
|
||||
parents=[_common_parser],
|
||||
)
|
||||
list_strategies_cmd.set_defaults(func=start_list_strategies)
|
||||
self._build_args(optionlist=ARGS_LIST_STRATEGIES, parser=list_strategies_cmd)
|
||||
|
||||
# Add list-timeframes subcommand
|
||||
list_timeframes_cmd = subparsers.add_parser(
|
||||
'list-timeframes',
|
||||
help='Print available timeframes for the exchange.',
|
||||
parents=[_common_parser],
|
||||
)
|
||||
list_timeframes_cmd.set_defaults(func=start_list_timeframes)
|
||||
self._build_args(optionlist=ARGS_LIST_TIMEFRAMES, parser=list_timeframes_cmd)
|
||||
|
||||
# Add show-trades subcommand
|
||||
show_trades = subparsers.add_parser(
|
||||
'show-trades',
|
||||
help='Show trades.',
|
||||
parents=[_common_parser],
|
||||
)
|
||||
show_trades.set_defaults(func=start_show_trades)
|
||||
self._build_args(optionlist=ARGS_SHOW_TRADES, parser=show_trades)
|
||||
|
||||
# Add test-pairlist subcommand
|
||||
test_pairlist_cmd = subparsers.add_parser(
|
||||
'test-pairlist',
|
||||
help='Test your pairlist configuration.',
|
||||
)
|
||||
test_pairlist_cmd.set_defaults(func=start_test_pairlist)
|
||||
self._build_args(optionlist=ARGS_TEST_PAIRLIST, parser=test_pairlist_cmd)
|
||||
|
||||
# Add Plotting subcommand
|
||||
plot_dataframe_cmd = subparsers.add_parser(
|
||||
'plot-dataframe',
|
||||
help='Plot candles with indicators.',
|
||||
parents=[_common_parser, _strategy_parser],
|
||||
)
|
||||
plot_dataframe_cmd.set_defaults(func=start_plot_dataframe)
|
||||
self._build_args(optionlist=ARGS_PLOT_DATAFRAME, parser=plot_dataframe_cmd)
|
||||
|
||||
# Plot profit
|
||||
plot_profit_cmd = subparsers.add_parser(
|
||||
'plot-profit',
|
||||
help='Generate plot showing profits.',
|
||||
parents=[_common_parser],
|
||||
)
|
||||
plot_profit_cmd.set_defaults(func=start_plot_profit)
|
||||
self._build_args(optionlist=ARGS_PLOT_PROFIT, parser=plot_profit_cmd)
|
||||
|
@ -75,8 +75,8 @@ def ask_user_config() -> Dict[str, Any]:
|
||||
},
|
||||
{
|
||||
"type": "text",
|
||||
"name": "ticker_interval",
|
||||
"message": "Please insert your timeframe (ticker interval):",
|
||||
"name": "timeframe",
|
||||
"message": "Please insert your desired timeframe (e.g. 5m):",
|
||||
"default": "5m",
|
||||
},
|
||||
{
|
||||
@ -163,7 +163,7 @@ def deploy_new_config(config_path: Path, selections: Dict[str, Any]) -> None:
|
||||
)
|
||||
except TemplateNotFound:
|
||||
selections['exchange'] = render_template(
|
||||
templatefile=f"subtemplates/exchange_generic.j2",
|
||||
templatefile="subtemplates/exchange_generic.j2",
|
||||
arguments=selections
|
||||
)
|
||||
|
||||
|
@ -110,8 +110,8 @@ AVAILABLE_CLI_OPTIONS = {
|
||||
action='store_true',
|
||||
),
|
||||
# Optimize common
|
||||
"ticker_interval": Arg(
|
||||
'-i', '--ticker-interval',
|
||||
"timeframe": Arg(
|
||||
'-i', '--timeframe', '--ticker-interval',
|
||||
help='Specify ticker interval (`1m`, `5m`, `30m`, `1h`, `1d`).',
|
||||
),
|
||||
"timerange": Arg(
|
||||
@ -217,7 +217,7 @@ AVAILABLE_CLI_OPTIONS = {
|
||||
),
|
||||
"print_json": Arg(
|
||||
'--print-json',
|
||||
help='Print best result detailization in JSON format.',
|
||||
help='Print output in JSON format.',
|
||||
action='store_true',
|
||||
default=False,
|
||||
),
|
||||
@ -372,8 +372,8 @@ AVAILABLE_CLI_OPTIONS = {
|
||||
),
|
||||
"timeframes": Arg(
|
||||
'-t', '--timeframes',
|
||||
help=f'Specify which tickers to download. Space-separated list. '
|
||||
f'Default: `1m 5m`.',
|
||||
help='Specify which tickers to download. Space-separated list. '
|
||||
'Default: `1m 5m`.',
|
||||
choices=['1m', '3m', '5m', '15m', '30m', '1h', '2h', '4h',
|
||||
'6h', '8h', '12h', '1d', '3d', '1w'],
|
||||
default=['1m', '5m'],
|
||||
@ -387,9 +387,9 @@ AVAILABLE_CLI_OPTIONS = {
|
||||
# Templating options
|
||||
"template": Arg(
|
||||
'--template',
|
||||
help='Use a template which is either `minimal` or '
|
||||
'`full` (containing multiple sample indicators). Default: `%(default)s`.',
|
||||
choices=['full', 'minimal'],
|
||||
help='Use a template which is either `minimal`, '
|
||||
'`full` (containing multiple sample indicators) or `advanced`. Default: `%(default)s`.',
|
||||
choices=['full', 'minimal', 'advanced'],
|
||||
default='full',
|
||||
),
|
||||
# Plot dataframe
|
||||
@ -425,6 +425,11 @@ AVAILABLE_CLI_OPTIONS = {
|
||||
choices=["DB", "file"],
|
||||
default="file",
|
||||
),
|
||||
"trade_ids": Arg(
|
||||
'--trade-ids',
|
||||
help='Specify the list of trade ids.',
|
||||
nargs='+',
|
||||
),
|
||||
# hyperopt-list, hyperopt-show
|
||||
"hyperopt_list_profitable": Arg(
|
||||
'--profitable',
|
||||
|
@ -1,5 +1,6 @@
|
||||
import logging
|
||||
import sys
|
||||
from collections import defaultdict
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import arrow
|
||||
@ -11,6 +12,7 @@ from freqtrade.data.history import (convert_trades_to_ohlcv,
|
||||
refresh_backtest_ohlcv_data,
|
||||
refresh_backtest_trades_data)
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import timeframe_to_minutes
|
||||
from freqtrade.resolvers import ExchangeResolver
|
||||
from freqtrade.state import RunMode
|
||||
|
||||
@ -88,3 +90,30 @@ def start_convert_data(args: Dict[str, Any], ohlcv: bool = True) -> None:
|
||||
convert_trades_format(config,
|
||||
convert_from=args['format_from'], convert_to=args['format_to'],
|
||||
erase=args['erase'])
|
||||
|
||||
|
||||
def start_list_data(args: Dict[str, Any]) -> None:
|
||||
"""
|
||||
List available backtest data
|
||||
"""
|
||||
|
||||
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
|
||||
|
||||
from freqtrade.data.history.idatahandler import get_datahandler
|
||||
from tabulate import tabulate
|
||||
dhc = get_datahandler(config['datadir'], config['dataformat_ohlcv'])
|
||||
|
||||
paircombs = dhc.ohlcv_get_available_data(config['datadir'])
|
||||
|
||||
if args['pairs']:
|
||||
paircombs = [comb for comb in paircombs if comb[0] in args['pairs']]
|
||||
|
||||
print(f"Found {len(paircombs)} pair / timeframe combinations.")
|
||||
groupedpair = defaultdict(list)
|
||||
for pair, timeframe in sorted(paircombs, key=lambda x: (x[0], timeframe_to_minutes(x[1]))):
|
||||
groupedpair[pair].append(timeframe)
|
||||
|
||||
if groupedpair:
|
||||
print(tabulate([(pair, ', '.join(timeframes)) for pair, timeframes in groupedpair.items()],
|
||||
headers=("Pair", "Timeframe"),
|
||||
tablefmt='psql', stralign='right'))
|
||||
|
@ -8,7 +8,7 @@ from freqtrade.configuration.directory_operations import (copy_sample_files,
|
||||
create_userdata_dir)
|
||||
from freqtrade.constants import USERPATH_HYPEROPTS, USERPATH_STRATEGIES
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.misc import render_template
|
||||
from freqtrade.misc import render_template, render_template_with_fallback
|
||||
from freqtrade.state import RunMode
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@ -32,10 +32,27 @@ def deploy_new_strategy(strategy_name: str, strategy_path: Path, subtemplate: st
|
||||
"""
|
||||
Deploy new strategy from template to strategy_path
|
||||
"""
|
||||
indicators = render_template(templatefile=f"subtemplates/indicators_{subtemplate}.j2",)
|
||||
buy_trend = render_template(templatefile=f"subtemplates/buy_trend_{subtemplate}.j2",)
|
||||
sell_trend = render_template(templatefile=f"subtemplates/sell_trend_{subtemplate}.j2",)
|
||||
plot_config = render_template(templatefile=f"subtemplates/plot_config_{subtemplate}.j2",)
|
||||
fallback = 'full'
|
||||
indicators = render_template_with_fallback(
|
||||
templatefile=f"subtemplates/indicators_{subtemplate}.j2",
|
||||
templatefallbackfile=f"subtemplates/indicators_{fallback}.j2",
|
||||
)
|
||||
buy_trend = render_template_with_fallback(
|
||||
templatefile=f"subtemplates/buy_trend_{subtemplate}.j2",
|
||||
templatefallbackfile=f"subtemplates/buy_trend_{fallback}.j2",
|
||||
)
|
||||
sell_trend = render_template_with_fallback(
|
||||
templatefile=f"subtemplates/sell_trend_{subtemplate}.j2",
|
||||
templatefallbackfile=f"subtemplates/sell_trend_{fallback}.j2",
|
||||
)
|
||||
plot_config = render_template_with_fallback(
|
||||
templatefile=f"subtemplates/plot_config_{subtemplate}.j2",
|
||||
templatefallbackfile=f"subtemplates/plot_config_{fallback}.j2",
|
||||
)
|
||||
additional_methods = render_template_with_fallback(
|
||||
templatefile=f"subtemplates/strategy_methods_{subtemplate}.j2",
|
||||
templatefallbackfile="subtemplates/strategy_methods_empty.j2",
|
||||
)
|
||||
|
||||
strategy_text = render_template(templatefile='base_strategy.py.j2',
|
||||
arguments={"strategy": strategy_name,
|
||||
@ -43,6 +60,7 @@ def deploy_new_strategy(strategy_name: str, strategy_path: Path, subtemplate: st
|
||||
"buy_trend": buy_trend,
|
||||
"sell_trend": sell_trend,
|
||||
"plot_config": plot_config,
|
||||
"additional_methods": additional_methods,
|
||||
})
|
||||
|
||||
logger.info(f"Writing strategy to `{strategy_path}`.")
|
||||
@ -73,14 +91,23 @@ def deploy_new_hyperopt(hyperopt_name: str, hyperopt_path: Path, subtemplate: st
|
||||
"""
|
||||
Deploys a new hyperopt template to hyperopt_path
|
||||
"""
|
||||
buy_guards = render_template(
|
||||
templatefile=f"subtemplates/hyperopt_buy_guards_{subtemplate}.j2",)
|
||||
sell_guards = render_template(
|
||||
templatefile=f"subtemplates/hyperopt_sell_guards_{subtemplate}.j2",)
|
||||
buy_space = render_template(
|
||||
templatefile=f"subtemplates/hyperopt_buy_space_{subtemplate}.j2",)
|
||||
sell_space = render_template(
|
||||
templatefile=f"subtemplates/hyperopt_sell_space_{subtemplate}.j2",)
|
||||
fallback = 'full'
|
||||
buy_guards = render_template_with_fallback(
|
||||
templatefile=f"subtemplates/hyperopt_buy_guards_{subtemplate}.j2",
|
||||
templatefallbackfile=f"subtemplates/hyperopt_buy_guards_{fallback}.j2",
|
||||
)
|
||||
sell_guards = render_template_with_fallback(
|
||||
templatefile=f"subtemplates/hyperopt_sell_guards_{subtemplate}.j2",
|
||||
templatefallbackfile=f"subtemplates/hyperopt_sell_guards_{fallback}.j2",
|
||||
)
|
||||
buy_space = render_template_with_fallback(
|
||||
templatefile=f"subtemplates/hyperopt_buy_space_{subtemplate}.j2",
|
||||
templatefallbackfile=f"subtemplates/hyperopt_buy_space_{fallback}.j2",
|
||||
)
|
||||
sell_space = render_template_with_fallback(
|
||||
templatefile=f"subtemplates/hyperopt_sell_space_{subtemplate}.j2",
|
||||
templatefallbackfile=f"subtemplates/hyperopt_sell_space_{fallback}.j2",
|
||||
)
|
||||
|
||||
strategy_text = render_template(templatefile='base_hyperopt.py.j2',
|
||||
arguments={"hyperopt": hyperopt_name,
|
||||
|
@ -40,38 +40,33 @@ def start_hyperopt_list(args: Dict[str, Any]) -> None:
|
||||
'filter_max_objective': config.get('hyperopt_list_max_objective', None),
|
||||
}
|
||||
|
||||
if filteroptions['filter_min_objective'] is not None:
|
||||
filteroptions['filter_min_objective'] = -filteroptions['filter_min_objective']
|
||||
if filteroptions['filter_max_objective'] is not None:
|
||||
filteroptions['filter_max_objective'] = -filteroptions['filter_max_objective']
|
||||
|
||||
trials_file = (config['user_data_dir'] /
|
||||
results_file = (config['user_data_dir'] /
|
||||
'hyperopt_results' / 'hyperopt_results.pickle')
|
||||
|
||||
# Previous evaluations
|
||||
trials = Hyperopt.load_previous_results(trials_file)
|
||||
total_epochs = len(trials)
|
||||
epochs = Hyperopt.load_previous_results(results_file)
|
||||
total_epochs = len(epochs)
|
||||
|
||||
trials = _hyperopt_filter_trials(trials, filteroptions)
|
||||
epochs = _hyperopt_filter_epochs(epochs, filteroptions)
|
||||
|
||||
if print_colorized:
|
||||
colorama_init(autoreset=True)
|
||||
|
||||
if not export_csv:
|
||||
try:
|
||||
Hyperopt.print_result_table(config, trials, total_epochs,
|
||||
not filteroptions['only_best'], print_colorized, 0)
|
||||
print(Hyperopt.get_result_table(config, epochs, total_epochs,
|
||||
not filteroptions['only_best'], print_colorized, 0))
|
||||
except KeyboardInterrupt:
|
||||
print('User interrupted..')
|
||||
|
||||
if trials and not no_details:
|
||||
sorted_trials = sorted(trials, key=itemgetter('loss'))
|
||||
results = sorted_trials[0]
|
||||
if epochs and not no_details:
|
||||
sorted_epochs = sorted(epochs, key=itemgetter('loss'))
|
||||
results = sorted_epochs[0]
|
||||
Hyperopt.print_epoch_details(results, total_epochs, print_json, no_header)
|
||||
|
||||
if trials and export_csv:
|
||||
if epochs and export_csv:
|
||||
Hyperopt.export_csv_file(
|
||||
config, trials, total_epochs, not filteroptions['only_best'], export_csv
|
||||
config, epochs, total_epochs, not filteroptions['only_best'], export_csv
|
||||
)
|
||||
|
||||
|
||||
@ -85,7 +80,7 @@ def start_hyperopt_show(args: Dict[str, Any]) -> None:
|
||||
|
||||
print_json = config.get('print_json', False)
|
||||
no_header = config.get('hyperopt_show_no_header', False)
|
||||
trials_file = (config['user_data_dir'] /
|
||||
results_file = (config['user_data_dir'] /
|
||||
'hyperopt_results' / 'hyperopt_results.pickle')
|
||||
n = config.get('hyperopt_show_index', -1)
|
||||
|
||||
@ -110,83 +105,81 @@ def start_hyperopt_show(args: Dict[str, Any]) -> None:
|
||||
filteroptions['filter_max_objective'] = -filteroptions['filter_max_objective']
|
||||
|
||||
# Previous evaluations
|
||||
trials = Hyperopt.load_previous_results(trials_file)
|
||||
total_epochs = len(trials)
|
||||
epochs = Hyperopt.load_previous_results(results_file)
|
||||
total_epochs = len(epochs)
|
||||
|
||||
trials = _hyperopt_filter_trials(trials, filteroptions)
|
||||
trials_epochs = len(trials)
|
||||
epochs = _hyperopt_filter_epochs(epochs, filteroptions)
|
||||
filtered_epochs = len(epochs)
|
||||
|
||||
if n > trials_epochs:
|
||||
if n > filtered_epochs:
|
||||
raise OperationalException(
|
||||
f"The index of the epoch to show should be less than {trials_epochs + 1}.")
|
||||
if n < -trials_epochs:
|
||||
f"The index of the epoch to show should be less than {filtered_epochs + 1}.")
|
||||
if n < -filtered_epochs:
|
||||
raise OperationalException(
|
||||
f"The index of the epoch to show should be greater than {-trials_epochs - 1}.")
|
||||
f"The index of the epoch to show should be greater than {-filtered_epochs - 1}.")
|
||||
|
||||
# Translate epoch index from human-readable format to pythonic
|
||||
if n > 0:
|
||||
n -= 1
|
||||
|
||||
if trials:
|
||||
val = trials[n]
|
||||
if epochs:
|
||||
val = epochs[n]
|
||||
Hyperopt.print_epoch_details(val, total_epochs, print_json, no_header,
|
||||
header_str="Epoch details")
|
||||
|
||||
|
||||
def _hyperopt_filter_trials(trials: List, filteroptions: dict) -> List:
|
||||
def _hyperopt_filter_epochs(epochs: List, filteroptions: dict) -> List:
|
||||
"""
|
||||
Filter our items from the list of hyperopt results
|
||||
"""
|
||||
if filteroptions['only_best']:
|
||||
trials = [x for x in trials if x['is_best']]
|
||||
epochs = [x for x in epochs if x['is_best']]
|
||||
if filteroptions['only_profitable']:
|
||||
trials = [x for x in trials if x['results_metrics']['profit'] > 0]
|
||||
epochs = [x for x in epochs if x['results_metrics']['profit'] > 0]
|
||||
if filteroptions['filter_min_trades'] > 0:
|
||||
trials = [
|
||||
x for x in trials
|
||||
epochs = [
|
||||
x for x in epochs
|
||||
if x['results_metrics']['trade_count'] > filteroptions['filter_min_trades']
|
||||
]
|
||||
if filteroptions['filter_max_trades'] > 0:
|
||||
trials = [
|
||||
x for x in trials
|
||||
epochs = [
|
||||
x for x in epochs
|
||||
if x['results_metrics']['trade_count'] < filteroptions['filter_max_trades']
|
||||
]
|
||||
if filteroptions['filter_min_avg_time'] is not None:
|
||||
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
|
||||
trials = [
|
||||
x for x in trials
|
||||
epochs = [x for x in epochs if x['results_metrics']['trade_count'] > 0]
|
||||
epochs = [
|
||||
x for x in epochs
|
||||
if x['results_metrics']['duration'] > filteroptions['filter_min_avg_time']
|
||||
]
|
||||
if filteroptions['filter_max_avg_time'] is not None:
|
||||
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
|
||||
trials = [
|
||||
x for x in trials
|
||||
epochs = [x for x in epochs if x['results_metrics']['trade_count'] > 0]
|
||||
epochs = [
|
||||
x for x in epochs
|
||||
if x['results_metrics']['duration'] < filteroptions['filter_max_avg_time']
|
||||
]
|
||||
if filteroptions['filter_min_avg_profit'] is not None:
|
||||
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
|
||||
trials = [
|
||||
x for x in trials
|
||||
if x['results_metrics']['avg_profit']
|
||||
> filteroptions['filter_min_avg_profit']
|
||||
epochs = [x for x in epochs if x['results_metrics']['trade_count'] > 0]
|
||||
epochs = [
|
||||
x for x in epochs
|
||||
if x['results_metrics']['avg_profit'] > filteroptions['filter_min_avg_profit']
|
||||
]
|
||||
if filteroptions['filter_max_avg_profit'] is not None:
|
||||
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
|
||||
trials = [
|
||||
x for x in trials
|
||||
if x['results_metrics']['avg_profit']
|
||||
< filteroptions['filter_max_avg_profit']
|
||||
epochs = [x for x in epochs if x['results_metrics']['trade_count'] > 0]
|
||||
epochs = [
|
||||
x for x in epochs
|
||||
if x['results_metrics']['avg_profit'] < filteroptions['filter_max_avg_profit']
|
||||
]
|
||||
if filteroptions['filter_min_total_profit'] is not None:
|
||||
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
|
||||
trials = [
|
||||
x for x in trials
|
||||
epochs = [x for x in epochs if x['results_metrics']['trade_count'] > 0]
|
||||
epochs = [
|
||||
x for x in epochs
|
||||
if x['results_metrics']['profit'] > filteroptions['filter_min_total_profit']
|
||||
]
|
||||
if filteroptions['filter_max_total_profit'] is not None:
|
||||
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
|
||||
trials = [
|
||||
x for x in trials
|
||||
epochs = [x for x in epochs if x['results_metrics']['trade_count'] > 0]
|
||||
epochs = [
|
||||
x for x in epochs
|
||||
if x['results_metrics']['profit'] < filteroptions['filter_max_total_profit']
|
||||
]
|
||||
if filteroptions['filter_min_objective'] is not None:
|
||||
@ -204,9 +197,9 @@ def _hyperopt_filter_trials(trials: List, filteroptions: dict) -> List:
|
||||
if x['loss'] > filteroptions['filter_max_objective']
|
||||
]
|
||||
|
||||
logger.info(f"{len(trials)} " +
|
||||
logger.info(f"{len(epochs)} " +
|
||||
("best " if filteroptions['only_best'] else "") +
|
||||
("profitable " if filteroptions['only_profitable'] else "") +
|
||||
"epochs found.")
|
||||
|
||||
return trials
|
||||
return epochs
|
||||
|
@ -102,8 +102,8 @@ def start_list_timeframes(args: Dict[str, Any]) -> None:
|
||||
Print ticker intervals (timeframes) available on Exchange
|
||||
"""
|
||||
config = setup_utils_configuration(args, RunMode.UTIL_EXCHANGE)
|
||||
# Do not use ticker_interval set in the config
|
||||
config['ticker_interval'] = None
|
||||
# Do not use timeframe set in the config
|
||||
config['timeframe'] = None
|
||||
|
||||
# Init exchange
|
||||
exchange = ExchangeResolver.load_exchange(config['exchange']['name'], config, validate=False)
|
||||
@ -197,3 +197,30 @@ def start_list_markets(args: Dict[str, Any], pairs_only: bool = False) -> None:
|
||||
args.get('list_pairs_print_json', False) or
|
||||
args.get('print_csv', False)):
|
||||
print(f"{summary_str}.")
|
||||
|
||||
|
||||
def start_show_trades(args: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Show trades
|
||||
"""
|
||||
from freqtrade.persistence import init, Trade
|
||||
import json
|
||||
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
|
||||
|
||||
if 'db_url' not in config:
|
||||
raise OperationalException("--db-url is required for this command.")
|
||||
|
||||
logger.info(f'Using DB: "{config["db_url"]}"')
|
||||
init(config['db_url'], clean_open_orders=False)
|
||||
tfilter = []
|
||||
|
||||
if config.get('trade_ids'):
|
||||
tfilter.append(Trade.id.in_(config['trade_ids']))
|
||||
|
||||
trades = Trade.get_trades(tfilter).all()
|
||||
logger.info(f"Printing {len(trades)} Trades: ")
|
||||
if config.get('print_json', False):
|
||||
print(json.dumps([trade.to_json() for trade in trades], indent=4))
|
||||
else:
|
||||
for trade in trades:
|
||||
print(trade)
|
||||
|
@ -25,7 +25,6 @@ def start_test_pairlist(args: Dict[str, Any]) -> None:
|
||||
results = {}
|
||||
for curr in quote_currencies:
|
||||
config['stake_currency'] = curr
|
||||
# Do not use ticker_interval set in the config
|
||||
pairlists = PairListManager(exchange, config)
|
||||
pairlists.refresh_pairlist()
|
||||
results[curr] = pairlists.whitelist
|
||||
|
@ -18,6 +18,9 @@ def start_trading(args: Dict[str, Any]) -> int:
|
||||
try:
|
||||
worker = Worker(args)
|
||||
worker.run()
|
||||
except Exception as e:
|
||||
logger.error(str(e))
|
||||
logger.exception("Fatal exception!")
|
||||
except KeyboardInterrupt:
|
||||
logger.info('SIGINT received, aborting ...')
|
||||
finally:
|
||||
|
@ -204,9 +204,9 @@ class Configuration:
|
||||
def _process_optimize_options(self, config: Dict[str, Any]) -> None:
|
||||
|
||||
# This will override the strategy configuration
|
||||
self._args_to_config(config, argname='ticker_interval',
|
||||
logstring='Parameter -i/--ticker-interval detected ... '
|
||||
'Using ticker_interval: {} ...')
|
||||
self._args_to_config(config, argname='timeframe',
|
||||
logstring='Parameter -i/--timeframe detected ... '
|
||||
'Using timeframe: {} ...')
|
||||
|
||||
self._args_to_config(config, argname='position_stacking',
|
||||
logstring='Parameter --enable-position-stacking detected ...')
|
||||
@ -242,8 +242,8 @@ class Configuration:
|
||||
self._args_to_config(config, argname='strategy_list',
|
||||
logstring='Using strategy list of {} strategies', logfun=len)
|
||||
|
||||
self._args_to_config(config, argname='ticker_interval',
|
||||
logstring='Overriding ticker interval with Command line argument')
|
||||
self._args_to_config(config, argname='timeframe',
|
||||
logstring='Overriding timeframe with Command line argument')
|
||||
|
||||
self._args_to_config(config, argname='export',
|
||||
logstring='Parameter --export detected: {} ...')
|
||||
@ -357,8 +357,12 @@ class Configuration:
|
||||
self._args_to_config(config, argname='indicators2',
|
||||
logstring='Using indicators2: {}')
|
||||
|
||||
self._args_to_config(config, argname='trade_ids',
|
||||
logstring='Filtering on trade_ids: {}')
|
||||
|
||||
self._args_to_config(config, argname='plot_limit',
|
||||
logstring='Limiting plot to: {}')
|
||||
|
||||
self._args_to_config(config, argname='trade_source',
|
||||
logstring='Using trades from: {}')
|
||||
|
||||
|
@ -58,35 +58,23 @@ def process_temporary_deprecated_settings(config: Dict[str, Any]) -> None:
|
||||
process_deprecated_setting(config, 'ask_strategy', 'ignore_roi_if_buy_signal',
|
||||
'experimental', 'ignore_roi_if_buy_signal')
|
||||
|
||||
if not config.get('pairlists') and not config.get('pairlists'):
|
||||
config['pairlists'] = [{'method': 'StaticPairList'}]
|
||||
logger.warning(
|
||||
"DEPRECATED: "
|
||||
"Pairlists must be defined explicitly in the future."
|
||||
"Defaulting to StaticPairList for now.")
|
||||
|
||||
if config.get('pairlist', {}).get("method") == 'VolumePairList':
|
||||
logger.warning(
|
||||
"DEPRECATED: "
|
||||
f"Using VolumePairList in pairlist is deprecated and must be moved to pairlists. "
|
||||
"Please refer to the docs on configuration details")
|
||||
pl = {'method': 'VolumePairList'}
|
||||
pl.update(config.get('pairlist', {}).get('config'))
|
||||
config['pairlists'].append(pl)
|
||||
|
||||
if config.get('pairlist', {}).get('config', {}).get('precision_filter'):
|
||||
logger.warning(
|
||||
"DEPRECATED: "
|
||||
f"Using precision_filter setting is deprecated and has been replaced by"
|
||||
"PrecisionFilter. Please refer to the docs on configuration details")
|
||||
config['pairlists'].append({'method': 'PrecisionFilter'})
|
||||
|
||||
if (config.get('edge', {}).get('enabled', False)
|
||||
and 'capital_available_percentage' in config.get('edge', {})):
|
||||
logger.warning(
|
||||
raise OperationalException(
|
||||
"DEPRECATED: "
|
||||
"Using 'edge.capital_available_percentage' has been deprecated in favor of "
|
||||
"'tradable_balance_ratio'. Please migrate your configuration to "
|
||||
"'tradable_balance_ratio' and remove 'capital_available_percentage' "
|
||||
"from the edge configuration."
|
||||
)
|
||||
if 'ticker_interval' in config:
|
||||
logger.warning(
|
||||
"DEPRECATED: "
|
||||
"Please use 'timeframe' instead of 'ticker_interval."
|
||||
)
|
||||
if 'timeframe' in config:
|
||||
raise OperationalException(
|
||||
"Both 'timeframe' and 'ticker_interval' detected."
|
||||
"Please remove 'ticker_interval' from your configuration to continue operating."
|
||||
)
|
||||
config['timeframe'] = config['ticker_interval']
|
||||
|
@ -33,8 +33,8 @@ def create_userdata_dir(directory: str, create_dir: bool = False) -> Path:
|
||||
:param create_dir: Create directory if it does not exist.
|
||||
:return: Path object containing the directory
|
||||
"""
|
||||
sub_dirs = ["backtest_results", "data", "hyperopts", "hyperopt_results", "notebooks",
|
||||
"plot", "strategies", ]
|
||||
sub_dirs = ["backtest_results", "data", "hyperopts", "hyperopt_results", "logs",
|
||||
"notebooks", "plot", "strategies", ]
|
||||
folder = Path(directory)
|
||||
if not folder.is_dir():
|
||||
if create_dir:
|
||||
|
@ -1,13 +1,15 @@
|
||||
"""
|
||||
This module contain functions to load the configuration file
|
||||
"""
|
||||
import rapidjson
|
||||
import logging
|
||||
import re
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict
|
||||
|
||||
from freqtrade.exceptions import OperationalException
|
||||
import rapidjson
|
||||
|
||||
from freqtrade.exceptions import OperationalException
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -15,6 +17,26 @@ logger = logging.getLogger(__name__)
|
||||
CONFIG_PARSE_MODE = rapidjson.PM_COMMENTS | rapidjson.PM_TRAILING_COMMAS
|
||||
|
||||
|
||||
def log_config_error_range(path: str, errmsg: str) -> str:
|
||||
"""
|
||||
Parses configuration file and prints range around error
|
||||
"""
|
||||
if path != '-':
|
||||
offsetlist = re.findall(r'(?<=Parse\serror\sat\soffset\s)\d+', errmsg)
|
||||
if offsetlist:
|
||||
offset = int(offsetlist[0])
|
||||
text = Path(path).read_text()
|
||||
# Fetch an offset of 80 characters around the error line
|
||||
subtext = text[offset-min(80, offset):offset+80]
|
||||
segments = subtext.split('\n')
|
||||
if len(segments) > 3:
|
||||
# Remove first and last lines, to avoid odd truncations
|
||||
return '\n'.join(segments[1:-1])
|
||||
else:
|
||||
return subtext
|
||||
return ''
|
||||
|
||||
|
||||
def load_config_file(path: str) -> Dict[str, Any]:
|
||||
"""
|
||||
Loads a config file from the given path
|
||||
@ -29,5 +51,12 @@ def load_config_file(path: str) -> Dict[str, Any]:
|
||||
raise OperationalException(
|
||||
f'Config file "{path}" not found!'
|
||||
' Please create a config file or check whether it exists.')
|
||||
except rapidjson.JSONDecodeError as e:
|
||||
err_range = log_config_error_range(path, str(e))
|
||||
raise OperationalException(
|
||||
f'{e}\n'
|
||||
f'Please verify the following segment of your configuration:\n{err_range}'
|
||||
if err_range else 'Please verify your configuration file for syntax errors.'
|
||||
)
|
||||
|
||||
return config
|
||||
|
@ -3,6 +3,9 @@
|
||||
"""
|
||||
bot constants
|
||||
"""
|
||||
from typing import List, Tuple
|
||||
|
||||
|
||||
DEFAULT_CONFIG = 'config.json'
|
||||
DEFAULT_EXCHANGE = 'bittrex'
|
||||
PROCESS_THROTTLE_SECS = 5 # sec
|
||||
@ -19,11 +22,15 @@ ORDERBOOK_SIDES = ['ask', 'bid']
|
||||
ORDERTYPE_POSSIBILITIES = ['limit', 'market']
|
||||
ORDERTIF_POSSIBILITIES = ['gtc', 'fok', 'ioc']
|
||||
AVAILABLE_PAIRLISTS = ['StaticPairList', 'VolumePairList',
|
||||
'PrecisionFilter', 'PriceFilter', 'SpreadFilter']
|
||||
'AgeFilter', 'PrecisionFilter', 'PriceFilter',
|
||||
'ShuffleFilter', 'SpreadFilter']
|
||||
AVAILABLE_DATAHANDLERS = ['json', 'jsongz']
|
||||
DRY_RUN_WALLET = 1000
|
||||
MATH_CLOSE_PREC = 1e-14 # Precision used for float comparisons
|
||||
DEFAULT_DATAFRAME_COLUMNS = ['date', 'open', 'high', 'low', 'close', 'volume']
|
||||
# Don't modify sequence of DEFAULT_TRADES_COLUMNS
|
||||
# it has wide consequences for stored trades files
|
||||
DEFAULT_TRADES_COLUMNS = ['timestamp', 'id', 'type', 'side', 'price', 'amount', 'cost']
|
||||
|
||||
USERPATH_HYPEROPTS = 'hyperopts'
|
||||
USERPATH_STRATEGIES = 'strategies'
|
||||
@ -65,7 +72,7 @@ CONF_SCHEMA = {
|
||||
'type': 'object',
|
||||
'properties': {
|
||||
'max_open_trades': {'type': ['integer', 'number'], 'minimum': -1},
|
||||
'ticker_interval': {'type': 'string'},
|
||||
'timeframe': {'type': 'string'},
|
||||
'stake_currency': {'type': 'string'},
|
||||
'stake_amount': {
|
||||
'type': ['number', 'string'],
|
||||
@ -85,6 +92,7 @@ CONF_SCHEMA = {
|
||||
'fiat_display_currency': {'type': 'string', 'enum': SUPPORTED_FIAT},
|
||||
'dry_run': {'type': 'boolean'},
|
||||
'dry_run_wallet': {'type': 'number', 'default': DRY_RUN_WALLET},
|
||||
'cancel_open_orders_on_exit': {'type': 'boolean', 'default': False},
|
||||
'process_only_new_candles': {'type': 'boolean'},
|
||||
'minimal_roi': {
|
||||
'type': 'object',
|
||||
@ -148,7 +156,9 @@ CONF_SCHEMA = {
|
||||
'emergencysell': {'type': 'string', 'enum': ORDERTYPE_POSSIBILITIES},
|
||||
'stoploss': {'type': 'string', 'enum': ORDERTYPE_POSSIBILITIES},
|
||||
'stoploss_on_exchange': {'type': 'boolean'},
|
||||
'stoploss_on_exchange_interval': {'type': 'number'}
|
||||
'stoploss_on_exchange_interval': {'type': 'number'},
|
||||
'stoploss_on_exchange_limit_ratio': {'type': 'number', 'minimum': 0.0,
|
||||
'maximum': 1.0}
|
||||
},
|
||||
'required': ['buy', 'sell', 'stoploss', 'stoploss_on_exchange']
|
||||
},
|
||||
@ -214,12 +224,16 @@ CONF_SCHEMA = {
|
||||
},
|
||||
'username': {'type': 'string'},
|
||||
'password': {'type': 'string'},
|
||||
'jwt_secret_key': {'type': 'string'},
|
||||
'CORS_origins': {'type': 'array', 'items': {'type': 'string'}},
|
||||
'verbosity': {'type': 'string', 'enum': ['error', 'info']},
|
||||
},
|
||||
'required': ['enabled', 'listen_ip_address', 'listen_port', 'username', 'password']
|
||||
},
|
||||
'db_url': {'type': 'string'},
|
||||
'initial_state': {'type': 'string', 'enum': ['running', 'stopped']},
|
||||
'forcebuy_enable': {'type': 'boolean'},
|
||||
'disable_dataframe_checks': {'type': 'boolean'},
|
||||
'internals': {
|
||||
'type': 'object',
|
||||
'default': {},
|
||||
@ -278,7 +292,6 @@ CONF_SCHEMA = {
|
||||
'process_throttle_secs': {'type': 'integer', 'minimum': 600},
|
||||
'calculate_since_number_of_days': {'type': 'integer'},
|
||||
'allowed_risk': {'type': 'number'},
|
||||
'capital_available_percentage': {'type': 'number'},
|
||||
'stoploss_range_min': {'type': 'number'},
|
||||
'stoploss_range_max': {'type': 'number'},
|
||||
'stoploss_range_step': {'type': 'number'},
|
||||
@ -295,6 +308,7 @@ CONF_SCHEMA = {
|
||||
|
||||
SCHEMA_TRADE_REQUIRED = [
|
||||
'exchange',
|
||||
'timeframe',
|
||||
'max_open_trades',
|
||||
'stake_currency',
|
||||
'stake_amount',
|
||||
@ -318,3 +332,14 @@ SCHEMA_MINIMAL_REQUIRED = [
|
||||
'dataformat_ohlcv',
|
||||
'dataformat_trades',
|
||||
]
|
||||
|
||||
CANCEL_REASON = {
|
||||
"TIMEOUT": "cancelled due to timeout",
|
||||
"PARTIALLY_FILLED": "partially filled - keeping order open",
|
||||
"ALL_CANCELLED": "cancelled (all unfilled and partially filled open orders cancelled)",
|
||||
"CANCELLED_ON_EXCHANGE": "cancelled on exchange",
|
||||
}
|
||||
|
||||
# List of pairs with their timeframes
|
||||
PairWithTimeframe = Tuple[str, str]
|
||||
ListPairsWithTimeframes = List[PairWithTimeframe]
|
||||
|
@ -16,7 +16,7 @@ from freqtrade.persistence import Trade
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# must align with columns in backtest.py
|
||||
BT_DATA_COLUMNS = ["pair", "profitperc", "open_time", "close_time", "index", "duration",
|
||||
BT_DATA_COLUMNS = ["pair", "profit_percent", "open_time", "close_time", "index", "duration",
|
||||
"open_rate", "close_rate", "open_at_end", "sell_reason"]
|
||||
|
||||
|
||||
@ -99,11 +99,11 @@ def load_trades_from_db(db_url: str) -> pd.DataFrame:
|
||||
trades: pd.DataFrame = pd.DataFrame([], columns=BT_DATA_COLUMNS)
|
||||
persistence.init(db_url, clean_open_orders=False)
|
||||
|
||||
columns = ["pair", "open_time", "close_time", "profit", "profitperc",
|
||||
columns = ["pair", "open_time", "close_time", "profit", "profit_percent",
|
||||
"open_rate", "close_rate", "amount", "duration", "sell_reason",
|
||||
"fee_open", "fee_close", "open_rate_requested", "close_rate_requested",
|
||||
"stake_amount", "max_rate", "min_rate", "id", "exchange",
|
||||
"stop_loss", "initial_stop_loss", "strategy", "ticker_interval"]
|
||||
"stop_loss", "initial_stop_loss", "strategy", "timeframe"]
|
||||
|
||||
trades = pd.DataFrame([(t.pair,
|
||||
t.open_date.replace(tzinfo=timezone.utc),
|
||||
@ -121,7 +121,7 @@ def load_trades_from_db(db_url: str) -> pd.DataFrame:
|
||||
t.min_rate,
|
||||
t.id, t.exchange,
|
||||
t.stop_loss, t.initial_stop_loss,
|
||||
t.strategy, t.ticker_interval
|
||||
t.strategy, t.timeframe
|
||||
)
|
||||
for t in Trade.get_trades().all()],
|
||||
columns=columns)
|
||||
@ -151,13 +151,20 @@ def load_trades(source: str, db_url: str, exportfilename: Path,
|
||||
return load_backtest_data(exportfilename)
|
||||
|
||||
|
||||
def extract_trades_of_period(dataframe: pd.DataFrame, trades: pd.DataFrame) -> pd.DataFrame:
|
||||
def extract_trades_of_period(dataframe: pd.DataFrame, trades: pd.DataFrame,
|
||||
date_index=False) -> pd.DataFrame:
|
||||
"""
|
||||
Compare trades and backtested pair DataFrames to get trades performed on backtested period
|
||||
:return: the DataFrame of a trades of period
|
||||
"""
|
||||
trades = trades.loc[(trades['open_time'] >= dataframe.iloc[0]['date']) &
|
||||
(trades['close_time'] <= dataframe.iloc[-1]['date'])]
|
||||
if date_index:
|
||||
trades_start = dataframe.index[0]
|
||||
trades_stop = dataframe.index[-1]
|
||||
else:
|
||||
trades_start = dataframe.iloc[0]['date']
|
||||
trades_stop = dataframe.iloc[-1]['date']
|
||||
trades = trades.loc[(trades['open_time'] >= trades_start) &
|
||||
(trades['close_time'] <= trades_stop)]
|
||||
return trades
|
||||
|
||||
|
||||
@ -183,15 +190,19 @@ def create_cum_profit(df: pd.DataFrame, trades: pd.DataFrame, col_name: str,
|
||||
"""
|
||||
Adds a column `col_name` with the cumulative profit for the given trades array.
|
||||
:param df: DataFrame with date index
|
||||
:param trades: DataFrame containing trades (requires columns close_time and profitperc)
|
||||
:param trades: DataFrame containing trades (requires columns close_time and profit_percent)
|
||||
:param col_name: Column name that will be assigned the results
|
||||
:param timeframe: Timeframe used during the operations
|
||||
:return: Returns df with one additional column, col_name, containing the cumulative profit.
|
||||
:raise: ValueError if trade-dataframe was found empty.
|
||||
"""
|
||||
if len(trades) == 0:
|
||||
raise ValueError("Trade dataframe empty.")
|
||||
from freqtrade.exchange import timeframe_to_minutes
|
||||
timeframe_minutes = timeframe_to_minutes(timeframe)
|
||||
# Resample to timeframe to make sure trades match candles
|
||||
_trades_sum = trades.resample(f'{timeframe_minutes}min', on='close_time')[['profitperc']].sum()
|
||||
_trades_sum = trades.resample(f'{timeframe_minutes}min', on='close_time'
|
||||
)[['profit_percent']].sum()
|
||||
df.loc[:, col_name] = _trades_sum.cumsum()
|
||||
# Set first value to 0
|
||||
df.loc[df.iloc[0].name, col_name] = 0
|
||||
@ -201,25 +212,27 @@ def create_cum_profit(df: pd.DataFrame, trades: pd.DataFrame, col_name: str,
|
||||
|
||||
|
||||
def calculate_max_drawdown(trades: pd.DataFrame, *, date_col: str = 'close_time',
|
||||
value_col: str = 'profitperc'
|
||||
value_col: str = 'profit_percent'
|
||||
) -> Tuple[float, pd.Timestamp, pd.Timestamp]:
|
||||
"""
|
||||
Calculate max drawdown and the corresponding close dates
|
||||
:param trades: DataFrame containing trades (requires columns close_time and profitperc)
|
||||
:param trades: DataFrame containing trades (requires columns close_time and profit_percent)
|
||||
:param date_col: Column in DataFrame to use for dates (defaults to 'close_time')
|
||||
:param value_col: Column in DataFrame to use for values (defaults to 'profitperc')
|
||||
:param value_col: Column in DataFrame to use for values (defaults to 'profit_percent')
|
||||
:return: Tuple (float, highdate, lowdate) with absolute max drawdown, high and low time
|
||||
:raise: ValueError if trade-dataframe was found empty.
|
||||
"""
|
||||
if len(trades) == 0:
|
||||
raise ValueError("Trade dataframe empty.")
|
||||
profit_results = trades.sort_values(date_col)
|
||||
profit_results = trades.sort_values(date_col).reset_index(drop=True)
|
||||
max_drawdown_df = pd.DataFrame()
|
||||
max_drawdown_df['cumulative'] = profit_results[value_col].cumsum()
|
||||
max_drawdown_df['high_value'] = max_drawdown_df['cumulative'].cummax()
|
||||
max_drawdown_df['drawdown'] = max_drawdown_df['cumulative'] - max_drawdown_df['high_value']
|
||||
|
||||
high_date = profit_results.loc[max_drawdown_df['high_value'].idxmax(), date_col]
|
||||
low_date = profit_results.loc[max_drawdown_df['drawdown'].idxmin(), date_col]
|
||||
|
||||
idxmin = max_drawdown_df['drawdown'].idxmin()
|
||||
if idxmin == 0:
|
||||
raise ValueError("No losing trade, therefore no drawdown.")
|
||||
high_date = profit_results.loc[max_drawdown_df.iloc[:idxmin]['high_value'].idxmax(), date_col]
|
||||
low_date = profit_results.loc[idxmin, date_col]
|
||||
return abs(min(max_drawdown_df['drawdown'])), high_date, low_date
|
||||
|
@ -1,14 +1,17 @@
|
||||
"""
|
||||
Functions to convert data from one format to another
|
||||
"""
|
||||
import itertools
|
||||
import logging
|
||||
from datetime import datetime, timezone
|
||||
from typing import Any, Dict
|
||||
from operator import itemgetter
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import pandas as pd
|
||||
from pandas import DataFrame, to_datetime
|
||||
|
||||
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS
|
||||
from freqtrade.constants import (DEFAULT_DATAFRAME_COLUMNS,
|
||||
DEFAULT_TRADES_COLUMNS)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -154,7 +157,27 @@ def order_book_to_dataframe(bids: list, asks: list) -> DataFrame:
|
||||
return frame
|
||||
|
||||
|
||||
def trades_to_ohlcv(trades: list, timeframe: str) -> DataFrame:
|
||||
def trades_remove_duplicates(trades: List[List]) -> List[List]:
|
||||
"""
|
||||
Removes duplicates from the trades list.
|
||||
Uses itertools.groupby to avoid converting to pandas.
|
||||
Tests show it as being pretty efficient on lists of 4M Lists.
|
||||
:param trades: List of Lists with constants.DEFAULT_TRADES_COLUMNS as columns
|
||||
:return: same format as above, but with duplicates removed
|
||||
"""
|
||||
return [i for i, _ in itertools.groupby(sorted(trades, key=itemgetter(0)))]
|
||||
|
||||
|
||||
def trades_dict_to_list(trades: List[Dict]) -> List[List]:
|
||||
"""
|
||||
Convert fetch_trades result into a List (to be more memory efficient).
|
||||
:param trades: List of trades, as returned by ccxt.fetch_trades.
|
||||
:return: List of Lists, with constants.DEFAULT_TRADES_COLUMNS as columns
|
||||
"""
|
||||
return [[t[col] for col in DEFAULT_TRADES_COLUMNS] for t in trades]
|
||||
|
||||
|
||||
def trades_to_ohlcv(trades: List, timeframe: str) -> DataFrame:
|
||||
"""
|
||||
Converts trades list to OHLCV list
|
||||
TODO: This should get a dedicated test
|
||||
@ -164,16 +187,17 @@ def trades_to_ohlcv(trades: list, timeframe: str) -> DataFrame:
|
||||
"""
|
||||
from freqtrade.exchange import timeframe_to_minutes
|
||||
timeframe_minutes = timeframe_to_minutes(timeframe)
|
||||
df = pd.DataFrame(trades)
|
||||
df['datetime'] = pd.to_datetime(df['datetime'])
|
||||
df = df.set_index('datetime')
|
||||
df = pd.DataFrame(trades, columns=DEFAULT_TRADES_COLUMNS)
|
||||
df['timestamp'] = pd.to_datetime(df['timestamp'], unit='ms',
|
||||
utc=True,)
|
||||
df = df.set_index('timestamp')
|
||||
|
||||
df_new = df['price'].resample(f'{timeframe_minutes}min').ohlc()
|
||||
df_new['volume'] = df['amount'].resample(f'{timeframe_minutes}min').sum()
|
||||
df_new['date'] = df_new.index
|
||||
# Drop 0 volume rows
|
||||
df_new = df_new.dropna()
|
||||
return df_new[DEFAULT_DATAFRAME_COLUMNS]
|
||||
return df_new.loc[:, DEFAULT_DATAFRAME_COLUMNS]
|
||||
|
||||
|
||||
def convert_trades_format(config: Dict[str, Any], convert_from: str, convert_to: str, erase: bool):
|
||||
@ -212,12 +236,12 @@ def convert_ohlcv_format(config: Dict[str, Any], convert_from: str, convert_to:
|
||||
from freqtrade.data.history.idatahandler import get_datahandler
|
||||
src = get_datahandler(config['datadir'], convert_from)
|
||||
trg = get_datahandler(config['datadir'], convert_to)
|
||||
timeframes = config.get('timeframes', [config.get('ticker_interval')])
|
||||
timeframes = config.get('timeframes', [config.get('timeframe')])
|
||||
logger.info(f"Converting candle (OHLCV) for timeframe {timeframes}")
|
||||
|
||||
if 'pairs' not in config:
|
||||
config['pairs'] = []
|
||||
# Check timeframes or fall back to ticker_interval.
|
||||
# Check timeframes or fall back to timeframe.
|
||||
for timeframe in timeframes:
|
||||
config['pairs'].extend(src.ohlcv_get_pairs(config['datadir'],
|
||||
timeframe))
|
||||
|
@ -5,11 +5,15 @@ including ticker and orderbook data, live and historical candle (OHLCV) data
|
||||
Common Interface for bot and strategy to access data.
|
||||
"""
|
||||
import logging
|
||||
from datetime import datetime, timezone
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
from arrow import Arrow
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.constants import ListPairsWithTimeframes, PairWithTimeframe
|
||||
from freqtrade.data.history import load_pair_history
|
||||
from freqtrade.exceptions import ExchangeError, OperationalException
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.state import RunMode
|
||||
|
||||
@ -18,13 +22,26 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
class DataProvider:
|
||||
|
||||
def __init__(self, config: dict, exchange: Exchange) -> None:
|
||||
def __init__(self, config: dict, exchange: Exchange, pairlists=None) -> None:
|
||||
self._config = config
|
||||
self._exchange = exchange
|
||||
self._pairlists = pairlists
|
||||
self.__cached_pairs: Dict[PairWithTimeframe, Tuple[DataFrame, datetime]] = {}
|
||||
|
||||
def _set_cached_df(self, pair: str, timeframe: str, dataframe: DataFrame) -> None:
|
||||
"""
|
||||
Store cached Dataframe.
|
||||
Using private method as this should never be used by a user
|
||||
(but the class is exposed via `self.dp` to the strategy)
|
||||
:param pair: pair to get the data for
|
||||
:param timeframe: Timeframe to get data for
|
||||
:param dataframe: analyzed dataframe
|
||||
"""
|
||||
self.__cached_pairs[(pair, timeframe)] = (dataframe, Arrow.utcnow().datetime)
|
||||
|
||||
def refresh(self,
|
||||
pairlist: List[Tuple[str, str]],
|
||||
helping_pairs: List[Tuple[str, str]] = None) -> None:
|
||||
pairlist: ListPairsWithTimeframes,
|
||||
helping_pairs: ListPairsWithTimeframes = None) -> None:
|
||||
"""
|
||||
Refresh data, called with each cycle
|
||||
"""
|
||||
@ -34,7 +51,7 @@ class DataProvider:
|
||||
self._exchange.refresh_latest_ohlcv(pairlist)
|
||||
|
||||
@property
|
||||
def available_pairs(self) -> List[Tuple[str, str]]:
|
||||
def available_pairs(self) -> ListPairsWithTimeframes:
|
||||
"""
|
||||
Return a list of tuples containing (pair, timeframe) for which data is currently cached.
|
||||
Should be whitelist + open trades.
|
||||
@ -51,7 +68,7 @@ class DataProvider:
|
||||
Use False only for read-only operations (where the dataframe is not modified)
|
||||
"""
|
||||
if self.runmode in (RunMode.DRY_RUN, RunMode.LIVE):
|
||||
return self._exchange.klines((pair, timeframe or self._config['ticker_interval']),
|
||||
return self._exchange.klines((pair, timeframe or self._config['timeframe']),
|
||||
copy=copy)
|
||||
else:
|
||||
return DataFrame()
|
||||
@ -63,7 +80,7 @@ class DataProvider:
|
||||
:param timeframe: timeframe to get data for
|
||||
"""
|
||||
return load_pair_history(pair=pair,
|
||||
timeframe=timeframe or self._config['ticker_interval'],
|
||||
timeframe=timeframe or self._config['timeframe'],
|
||||
datadir=self._config['datadir']
|
||||
)
|
||||
|
||||
@ -85,6 +102,20 @@ class DataProvider:
|
||||
logger.warning(f"No data found for ({pair}, {timeframe}).")
|
||||
return data
|
||||
|
||||
def get_analyzed_dataframe(self, pair: str, timeframe: str) -> Tuple[DataFrame, datetime]:
|
||||
"""
|
||||
:param pair: pair to get the data for
|
||||
:param timeframe: timeframe to get data for
|
||||
:return: Tuple of (Analyzed Dataframe, lastrefreshed) for the requested pair / timeframe
|
||||
combination.
|
||||
Returns empty dataframe and Epoch 0 (1970-01-01) if no dataframe was cached.
|
||||
"""
|
||||
if (pair, timeframe) in self.__cached_pairs:
|
||||
return self.__cached_pairs[(pair, timeframe)]
|
||||
else:
|
||||
|
||||
return (DataFrame(), datetime.fromtimestamp(0, tz=timezone.utc))
|
||||
|
||||
def market(self, pair: str) -> Optional[Dict[str, Any]]:
|
||||
"""
|
||||
Return market data for the pair
|
||||
@ -95,19 +126,24 @@ class DataProvider:
|
||||
|
||||
def ticker(self, pair: str):
|
||||
"""
|
||||
Return last ticker data
|
||||
Return last ticker data from exchange
|
||||
:param pair: Pair to get the data for
|
||||
:return: Ticker dict from exchange or empty dict if ticker is not available for the pair
|
||||
"""
|
||||
# TODO: Implement me
|
||||
pass
|
||||
try:
|
||||
return self._exchange.fetch_ticker(pair)
|
||||
except ExchangeError:
|
||||
return {}
|
||||
|
||||
def orderbook(self, pair: str, maximum: int) -> Dict[str, List]:
|
||||
"""
|
||||
fetch latest orderbook data
|
||||
Fetch latest l2 orderbook data
|
||||
Warning: Does a network request - so use with common sense.
|
||||
:param pair: pair to get the data for
|
||||
:param maximum: Maximum number of orderbook entries to query
|
||||
:return: dict including bids/asks with a total of `maximum` entries.
|
||||
"""
|
||||
return self._exchange.get_order_book(pair, maximum)
|
||||
return self._exchange.fetch_l2_order_book(pair, maximum)
|
||||
|
||||
@property
|
||||
def runmode(self) -> RunMode:
|
||||
@ -116,3 +152,17 @@ class DataProvider:
|
||||
can be "live", "dry-run", "backtest", "edgecli", "hyperopt" or "other".
|
||||
"""
|
||||
return RunMode(self._config.get('runmode', RunMode.OTHER))
|
||||
|
||||
def current_whitelist(self) -> List[str]:
|
||||
"""
|
||||
fetch latest available whitelist.
|
||||
|
||||
Useful when you have a large whitelist and need to call each pair as an informative pair.
|
||||
As available pairs does not show whitelist until after informative pairs have been cached.
|
||||
:return: list of pairs in whitelist
|
||||
"""
|
||||
|
||||
if self._pairlists:
|
||||
return self._pairlists.whitelist
|
||||
else:
|
||||
raise OperationalException("Dataprovider was not initialized with a pairlist provider.")
|
||||
|
@ -9,10 +9,13 @@ from pandas import DataFrame
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS
|
||||
from freqtrade.data.converter import ohlcv_to_dataframe, trades_to_ohlcv
|
||||
from freqtrade.data.converter import (ohlcv_to_dataframe,
|
||||
trades_remove_duplicates,
|
||||
trades_to_ohlcv)
|
||||
from freqtrade.data.history.idatahandler import IDataHandler, get_datahandler
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.misc import format_ms_time
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -257,27 +260,45 @@ def _download_trades_history(exchange: Exchange,
|
||||
"""
|
||||
try:
|
||||
|
||||
since = timerange.startts * 1000 if timerange and timerange.starttype == 'date' else None
|
||||
since = timerange.startts * 1000 if \
|
||||
(timerange and timerange.starttype == 'date') else int(arrow.utcnow().shift(
|
||||
days=-30).float_timestamp) * 1000
|
||||
|
||||
trades = data_handler.trades_load(pair)
|
||||
|
||||
from_id = trades[-1]['id'] if trades else None
|
||||
# TradesList columns are defined in constants.DEFAULT_TRADES_COLUMNS
|
||||
# DEFAULT_TRADES_COLUMNS: 0 -> timestamp
|
||||
# DEFAULT_TRADES_COLUMNS: 1 -> id
|
||||
|
||||
logger.debug("Current Start: %s", trades[0]['datetime'] if trades else 'None')
|
||||
logger.debug("Current End: %s", trades[-1]['datetime'] if trades else 'None')
|
||||
if trades and since < trades[0][0]:
|
||||
# since is before the first trade
|
||||
logger.info(f"Start earlier than available data. Redownloading trades for {pair}...")
|
||||
trades = []
|
||||
|
||||
from_id = trades[-1][1] if trades else None
|
||||
if trades and since < trades[-1][0]:
|
||||
# Reset since to the last available point
|
||||
# - 5 seconds (to ensure we're getting all trades)
|
||||
since = trades[-1][0] - (5 * 1000)
|
||||
logger.info(f"Using last trade date -5s - Downloading trades for {pair} "
|
||||
f"since: {format_ms_time(since)}.")
|
||||
|
||||
logger.debug(f"Current Start: {format_ms_time(trades[0][0]) if trades else 'None'}")
|
||||
logger.debug(f"Current End: {format_ms_time(trades[-1][0]) if trades else 'None'}")
|
||||
logger.info(f"Current Amount of trades: {len(trades)}")
|
||||
|
||||
# Default since_ms to 30 days if nothing is given
|
||||
new_trades = exchange.get_historic_trades(pair=pair,
|
||||
since=since if since else
|
||||
int(arrow.utcnow().shift(
|
||||
days=-30).float_timestamp) * 1000,
|
||||
since=since,
|
||||
from_id=from_id,
|
||||
)
|
||||
trades.extend(new_trades[1])
|
||||
# Remove duplicates to make sure we're not storing data we don't need
|
||||
trades = trades_remove_duplicates(trades)
|
||||
data_handler.trades_store(pair, data=trades)
|
||||
|
||||
logger.debug("New Start: %s", trades[0]['datetime'])
|
||||
logger.debug("New End: %s", trades[-1]['datetime'])
|
||||
logger.debug(f"New Start: {format_ms_time(trades[0][0])}")
|
||||
logger.debug(f"New End: {format_ms_time(trades[-1][0])}")
|
||||
logger.info(f"New Amount of trades: {len(trades)}")
|
||||
return True
|
||||
|
||||
|
@ -8,22 +8,35 @@ from abc import ABC, abstractclassmethod, abstractmethod
|
||||
from copy import deepcopy
|
||||
from datetime import datetime, timezone
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Type
|
||||
from typing import List, Optional, Type
|
||||
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.data.converter import clean_ohlcv_dataframe, trim_dataframe
|
||||
from freqtrade.constants import ListPairsWithTimeframes
|
||||
from freqtrade.data.converter import (clean_ohlcv_dataframe,
|
||||
trades_remove_duplicates, trim_dataframe)
|
||||
from freqtrade.exchange import timeframe_to_seconds
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Type for trades list
|
||||
TradeList = List[List]
|
||||
|
||||
|
||||
class IDataHandler(ABC):
|
||||
|
||||
def __init__(self, datadir: Path) -> None:
|
||||
self._datadir = datadir
|
||||
|
||||
@abstractclassmethod
|
||||
def ohlcv_get_available_data(cls, datadir: Path) -> ListPairsWithTimeframes:
|
||||
"""
|
||||
Returns a list of all pairs with ohlcv data available in this datadir
|
||||
:param datadir: Directory to search for ohlcv files
|
||||
:return: List of Tuples of (pair, timeframe)
|
||||
"""
|
||||
|
||||
@abstractclassmethod
|
||||
def ohlcv_get_pairs(cls, datadir: Path, timeframe: str) -> List[str]:
|
||||
"""
|
||||
@ -89,23 +102,25 @@ class IDataHandler(ABC):
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def trades_store(self, pair: str, data: List[Dict]) -> None:
|
||||
def trades_store(self, pair: str, data: TradeList) -> None:
|
||||
"""
|
||||
Store trades data (list of Dicts) to file
|
||||
:param pair: Pair - used for filename
|
||||
:param data: List of Dicts containing trade data
|
||||
:param data: List of Lists containing trade data,
|
||||
column sequence as in DEFAULT_TRADES_COLUMNS
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def trades_append(self, pair: str, data: List[Dict]):
|
||||
def trades_append(self, pair: str, data: TradeList):
|
||||
"""
|
||||
Append data to existing files
|
||||
:param pair: Pair - used for filename
|
||||
:param data: List of Dicts containing trade data
|
||||
:param data: List of Lists containing trade data,
|
||||
column sequence as in DEFAULT_TRADES_COLUMNS
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def trades_load(self, pair: str, timerange: Optional[TimeRange] = None) -> List[Dict]:
|
||||
def _trades_load(self, pair: str, timerange: Optional[TimeRange] = None) -> TradeList:
|
||||
"""
|
||||
Load a pair from file, either .json.gz or .json
|
||||
:param pair: Load trades for this pair
|
||||
@ -121,6 +136,16 @@ class IDataHandler(ABC):
|
||||
:return: True when deleted, false if file did not exist.
|
||||
"""
|
||||
|
||||
def trades_load(self, pair: str, timerange: Optional[TimeRange] = None) -> TradeList:
|
||||
"""
|
||||
Load a pair from file, either .json.gz or .json
|
||||
Removes duplicates in the process.
|
||||
:param pair: Load trades for this pair
|
||||
:param timerange: Timerange to load trades for - currently not implemented
|
||||
:return: List of trades
|
||||
"""
|
||||
return trades_remove_duplicates(self._trades_load(pair, timerange=timerange))
|
||||
|
||||
def ohlcv_load(self, pair, timeframe: str,
|
||||
timerange: Optional[TimeRange] = None,
|
||||
fill_missing: bool = True,
|
||||
|
@ -1,15 +1,20 @@
|
||||
import logging
|
||||
import re
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional
|
||||
from typing import List, Optional
|
||||
|
||||
import numpy as np
|
||||
from pandas import DataFrame, read_json, to_datetime
|
||||
|
||||
from freqtrade import misc
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS
|
||||
from freqtrade.constants import (DEFAULT_DATAFRAME_COLUMNS,
|
||||
ListPairsWithTimeframes)
|
||||
from freqtrade.data.converter import trades_dict_to_list
|
||||
|
||||
from .idatahandler import IDataHandler
|
||||
from .idatahandler import IDataHandler, TradeList
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class JsonDataHandler(IDataHandler):
|
||||
@ -17,6 +22,18 @@ class JsonDataHandler(IDataHandler):
|
||||
_use_zip = False
|
||||
_columns = DEFAULT_DATAFRAME_COLUMNS
|
||||
|
||||
@classmethod
|
||||
def ohlcv_get_available_data(cls, datadir: Path) -> ListPairsWithTimeframes:
|
||||
"""
|
||||
Returns a list of all pairs with ohlcv data available in this datadir
|
||||
:param datadir: Directory to search for ohlcv files
|
||||
:return: List of Tuples of (pair, timeframe)
|
||||
"""
|
||||
_tmp = [re.search(r'^([a-zA-Z_]+)\-(\d+\S+)(?=.json)', p.name)
|
||||
for p in datadir.glob(f"*.{cls._get_file_extension()}")]
|
||||
return [(match[1].replace('_', '/'), match[2]) for match in _tmp
|
||||
if match and len(match.groups()) > 1]
|
||||
|
||||
@classmethod
|
||||
def ohlcv_get_pairs(cls, datadir: Path, timeframe: str) -> List[str]:
|
||||
"""
|
||||
@ -113,24 +130,26 @@ class JsonDataHandler(IDataHandler):
|
||||
# Check if regex found something and only return these results to avoid exceptions.
|
||||
return [match[0].replace('_', '/') for match in _tmp if match]
|
||||
|
||||
def trades_store(self, pair: str, data: List[Dict]) -> None:
|
||||
def trades_store(self, pair: str, data: TradeList) -> None:
|
||||
"""
|
||||
Store trades data (list of Dicts) to file
|
||||
:param pair: Pair - used for filename
|
||||
:param data: List of Dicts containing trade data
|
||||
:param data: List of Lists containing trade data,
|
||||
column sequence as in DEFAULT_TRADES_COLUMNS
|
||||
"""
|
||||
filename = self._pair_trades_filename(self._datadir, pair)
|
||||
misc.file_dump_json(filename, data, is_zip=self._use_zip)
|
||||
|
||||
def trades_append(self, pair: str, data: List[Dict]):
|
||||
def trades_append(self, pair: str, data: TradeList):
|
||||
"""
|
||||
Append data to existing files
|
||||
:param pair: Pair - used for filename
|
||||
:param data: List of Dicts containing trade data
|
||||
:param data: List of Lists containing trade data,
|
||||
column sequence as in DEFAULT_TRADES_COLUMNS
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def trades_load(self, pair: str, timerange: Optional[TimeRange] = None) -> List[Dict]:
|
||||
def _trades_load(self, pair: str, timerange: Optional[TimeRange] = None) -> TradeList:
|
||||
"""
|
||||
Load a pair from file, either .json.gz or .json
|
||||
# TODO: respect timerange ...
|
||||
@ -140,9 +159,15 @@ class JsonDataHandler(IDataHandler):
|
||||
"""
|
||||
filename = self._pair_trades_filename(self._datadir, pair)
|
||||
tradesdata = misc.file_load_json(filename)
|
||||
|
||||
if not tradesdata:
|
||||
return []
|
||||
|
||||
if isinstance(tradesdata[0], dict):
|
||||
# Convert trades dict to list
|
||||
logger.info("Old trades format detected - converting")
|
||||
tradesdata = trades_dict_to_list(tradesdata)
|
||||
pass
|
||||
return tradesdata
|
||||
|
||||
def trades_purge(self, pair: str) -> bool:
|
||||
|
@ -57,9 +57,7 @@ class Edge:
|
||||
if self.config['stake_amount'] != UNLIMITED_STAKE_AMOUNT:
|
||||
raise OperationalException('Edge works only with unlimited stake amount')
|
||||
|
||||
# Deprecated capital_available_percentage. Will use tradable_balance_ratio in the future.
|
||||
self._capital_percentage: float = self.edge_config.get(
|
||||
'capital_available_percentage', self.config['tradable_balance_ratio'])
|
||||
self._capital_ratio: float = self.config['tradable_balance_ratio']
|
||||
self._allowed_risk: float = self.edge_config.get('allowed_risk')
|
||||
self._since_number_of_days: int = self.edge_config.get('calculate_since_number_of_days', 14)
|
||||
self._last_updated: int = 0 # Timestamp of pairs last updated time
|
||||
@ -100,14 +98,14 @@ class Edge:
|
||||
datadir=self.config['datadir'],
|
||||
pairs=pairs,
|
||||
exchange=self.exchange,
|
||||
timeframe=self.strategy.ticker_interval,
|
||||
timeframe=self.strategy.timeframe,
|
||||
timerange=self._timerange,
|
||||
)
|
||||
|
||||
data = load_data(
|
||||
datadir=self.config['datadir'],
|
||||
pairs=pairs,
|
||||
timeframe=self.strategy.ticker_interval,
|
||||
timeframe=self.strategy.timeframe,
|
||||
timerange=self._timerange,
|
||||
startup_candles=self.strategy.startup_candle_count,
|
||||
data_format=self.config.get('dataformat_ohlcv', 'json'),
|
||||
@ -157,7 +155,7 @@ class Edge:
|
||||
def stake_amount(self, pair: str, free_capital: float,
|
||||
total_capital: float, capital_in_trade: float) -> float:
|
||||
stoploss = self.stoploss(pair)
|
||||
available_capital = (total_capital + capital_in_trade) * self._capital_percentage
|
||||
available_capital = (total_capital + capital_in_trade) * self._capital_ratio
|
||||
allowed_capital_at_risk = available_capital * self._allowed_risk
|
||||
max_position_size = abs(allowed_capital_at_risk / stoploss)
|
||||
position_size = min(max_position_size, free_capital)
|
||||
@ -238,20 +236,9 @@ class Edge:
|
||||
:param result Dataframe
|
||||
:return: result Dataframe
|
||||
"""
|
||||
|
||||
# stake and fees
|
||||
# stake = 0.015
|
||||
# 0.05% is 0.0005
|
||||
# fee = 0.001
|
||||
|
||||
# we set stake amount to an arbitrary amount.
|
||||
# as it doesn't change the calculation.
|
||||
# all returned values are relative.
|
||||
# they are defined as ratios.
|
||||
# We set stake amount to an arbitrary amount, as it doesn't change the calculation.
|
||||
# All returned values are relative, they are defined as ratios.
|
||||
stake = 0.015
|
||||
fee = self.fee
|
||||
open_fee = fee / 2
|
||||
close_fee = fee / 2
|
||||
|
||||
result['trade_duration'] = result['close_time'] - result['open_time']
|
||||
|
||||
@ -262,12 +249,12 @@ class Edge:
|
||||
|
||||
# Buy Price
|
||||
result['buy_vol'] = stake / result['open_rate'] # How many target are we buying
|
||||
result['buy_fee'] = stake * open_fee
|
||||
result['buy_fee'] = stake * self.fee
|
||||
result['buy_spend'] = stake + result['buy_fee'] # How much we're spending
|
||||
|
||||
# Sell price
|
||||
result['sell_sum'] = result['buy_vol'] * result['close_rate']
|
||||
result['sell_fee'] = result['sell_sum'] * close_fee
|
||||
result['sell_fee'] = result['sell_sum'] * self.fee
|
||||
result['sell_take'] = result['sell_sum'] - result['sell_fee']
|
||||
|
||||
# profit_ratio
|
||||
@ -294,8 +281,8 @@ class Edge:
|
||||
#
|
||||
# Removing Pumps
|
||||
if self.edge_config.get('remove_pumps', False):
|
||||
results = results.groupby(['pair', 'stoploss']).apply(
|
||||
lambda x: x[x['profit_abs'] < 2 * x['profit_abs'].std() + x['profit_abs'].mean()])
|
||||
results = results[results['profit_abs'] < 2 * results['profit_abs'].std()
|
||||
+ results['profit_abs'].mean()]
|
||||
##########################################################################
|
||||
|
||||
# Removing trades having a duration more than X minutes (set in config)
|
||||
|
@ -21,6 +21,14 @@ class DependencyException(FreqtradeException):
|
||||
"""
|
||||
|
||||
|
||||
class PricingError(DependencyException):
|
||||
"""
|
||||
Subclass of DependencyException.
|
||||
Indicates that the price could not be determined.
|
||||
Implicitly a buy / sell operation.
|
||||
"""
|
||||
|
||||
|
||||
class InvalidOrderException(FreqtradeException):
|
||||
"""
|
||||
This is returned when the order is not valid. Example:
|
||||
@ -29,9 +37,37 @@ class InvalidOrderException(FreqtradeException):
|
||||
"""
|
||||
|
||||
|
||||
class TemporaryError(FreqtradeException):
|
||||
class RetryableOrderError(InvalidOrderException):
|
||||
"""
|
||||
This is returned when the order is not found.
|
||||
This Error will be repeated with increasing backof (in line with DDosError).
|
||||
"""
|
||||
|
||||
|
||||
class ExchangeError(DependencyException):
|
||||
"""
|
||||
Error raised out of the exchange.
|
||||
Has multiple Errors to determine the appropriate error.
|
||||
"""
|
||||
|
||||
|
||||
class TemporaryError(ExchangeError):
|
||||
"""
|
||||
Temporary network or exchange related error.
|
||||
This could happen when an exchange is congested, unavailable, or the user
|
||||
has networking problems. Usually resolves itself after a time.
|
||||
"""
|
||||
|
||||
|
||||
class DDosProtection(TemporaryError):
|
||||
"""
|
||||
Temporary error caused by DDOS protection.
|
||||
Bot will wait for a second and then retry.
|
||||
"""
|
||||
|
||||
|
||||
class StrategyError(FreqtradeException):
|
||||
"""
|
||||
Errors with custom user-code deteced.
|
||||
Usually caused by errors in the strategy.
|
||||
"""
|
||||
|
@ -4,9 +4,11 @@ from typing import Dict
|
||||
|
||||
import ccxt
|
||||
|
||||
from freqtrade.exceptions import (DependencyException, InvalidOrderException,
|
||||
OperationalException, TemporaryError)
|
||||
from freqtrade.exceptions import (DDosProtection, ExchangeError,
|
||||
InvalidOrderException, OperationalException,
|
||||
TemporaryError)
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.exchange.common import retrier
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -20,7 +22,7 @@ class Binance(Exchange):
|
||||
"trades_pagination_arg": "fromId",
|
||||
}
|
||||
|
||||
def get_order_book(self, pair: str, limit: int = 100) -> dict:
|
||||
def fetch_l2_order_book(self, pair: str, limit: int = 100) -> dict:
|
||||
"""
|
||||
get order book level 2 from exchange
|
||||
|
||||
@ -30,7 +32,7 @@ class Binance(Exchange):
|
||||
# get next-higher step in the limit_range list
|
||||
limit = min(list(filter(lambda x: limit <= x, limit_range)))
|
||||
|
||||
return super().get_order_book(pair, limit)
|
||||
return super().fetch_l2_order_book(pair, limit)
|
||||
|
||||
def stoploss_adjust(self, stop_loss: float, order: Dict) -> bool:
|
||||
"""
|
||||
@ -39,6 +41,7 @@ class Binance(Exchange):
|
||||
"""
|
||||
return order['type'] == 'stop_loss_limit' and stop_loss > float(order['info']['stopPrice'])
|
||||
|
||||
@retrier(retries=0)
|
||||
def stoploss(self, pair: str, amount: float, stop_price: float, order_types: Dict) -> Dict:
|
||||
"""
|
||||
creates a stoploss limit order.
|
||||
@ -72,12 +75,12 @@ class Binance(Exchange):
|
||||
rate = self.price_to_precision(pair, rate)
|
||||
|
||||
order = self._api.create_order(symbol=pair, type=ordertype, side='sell',
|
||||
amount=amount, price=stop_price, params=params)
|
||||
amount=amount, price=rate, params=params)
|
||||
logger.info('stoploss limit order added for %s. '
|
||||
'stop price: %s. limit: %s', pair, stop_price, rate)
|
||||
return order
|
||||
except ccxt.InsufficientFunds as e:
|
||||
raise DependencyException(
|
||||
raise ExchangeError(
|
||||
f'Insufficient funds to create {ordertype} sell order on market {pair}. '
|
||||
f'Tried to sell amount {amount} at rate {rate}. '
|
||||
f'Message: {e}') from e
|
||||
@ -88,6 +91,8 @@ class Binance(Exchange):
|
||||
f'Could not create {ordertype} sell order on market {pair}. '
|
||||
f'Tried to sell amount {amount} at rate {rate}. '
|
||||
f'Message: {e}') from e
|
||||
except ccxt.DDoSProtection as e:
|
||||
raise DDosProtection(e) from e
|
||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(
|
||||
f'Could not place sell order due to {e.__class__.__name__}. Message: {e}') from e
|
||||
|
@ -1,6 +1,10 @@
|
||||
import asyncio
|
||||
import logging
|
||||
import time
|
||||
from functools import wraps
|
||||
|
||||
from freqtrade.exceptions import DependencyException, TemporaryError
|
||||
from freqtrade.exceptions import (DDosProtection, RetryableOrderError,
|
||||
TemporaryError)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -88,17 +92,28 @@ MAP_EXCHANGE_CHILDCLASS = {
|
||||
}
|
||||
|
||||
|
||||
def calculate_backoff(retrycount, max_retries):
|
||||
"""
|
||||
Calculate backoff
|
||||
"""
|
||||
return (max_retries - retrycount) ** 2 + 1
|
||||
|
||||
|
||||
def retrier_async(f):
|
||||
async def wrapper(*args, **kwargs):
|
||||
count = kwargs.pop('count', API_RETRY_COUNT)
|
||||
try:
|
||||
return await f(*args, **kwargs)
|
||||
except (TemporaryError, DependencyException) as ex:
|
||||
except TemporaryError as ex:
|
||||
logger.warning('%s() returned exception: "%s"', f.__name__, ex)
|
||||
if count > 0:
|
||||
logger.warning('retrying %s() still for %s times', f.__name__, count)
|
||||
count -= 1
|
||||
kwargs.update({'count': count})
|
||||
logger.warning('retrying %s() still for %s times', f.__name__, count)
|
||||
if isinstance(ex, DDosProtection):
|
||||
backoff_delay = calculate_backoff(count + 1, API_RETRY_COUNT)
|
||||
logger.info(f"Applying DDosProtection backoff delay: {backoff_delay}")
|
||||
await asyncio.sleep(backoff_delay)
|
||||
return await wrapper(*args, **kwargs)
|
||||
else:
|
||||
logger.warning('Giving up retrying: %s()', f.__name__)
|
||||
@ -106,19 +121,31 @@ def retrier_async(f):
|
||||
return wrapper
|
||||
|
||||
|
||||
def retrier(f):
|
||||
def retrier(_func=None, retries=API_RETRY_COUNT):
|
||||
def decorator(f):
|
||||
@wraps(f)
|
||||
def wrapper(*args, **kwargs):
|
||||
count = kwargs.pop('count', API_RETRY_COUNT)
|
||||
count = kwargs.pop('count', retries)
|
||||
try:
|
||||
return f(*args, **kwargs)
|
||||
except (TemporaryError, DependencyException) as ex:
|
||||
except (TemporaryError, RetryableOrderError) as ex:
|
||||
logger.warning('%s() returned exception: "%s"', f.__name__, ex)
|
||||
if count > 0:
|
||||
logger.warning('retrying %s() still for %s times', f.__name__, count)
|
||||
count -= 1
|
||||
kwargs.update({'count': count})
|
||||
logger.warning('retrying %s() still for %s times', f.__name__, count)
|
||||
if isinstance(ex, DDosProtection) or isinstance(ex, RetryableOrderError):
|
||||
# increasing backoff
|
||||
backoff_delay = calculate_backoff(count + 1, retries)
|
||||
logger.info(f"Applying DDosProtection backoff delay: {backoff_delay}")
|
||||
time.sleep(backoff_delay)
|
||||
return wrapper(*args, **kwargs)
|
||||
else:
|
||||
logger.warning('Giving up retrying: %s()', f.__name__)
|
||||
raise ex
|
||||
return wrapper
|
||||
# Support both @retrier and @retrier(retries=2) syntax
|
||||
if _func is None:
|
||||
return decorator
|
||||
else:
|
||||
return decorator(_func)
|
||||
|
@ -18,12 +18,13 @@ from ccxt.base.decimal_to_precision import (ROUND_DOWN, ROUND_UP, TICK_SIZE,
|
||||
TRUNCATE, decimal_to_precision)
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.data.converter import ohlcv_to_dataframe
|
||||
from freqtrade.exceptions import (DependencyException, InvalidOrderException,
|
||||
OperationalException, TemporaryError)
|
||||
from freqtrade.constants import ListPairsWithTimeframes
|
||||
from freqtrade.data.converter import ohlcv_to_dataframe, trades_dict_to_list
|
||||
from freqtrade.exceptions import (DDosProtection, ExchangeError,
|
||||
InvalidOrderException, OperationalException,
|
||||
RetryableOrderError, TemporaryError)
|
||||
from freqtrade.exchange.common import BAD_EXCHANGES, retrier, retrier_async
|
||||
from freqtrade.misc import deep_merge_dicts
|
||||
|
||||
from freqtrade.misc import deep_merge_dicts, safe_value_fallback
|
||||
|
||||
CcxtModuleType = Any
|
||||
|
||||
@ -79,7 +80,7 @@ class Exchange:
|
||||
|
||||
if config['dry_run']:
|
||||
logger.info('Instance is running with dry_run enabled')
|
||||
|
||||
logger.info(f"Using CCXT {ccxt.__version__}")
|
||||
exchange_config = config['exchange']
|
||||
|
||||
# Deep merge ft_has with default ft_has options
|
||||
@ -98,12 +99,14 @@ class Exchange:
|
||||
|
||||
# Initialize ccxt objects
|
||||
ccxt_config = self._ccxt_config.copy()
|
||||
ccxt_config = deep_merge_dicts(exchange_config.get('ccxt_config', {}),
|
||||
ccxt_config)
|
||||
self._api = self._init_ccxt(
|
||||
exchange_config, ccxt_kwargs=ccxt_config)
|
||||
ccxt_config = deep_merge_dicts(exchange_config.get('ccxt_config', {}), ccxt_config)
|
||||
ccxt_config = deep_merge_dicts(exchange_config.get('ccxt_sync_config', {}), ccxt_config)
|
||||
|
||||
self._api = self._init_ccxt(exchange_config, ccxt_kwargs=ccxt_config)
|
||||
|
||||
ccxt_async_config = self._ccxt_config.copy()
|
||||
ccxt_async_config = deep_merge_dicts(exchange_config.get('ccxt_config', {}),
|
||||
ccxt_async_config)
|
||||
ccxt_async_config = deep_merge_dicts(exchange_config.get('ccxt_async_config', {}),
|
||||
ccxt_async_config)
|
||||
self._api_async = self._init_ccxt(
|
||||
@ -113,7 +116,7 @@ class Exchange:
|
||||
|
||||
if validate:
|
||||
# Check if timeframe is available
|
||||
self.validate_timeframes(config.get('ticker_interval'))
|
||||
self.validate_timeframes(config.get('timeframe'))
|
||||
|
||||
# Initial markets load
|
||||
self._load_markets()
|
||||
@ -184,11 +187,16 @@ class Exchange:
|
||||
def timeframes(self) -> List[str]:
|
||||
return list((self._api.timeframes or {}).keys())
|
||||
|
||||
@property
|
||||
def ohlcv_candle_limit(self) -> int:
|
||||
"""exchange ohlcv candle limit"""
|
||||
return int(self._ohlcv_candle_limit)
|
||||
|
||||
@property
|
||||
def markets(self) -> Dict:
|
||||
"""exchange ccxt markets"""
|
||||
if not self._api.markets:
|
||||
logger.warning("Markets were not loaded. Loading them now..")
|
||||
logger.info("Markets were not loaded. Loading them now..")
|
||||
self._load_markets()
|
||||
return self._api.markets
|
||||
|
||||
@ -250,8 +258,8 @@ class Exchange:
|
||||
api.urls['api'] = api.urls['test']
|
||||
logger.info("Enabled Sandbox API on %s", name)
|
||||
else:
|
||||
logger.warning(name, "No Sandbox URL in CCXT, exiting. "
|
||||
"Please check your config.json")
|
||||
logger.warning(
|
||||
f"No Sandbox URL in CCXT for {name}, exiting. Please check your config.json")
|
||||
raise OperationalException(f'Exchange {name} does not provide a sandbox api')
|
||||
|
||||
def _load_async_markets(self, reload: bool = False) -> None:
|
||||
@ -273,8 +281,8 @@ class Exchange:
|
||||
except ccxt.BaseError as e:
|
||||
logger.warning('Unable to initialize markets. Reason: %s', e)
|
||||
|
||||
def _reload_markets(self) -> None:
|
||||
"""Reload markets both sync and async, if refresh interval has passed"""
|
||||
def reload_markets(self) -> None:
|
||||
"""Reload markets both sync and async if refresh interval has passed """
|
||||
# Check whether markets have to be reloaded
|
||||
if (self._last_markets_refresh > 0) and (
|
||||
self._last_markets_refresh + self.markets_refresh_interval
|
||||
@ -283,6 +291,8 @@ class Exchange:
|
||||
logger.debug("Performing scheduled market reload..")
|
||||
try:
|
||||
self._api.load_markets(reload=True)
|
||||
# Also reload async markets to avoid issues with newly listed pairs
|
||||
self._load_async_markets(reload=True)
|
||||
self._last_markets_refresh = arrow.utcnow().timestamp
|
||||
except ccxt.BaseError:
|
||||
logger.exception("Could not reload markets.")
|
||||
@ -347,7 +357,7 @@ class Exchange:
|
||||
for pair in [f"{curr_1}/{curr_2}", f"{curr_2}/{curr_1}"]:
|
||||
if pair in self.markets and self.markets[pair].get('active'):
|
||||
return pair
|
||||
raise DependencyException(f"Could not combine {curr_1} and {curr_2} to get a valid pair.")
|
||||
raise ExchangeError(f"Could not combine {curr_1} and {curr_2} to get a valid pair.")
|
||||
|
||||
def validate_timeframes(self, timeframe: Optional[str]) -> None:
|
||||
"""
|
||||
@ -367,8 +377,7 @@ class Exchange:
|
||||
f"Invalid timeframe '{timeframe}'. This exchange supports: {self.timeframes}")
|
||||
|
||||
if timeframe and timeframe_to_minutes(timeframe) < 1:
|
||||
raise OperationalException(
|
||||
f"Timeframes < 1m are currently not supported by Freqtrade.")
|
||||
raise OperationalException("Timeframes < 1m are currently not supported by Freqtrade.")
|
||||
|
||||
def validate_ordertypes(self, order_types: Dict) -> None:
|
||||
"""
|
||||
@ -452,6 +461,17 @@ class Exchange:
|
||||
price = ceil(big_price) / pow(10, symbol_prec)
|
||||
return price
|
||||
|
||||
def price_get_one_pip(self, pair: str, price: float) -> float:
|
||||
"""
|
||||
Get's the "1 pip" value for this pair.
|
||||
Used in PriceFilter to calculate the 1pip movements.
|
||||
"""
|
||||
precision = self.markets[pair]['precision']['price']
|
||||
if self.precisionMode == TICK_SIZE:
|
||||
return precision
|
||||
else:
|
||||
return 1 / pow(10, precision)
|
||||
|
||||
def dry_run_order(self, pair: str, ordertype: str, side: str, amount: float,
|
||||
rate: float, params: Dict = {}) -> Dict[str, Any]:
|
||||
order_id = f'dry_run_{side}_{randint(0, 10**6)}'
|
||||
@ -461,26 +481,31 @@ class Exchange:
|
||||
'pair': pair,
|
||||
'price': rate,
|
||||
'amount': _amount,
|
||||
"cost": _amount * rate,
|
||||
'cost': _amount * rate,
|
||||
'type': ordertype,
|
||||
'side': side,
|
||||
'remaining': _amount,
|
||||
'datetime': arrow.utcnow().isoformat(),
|
||||
'status': "closed" if ordertype == "market" else "open",
|
||||
'fee': None,
|
||||
"info": {}
|
||||
'info': {}
|
||||
}
|
||||
self._store_dry_order(dry_order)
|
||||
self._store_dry_order(dry_order, pair)
|
||||
# Copy order and close it - so the returned order is open unless it's a market order
|
||||
return dry_order
|
||||
|
||||
def _store_dry_order(self, dry_order: Dict) -> None:
|
||||
def _store_dry_order(self, dry_order: Dict, pair: str) -> None:
|
||||
closed_order = dry_order.copy()
|
||||
if closed_order["type"] in ["market", "limit"]:
|
||||
if closed_order['type'] in ["market", "limit"]:
|
||||
closed_order.update({
|
||||
"status": "closed",
|
||||
"filled": closed_order["amount"],
|
||||
"remaining": 0
|
||||
'status': 'closed',
|
||||
'filled': closed_order['amount'],
|
||||
'remaining': 0,
|
||||
'fee': {
|
||||
'currency': self.get_pair_quote_currency(pair),
|
||||
'cost': dry_order['cost'] * self.get_fee(pair),
|
||||
'rate': self.get_fee(pair)
|
||||
}
|
||||
})
|
||||
if closed_order["type"] in ["stop_loss_limit"]:
|
||||
closed_order["info"].update({"stopPrice": closed_order["price"]})
|
||||
@ -499,15 +524,17 @@ class Exchange:
|
||||
amount, rate_for_order, params)
|
||||
|
||||
except ccxt.InsufficientFunds as e:
|
||||
raise DependencyException(
|
||||
raise ExchangeError(
|
||||
f'Insufficient funds to create {ordertype} {side} order on market {pair}. '
|
||||
f'Tried to {side} amount {amount} at rate {rate}.'
|
||||
f'Message: {e}') from e
|
||||
except ccxt.InvalidOrder as e:
|
||||
raise DependencyException(
|
||||
raise ExchangeError(
|
||||
f'Could not create {ordertype} {side} order on market {pair}. '
|
||||
f'Tried to {side} amount {amount} at rate {rate}. '
|
||||
f'Message: {e}') from e
|
||||
except ccxt.DDoSProtection as e:
|
||||
raise DDosProtection(e) from e
|
||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(
|
||||
f'Could not place {side} order due to {e.__class__.__name__}. Message: {e}') from e
|
||||
@ -587,6 +614,8 @@ class Exchange:
|
||||
balances.pop("used", None)
|
||||
|
||||
return balances
|
||||
except ccxt.DDoSProtection as e:
|
||||
raise DDosProtection(e) from e
|
||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(
|
||||
f'Could not get balance due to {e.__class__.__name__}. Message: {e}') from e
|
||||
@ -601,6 +630,8 @@ class Exchange:
|
||||
raise OperationalException(
|
||||
f'Exchange {self._api.name} does not support fetching tickers in batch. '
|
||||
f'Message: {e}') from e
|
||||
except ccxt.DDoSProtection as e:
|
||||
raise DDosProtection(e) from e
|
||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(
|
||||
f'Could not load tickers due to {e.__class__.__name__}. Message: {e}') from e
|
||||
@ -611,9 +642,11 @@ class Exchange:
|
||||
def fetch_ticker(self, pair: str) -> dict:
|
||||
try:
|
||||
if pair not in self._api.markets or not self._api.markets[pair].get('active'):
|
||||
raise DependencyException(f"Pair {pair} not available")
|
||||
raise ExchangeError(f"Pair {pair} not available")
|
||||
data = self._api.fetch_ticker(pair)
|
||||
return data
|
||||
except ccxt.DDoSProtection as e:
|
||||
raise DDosProtection(e) from e
|
||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(
|
||||
f'Could not load ticker due to {e.__class__.__name__}. Message: {e}') from e
|
||||
@ -661,7 +694,7 @@ class Exchange:
|
||||
logger.info("Downloaded data for %s with length %s.", pair, len(data))
|
||||
return data
|
||||
|
||||
def refresh_latest_ohlcv(self, pair_list: List[Tuple[str, str]]) -> List[Tuple[str, List]]:
|
||||
def refresh_latest_ohlcv(self, pair_list: ListPairsWithTimeframes) -> List[Tuple[str, List]]:
|
||||
"""
|
||||
Refresh in-memory OHLCV asynchronously and set `_klines` with the result
|
||||
Loops asynchronously over pair_list and downloads all pairs async (semi-parallel).
|
||||
@ -747,6 +780,8 @@ class Exchange:
|
||||
raise OperationalException(
|
||||
f'Exchange {self._api.name} does not support fetching historical '
|
||||
f'candle (OHLCV) data. Message: {e}') from e
|
||||
except ccxt.DDoSProtection as e:
|
||||
raise DDosProtection(e) from e
|
||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(f'Could not fetch historical candle (OHLCV) data '
|
||||
f'for pair {pair} due to {e.__class__.__name__}. '
|
||||
@ -758,7 +793,7 @@ class Exchange:
|
||||
@retrier_async
|
||||
async def _async_fetch_trades(self, pair: str,
|
||||
since: Optional[int] = None,
|
||||
params: Optional[dict] = None) -> List[Dict]:
|
||||
params: Optional[dict] = None) -> List[List]:
|
||||
"""
|
||||
Asyncronously gets trade history using fetch_trades.
|
||||
Handles exchange errors, does one call to the exchange.
|
||||
@ -778,11 +813,13 @@ class Exchange:
|
||||
'(' + arrow.get(since // 1000).isoformat() + ') ' if since is not None else ''
|
||||
)
|
||||
trades = await self._api_async.fetch_trades(pair, since=since, limit=1000)
|
||||
return trades
|
||||
return trades_dict_to_list(trades)
|
||||
except ccxt.NotSupported as e:
|
||||
raise OperationalException(
|
||||
f'Exchange {self._api.name} does not support fetching historical trade data.'
|
||||
f'Message: {e}') from e
|
||||
except ccxt.DDoSProtection as e:
|
||||
raise DDosProtection(e) from e
|
||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(f'Could not load trade history due to {e.__class__.__name__}. '
|
||||
f'Message: {e}') from e
|
||||
@ -792,7 +829,7 @@ class Exchange:
|
||||
async def _async_get_trade_history_id(self, pair: str,
|
||||
until: int,
|
||||
since: Optional[int] = None,
|
||||
from_id: Optional[str] = None) -> Tuple[str, List[Dict]]:
|
||||
from_id: Optional[str] = None) -> Tuple[str, List[List]]:
|
||||
"""
|
||||
Asyncronously gets trade history using fetch_trades
|
||||
use this when exchange uses id-based iteration (check `self._trades_pagination`)
|
||||
@ -803,7 +840,7 @@ class Exchange:
|
||||
returns tuple: (pair, trades-list)
|
||||
"""
|
||||
|
||||
trades: List[Dict] = []
|
||||
trades: List[List] = []
|
||||
|
||||
if not from_id:
|
||||
# Fetch first elements using timebased method to get an ID to paginate on
|
||||
@ -812,7 +849,9 @@ class Exchange:
|
||||
# e.g. Binance returns the "last 1000" candles within a 1h time interval
|
||||
# - so we will miss the first trades.
|
||||
t = await self._async_fetch_trades(pair, since=since)
|
||||
from_id = t[-1]['id']
|
||||
# DEFAULT_TRADES_COLUMNS: 0 -> timestamp
|
||||
# DEFAULT_TRADES_COLUMNS: 1 -> id
|
||||
from_id = t[-1][1]
|
||||
trades.extend(t[:-1])
|
||||
while True:
|
||||
t = await self._async_fetch_trades(pair,
|
||||
@ -820,21 +859,21 @@ class Exchange:
|
||||
if len(t):
|
||||
# Skip last id since its the key for the next call
|
||||
trades.extend(t[:-1])
|
||||
if from_id == t[-1]['id'] or t[-1]['timestamp'] > until:
|
||||
if from_id == t[-1][1] or t[-1][0] > until:
|
||||
logger.debug(f"Stopping because from_id did not change. "
|
||||
f"Reached {t[-1]['timestamp']} > {until}")
|
||||
f"Reached {t[-1][0]} > {until}")
|
||||
# Reached the end of the defined-download period - add last trade as well.
|
||||
trades.extend(t[-1:])
|
||||
break
|
||||
|
||||
from_id = t[-1]['id']
|
||||
from_id = t[-1][1]
|
||||
else:
|
||||
break
|
||||
|
||||
return (pair, trades)
|
||||
|
||||
async def _async_get_trade_history_time(self, pair: str, until: int,
|
||||
since: Optional[int] = None) -> Tuple[str, List]:
|
||||
since: Optional[int] = None) -> Tuple[str, List[List]]:
|
||||
"""
|
||||
Asyncronously gets trade history using fetch_trades,
|
||||
when the exchange uses time-based iteration (check `self._trades_pagination`)
|
||||
@ -844,16 +883,18 @@ class Exchange:
|
||||
returns tuple: (pair, trades-list)
|
||||
"""
|
||||
|
||||
trades: List[Dict] = []
|
||||
trades: List[List] = []
|
||||
# DEFAULT_TRADES_COLUMNS: 0 -> timestamp
|
||||
# DEFAULT_TRADES_COLUMNS: 1 -> id
|
||||
while True:
|
||||
t = await self._async_fetch_trades(pair, since=since)
|
||||
if len(t):
|
||||
since = t[-1]['timestamp']
|
||||
since = t[-1][1]
|
||||
trades.extend(t)
|
||||
# Reached the end of the defined-download period
|
||||
if until and t[-1]['timestamp'] > until:
|
||||
if until and t[-1][0] > until:
|
||||
logger.debug(
|
||||
f"Stopping because until was reached. {t[-1]['timestamp']} > {until}")
|
||||
f"Stopping because until was reached. {t[-1][0]} > {until}")
|
||||
break
|
||||
else:
|
||||
break
|
||||
@ -863,19 +904,24 @@ class Exchange:
|
||||
async def _async_get_trade_history(self, pair: str,
|
||||
since: Optional[int] = None,
|
||||
until: Optional[int] = None,
|
||||
from_id: Optional[str] = None) -> Tuple[str, List[Dict]]:
|
||||
from_id: Optional[str] = None) -> Tuple[str, List[List]]:
|
||||
"""
|
||||
Async wrapper handling downloading trades using either time or id based methods.
|
||||
"""
|
||||
|
||||
logger.debug(f"_async_get_trade_history(), pair: {pair}, "
|
||||
f"since: {since}, until: {until}, from_id: {from_id}")
|
||||
|
||||
if until is None:
|
||||
until = ccxt.Exchange.milliseconds()
|
||||
logger.debug(f"Exchange milliseconds: {until}")
|
||||
|
||||
if self._trades_pagination == 'time':
|
||||
return await self._async_get_trade_history_time(
|
||||
pair=pair, since=since,
|
||||
until=until or ccxt.Exchange.milliseconds())
|
||||
pair=pair, since=since, until=until)
|
||||
elif self._trades_pagination == 'id':
|
||||
return await self._async_get_trade_history_id(
|
||||
pair=pair, since=since,
|
||||
until=until or ccxt.Exchange.milliseconds(), from_id=from_id
|
||||
pair=pair, since=since, until=until, from_id=from_id
|
||||
)
|
||||
else:
|
||||
raise OperationalException(f"Exchange {self.name} does use neither time, "
|
||||
@ -902,24 +948,68 @@ class Exchange:
|
||||
self._async_get_trade_history(pair=pair, since=since,
|
||||
until=until, from_id=from_id))
|
||||
|
||||
def check_order_canceled_empty(self, order: Dict) -> bool:
|
||||
"""
|
||||
Verify if an order has been cancelled without being partially filled
|
||||
:param order: Order dict as returned from fetch_order()
|
||||
:return: True if order has been cancelled without being filled, False otherwise.
|
||||
"""
|
||||
return order.get('status') in ('closed', 'canceled') and order.get('filled') == 0.0
|
||||
|
||||
@retrier
|
||||
def cancel_order(self, order_id: str, pair: str) -> None:
|
||||
def cancel_order(self, order_id: str, pair: str) -> Dict:
|
||||
if self._config['dry_run']:
|
||||
return
|
||||
return {}
|
||||
|
||||
try:
|
||||
return self._api.cancel_order(order_id, pair)
|
||||
except ccxt.InvalidOrder as e:
|
||||
raise InvalidOrderException(
|
||||
f'Could not cancel order. Message: {e}') from e
|
||||
except ccxt.DDoSProtection as e:
|
||||
raise DDosProtection(e) from e
|
||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(
|
||||
f'Could not cancel order due to {e.__class__.__name__}. Message: {e}') from e
|
||||
except ccxt.BaseError as e:
|
||||
raise OperationalException(e) from e
|
||||
|
||||
@retrier
|
||||
def get_order(self, order_id: str, pair: str) -> Dict:
|
||||
# Assign method to fetch_stoploss_order to allow easy overriding in other classes
|
||||
cancel_stoploss_order = cancel_order
|
||||
|
||||
def is_cancel_order_result_suitable(self, corder) -> bool:
|
||||
if not isinstance(corder, dict):
|
||||
return False
|
||||
|
||||
required = ('fee', 'status', 'amount')
|
||||
return all(k in corder for k in required)
|
||||
|
||||
def cancel_order_with_result(self, order_id: str, pair: str, amount: float) -> Dict:
|
||||
"""
|
||||
Cancel order returning a result.
|
||||
Creates a fake result if cancel order returns a non-usable result
|
||||
and fetch_order does not work (certain exchanges don't return cancelled orders)
|
||||
:param order_id: Orderid to cancel
|
||||
:param pair: Pair corresponding to order_id
|
||||
:param amount: Amount to use for fake response
|
||||
:return: Result from either cancel_order if usable, or fetch_order
|
||||
"""
|
||||
try:
|
||||
corder = self.cancel_order(order_id, pair)
|
||||
if self.is_cancel_order_result_suitable(corder):
|
||||
return corder
|
||||
except InvalidOrderException:
|
||||
logger.warning(f"Could not cancel order {order_id} for {pair}.")
|
||||
try:
|
||||
order = self.fetch_order(order_id, pair)
|
||||
except InvalidOrderException:
|
||||
logger.warning(f"Could not fetch cancelled order {order_id}.")
|
||||
order = {'fee': {}, 'status': 'canceled', 'amount': amount, 'info': {}}
|
||||
|
||||
return order
|
||||
|
||||
@retrier(retries=5)
|
||||
def fetch_order(self, order_id: str, pair: str) -> Dict:
|
||||
if self._config['dry_run']:
|
||||
try:
|
||||
order = self._dry_run_open_orders[order_id]
|
||||
@ -930,17 +1020,25 @@ class Exchange:
|
||||
f'Tried to get an invalid dry-run-order (id: {order_id}). Message: {e}') from e
|
||||
try:
|
||||
return self._api.fetch_order(order_id, pair)
|
||||
except ccxt.OrderNotFound as e:
|
||||
raise RetryableOrderError(
|
||||
f'Order not found (pair: {pair} id: {order_id}). Message: {e}') from e
|
||||
except ccxt.InvalidOrder as e:
|
||||
raise InvalidOrderException(
|
||||
f'Tried to get an invalid order (id: {order_id}). Message: {e}') from e
|
||||
f'Tried to get an invalid order (pair: {pair} id: {order_id}). Message: {e}') from e
|
||||
except ccxt.DDoSProtection as e:
|
||||
raise DDosProtection(e) from e
|
||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(
|
||||
f'Could not get order due to {e.__class__.__name__}. Message: {e}') from e
|
||||
except ccxt.BaseError as e:
|
||||
raise OperationalException(e) from e
|
||||
|
||||
# Assign method to fetch_stoploss_order to allow easy overriding in other classes
|
||||
fetch_stoploss_order = fetch_order
|
||||
|
||||
@retrier
|
||||
def get_order_book(self, pair: str, limit: int = 100) -> dict:
|
||||
def fetch_l2_order_book(self, pair: str, limit: int = 100) -> dict:
|
||||
"""
|
||||
get order book level 2 from exchange
|
||||
|
||||
@ -954,6 +1052,8 @@ class Exchange:
|
||||
raise OperationalException(
|
||||
f'Exchange {self._api.name} does not support fetching order book.'
|
||||
f'Message: {e}') from e
|
||||
except ccxt.DDoSProtection as e:
|
||||
raise DDosProtection(e) from e
|
||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(
|
||||
f'Could not get order book due to {e.__class__.__name__}. Message: {e}') from e
|
||||
@ -990,10 +1090,11 @@ class Exchange:
|
||||
matched_trades = [trade for trade in my_trades if trade['order'] == order_id]
|
||||
|
||||
return matched_trades
|
||||
|
||||
except ccxt.NetworkError as e:
|
||||
except ccxt.DDoSProtection as e:
|
||||
raise DDosProtection(e) from e
|
||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(
|
||||
f'Could not get trades due to networking error. Message: {e}') from e
|
||||
f'Could not get trades due to {e.__class__.__name__}. Message: {e}') from e
|
||||
except ccxt.BaseError as e:
|
||||
raise OperationalException(e) from e
|
||||
|
||||
@ -1007,12 +1108,72 @@ class Exchange:
|
||||
|
||||
return self._api.calculate_fee(symbol=symbol, type=type, side=side, amount=amount,
|
||||
price=price, takerOrMaker=taker_or_maker)['rate']
|
||||
except ccxt.DDoSProtection as e:
|
||||
raise DDosProtection(e) from e
|
||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(
|
||||
f'Could not get fee info due to {e.__class__.__name__}. Message: {e}') from e
|
||||
except ccxt.BaseError as e:
|
||||
raise OperationalException(e) from e
|
||||
|
||||
@staticmethod
|
||||
def order_has_fee(order: Dict) -> bool:
|
||||
"""
|
||||
Verifies if the passed in order dict has the needed keys to extract fees,
|
||||
and that these keys (currency, cost) are not empty.
|
||||
:param order: Order or trade (one trade) dict
|
||||
:return: True if the fee substructure contains currency and cost, false otherwise
|
||||
"""
|
||||
if not isinstance(order, dict):
|
||||
return False
|
||||
return ('fee' in order and order['fee'] is not None
|
||||
and (order['fee'].keys() >= {'currency', 'cost'})
|
||||
and order['fee']['currency'] is not None
|
||||
and order['fee']['cost'] is not None
|
||||
)
|
||||
|
||||
def calculate_fee_rate(self, order: Dict) -> Optional[float]:
|
||||
"""
|
||||
Calculate fee rate if it's not given by the exchange.
|
||||
:param order: Order or trade (one trade) dict
|
||||
"""
|
||||
if order['fee'].get('rate') is not None:
|
||||
return order['fee'].get('rate')
|
||||
fee_curr = order['fee']['currency']
|
||||
# Calculate fee based on order details
|
||||
if fee_curr in self.get_pair_base_currency(order['symbol']):
|
||||
# Base currency - divide by amount
|
||||
return round(
|
||||
order['fee']['cost'] / safe_value_fallback(order, order, 'filled', 'amount'), 8)
|
||||
elif fee_curr in self.get_pair_quote_currency(order['symbol']):
|
||||
# Quote currency - divide by cost
|
||||
return round(order['fee']['cost'] / order['cost'], 8) if order['cost'] else None
|
||||
else:
|
||||
# If Fee currency is a different currency
|
||||
if not order['cost']:
|
||||
# If cost is None or 0.0 -> falsy, return None
|
||||
return None
|
||||
try:
|
||||
comb = self.get_valid_pair_combination(fee_curr, self._config['stake_currency'])
|
||||
tick = self.fetch_ticker(comb)
|
||||
|
||||
fee_to_quote_rate = safe_value_fallback(tick, tick, 'last', 'ask')
|
||||
return round((order['fee']['cost'] * fee_to_quote_rate) / order['cost'], 8)
|
||||
except ExchangeError:
|
||||
return None
|
||||
|
||||
def extract_cost_curr_rate(self, order: Dict) -> Tuple[float, str, Optional[float]]:
|
||||
"""
|
||||
Extract tuple of cost, currency, rate.
|
||||
Requires order_has_fee to run first!
|
||||
:param order: Order or trade (one trade) dict
|
||||
:return: Tuple with cost, currency, rate of the given fee dict
|
||||
"""
|
||||
return (order['fee']['cost'],
|
||||
order['fee']['currency'],
|
||||
self.calculate_fee_rate(order))
|
||||
# calculate rate ? (order['fee']['cost'] / (order['amount'] * order['price']))
|
||||
|
||||
|
||||
def is_exchange_bad(exchange_name: str) -> bool:
|
||||
return exchange_name in BAD_EXCHANGES
|
||||
|
@ -2,7 +2,13 @@
|
||||
import logging
|
||||
from typing import Dict
|
||||
|
||||
import ccxt
|
||||
|
||||
from freqtrade.exceptions import (DDosProtection, ExchangeError,
|
||||
InvalidOrderException, OperationalException,
|
||||
TemporaryError)
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.exchange.common import retrier
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -10,5 +16,111 @@ logger = logging.getLogger(__name__)
|
||||
class Ftx(Exchange):
|
||||
|
||||
_ft_has: Dict = {
|
||||
"stoploss_on_exchange": True,
|
||||
"ohlcv_candle_limit": 1500,
|
||||
}
|
||||
|
||||
def stoploss_adjust(self, stop_loss: float, order: Dict) -> bool:
|
||||
"""
|
||||
Verify stop_loss against stoploss-order value (limit or price)
|
||||
Returns True if adjustment is necessary.
|
||||
"""
|
||||
return order['type'] == 'stop' and stop_loss > float(order['price'])
|
||||
|
||||
@retrier(retries=0)
|
||||
def stoploss(self, pair: str, amount: float, stop_price: float, order_types: Dict) -> Dict:
|
||||
"""
|
||||
Creates a stoploss order.
|
||||
depending on order_types.stoploss configuration, uses 'market' or limit order.
|
||||
|
||||
Limit orders are defined by having orderPrice set, otherwise a market order is used.
|
||||
"""
|
||||
limit_price_pct = order_types.get('stoploss_on_exchange_limit_ratio', 0.99)
|
||||
limit_rate = stop_price * limit_price_pct
|
||||
|
||||
ordertype = "stop"
|
||||
|
||||
stop_price = self.price_to_precision(pair, stop_price)
|
||||
|
||||
if self._config['dry_run']:
|
||||
dry_order = self.dry_run_order(
|
||||
pair, ordertype, "sell", amount, stop_price)
|
||||
return dry_order
|
||||
|
||||
try:
|
||||
params = self._params.copy()
|
||||
if order_types.get('stoploss', 'market') == 'limit':
|
||||
# set orderPrice to place limit order, otherwise it's a market order
|
||||
params['orderPrice'] = limit_rate
|
||||
|
||||
amount = self.amount_to_precision(pair, amount)
|
||||
|
||||
order = self._api.create_order(symbol=pair, type=ordertype, side='sell',
|
||||
amount=amount, price=stop_price, params=params)
|
||||
logger.info('stoploss order added for %s. '
|
||||
'stop price: %s.', pair, stop_price)
|
||||
return order
|
||||
except ccxt.InsufficientFunds as e:
|
||||
raise ExchangeError(
|
||||
f'Insufficient funds to create {ordertype} sell order on market {pair}. '
|
||||
f'Tried to create stoploss with amount {amount} at stoploss {stop_price}. '
|
||||
f'Message: {e}') from e
|
||||
except ccxt.InvalidOrder as e:
|
||||
raise InvalidOrderException(
|
||||
f'Could not create {ordertype} sell order on market {pair}. '
|
||||
f'Tried to create stoploss with amount {amount} at stoploss {stop_price}. '
|
||||
f'Message: {e}') from e
|
||||
except ccxt.DDoSProtection as e:
|
||||
raise DDosProtection(e) from e
|
||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(
|
||||
f'Could not place sell order due to {e.__class__.__name__}. Message: {e}') from e
|
||||
except ccxt.BaseError as e:
|
||||
raise OperationalException(e) from e
|
||||
|
||||
@retrier(retries=5)
|
||||
def fetch_stoploss_order(self, order_id: str, pair: str) -> Dict:
|
||||
if self._config['dry_run']:
|
||||
try:
|
||||
order = self._dry_run_open_orders[order_id]
|
||||
return order
|
||||
except KeyError as e:
|
||||
# Gracefully handle errors with dry-run orders.
|
||||
raise InvalidOrderException(
|
||||
f'Tried to get an invalid dry-run-order (id: {order_id}). Message: {e}') from e
|
||||
try:
|
||||
orders = self._api.fetch_orders(pair, None, params={'type': 'stop'})
|
||||
|
||||
order = [order for order in orders if order['id'] == order_id]
|
||||
if len(order) == 1:
|
||||
return order[0]
|
||||
else:
|
||||
raise InvalidOrderException(f"Could not get stoploss order for id {order_id}")
|
||||
|
||||
except ccxt.InvalidOrder as e:
|
||||
raise InvalidOrderException(
|
||||
f'Tried to get an invalid order (id: {order_id}). Message: {e}') from e
|
||||
except ccxt.DDoSProtection as e:
|
||||
raise DDosProtection(e) from e
|
||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(
|
||||
f'Could not get order due to {e.__class__.__name__}. Message: {e}') from e
|
||||
except ccxt.BaseError as e:
|
||||
raise OperationalException(e) from e
|
||||
|
||||
@retrier
|
||||
def cancel_stoploss_order(self, order_id: str, pair: str) -> Dict:
|
||||
if self._config['dry_run']:
|
||||
return {}
|
||||
try:
|
||||
return self._api.cancel_order(order_id, pair, params={'type': 'stop'})
|
||||
except ccxt.InvalidOrder as e:
|
||||
raise InvalidOrderException(
|
||||
f'Could not cancel order. Message: {e}') from e
|
||||
except ccxt.DDoSProtection as e:
|
||||
raise DDosProtection(e) from e
|
||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(
|
||||
f'Could not cancel order due to {e.__class__.__name__}. Message: {e}') from e
|
||||
except ccxt.BaseError as e:
|
||||
raise OperationalException(e) from e
|
||||
|
@ -4,10 +4,11 @@ from typing import Dict
|
||||
|
||||
import ccxt
|
||||
|
||||
from freqtrade.exceptions import (DependencyException, InvalidOrderException,
|
||||
OperationalException, TemporaryError)
|
||||
from freqtrade.exceptions import (DDosProtection, ExchangeError,
|
||||
InvalidOrderException, OperationalException,
|
||||
TemporaryError)
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.exchange.exchange import retrier
|
||||
from freqtrade.exchange.common import retrier
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -45,6 +46,8 @@ class Kraken(Exchange):
|
||||
balances[bal]['free'] = balances[bal]['total'] - balances[bal]['used']
|
||||
|
||||
return balances
|
||||
except ccxt.DDoSProtection as e:
|
||||
raise DDosProtection(e) from e
|
||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(
|
||||
f'Could not get balance due to {e.__class__.__name__}. Message: {e}') from e
|
||||
@ -58,6 +61,7 @@ class Kraken(Exchange):
|
||||
"""
|
||||
return order['type'] == 'stop-loss' and stop_loss > float(order['price'])
|
||||
|
||||
@retrier(retries=0)
|
||||
def stoploss(self, pair: str, amount: float, stop_price: float, order_types: Dict) -> Dict:
|
||||
"""
|
||||
Creates a stoploss market order.
|
||||
@ -84,7 +88,7 @@ class Kraken(Exchange):
|
||||
'stop price: %s.', pair, stop_price)
|
||||
return order
|
||||
except ccxt.InsufficientFunds as e:
|
||||
raise DependencyException(
|
||||
raise ExchangeError(
|
||||
f'Insufficient funds to create {ordertype} sell order on market {pair}. '
|
||||
f'Tried to create stoploss with amount {amount} at stoploss {stop_price}. '
|
||||
f'Message: {e}') from e
|
||||
@ -93,6 +97,8 @@ class Kraken(Exchange):
|
||||
f'Could not create {ordertype} sell order on market {pair}. '
|
||||
f'Tried to create stoploss with amount {amount} at stoploss {stop_price}. '
|
||||
f'Message: {e}') from e
|
||||
except ccxt.DDoSProtection as e:
|
||||
raise DDosProtection(e) from e
|
||||
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
|
||||
raise TemporaryError(
|
||||
f'Could not place sell order due to {e.__class__.__name__}. Message: {e}') from e
|
||||
|
@ -7,25 +7,27 @@ import traceback
|
||||
from datetime import datetime
|
||||
from math import isclose
|
||||
from threading import Lock
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
import arrow
|
||||
from cachetools import TTLCache
|
||||
from requests.exceptions import RequestException
|
||||
|
||||
from freqtrade import __version__, constants, persistence
|
||||
from freqtrade.configuration import validate_config_consistency
|
||||
from freqtrade.data.converter import order_book_to_dataframe
|
||||
from freqtrade.data.dataprovider import DataProvider
|
||||
from freqtrade.edge import Edge
|
||||
from freqtrade.exceptions import DependencyException, InvalidOrderException
|
||||
from freqtrade.exceptions import (DependencyException, ExchangeError,
|
||||
InvalidOrderException, PricingError)
|
||||
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_next_date
|
||||
from freqtrade.misc import safe_value_fallback
|
||||
from freqtrade.pairlist.pairlistmanager import PairListManager
|
||||
from freqtrade.persistence import Trade
|
||||
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
|
||||
from freqtrade.rpc import RPCManager, RPCMessageType
|
||||
from freqtrade.state import State
|
||||
from freqtrade.strategy.interface import IStrategy, SellType
|
||||
from freqtrade.strategy.strategy_wrapper import strategy_safe_wrapper
|
||||
from freqtrade.wallets import Wallets
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@ -52,8 +54,11 @@ class FreqtradeBot:
|
||||
# Init objects
|
||||
self.config = config
|
||||
|
||||
self._sell_rate_cache = TTLCache(maxsize=100, ttl=5)
|
||||
self._buy_rate_cache = TTLCache(maxsize=100, ttl=5)
|
||||
# Cache values for 1800 to avoid frequent polling of the exchange for prices
|
||||
# Caching only applies to RPC methods, so prices for open trades are still
|
||||
# refreshed once every iteration.
|
||||
self._sell_rate_cache = TTLCache(maxsize=100, ttl=1800)
|
||||
self._buy_rate_cache = TTLCache(maxsize=100, ttl=1800)
|
||||
|
||||
self.strategy: IStrategy = StrategyResolver.load_strategy(self.config)
|
||||
|
||||
@ -66,20 +71,20 @@ class FreqtradeBot:
|
||||
|
||||
self.wallets = Wallets(self.config, self.exchange)
|
||||
|
||||
self.dataprovider = DataProvider(self.config, self.exchange)
|
||||
self.pairlists = PairListManager(self.exchange, self.config)
|
||||
|
||||
self.dataprovider = DataProvider(self.config, self.exchange, self.pairlists)
|
||||
|
||||
# Attach Dataprovider to Strategy baseclass
|
||||
IStrategy.dp = self.dataprovider
|
||||
# Attach Wallets to Strategy baseclass
|
||||
IStrategy.wallets = self.wallets
|
||||
|
||||
self.pairlists = PairListManager(self.exchange, self.config)
|
||||
|
||||
# Initializing Edge only if enabled
|
||||
self.edge = Edge(self.config, self.exchange, self.strategy) if \
|
||||
self.config.get('edge', {}).get('enabled', False) else None
|
||||
|
||||
self.active_pair_whitelist = self._refresh_whitelist()
|
||||
self.active_pair_whitelist = self._refresh_active_whitelist()
|
||||
|
||||
# Set initial bot state from config
|
||||
initial_state = self.config.get('initial_state')
|
||||
@ -111,6 +116,11 @@ class FreqtradeBot:
|
||||
"""
|
||||
logger.info('Cleaning up modules ...')
|
||||
|
||||
if self.config['cancel_open_orders_on_exit']:
|
||||
self.cancel_all_open_orders()
|
||||
|
||||
self.check_for_open_trades()
|
||||
|
||||
self.rpc.cleanup()
|
||||
persistence.cleanup()
|
||||
|
||||
@ -131,18 +141,26 @@ class FreqtradeBot:
|
||||
:return: True if one or more trades has been created or closed, False otherwise
|
||||
"""
|
||||
|
||||
# Check whether markets have to be reloaded
|
||||
self.exchange._reload_markets()
|
||||
# Check whether markets have to be reloaded and reload them when it's needed
|
||||
self.exchange.reload_markets()
|
||||
|
||||
# Query trades from persistence layer
|
||||
trades = Trade.get_open_trades()
|
||||
|
||||
self.active_pair_whitelist = self._refresh_whitelist(trades)
|
||||
self.active_pair_whitelist = self._refresh_active_whitelist(trades)
|
||||
|
||||
# Refreshing candles
|
||||
self.dataprovider.refresh(self._create_pair_whitelist(self.active_pair_whitelist),
|
||||
self.dataprovider.refresh(self.pairlists.create_pair_list(self.active_pair_whitelist),
|
||||
self.strategy.informative_pairs())
|
||||
|
||||
strategy_safe_wrapper(self.strategy.bot_loop_start, supress_error=True)()
|
||||
|
||||
self.strategy.analyze(self.active_pair_whitelist)
|
||||
|
||||
with self._sell_lock:
|
||||
# Check and handle any timed out open orders
|
||||
self.check_handle_timedout()
|
||||
|
||||
# Protect from collisions with forcesell.
|
||||
# Without this, freqtrade my try to recreate stoploss_on_exchange orders
|
||||
# while selling is in process, since telegram messages arrive in an different thread.
|
||||
@ -154,13 +172,37 @@ class FreqtradeBot:
|
||||
if self.get_free_open_trades():
|
||||
self.enter_positions()
|
||||
|
||||
# Check and handle any timed out open orders
|
||||
self.check_handle_timedout()
|
||||
Trade.session.flush()
|
||||
|
||||
def _refresh_whitelist(self, trades: List[Trade] = []) -> List[str]:
|
||||
def process_stopped(self) -> None:
|
||||
"""
|
||||
Refresh whitelist from pairlist or edge and extend it with trades.
|
||||
Close all orders that were left open
|
||||
"""
|
||||
if self.config['cancel_open_orders_on_exit']:
|
||||
self.cancel_all_open_orders()
|
||||
|
||||
def check_for_open_trades(self):
|
||||
"""
|
||||
Notify the user when the bot is stopped
|
||||
and there are still open trades active.
|
||||
"""
|
||||
open_trades = Trade.get_trades([Trade.is_open == 1]).all()
|
||||
|
||||
if len(open_trades) != 0:
|
||||
msg = {
|
||||
'type': RPCMessageType.WARNING_NOTIFICATION,
|
||||
'status': f"{len(open_trades)} open trades active.\n\n"
|
||||
f"Handle these trades manually on {self.exchange.name}, "
|
||||
f"or '/start' the bot again and use '/stopbuy' "
|
||||
f"to handle open trades gracefully. \n"
|
||||
f"{'Trades are simulated.' if self.config['dry_run'] else ''}",
|
||||
}
|
||||
self.rpc.send_msg(msg)
|
||||
|
||||
def _refresh_active_whitelist(self, trades: List[Trade] = []) -> List[str]:
|
||||
"""
|
||||
Refresh active whitelist from pairlist or edge and extend it with
|
||||
pairs that have open trades.
|
||||
"""
|
||||
# Refresh whitelist
|
||||
self.pairlists.refresh_pairlist()
|
||||
@ -177,12 +219,6 @@ class FreqtradeBot:
|
||||
_whitelist.extend([trade.pair for trade in trades if trade.pair not in _whitelist])
|
||||
return _whitelist
|
||||
|
||||
def _create_pair_whitelist(self, pairs: List[str]) -> List[Tuple[str, str]]:
|
||||
"""
|
||||
Create pair-whitelist tuple with (pair, ticker_interval)
|
||||
"""
|
||||
return [(pair, self.config['ticker_interval']) for pair in pairs]
|
||||
|
||||
def get_free_open_trades(self):
|
||||
"""
|
||||
Return the number of free open trades slots or 0 if
|
||||
@ -248,12 +284,19 @@ class FreqtradeBot:
|
||||
f"Getting price from order book {bid_strategy['price_side'].capitalize()} side."
|
||||
)
|
||||
order_book_top = bid_strategy.get('order_book_top', 1)
|
||||
order_book = self.exchange.get_order_book(pair, order_book_top)
|
||||
order_book = self.exchange.fetch_l2_order_book(pair, order_book_top)
|
||||
logger.debug('order_book %s', order_book)
|
||||
# top 1 = index 0
|
||||
order_book_rate = order_book[f"{bid_strategy['price_side']}s"][order_book_top - 1][0]
|
||||
logger.info(f'...top {order_book_top} order book buy rate {order_book_rate:.8f}')
|
||||
used_rate = order_book_rate
|
||||
try:
|
||||
rate_from_l2 = order_book[f"{bid_strategy['price_side']}s"][order_book_top - 1][0]
|
||||
except (IndexError, KeyError) as e:
|
||||
logger.warning(
|
||||
"Buy Price from orderbook could not be determined."
|
||||
f"Orderbook: {order_book}"
|
||||
)
|
||||
raise PricingError from e
|
||||
logger.info(f'...top {order_book_top} order book buy rate {rate_from_l2:.8f}')
|
||||
used_rate = rate_from_l2
|
||||
else:
|
||||
logger.info(f"Using Last {bid_strategy['price_side'].capitalize()} / Last Price")
|
||||
ticker = self.exchange.fetch_ticker(pair)
|
||||
@ -401,9 +444,8 @@ class FreqtradeBot:
|
||||
return False
|
||||
|
||||
# running get_signal on historical data fetched
|
||||
(buy, sell) = self.strategy.get_signal(
|
||||
pair, self.strategy.ticker_interval,
|
||||
self.dataprovider.ohlcv(pair, self.strategy.ticker_interval))
|
||||
analyzed_df, _ = self.dataprovider.get_analyzed_dataframe(pair, self.strategy.timeframe)
|
||||
(buy, sell) = self.strategy.get_signal(pair, self.strategy.timeframe, analyzed_df)
|
||||
|
||||
if buy and not sell:
|
||||
stake_amount = self.get_trade_stake_amount(pair)
|
||||
@ -434,7 +476,7 @@ class FreqtradeBot:
|
||||
"""
|
||||
conf_bids_to_ask_delta = conf.get('bids_to_ask_delta', 0)
|
||||
logger.info(f"Checking depth of market for {pair} ...")
|
||||
order_book = self.exchange.get_order_book(pair, 1000)
|
||||
order_book = self.exchange.fetch_l2_order_book(pair, 1000)
|
||||
order_book_data_frame = order_book_to_dataframe(order_book['bids'], order_book['asks'])
|
||||
order_book_bids = order_book_data_frame['b_size'].sum()
|
||||
order_book_asks = order_book_data_frame['a_size'].sum()
|
||||
@ -476,6 +518,12 @@ class FreqtradeBot:
|
||||
|
||||
amount = stake_amount / buy_limit_requested
|
||||
order_type = self.strategy.order_types['buy']
|
||||
if not strategy_safe_wrapper(self.strategy.confirm_trade_entry, default_retval=True)(
|
||||
pair=pair, order_type=order_type, amount=amount, rate=buy_limit_requested,
|
||||
time_in_force=time_in_force):
|
||||
logger.info(f"User requested abortion of buying {pair}")
|
||||
return False
|
||||
|
||||
order = self.exchange.buy(pair=pair, ordertype=order_type,
|
||||
amount=amount, rate=buy_limit_requested,
|
||||
time_in_force=time_in_force)
|
||||
@ -528,7 +576,7 @@ class FreqtradeBot:
|
||||
exchange=self.exchange.id,
|
||||
open_order_id=order_id,
|
||||
strategy=self.strategy.get_strategy_name(),
|
||||
ticker_interval=timeframe_to_minutes(self.config['ticker_interval'])
|
||||
timeframe=timeframe_to_minutes(self.config['timeframe'])
|
||||
)
|
||||
|
||||
# Update fees if order is closed
|
||||
@ -550,6 +598,7 @@ class FreqtradeBot:
|
||||
Sends rpc notification when a buy occured.
|
||||
"""
|
||||
msg = {
|
||||
'trade_id': trade.id,
|
||||
'type': RPCMessageType.BUY_NOTIFICATION,
|
||||
'exchange': self.exchange.name.capitalize(),
|
||||
'pair': trade.pair,
|
||||
@ -573,6 +622,7 @@ class FreqtradeBot:
|
||||
current_rate = self.get_buy_rate(trade.pair, False)
|
||||
|
||||
msg = {
|
||||
'trade_id': trade.id,
|
||||
'type': RPCMessageType.BUY_CANCEL_NOTIFICATION,
|
||||
'exchange': self.exchange.name.capitalize(),
|
||||
'pair': trade.pair,
|
||||
@ -600,18 +650,17 @@ class FreqtradeBot:
|
||||
trades_closed = 0
|
||||
for trade in trades:
|
||||
try:
|
||||
self.update_trade_state(trade)
|
||||
|
||||
if (self.strategy.order_types.get('stoploss_on_exchange') and
|
||||
self.handle_stoploss_on_exchange(trade)):
|
||||
trades_closed += 1
|
||||
continue
|
||||
# Check if we can sell our current pair
|
||||
if trade.open_order_id is None and self.handle_trade(trade):
|
||||
if trade.open_order_id is None and trade.is_open and self.handle_trade(trade):
|
||||
trades_closed += 1
|
||||
|
||||
except DependencyException as exception:
|
||||
logger.warning('Unable to sell trade: %s', exception)
|
||||
logger.warning('Unable to sell trade %s: %s', trade.pair, exception)
|
||||
|
||||
# Updating wallets if any trade occured
|
||||
if trades_closed:
|
||||
@ -624,7 +673,7 @@ class FreqtradeBot:
|
||||
"""
|
||||
Helper generator to query orderbook in loop (used for early sell-order placing)
|
||||
"""
|
||||
order_book = self.exchange.get_order_book(pair, order_book_max)
|
||||
order_book = self.exchange.fetch_l2_order_book(pair, order_book_max)
|
||||
for i in range(order_book_min, order_book_max + 1):
|
||||
yield order_book[side][i - 1][0]
|
||||
|
||||
@ -651,10 +700,15 @@ class FreqtradeBot:
|
||||
logger.info(
|
||||
f"Getting price from order book {ask_strategy['price_side'].capitalize()} side."
|
||||
)
|
||||
try:
|
||||
rate = next(self._order_book_gen(pair, f"{ask_strategy['price_side']}s"))
|
||||
|
||||
except (IndexError, KeyError) as e:
|
||||
logger.warning("Sell Price at location from orderbook could not be determined.")
|
||||
raise PricingError from e
|
||||
else:
|
||||
rate = self.exchange.fetch_ticker(pair)[ask_strategy['price_side']]
|
||||
if rate is None:
|
||||
raise PricingError(f"Sell-Rate for {pair} was empty.")
|
||||
self._sell_rate_cache[pair] = rate
|
||||
return rate
|
||||
|
||||
@ -674,23 +728,33 @@ class FreqtradeBot:
|
||||
|
||||
if (config_ask_strategy.get('use_sell_signal', True) or
|
||||
config_ask_strategy.get('ignore_roi_if_buy_signal', False)):
|
||||
(buy, sell) = self.strategy.get_signal(
|
||||
trade.pair, self.strategy.ticker_interval,
|
||||
self.dataprovider.ohlcv(trade.pair, self.strategy.ticker_interval))
|
||||
analyzed_df, _ = self.dataprovider.get_analyzed_dataframe(trade.pair,
|
||||
self.strategy.timeframe)
|
||||
|
||||
(buy, sell) = self.strategy.get_signal(trade.pair, self.strategy.timeframe, analyzed_df)
|
||||
|
||||
if config_ask_strategy.get('use_order_book', False):
|
||||
logger.debug(f'Using order book for selling {trade.pair}...')
|
||||
# logger.debug('Order book %s',orderBook)
|
||||
order_book_min = config_ask_strategy.get('order_book_min', 1)
|
||||
order_book_max = config_ask_strategy.get('order_book_max', 1)
|
||||
logger.debug(f'Using order book between {order_book_min} and {order_book_max} '
|
||||
f'for selling {trade.pair}...')
|
||||
|
||||
order_book = self._order_book_gen(trade.pair, f"{config_ask_strategy['price_side']}s",
|
||||
order_book_min=order_book_min,
|
||||
order_book_max=order_book_max)
|
||||
for i in range(order_book_min, order_book_max + 1):
|
||||
try:
|
||||
sell_rate = next(order_book)
|
||||
except (IndexError, KeyError) as e:
|
||||
logger.warning(
|
||||
f"Sell Price at location {i} from orderbook could not be determined."
|
||||
)
|
||||
raise PricingError from e
|
||||
logger.debug(f" order book {config_ask_strategy['price_side']} top {i}: "
|
||||
f"{sell_rate:0.8f}")
|
||||
# Assign sell-rate to cache - otherwise sell-rate is never updated in the cache,
|
||||
# resulting in outdated RPC messages
|
||||
self._sell_rate_cache[trade.pair] = sell_rate
|
||||
|
||||
if self._check_and_execute_sell(trade, sell_rate, buy, sell):
|
||||
return True
|
||||
@ -723,7 +787,7 @@ class FreqtradeBot:
|
||||
logger.warning('Selling the trade forcefully')
|
||||
self.execute_sell(trade, trade.stop_loss, sell_reason=SellType.EMERGENCY_SELL)
|
||||
|
||||
except DependencyException:
|
||||
except ExchangeError:
|
||||
trade.stoploss_order_id = None
|
||||
logger.exception('Unable to place a stoploss order on exchange.')
|
||||
return False
|
||||
@ -741,18 +805,18 @@ class FreqtradeBot:
|
||||
|
||||
try:
|
||||
# First we check if there is already a stoploss on exchange
|
||||
stoploss_order = self.exchange.get_order(trade.stoploss_order_id, trade.pair) \
|
||||
if trade.stoploss_order_id else None
|
||||
stoploss_order = self.exchange.fetch_stoploss_order(
|
||||
trade.stoploss_order_id, trade.pair) if trade.stoploss_order_id else None
|
||||
except InvalidOrderException as exception:
|
||||
logger.warning('Unable to fetch stoploss order: %s', exception)
|
||||
|
||||
# We check if stoploss order is fulfilled
|
||||
if stoploss_order and stoploss_order['status'] == 'closed':
|
||||
if stoploss_order and stoploss_order['status'] in ('closed', 'triggered'):
|
||||
trade.sell_reason = SellType.STOPLOSS_ON_EXCHANGE.value
|
||||
trade.update(stoploss_order)
|
||||
self.update_trade_state(trade, stoploss_order, sl_order=True)
|
||||
# Lock pair for one candle to prevent immediate rebuys
|
||||
self.strategy.lock_pair(trade.pair,
|
||||
timeframe_to_next_date(self.config['ticker_interval']))
|
||||
timeframe_to_next_date(self.config['timeframe']))
|
||||
self._notify_sell(trade, "stoploss")
|
||||
return True
|
||||
|
||||
@ -763,10 +827,8 @@ class FreqtradeBot:
|
||||
return False
|
||||
|
||||
# If buy order is fulfilled but there is no stoploss, we add a stoploss on exchange
|
||||
if (not stoploss_order):
|
||||
|
||||
if not stoploss_order:
|
||||
stoploss = self.edge.stoploss(pair=trade.pair) if self.edge else self.strategy.stoploss
|
||||
|
||||
stop_price = trade.open_rate * (1 + stoploss)
|
||||
|
||||
if self.create_stoploss_order(trade=trade, stop_price=stop_price, rate=stop_price):
|
||||
@ -774,7 +836,7 @@ class FreqtradeBot:
|
||||
return False
|
||||
|
||||
# If stoploss order is canceled for some reason we add it
|
||||
if stoploss_order and stoploss_order['status'] == 'canceled':
|
||||
if stoploss_order and stoploss_order['status'] in ('canceled', 'cancelled'):
|
||||
if self.create_stoploss_order(trade=trade, stop_price=trade.stop_loss,
|
||||
rate=trade.stop_loss):
|
||||
return False
|
||||
@ -807,7 +869,7 @@ class FreqtradeBot:
|
||||
logger.info('Trailing stoploss: cancelling current stoploss on exchange (id:{%s}) '
|
||||
'in order to add another one ...', order['id'])
|
||||
try:
|
||||
self.exchange.cancel_order(order['id'], trade.pair)
|
||||
self.exchange.cancel_stoploss_order(order['id'], trade.pair)
|
||||
except InvalidOrderException:
|
||||
logger.exception(f"Could not cancel stoploss order {order['id']} "
|
||||
f"for pair {trade.pair}")
|
||||
@ -858,75 +920,93 @@ class FreqtradeBot:
|
||||
try:
|
||||
if not trade.open_order_id:
|
||||
continue
|
||||
order = self.exchange.get_order(trade.open_order_id, trade.pair)
|
||||
except (RequestException, DependencyException, InvalidOrderException):
|
||||
logger.info(
|
||||
'Cannot query order for %s due to %s',
|
||||
trade,
|
||||
traceback.format_exc())
|
||||
order = self.exchange.fetch_order(trade.open_order_id, trade.pair)
|
||||
except (ExchangeError, InvalidOrderException):
|
||||
logger.info('Cannot query order for %s due to %s', trade, traceback.format_exc())
|
||||
continue
|
||||
|
||||
# Check if trade is still actually open
|
||||
if float(order.get('remaining', 0.0)) == 0.0:
|
||||
self.wallets.update()
|
||||
continue
|
||||
fully_cancelled = self.update_trade_state(trade, order)
|
||||
|
||||
if ((order['side'] == 'buy' and order['status'] == 'canceled')
|
||||
or (self._check_timed_out('buy', order))):
|
||||
self.handle_timedout_limit_buy(trade, order)
|
||||
self.wallets.update()
|
||||
order_type = self.strategy.order_types['buy']
|
||||
self._notify_buy_cancel(trade, order_type)
|
||||
if (order['side'] == 'buy' and (order['status'] == 'open' or fully_cancelled) and (
|
||||
fully_cancelled
|
||||
or self._check_timed_out('buy', order)
|
||||
or strategy_safe_wrapper(self.strategy.check_buy_timeout,
|
||||
default_retval=False)(pair=trade.pair,
|
||||
trade=trade,
|
||||
order=order))):
|
||||
self.handle_cancel_buy(trade, order, constants.CANCEL_REASON['TIMEOUT'])
|
||||
|
||||
elif ((order['side'] == 'sell' and order['status'] == 'canceled')
|
||||
or (self._check_timed_out('sell', order))):
|
||||
self.handle_timedout_limit_sell(trade, order)
|
||||
self.wallets.update()
|
||||
order_type = self.strategy.order_types['sell']
|
||||
self._notify_sell_cancel(trade, order_type)
|
||||
elif (order['side'] == 'sell' and (order['status'] == 'open' or fully_cancelled) and (
|
||||
fully_cancelled
|
||||
or self._check_timed_out('sell', order)
|
||||
or strategy_safe_wrapper(self.strategy.check_sell_timeout,
|
||||
default_retval=False)(pair=trade.pair,
|
||||
trade=trade,
|
||||
order=order))):
|
||||
self.handle_cancel_sell(trade, order, constants.CANCEL_REASON['TIMEOUT'])
|
||||
|
||||
def handle_timedout_limit_buy(self, trade: Trade, order: Dict) -> bool:
|
||||
def cancel_all_open_orders(self) -> None:
|
||||
"""
|
||||
Buy timeout - cancel order
|
||||
Cancel all orders that are currently open
|
||||
:return: None
|
||||
"""
|
||||
|
||||
for trade in Trade.get_open_order_trades():
|
||||
try:
|
||||
order = self.exchange.fetch_order(trade.open_order_id, trade.pair)
|
||||
except (DependencyException, InvalidOrderException):
|
||||
logger.info('Cannot query order for %s due to %s', trade, traceback.format_exc())
|
||||
continue
|
||||
|
||||
if order['side'] == 'buy':
|
||||
self.handle_cancel_buy(trade, order, constants.CANCEL_REASON['ALL_CANCELLED'])
|
||||
|
||||
elif order['side'] == 'sell':
|
||||
self.handle_cancel_sell(trade, order, constants.CANCEL_REASON['ALL_CANCELLED'])
|
||||
|
||||
def handle_cancel_buy(self, trade: Trade, order: Dict, reason: str) -> bool:
|
||||
"""
|
||||
Buy cancel - cancel order
|
||||
:return: True if order was fully cancelled
|
||||
"""
|
||||
if order['status'] != 'canceled':
|
||||
reason = "cancelled due to timeout"
|
||||
corder = self.exchange.cancel_order(trade.open_order_id, trade.pair)
|
||||
# Some exchanges don't return a dict here.
|
||||
if not isinstance(corder, dict):
|
||||
corder = {}
|
||||
logger.info('Buy order %s for %s.', reason, trade)
|
||||
was_trade_fully_canceled = False
|
||||
|
||||
# Cancelled orders may have the status of 'canceled' or 'closed'
|
||||
if order['status'] not in ('canceled', 'closed'):
|
||||
reason = constants.CANCEL_REASON['TIMEOUT']
|
||||
corder = self.exchange.cancel_order_with_result(trade.open_order_id, trade.pair,
|
||||
trade.amount)
|
||||
# Avoid race condition where the order could not be cancelled coz its already filled.
|
||||
# Simply bailing here is the only safe way - as this order will then be
|
||||
# handled in the next iteration.
|
||||
if corder.get('status') not in ('canceled', 'closed'):
|
||||
logger.warning(f"Order {trade.open_order_id} for {trade.pair} not cancelled.")
|
||||
return False
|
||||
else:
|
||||
# Order was cancelled already, so we can reuse the existing dict
|
||||
corder = order
|
||||
reason = "cancelled on exchange"
|
||||
reason = constants.CANCEL_REASON['CANCELLED_ON_EXCHANGE']
|
||||
|
||||
logger.info('Buy order %s for %s.', reason, trade)
|
||||
|
||||
if corder.get('remaining', order['remaining']) == order['amount']:
|
||||
# Using filled to determine the filled amount
|
||||
filled_amount = safe_value_fallback(corder, order, 'filled', 'filled')
|
||||
|
||||
if isclose(filled_amount, 0.0, abs_tol=constants.MATH_CLOSE_PREC):
|
||||
logger.info('Buy order fully cancelled. Removing %s from database.', trade)
|
||||
# if trade is not partially completed, just delete the trade
|
||||
Trade.session.delete(trade)
|
||||
Trade.session.flush()
|
||||
return True
|
||||
|
||||
was_trade_fully_canceled = True
|
||||
else:
|
||||
# if trade is partially complete, edit the stake details for the trade
|
||||
# and close the order
|
||||
# cancel_order may not contain the full order dict, so we need to fallback
|
||||
# to the order dict aquired before cancelling.
|
||||
# we need to fall back to the values from order if corder does not contain these keys.
|
||||
trade.amount = order['amount'] - corder.get('remaining', order['remaining'])
|
||||
trade.amount = filled_amount
|
||||
trade.stake_amount = trade.amount * trade.open_rate
|
||||
# verify if fees were taken from amount to avoid problems during selling
|
||||
try:
|
||||
new_amount = self.get_real_amount(trade, corder if 'fee' in corder else order,
|
||||
trade.amount)
|
||||
if not isclose(order['amount'], new_amount, abs_tol=constants.MATH_CLOSE_PREC):
|
||||
trade.amount = new_amount
|
||||
# Fee was applied, so set to 0
|
||||
trade.fee_open = 0
|
||||
trade.recalc_open_trade_price()
|
||||
except DependencyException as e:
|
||||
logger.warning("Could not update trade amount: %s", e)
|
||||
self.update_trade_state(trade, corder, trade.amount)
|
||||
|
||||
trade.open_order_id = None
|
||||
logger.info('Partial buy order timeout for %s.', trade)
|
||||
@ -934,34 +1014,48 @@ class FreqtradeBot:
|
||||
'type': RPCMessageType.STATUS_NOTIFICATION,
|
||||
'status': f'Remaining buy order for {trade.pair} cancelled due to timeout'
|
||||
})
|
||||
return False
|
||||
|
||||
def handle_timedout_limit_sell(self, trade: Trade, order: Dict) -> bool:
|
||||
self.wallets.update()
|
||||
self._notify_buy_cancel(trade, order_type=self.strategy.order_types['buy'])
|
||||
return was_trade_fully_canceled
|
||||
|
||||
def handle_cancel_sell(self, trade: Trade, order: Dict, reason: str) -> str:
|
||||
"""
|
||||
Sell timeout - cancel order and update trade
|
||||
:return: True if order was fully cancelled
|
||||
Sell cancel - cancel order and update trade
|
||||
:return: Reason for cancel
|
||||
"""
|
||||
# if trade is not partially completed, just cancel the trade
|
||||
if order['remaining'] == order['amount']:
|
||||
if order["status"] != "canceled":
|
||||
reason = "cancelled due to timeout"
|
||||
# if trade is not partially completed, just delete the trade
|
||||
# if trade is not partially completed, just cancel the order
|
||||
if order['remaining'] == order['amount'] or order.get('filled') == 0.0:
|
||||
if not self.exchange.check_order_canceled_empty(order):
|
||||
try:
|
||||
# if trade is not partially completed, just delete the order
|
||||
self.exchange.cancel_order(trade.open_order_id, trade.pair)
|
||||
except InvalidOrderException:
|
||||
logger.exception(f"Could not cancel sell order {trade.open_order_id}")
|
||||
return 'error cancelling order'
|
||||
logger.info('Sell order %s for %s.', reason, trade)
|
||||
else:
|
||||
reason = "cancelled on exchange"
|
||||
reason = constants.CANCEL_REASON['CANCELLED_ON_EXCHANGE']
|
||||
logger.info('Sell order %s for %s.', reason, trade)
|
||||
|
||||
trade.close_rate = None
|
||||
trade.close_rate_requested = None
|
||||
trade.close_profit = None
|
||||
trade.close_profit_abs = None
|
||||
trade.close_date = None
|
||||
trade.is_open = True
|
||||
trade.open_order_id = None
|
||||
|
||||
return True
|
||||
|
||||
else:
|
||||
# TODO: figure out how to handle partially complete sell orders
|
||||
return False
|
||||
reason = constants.CANCEL_REASON['PARTIALLY_FILLED']
|
||||
|
||||
self.wallets.update()
|
||||
self._notify_sell_cancel(
|
||||
trade,
|
||||
order_type=self.strategy.order_types['sell'],
|
||||
reason=reason
|
||||
)
|
||||
return reason
|
||||
|
||||
def _safe_sell_amount(self, pair: str, amount: float) -> float:
|
||||
"""
|
||||
@ -982,7 +1076,7 @@ class FreqtradeBot:
|
||||
if wallet_amount >= amount:
|
||||
return amount
|
||||
elif wallet_amount > amount * 0.98:
|
||||
logger.info(f"{pair} - Falling back to wallet-amount.")
|
||||
logger.info(f"{pair} - Falling back to wallet-amount {wallet_amount} -> {amount}.")
|
||||
return wallet_amount
|
||||
else:
|
||||
raise DependencyException(
|
||||
@ -1009,7 +1103,7 @@ class FreqtradeBot:
|
||||
# First cancelling stoploss on exchange ...
|
||||
if self.strategy.order_types.get('stoploss_on_exchange') and trade.stoploss_order_id:
|
||||
try:
|
||||
self.exchange.cancel_order(trade.stoploss_order_id, trade.pair)
|
||||
self.exchange.cancel_stoploss_order(trade.stoploss_order_id, trade.pair)
|
||||
except InvalidOrderException:
|
||||
logger.exception(f"Could not cancel stoploss order {trade.stoploss_order_id}")
|
||||
|
||||
@ -1019,12 +1113,20 @@ class FreqtradeBot:
|
||||
order_type = self.strategy.order_types.get("emergencysell", "market")
|
||||
|
||||
amount = self._safe_sell_amount(trade.pair, trade.amount)
|
||||
time_in_force = self.strategy.order_time_in_force['sell']
|
||||
|
||||
if not strategy_safe_wrapper(self.strategy.confirm_trade_exit, default_retval=True)(
|
||||
pair=trade.pair, trade=trade, order_type=order_type, amount=amount, rate=limit,
|
||||
time_in_force=time_in_force,
|
||||
sell_reason=sell_reason.value):
|
||||
logger.info(f"User requested abortion of selling {trade.pair}")
|
||||
return False
|
||||
|
||||
# Execute sell and update trade record
|
||||
order = self.exchange.sell(pair=str(trade.pair),
|
||||
ordertype=order_type,
|
||||
amount=amount, rate=limit,
|
||||
time_in_force=self.strategy.order_time_in_force['sell']
|
||||
time_in_force=time_in_force
|
||||
)
|
||||
|
||||
trade.open_order_id = order['id']
|
||||
@ -1032,11 +1134,11 @@ class FreqtradeBot:
|
||||
trade.sell_reason = sell_reason.value
|
||||
# In case of market sell orders the order can be closed immediately
|
||||
if order.get('status', 'unknown') == 'closed':
|
||||
trade.update(order)
|
||||
self.update_trade_state(trade, order)
|
||||
Trade.session.flush()
|
||||
|
||||
# Lock pair for one candle to prevent immediate rebuys
|
||||
self.strategy.lock_pair(trade.pair, timeframe_to_next_date(self.config['ticker_interval']))
|
||||
self.strategy.lock_pair(trade.pair, timeframe_to_next_date(self.config['timeframe']))
|
||||
|
||||
self._notify_sell(trade, order_type)
|
||||
|
||||
@ -1055,6 +1157,7 @@ class FreqtradeBot:
|
||||
|
||||
msg = {
|
||||
'type': RPCMessageType.SELL_NOTIFICATION,
|
||||
'trade_id': trade.id,
|
||||
'exchange': trade.exchange.capitalize(),
|
||||
'pair': trade.pair,
|
||||
'gain': gain,
|
||||
@ -1080,10 +1183,15 @@ class FreqtradeBot:
|
||||
# Send the message
|
||||
self.rpc.send_msg(msg)
|
||||
|
||||
def _notify_sell_cancel(self, trade: Trade, order_type: str) -> None:
|
||||
def _notify_sell_cancel(self, trade: Trade, order_type: str, reason: str) -> None:
|
||||
"""
|
||||
Sends rpc notification when a sell cancel occured.
|
||||
"""
|
||||
if trade.sell_order_status == reason:
|
||||
return
|
||||
else:
|
||||
trade.sell_order_status = reason
|
||||
|
||||
profit_rate = trade.close_rate if trade.close_rate else trade.close_rate_requested
|
||||
profit_trade = trade.calc_profit(rate=profit_rate)
|
||||
current_rate = self.get_sell_rate(trade.pair, False)
|
||||
@ -1092,6 +1200,7 @@ class FreqtradeBot:
|
||||
|
||||
msg = {
|
||||
'type': RPCMessageType.SELL_CANCEL_NOTIFICATION,
|
||||
'trade_id': trade.id,
|
||||
'exchange': trade.exchange.capitalize(),
|
||||
'pair': trade.pair,
|
||||
'gain': gain,
|
||||
@ -1107,6 +1216,7 @@ class FreqtradeBot:
|
||||
'close_date': trade.close_date,
|
||||
'stake_currency': self.config['stake_currency'],
|
||||
'fiat_currency': self.config.get('fiat_display_currency', None),
|
||||
'reason': reason,
|
||||
}
|
||||
|
||||
if 'fiat_display_currency' in self.config:
|
||||
@ -1121,84 +1231,134 @@ class FreqtradeBot:
|
||||
# Common update trade state methods
|
||||
#
|
||||
|
||||
def update_trade_state(self, trade: Trade, action_order: dict = None) -> None:
|
||||
def update_trade_state(self, trade: Trade, action_order: dict = None,
|
||||
order_amount: float = None, sl_order: bool = False) -> bool:
|
||||
"""
|
||||
Checks trades with open orders and updates the amount if necessary
|
||||
Handles closing both buy and sell orders.
|
||||
:return: True if order has been cancelled without being filled partially, False otherwise
|
||||
"""
|
||||
# Get order details for actual price per unit
|
||||
if trade.open_order_id:
|
||||
order_id = trade.open_order_id
|
||||
elif trade.stoploss_order_id and sl_order:
|
||||
order_id = trade.stoploss_order_id
|
||||
else:
|
||||
return False
|
||||
# Update trade with order values
|
||||
logger.info('Found open order for %s', trade)
|
||||
try:
|
||||
order = action_order or self.exchange.get_order(trade.open_order_id, trade.pair)
|
||||
order = action_order or self.exchange.fetch_order(order_id, trade.pair)
|
||||
except InvalidOrderException as exception:
|
||||
logger.warning('Unable to fetch order %s: %s', trade.open_order_id, exception)
|
||||
return
|
||||
logger.warning('Unable to fetch order %s: %s', order_id, exception)
|
||||
return False
|
||||
# Try update amount (binance-fix)
|
||||
try:
|
||||
new_amount = self.get_real_amount(trade, order)
|
||||
new_amount = self.get_real_amount(trade, order, order_amount)
|
||||
if not isclose(order['amount'], new_amount, abs_tol=constants.MATH_CLOSE_PREC):
|
||||
order['amount'] = new_amount
|
||||
# Fee was applied, so set to 0
|
||||
trade.fee_open = 0
|
||||
order.pop('filled', None)
|
||||
trade.recalc_open_trade_price()
|
||||
|
||||
except DependencyException as exception:
|
||||
logger.warning("Could not update trade amount: %s", exception)
|
||||
|
||||
if self.exchange.check_order_canceled_empty(order):
|
||||
# Trade has been cancelled on exchange
|
||||
# Handling of this will happen in check_handle_timeout.
|
||||
return True
|
||||
trade.update(order)
|
||||
|
||||
# Updating wallets when order is closed
|
||||
if not trade.is_open:
|
||||
self.wallets.update()
|
||||
return False
|
||||
|
||||
def apply_fee_conditional(self, trade: Trade, trade_base_currency: str,
|
||||
amount: float, fee_abs: float) -> float:
|
||||
"""
|
||||
Applies the fee to amount (either from Order or from Trades).
|
||||
Can eat into dust if more than the required asset is available.
|
||||
"""
|
||||
self.wallets.update()
|
||||
if fee_abs != 0 and self.wallets.get_free(trade_base_currency) >= amount:
|
||||
# Eat into dust if we own more than base currency
|
||||
logger.info(f"Fee amount for {trade} was in base currency - "
|
||||
f"Eating Fee {fee_abs} into dust.")
|
||||
elif fee_abs != 0:
|
||||
real_amount = self.exchange.amount_to_precision(trade.pair, amount - fee_abs)
|
||||
logger.info(f"Applying fee on amount for {trade} "
|
||||
f"(from {amount} to {real_amount}).")
|
||||
return real_amount
|
||||
return amount
|
||||
|
||||
def get_real_amount(self, trade: Trade, order: Dict, order_amount: float = None) -> float:
|
||||
"""
|
||||
Get real amount for the trade
|
||||
Detect and update trade fee.
|
||||
Calls trade.update_fee() uppon correct detection.
|
||||
Returns modified amount if the fee was taken from the destination currency.
|
||||
Necessary for exchanges which charge fees in base currency (e.g. binance)
|
||||
:return: identical (or new) amount for the trade
|
||||
"""
|
||||
# Init variables
|
||||
if order_amount is None:
|
||||
order_amount = order['amount']
|
||||
# Only run for closed orders
|
||||
if trade.fee_open == 0 or order['status'] == 'open':
|
||||
if trade.fee_updated(order.get('side', '')) or order['status'] == 'open':
|
||||
return order_amount
|
||||
|
||||
trade_base_currency = self.exchange.get_pair_base_currency(trade.pair)
|
||||
# use fee from order-dict if possible
|
||||
if ('fee' in order and order['fee'] is not None and
|
||||
(order['fee'].keys() >= {'currency', 'cost'})):
|
||||
if (order['fee']['currency'] is not None and
|
||||
order['fee']['cost'] is not None and
|
||||
trade_base_currency == order['fee']['currency']):
|
||||
new_amount = order_amount - order['fee']['cost']
|
||||
logger.info("Applying fee on amount for %s (from %s to %s) from Order",
|
||||
trade, order['amount'], new_amount)
|
||||
return new_amount
|
||||
if self.exchange.order_has_fee(order):
|
||||
fee_cost, fee_currency, fee_rate = self.exchange.extract_cost_curr_rate(order)
|
||||
logger.info(f"Fee for Trade {trade} [{order.get('side')}]: "
|
||||
f"{fee_cost:.8g} {fee_currency} - rate: {fee_rate}")
|
||||
|
||||
# Fallback to Trades
|
||||
trade.update_fee(fee_cost, fee_currency, fee_rate, order.get('side', ''))
|
||||
if trade_base_currency == fee_currency:
|
||||
# Apply fee to amount
|
||||
return self.apply_fee_conditional(trade, trade_base_currency,
|
||||
amount=order_amount, fee_abs=fee_cost)
|
||||
return order_amount
|
||||
return self.fee_detection_from_trades(trade, order, order_amount)
|
||||
|
||||
def fee_detection_from_trades(self, trade: Trade, order: Dict, order_amount: float) -> float:
|
||||
"""
|
||||
fee-detection fallback to Trades. Parses result of fetch_my_trades to get correct fee.
|
||||
"""
|
||||
trades = self.exchange.get_trades_for_order(trade.open_order_id, trade.pair,
|
||||
trade.open_date)
|
||||
|
||||
if len(trades) == 0:
|
||||
logger.info("Applying fee on amount for %s failed: myTrade-Dict empty found", trade)
|
||||
return order_amount
|
||||
fee_currency = None
|
||||
amount = 0
|
||||
fee_abs = 0
|
||||
fee_abs = 0.0
|
||||
fee_cost = 0.0
|
||||
trade_base_currency = self.exchange.get_pair_base_currency(trade.pair)
|
||||
fee_rate_array: List[float] = []
|
||||
for exectrade in trades:
|
||||
amount += exectrade['amount']
|
||||
if ("fee" in exectrade and exectrade['fee'] is not None and
|
||||
(exectrade['fee'].keys() >= {'currency', 'cost'})):
|
||||
if self.exchange.order_has_fee(exectrade):
|
||||
fee_cost_, fee_currency, fee_rate_ = self.exchange.extract_cost_curr_rate(exectrade)
|
||||
fee_cost += fee_cost_
|
||||
if fee_rate_ is not None:
|
||||
fee_rate_array.append(fee_rate_)
|
||||
# only applies if fee is in quote currency!
|
||||
if (exectrade['fee']['currency'] is not None and
|
||||
exectrade['fee']['cost'] is not None and
|
||||
trade_base_currency == exectrade['fee']['currency']):
|
||||
fee_abs += exectrade['fee']['cost']
|
||||
if trade_base_currency == fee_currency:
|
||||
fee_abs += fee_cost_
|
||||
# Ensure at least one trade was found:
|
||||
if fee_currency:
|
||||
# fee_rate should use mean
|
||||
fee_rate = sum(fee_rate_array) / float(len(fee_rate_array)) if fee_rate_array else None
|
||||
trade.update_fee(fee_cost, fee_currency, fee_rate, order.get('side', ''))
|
||||
|
||||
if not isclose(amount, order_amount, abs_tol=constants.MATH_CLOSE_PREC):
|
||||
logger.warning(f"Amount {amount} does not match amount {trade.amount}")
|
||||
raise DependencyException("Half bought? Amounts don't match")
|
||||
real_amount = amount - fee_abs
|
||||
|
||||
if fee_abs != 0:
|
||||
logger.info(f"Applying fee on amount for {trade} "
|
||||
f"(from {order_amount} to {real_amount}) from Trades")
|
||||
return real_amount
|
||||
return self.apply_fee_conditional(trade, trade_base_currency,
|
||||
amount=amount, fee_abs=fee_abs)
|
||||
else:
|
||||
return amount
|
||||
|
@ -11,7 +11,7 @@ from freqtrade.exceptions import OperationalException
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _set_loggers(verbosity: int = 0) -> None:
|
||||
def _set_loggers(verbosity: int = 0, api_verbosity: str = 'info') -> None:
|
||||
"""
|
||||
Set the logging level for third party libraries
|
||||
:return: None
|
||||
@ -28,6 +28,10 @@ def _set_loggers(verbosity: int = 0) -> None:
|
||||
)
|
||||
logging.getLogger('telegram').setLevel(logging.INFO)
|
||||
|
||||
logging.getLogger('werkzeug').setLevel(
|
||||
logging.ERROR if api_verbosity == 'error' else logging.INFO
|
||||
)
|
||||
|
||||
|
||||
def setup_logging(config: Dict[str, Any]) -> None:
|
||||
"""
|
||||
@ -77,5 +81,5 @@ def setup_logging(config: Dict[str, Any]) -> None:
|
||||
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
||||
handlers=log_handlers
|
||||
)
|
||||
_set_loggers(verbosity)
|
||||
_set_loggers(verbosity, config.get('api_server', {}).get('verbosity', 'info'))
|
||||
logger.info('Verbosity set to %s', verbosity)
|
||||
|
@ -134,6 +134,21 @@ def round_dict(d, n):
|
||||
return {k: (round(v, n) if isinstance(v, float) else v) for k, v in d.items()}
|
||||
|
||||
|
||||
def safe_value_fallback(dict1: dict, dict2: dict, key1: str, key2: str, default_value=None):
|
||||
"""
|
||||
Search a value in dict1, return this if it's not None.
|
||||
Fall back to dict2 - return key2 from dict2 if it's not None.
|
||||
Else falls back to None.
|
||||
|
||||
"""
|
||||
if key1 in dict1 and dict1[key1] is not None:
|
||||
return dict1[key1]
|
||||
else:
|
||||
if key2 in dict2 and dict2[key2] is not None:
|
||||
return dict2[key2]
|
||||
return default_value
|
||||
|
||||
|
||||
def plural(num: float, singular: str, plural: str = None) -> str:
|
||||
return singular if (num == 1 or num == -1) else plural or singular + 's'
|
||||
|
||||
@ -148,3 +163,15 @@ def render_template(templatefile: str, arguments: dict = {}) -> str:
|
||||
)
|
||||
template = env.get_template(templatefile)
|
||||
return template.render(**arguments)
|
||||
|
||||
|
||||
def render_template_with_fallback(templatefile: str, templatefallbackfile: str,
|
||||
arguments: dict = {}) -> str:
|
||||
"""
|
||||
Use templatefile if possible, otherwise fall back to templatefallbackfile
|
||||
"""
|
||||
from jinja2.exceptions import TemplateNotFound
|
||||
try:
|
||||
return render_template(templatefile, arguments)
|
||||
except TemplateNotFound:
|
||||
return render_template(templatefallbackfile, arguments)
|
||||
|
@ -18,8 +18,10 @@ from freqtrade.data.converter import trim_dataframe
|
||||
from freqtrade.data.dataprovider import DataProvider
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_seconds
|
||||
from freqtrade.optimize.optimize_reports import (show_backtest_results,
|
||||
from freqtrade.optimize.optimize_reports import (generate_backtest_stats,
|
||||
show_backtest_results,
|
||||
store_backtest_result)
|
||||
from freqtrade.pairlist.pairlistmanager import PairListManager
|
||||
from freqtrade.persistence import Trade
|
||||
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
|
||||
from freqtrade.state import RunMode
|
||||
@ -63,11 +65,6 @@ class Backtesting:
|
||||
self.strategylist: List[IStrategy] = []
|
||||
self.exchange = ExchangeResolver.load_exchange(self.config['exchange']['name'], self.config)
|
||||
|
||||
if config.get('fee'):
|
||||
self.fee = config['fee']
|
||||
else:
|
||||
self.fee = self.exchange.get_fee(symbol=self.config['exchange']['pair_whitelist'][0])
|
||||
|
||||
if self.config.get('runmode') != RunMode.HYPEROPT:
|
||||
self.dataprovider = DataProvider(self.config, self.exchange)
|
||||
IStrategy.dp = self.dataprovider
|
||||
@ -84,12 +81,31 @@ class Backtesting:
|
||||
self.strategylist.append(StrategyResolver.load_strategy(self.config))
|
||||
validate_config_consistency(self.config)
|
||||
|
||||
if "ticker_interval" not in self.config:
|
||||
if "timeframe" not in self.config:
|
||||
raise OperationalException("Timeframe (ticker interval) needs to be set in either "
|
||||
"configuration or as cli argument `--ticker-interval 5m`")
|
||||
self.timeframe = str(self.config.get('ticker_interval'))
|
||||
"configuration or as cli argument `--timeframe 5m`")
|
||||
self.timeframe = str(self.config.get('timeframe'))
|
||||
self.timeframe_min = timeframe_to_minutes(self.timeframe)
|
||||
|
||||
self.pairlists = PairListManager(self.exchange, self.config)
|
||||
if 'VolumePairList' in self.pairlists.name_list:
|
||||
raise OperationalException("VolumePairList not allowed for backtesting.")
|
||||
|
||||
if len(self.strategylist) > 1 and 'PrecisionFilter' in self.pairlists.name_list:
|
||||
raise OperationalException(
|
||||
"PrecisionFilter not allowed for backtesting multiple strategies."
|
||||
)
|
||||
|
||||
self.pairlists.refresh_pairlist()
|
||||
|
||||
if len(self.pairlists.whitelist) == 0:
|
||||
raise OperationalException("No pair in whitelist.")
|
||||
|
||||
if config.get('fee', None) is not None:
|
||||
self.fee = config['fee']
|
||||
else:
|
||||
self.fee = self.exchange.get_fee(symbol=self.pairlists.whitelist[0])
|
||||
|
||||
# Get maximum required startup period
|
||||
self.required_startup = max([strat.startup_candle_count for strat in self.strategylist])
|
||||
# Load one (first) strategy
|
||||
@ -111,7 +127,7 @@ class Backtesting:
|
||||
|
||||
data = history.load_data(
|
||||
datadir=self.config['datadir'],
|
||||
pairs=self.config['exchange']['pair_whitelist'],
|
||||
pairs=self.pairlists.whitelist,
|
||||
timeframe=self.timeframe,
|
||||
timerange=timerange,
|
||||
startup_candles=self.required_startup,
|
||||
@ -149,8 +165,8 @@ class Backtesting:
|
||||
|
||||
# To avoid using data from future, we use buy/sell signals shifted
|
||||
# from the previous candle
|
||||
df_analyzed.loc[:, 'buy'] = df_analyzed['buy'].shift(1)
|
||||
df_analyzed.loc[:, 'sell'] = df_analyzed['sell'].shift(1)
|
||||
df_analyzed.loc[:, 'buy'] = df_analyzed.loc[:, 'buy'].shift(1)
|
||||
df_analyzed.loc[:, 'sell'] = df_analyzed.loc[:, 'sell'].shift(1)
|
||||
|
||||
df_analyzed.drop(df_analyzed.head(1).index, inplace=True)
|
||||
|
||||
@ -401,4 +417,5 @@ class Backtesting:
|
||||
if self.config.get('export', False):
|
||||
store_backtest_result(self.config['exportfilename'], all_results)
|
||||
# Show backtest results
|
||||
show_backtest_results(self.config, data, all_results)
|
||||
stats = generate_backtest_stats(self.config, data, all_results)
|
||||
show_backtest_results(self.config, stats)
|
||||
|
@ -42,8 +42,8 @@ class DefaultHyperOptLoss(IHyperOptLoss):
|
||||
* 0.25: Avoiding trade loss
|
||||
* 1.0 to total profit, compared to the expected value (`EXPECTED_MAX_PROFIT`) defined above
|
||||
"""
|
||||
total_profit = results.profit_percent.sum()
|
||||
trade_duration = results.trade_duration.mean()
|
||||
total_profit = results['profit_percent'].sum()
|
||||
trade_duration = results['trade_duration'].mean()
|
||||
|
||||
trade_loss = 1 - 0.25 * exp(-(trade_count - TARGET_TRADES) ** 2 / 10 ** 5.8)
|
||||
profit_loss = max(0, 1 - total_profit / EXPECTED_MAX_PROFIT)
|
||||
|
@ -7,21 +7,20 @@ This module contains the hyperopt logic
|
||||
import locale
|
||||
import logging
|
||||
import random
|
||||
import sys
|
||||
import warnings
|
||||
from math import ceil
|
||||
from collections import OrderedDict
|
||||
from operator import itemgetter
|
||||
from pathlib import Path
|
||||
from pprint import pprint
|
||||
from pprint import pformat
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
import rapidjson
|
||||
from colorama import Fore, Style
|
||||
from colorama import init as colorama_init
|
||||
from joblib import (Parallel, cpu_count, delayed, dump, load,
|
||||
wrap_non_picklable_objects)
|
||||
from pandas import DataFrame, json_normalize, isna
|
||||
import progressbar
|
||||
import tabulate
|
||||
from os import path
|
||||
import io
|
||||
@ -43,15 +42,16 @@ with warnings.catch_warnings():
|
||||
from skopt import Optimizer
|
||||
from skopt.space import Dimension
|
||||
|
||||
|
||||
progressbar.streams.wrap_stderr()
|
||||
progressbar.streams.wrap_stdout()
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
INITIAL_POINTS = 30
|
||||
|
||||
# Keep no more than 2*SKOPT_MODELS_MAX_NUM models
|
||||
# in the skopt models list
|
||||
SKOPT_MODELS_MAX_NUM = 10
|
||||
# Keep no more than SKOPT_MODEL_QUEUE_SIZE models
|
||||
# in the skopt model queue, to optimize memory consumption
|
||||
SKOPT_MODEL_QUEUE_SIZE = 10
|
||||
|
||||
MAX_LOSS = 100000 # just a big enough number to be bad result in loss optimization
|
||||
|
||||
@ -75,7 +75,7 @@ class Hyperopt:
|
||||
self.custom_hyperoptloss = HyperOptLossResolver.load_hyperoptloss(self.config)
|
||||
self.calculate_loss = self.custom_hyperoptloss.hyperopt_loss_function
|
||||
|
||||
self.trials_file = (self.config['user_data_dir'] /
|
||||
self.results_file = (self.config['user_data_dir'] /
|
||||
'hyperopt_results' / 'hyperopt_results.pickle')
|
||||
self.data_pickle_file = (self.config['user_data_dir'] /
|
||||
'hyperopt_results' / 'hyperopt_tickerdata.pkl')
|
||||
@ -88,10 +88,10 @@ class Hyperopt:
|
||||
else:
|
||||
logger.info("Continuing on previous hyperopt results.")
|
||||
|
||||
self.num_trials_saved = 0
|
||||
self.num_epochs_saved = 0
|
||||
|
||||
# Previous evaluations
|
||||
self.trials: List = []
|
||||
self.epochs: List = []
|
||||
|
||||
# Populate functions here (hasattr is slow so should not be run during "regular" operations)
|
||||
if hasattr(self.custom_hyperopt, 'populate_indicators'):
|
||||
@ -132,7 +132,7 @@ class Hyperopt:
|
||||
"""
|
||||
Remove hyperopt pickle files to restart hyperopt.
|
||||
"""
|
||||
for f in [self.data_pickle_file, self.trials_file]:
|
||||
for f in [self.data_pickle_file, self.results_file]:
|
||||
p = Path(f)
|
||||
if p.is_file():
|
||||
logger.info(f"Removing `{p}`.")
|
||||
@ -151,27 +151,26 @@ class Hyperopt:
|
||||
# and the values are taken from the list of parameters.
|
||||
return {d.name: v for d, v in zip(dimensions, raw_params)}
|
||||
|
||||
def save_trials(self, final: bool = False) -> None:
|
||||
def _save_results(self) -> None:
|
||||
"""
|
||||
Save hyperopt trials to file
|
||||
Save hyperopt results to file
|
||||
"""
|
||||
num_trials = len(self.trials)
|
||||
if num_trials > self.num_trials_saved:
|
||||
logger.debug(f"Saving {num_trials} {plural(num_trials, 'epoch')}.")
|
||||
dump(self.trials, self.trials_file)
|
||||
self.num_trials_saved = num_trials
|
||||
if final:
|
||||
logger.info(f"{num_trials} {plural(num_trials, 'epoch')} "
|
||||
f"saved to '{self.trials_file}'.")
|
||||
num_epochs = len(self.epochs)
|
||||
if num_epochs > self.num_epochs_saved:
|
||||
logger.debug(f"Saving {num_epochs} {plural(num_epochs, 'epoch')}.")
|
||||
dump(self.epochs, self.results_file)
|
||||
self.num_epochs_saved = num_epochs
|
||||
logger.debug(f"{self.num_epochs_saved} {plural(self.num_epochs_saved, 'epoch')} "
|
||||
f"saved to '{self.results_file}'.")
|
||||
|
||||
@staticmethod
|
||||
def _read_trials(trials_file: Path) -> List:
|
||||
def _read_results(results_file: Path) -> List:
|
||||
"""
|
||||
Read hyperopt trials file
|
||||
Read hyperopt results from file
|
||||
"""
|
||||
logger.info("Reading Trials from '%s'", trials_file)
|
||||
trials = load(trials_file)
|
||||
return trials
|
||||
logger.info("Reading epochs from '%s'", results_file)
|
||||
data = load(results_file)
|
||||
return data
|
||||
|
||||
def _get_params_details(self, params: Dict) -> Dict:
|
||||
"""
|
||||
@ -231,6 +230,9 @@ class Hyperopt:
|
||||
if space in ['buy', 'sell']:
|
||||
result_dict.setdefault('params', {}).update(space_params)
|
||||
elif space == 'roi':
|
||||
# TODO: get rid of OrderedDict when support for python 3.6 will be
|
||||
# dropped (dicts keep the order as the language feature)
|
||||
|
||||
# Convert keys in min_roi dict to strings because
|
||||
# rapidjson cannot dump dicts with integer keys...
|
||||
# OrderedDict is used to keep the numeric order of the items
|
||||
@ -245,11 +247,24 @@ class Hyperopt:
|
||||
def _params_pretty_print(params, space: str, header: str) -> None:
|
||||
if space in params:
|
||||
space_params = Hyperopt._space_params(params, space, 5)
|
||||
params_result = f"\n# {header}\n"
|
||||
if space == 'stoploss':
|
||||
print(header, space_params.get('stoploss'))
|
||||
params_result += f"stoploss = {space_params.get('stoploss')}"
|
||||
elif space == 'roi':
|
||||
# TODO: get rid of OrderedDict when support for python 3.6 will be
|
||||
# dropped (dicts keep the order as the language feature)
|
||||
minimal_roi_result = rapidjson.dumps(
|
||||
OrderedDict(
|
||||
(str(k), v) for k, v in space_params.items()
|
||||
),
|
||||
default=str, indent=4, number_mode=rapidjson.NM_NATIVE)
|
||||
params_result += f"minimal_roi = {minimal_roi_result}"
|
||||
else:
|
||||
print(header)
|
||||
pprint(space_params, indent=4)
|
||||
params_result += f"{space}_params = {pformat(space_params, indent=4)}"
|
||||
params_result = params_result.replace("}", "\n}").replace("{", "{\n ")
|
||||
|
||||
params_result = params_result.replace("\n", "\n ")
|
||||
print(params_result)
|
||||
|
||||
@staticmethod
|
||||
def _space_params(params, space: str, r: int = None) -> Dict:
|
||||
@ -266,36 +281,17 @@ class Hyperopt:
|
||||
Log results if it is better than any previous evaluation
|
||||
"""
|
||||
is_best = results['is_best']
|
||||
if not self.print_all:
|
||||
# Print '\n' after each 100th epoch to separate dots from the log messages.
|
||||
# Otherwise output is messy on a terminal.
|
||||
print('.', end='' if results['current_epoch'] % 100 != 0 else None) # type: ignore
|
||||
sys.stdout.flush()
|
||||
|
||||
if self.print_all or is_best:
|
||||
if not self.print_all:
|
||||
# Separate the results explanation string from dots
|
||||
print("\n")
|
||||
self.print_result_table(self.config, results, self.total_epochs,
|
||||
print(
|
||||
self.get_result_table(
|
||||
self.config, results, self.total_epochs,
|
||||
self.print_all, self.print_colorized,
|
||||
self.hyperopt_table_header)
|
||||
self.hyperopt_table_header
|
||||
)
|
||||
)
|
||||
self.hyperopt_table_header = 2
|
||||
|
||||
@staticmethod
|
||||
def print_results_explanation(results, total_epochs, highlight_best: bool,
|
||||
print_colorized: bool) -> None:
|
||||
"""
|
||||
Log results explanation string
|
||||
"""
|
||||
explanation_str = Hyperopt._format_explanation_string(results, total_epochs)
|
||||
# Colorize output
|
||||
if print_colorized:
|
||||
if results['total_profit'] > 0:
|
||||
explanation_str = Fore.GREEN + explanation_str
|
||||
if highlight_best and results['is_best']:
|
||||
explanation_str = Style.BRIGHT + explanation_str
|
||||
print(explanation_str)
|
||||
|
||||
@staticmethod
|
||||
def _format_explanation_string(results, total_epochs) -> str:
|
||||
return (("*" if results['is_initial_point'] else " ") +
|
||||
@ -304,13 +300,13 @@ class Hyperopt:
|
||||
f"Objective: {results['loss']:.5f}")
|
||||
|
||||
@staticmethod
|
||||
def print_result_table(config: dict, results: list, total_epochs: int, highlight_best: bool,
|
||||
print_colorized: bool, remove_header: int) -> None:
|
||||
def get_result_table(config: dict, results: list, total_epochs: int, highlight_best: bool,
|
||||
print_colorized: bool, remove_header: int) -> str:
|
||||
"""
|
||||
Log result table
|
||||
"""
|
||||
if not results:
|
||||
return
|
||||
return ''
|
||||
|
||||
tabulate.PRESERVE_WHITESPACE = True
|
||||
|
||||
@ -325,6 +321,7 @@ class Hyperopt:
|
||||
trials['is_profit'] = False
|
||||
trials.loc[trials['is_initial_point'], 'Best'] = '* '
|
||||
trials.loc[trials['is_best'], 'Best'] = 'Best'
|
||||
trials.loc[trials['is_initial_point'] & trials['is_best'], 'Best'] = '* Best'
|
||||
trials.loc[trials['Total profit'] > 0, 'is_profit'] = True
|
||||
trials['Trades'] = trials['Trades'].astype(str)
|
||||
|
||||
@ -381,7 +378,7 @@ class Hyperopt:
|
||||
trials.to_dict(orient='list'), tablefmt='psql',
|
||||
headers='keys', stralign="right"
|
||||
)
|
||||
print(table)
|
||||
return table
|
||||
|
||||
@staticmethod
|
||||
def export_csv_file(config: dict, results: list, total_epochs: int, highlight_best: bool,
|
||||
@ -394,27 +391,35 @@ class Hyperopt:
|
||||
|
||||
# Verification for overwrite
|
||||
if path.isfile(csv_file):
|
||||
logger.error("CSV-File already exists!")
|
||||
logger.error(f"CSV file already exists: {csv_file}")
|
||||
return
|
||||
|
||||
try:
|
||||
io.open(csv_file, 'w+').close()
|
||||
except IOError:
|
||||
logger.error("Filed to create CSV-File!")
|
||||
logger.error(f"Failed to create CSV file: {csv_file}")
|
||||
return
|
||||
|
||||
trials = json_normalize(results, max_level=1)
|
||||
trials['Best'] = ''
|
||||
trials['Stake currency'] = config['stake_currency']
|
||||
trials = trials[['Best', 'current_epoch', 'results_metrics.trade_count',
|
||||
|
||||
base_metrics = ['Best', 'current_epoch', 'results_metrics.trade_count',
|
||||
'results_metrics.avg_profit', 'results_metrics.total_profit',
|
||||
'Stake currency', 'results_metrics.profit', 'results_metrics.duration',
|
||||
'loss', 'is_initial_point', 'is_best']]
|
||||
trials.columns = ['Best', 'Epoch', 'Trades', 'Avg profit', 'Total profit', 'Stake currency',
|
||||
'loss', 'is_initial_point', 'is_best']
|
||||
param_metrics = [("params_dict."+param) for param in results[0]['params_dict'].keys()]
|
||||
trials = trials[base_metrics + param_metrics]
|
||||
|
||||
base_columns = ['Best', 'Epoch', 'Trades', 'Avg profit', 'Total profit', 'Stake currency',
|
||||
'Profit', 'Avg duration', 'Objective', 'is_initial_point', 'is_best']
|
||||
param_columns = list(results[0]['params_dict'].keys())
|
||||
trials.columns = base_columns + param_columns
|
||||
|
||||
trials['is_profit'] = False
|
||||
trials.loc[trials['is_initial_point'], 'Best'] = '*'
|
||||
trials.loc[trials['is_best'], 'Best'] = 'Best'
|
||||
trials.loc[trials['is_initial_point'] & trials['is_best'], 'Best'] = '* Best'
|
||||
trials.loc[trials['Total profit'] > 0, 'is_profit'] = True
|
||||
trials['Epoch'] = trials['Epoch'].astype(str)
|
||||
trials['Trades'] = trials['Trades'].astype(str)
|
||||
@ -437,7 +442,7 @@ class Hyperopt:
|
||||
|
||||
trials = trials.drop(columns=['is_initial_point', 'is_best', 'is_profit'])
|
||||
trials.to_csv(csv_file, index=False, header=True, mode='w', encoding='UTF-8')
|
||||
print("CSV-File created!")
|
||||
logger.info(f"CSV file created: {csv_file}")
|
||||
|
||||
def has_space(self, space: str) -> bool:
|
||||
"""
|
||||
@ -581,43 +586,28 @@ class Hyperopt:
|
||||
n_initial_points=INITIAL_POINTS,
|
||||
acq_optimizer_kwargs={'n_jobs': cpu_count},
|
||||
random_state=self.random_state,
|
||||
model_queue_size=SKOPT_MODEL_QUEUE_SIZE,
|
||||
)
|
||||
|
||||
def fix_optimizer_models_list(self) -> None:
|
||||
"""
|
||||
WORKAROUND: Since skopt is not actively supported, this resolves problems with skopt
|
||||
memory usage, see also: https://github.com/scikit-optimize/scikit-optimize/pull/746
|
||||
|
||||
This may cease working when skopt updates if implementation of this intrinsic
|
||||
part changes.
|
||||
"""
|
||||
n = len(self.opt.models) - SKOPT_MODELS_MAX_NUM
|
||||
# Keep no more than 2*SKOPT_MODELS_MAX_NUM models in the skopt models list,
|
||||
# remove the old ones. These are actually of no use, the current model
|
||||
# from the estimator is the only one used in the skopt optimizer.
|
||||
# Freqtrade code also does not inspect details of the models.
|
||||
if n >= SKOPT_MODELS_MAX_NUM:
|
||||
logger.debug(f"Fixing skopt models list, removing {n} old items...")
|
||||
del self.opt.models[0:n]
|
||||
|
||||
def run_optimizer_parallel(self, parallel, asked, i) -> List:
|
||||
return parallel(delayed(
|
||||
wrap_non_picklable_objects(self.generate_optimizer))(v, i) for v in asked)
|
||||
|
||||
@staticmethod
|
||||
def load_previous_results(trials_file: Path) -> List:
|
||||
def load_previous_results(results_file: Path) -> List:
|
||||
"""
|
||||
Load data for epochs from the file if we have one
|
||||
"""
|
||||
trials: List = []
|
||||
if trials_file.is_file() and trials_file.stat().st_size > 0:
|
||||
trials = Hyperopt._read_trials(trials_file)
|
||||
if trials[0].get('is_best') is None:
|
||||
epochs: List = []
|
||||
if results_file.is_file() and results_file.stat().st_size > 0:
|
||||
epochs = Hyperopt._read_results(results_file)
|
||||
# Detection of some old format, without 'is_best' field saved
|
||||
if epochs[0].get('is_best') is None:
|
||||
raise OperationalException(
|
||||
"The file with Hyperopt results is incompatible with this version "
|
||||
"of Freqtrade and cannot be loaded.")
|
||||
logger.info(f"Loaded {len(trials)} previous evaluations from disk.")
|
||||
return trials
|
||||
logger.info(f"Loaded {len(epochs)} previous evaluations from disk.")
|
||||
return epochs
|
||||
|
||||
def _set_random_state(self, random_state: Optional[int]) -> int:
|
||||
return random_state or random.randint(1, 2**16 - 1)
|
||||
@ -643,8 +633,9 @@ class Hyperopt:
|
||||
|
||||
# We don't need exchange instance anymore while running hyperopt
|
||||
self.backtesting.exchange = None # type: ignore
|
||||
self.backtesting.pairlists = None # type: ignore
|
||||
|
||||
self.trials = self.load_previous_results(self.trials_file)
|
||||
self.epochs = self.load_previous_results(self.results_file)
|
||||
|
||||
cpus = cpu_count()
|
||||
logger.info(f"Found {cpus} CPU cores. Let's make them scream!")
|
||||
@ -653,14 +644,36 @@ class Hyperopt:
|
||||
|
||||
self.dimensions: List[Dimension] = self.hyperopt_space()
|
||||
self.opt = self.get_optimizer(self.dimensions, config_jobs)
|
||||
|
||||
if self.print_colorized:
|
||||
colorama_init(autoreset=True)
|
||||
|
||||
try:
|
||||
with Parallel(n_jobs=config_jobs) as parallel:
|
||||
jobs = parallel._effective_n_jobs()
|
||||
logger.info(f'Effective number of parallel workers used: {jobs}')
|
||||
|
||||
# Define progressbar
|
||||
if self.print_colorized:
|
||||
widgets = [
|
||||
' [Epoch ', progressbar.Counter(), ' of ', str(self.total_epochs),
|
||||
' (', progressbar.Percentage(), ')] ',
|
||||
progressbar.Bar(marker=progressbar.AnimatedMarker(
|
||||
fill='\N{FULL BLOCK}',
|
||||
fill_wrap=Fore.GREEN + '{}' + Fore.RESET,
|
||||
marker_wrap=Style.BRIGHT + '{}' + Style.RESET_ALL,
|
||||
)),
|
||||
' [', progressbar.ETA(), ', ', progressbar.Timer(), ']',
|
||||
]
|
||||
else:
|
||||
widgets = [
|
||||
' [Epoch ', progressbar.Counter(), ' of ', str(self.total_epochs),
|
||||
' (', progressbar.Percentage(), ')] ',
|
||||
progressbar.Bar(marker=progressbar.AnimatedMarker(
|
||||
fill='\N{FULL BLOCK}',
|
||||
)),
|
||||
' [', progressbar.ETA(), ', ', progressbar.Timer(), ']',
|
||||
]
|
||||
with progressbar.ProgressBar(
|
||||
max_value=self.total_epochs, redirect_stdout=False, redirect_stderr=False,
|
||||
widgets=widgets
|
||||
) as pbar:
|
||||
EVALS = ceil(self.total_epochs / jobs)
|
||||
for i in range(EVALS):
|
||||
# Correct the number of epochs to be processed for the last
|
||||
@ -671,13 +684,14 @@ class Hyperopt:
|
||||
asked = self.opt.ask(n_points=current_jobs)
|
||||
f_val = self.run_optimizer_parallel(parallel, asked, i)
|
||||
self.opt.tell(asked, [v['loss'] for v in f_val])
|
||||
self.fix_optimizer_models_list()
|
||||
|
||||
# Calculate progressbar outputs
|
||||
for j, val in enumerate(f_val):
|
||||
# Use human-friendly indexes here (starting from 1)
|
||||
current = i * jobs + j + 1
|
||||
val['current_epoch'] = current
|
||||
val['is_initial_point'] = current <= INITIAL_POINTS
|
||||
|
||||
logger.debug(f"Optimizer epoch evaluated: {val}")
|
||||
|
||||
is_best = self.is_best_loss(val, self.current_best_loss)
|
||||
@ -686,24 +700,29 @@ class Hyperopt:
|
||||
# evaluations can take different time. Here they are aligned in the
|
||||
# order they will be shown to the user.
|
||||
val['is_best'] = is_best
|
||||
|
||||
self.print_results(val)
|
||||
|
||||
if is_best:
|
||||
self.current_best_loss = val['loss']
|
||||
self.trials.append(val)
|
||||
self.epochs.append(val)
|
||||
|
||||
# Save results after each best epoch and every 100 epochs
|
||||
if is_best or current % 100 == 0:
|
||||
self.save_trials()
|
||||
self._save_results()
|
||||
|
||||
pbar.update(current)
|
||||
|
||||
except KeyboardInterrupt:
|
||||
print('User interrupted..')
|
||||
|
||||
self.save_trials(final=True)
|
||||
self._save_results()
|
||||
logger.info(f"{self.num_epochs_saved} {plural(self.num_epochs_saved, 'epoch')} "
|
||||
f"saved to '{self.results_file}'.")
|
||||
|
||||
if self.trials:
|
||||
sorted_trials = sorted(self.trials, key=itemgetter('loss'))
|
||||
results = sorted_trials[0]
|
||||
self.print_epoch_details(results, self.total_epochs, self.print_json)
|
||||
if self.epochs:
|
||||
sorted_epochs = sorted(self.epochs, key=itemgetter('loss'))
|
||||
best_epoch = sorted_epochs[0]
|
||||
self.print_epoch_details(best_epoch, self.total_epochs, self.print_json)
|
||||
else:
|
||||
# This is printed when Ctrl+C is pressed quickly, before first epochs have
|
||||
# a chance to be evaluated.
|
||||
|
@ -31,13 +31,15 @@ class IHyperOpt(ABC):
|
||||
Class attributes you can use:
|
||||
ticker_interval -> int: value of the ticker interval to use for the strategy
|
||||
"""
|
||||
ticker_interval: str
|
||||
ticker_interval: str # DEPRECATED
|
||||
timeframe: str
|
||||
|
||||
def __init__(self, config: dict) -> None:
|
||||
self.config = config
|
||||
|
||||
# Assign ticker_interval to be used in hyperopt
|
||||
IHyperOpt.ticker_interval = str(config['ticker_interval'])
|
||||
IHyperOpt.ticker_interval = str(config['timeframe']) # DEPRECATED
|
||||
IHyperOpt.timeframe = str(config['timeframe'])
|
||||
|
||||
@staticmethod
|
||||
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
|
||||
@ -218,9 +220,10 @@ class IHyperOpt(ABC):
|
||||
# Why do I still need such shamanic mantras in modern python?
|
||||
def __getstate__(self):
|
||||
state = self.__dict__.copy()
|
||||
state['ticker_interval'] = self.ticker_interval
|
||||
state['timeframe'] = self.timeframe
|
||||
return state
|
||||
|
||||
def __setstate__(self, state):
|
||||
self.__dict__.update(state)
|
||||
IHyperOpt.ticker_interval = state['ticker_interval']
|
||||
IHyperOpt.ticker_interval = state['timeframe']
|
||||
IHyperOpt.timeframe = state['timeframe']
|
||||
|
@ -14,7 +14,7 @@ class IHyperOptLoss(ABC):
|
||||
Interface for freqtrade hyperopt Loss functions.
|
||||
Defines the custom loss function (`hyperopt_loss_function()` which is evaluated every epoch.)
|
||||
"""
|
||||
ticker_interval: str
|
||||
timeframe: str
|
||||
|
||||
@staticmethod
|
||||
@abstractmethod
|
||||
|
@ -34,5 +34,5 @@ class OnlyProfitHyperOptLoss(IHyperOptLoss):
|
||||
"""
|
||||
Objective function, returns smaller number for better results.
|
||||
"""
|
||||
total_profit = results.profit_percent.sum()
|
||||
total_profit = results['profit_percent'].sum()
|
||||
return 1 - total_profit / EXPECTED_MAX_PROFIT
|
||||
|
@ -1,7 +1,7 @@
|
||||
import logging
|
||||
from datetime import timedelta
|
||||
from pathlib import Path
|
||||
from typing import Dict
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from pandas import DataFrame
|
||||
from tabulate import tabulate
|
||||
@ -18,168 +18,154 @@ def store_backtest_result(recordfilename: Path, all_results: Dict[str, DataFrame
|
||||
:param all_results: Dict of Dataframes, one results dataframe per strategy
|
||||
"""
|
||||
for strategy, results in all_results.items():
|
||||
records = [(t.pair, t.profit_percent, t.open_time.timestamp(),
|
||||
t.close_time.timestamp(), t.open_index - 1, t.trade_duration,
|
||||
t.open_rate, t.close_rate, t.open_at_end, t.sell_reason.value)
|
||||
for index, t in results.iterrows()]
|
||||
records = backtest_result_to_list(results)
|
||||
|
||||
if records:
|
||||
filename = recordfilename
|
||||
if len(all_results) > 1:
|
||||
# Inject strategy to filename
|
||||
recordfilename = Path.joinpath(
|
||||
filename = Path.joinpath(
|
||||
recordfilename.parent,
|
||||
f'{recordfilename.stem}-{strategy}').with_suffix(recordfilename.suffix)
|
||||
logger.info(f'Dumping backtest results to {recordfilename}')
|
||||
file_dump_json(recordfilename, records)
|
||||
logger.info(f'Dumping backtest results to {filename}')
|
||||
file_dump_json(filename, records)
|
||||
|
||||
|
||||
def generate_text_table(data: Dict[str, Dict], stake_currency: str, max_open_trades: int,
|
||||
results: DataFrame, skip_nan: bool = False) -> str:
|
||||
def backtest_result_to_list(results: DataFrame) -> List[List]:
|
||||
"""
|
||||
Generates and returns a text table for the given backtest data and the results dataframe
|
||||
Converts a list of Backtest-results to list
|
||||
:param results: Dataframe containing results for one strategy
|
||||
:return: List of Lists containing the trades
|
||||
"""
|
||||
return [[t.pair, t.profit_percent, t.open_time.timestamp(),
|
||||
t.close_time.timestamp(), t.open_index - 1, t.trade_duration,
|
||||
t.open_rate, t.close_rate, t.open_at_end, t.sell_reason.value]
|
||||
for index, t in results.iterrows()]
|
||||
|
||||
|
||||
def _get_line_floatfmt() -> List[str]:
|
||||
"""
|
||||
Generate floatformat (goes in line with _generate_result_line())
|
||||
"""
|
||||
return ['s', 'd', '.2f', '.2f', '.8f', '.2f', 'd', 'd', 'd', 'd']
|
||||
|
||||
|
||||
def _get_line_header(first_column: str, stake_currency: str) -> List[str]:
|
||||
"""
|
||||
Generate header lines (goes in line with _generate_result_line())
|
||||
"""
|
||||
return [first_column, 'Buys', 'Avg Profit %', 'Cum Profit %',
|
||||
f'Tot Profit {stake_currency}', 'Tot Profit %', 'Avg Duration',
|
||||
'Wins', 'Draws', 'Losses']
|
||||
|
||||
|
||||
def _generate_result_line(result: DataFrame, max_open_trades: int, first_column: str) -> Dict:
|
||||
"""
|
||||
Generate one result dict, with "first_column" as key.
|
||||
"""
|
||||
return {
|
||||
'key': first_column,
|
||||
'trades': len(result),
|
||||
'profit_mean': result['profit_percent'].mean(),
|
||||
'profit_mean_pct': result['profit_percent'].mean() * 100.0,
|
||||
'profit_sum': result['profit_percent'].sum(),
|
||||
'profit_sum_pct': result['profit_percent'].sum() * 100.0,
|
||||
'profit_total_abs': result['profit_abs'].sum(),
|
||||
'profit_total_pct': result['profit_percent'].sum() * 100.0 / max_open_trades,
|
||||
'duration_avg': str(timedelta(
|
||||
minutes=round(result['trade_duration'].mean()))
|
||||
) if not result.empty else '0:00',
|
||||
# 'duration_max': str(timedelta(
|
||||
# minutes=round(result['trade_duration'].max()))
|
||||
# ) if not result.empty else '0:00',
|
||||
# 'duration_min': str(timedelta(
|
||||
# minutes=round(result['trade_duration'].min()))
|
||||
# ) if not result.empty else '0:00',
|
||||
'wins': len(result[result['profit_abs'] > 0]),
|
||||
'draws': len(result[result['profit_abs'] == 0]),
|
||||
'losses': len(result[result['profit_abs'] < 0]),
|
||||
}
|
||||
|
||||
|
||||
def generate_pair_metrics(data: Dict[str, Dict], stake_currency: str, max_open_trades: int,
|
||||
results: DataFrame, skip_nan: bool = False) -> List[Dict]:
|
||||
"""
|
||||
Generates and returns a list for the given backtest data and the results dataframe
|
||||
:param data: Dict of <pair: dataframe> containing data that was used during backtesting.
|
||||
:param stake_currency: stake-currency - used to correctly name headers
|
||||
:param max_open_trades: Maximum allowed open trades
|
||||
:param results: Dataframe containing the backtest results
|
||||
:param skip_nan: Print "left open" open trades
|
||||
:return: pretty printed table with tabulate as string
|
||||
:return: List of Dicts containing the metrics per pair
|
||||
"""
|
||||
|
||||
floatfmt = ('s', 'd', '.2f', '.2f', '.8f', '.2f', 'd', '.1f', '.1f')
|
||||
tabular_data = []
|
||||
headers = [
|
||||
'Pair',
|
||||
'Buys',
|
||||
'Avg Profit %',
|
||||
'Cum Profit %',
|
||||
f'Tot Profit {stake_currency}',
|
||||
'Tot Profit %',
|
||||
'Avg Duration',
|
||||
'Wins',
|
||||
'Draws',
|
||||
'Losses'
|
||||
]
|
||||
|
||||
for pair in data:
|
||||
result = results[results.pair == pair]
|
||||
if skip_nan and result.profit_abs.isnull().all():
|
||||
result = results[results['pair'] == pair]
|
||||
if skip_nan and result['profit_abs'].isnull().all():
|
||||
continue
|
||||
|
||||
tabular_data.append([
|
||||
pair,
|
||||
len(result.index),
|
||||
result.profit_percent.mean() * 100.0,
|
||||
result.profit_percent.sum() * 100.0,
|
||||
result.profit_abs.sum(),
|
||||
result.profit_percent.sum() * 100.0 / max_open_trades,
|
||||
str(timedelta(
|
||||
minutes=round(result.trade_duration.mean()))) if not result.empty else '0:00',
|
||||
len(result[result.profit_abs > 0]),
|
||||
len(result[result.profit_abs == 0]),
|
||||
len(result[result.profit_abs < 0])
|
||||
])
|
||||
tabular_data.append(_generate_result_line(result, max_open_trades, pair))
|
||||
|
||||
# Append Total
|
||||
tabular_data.append([
|
||||
'TOTAL',
|
||||
len(results.index),
|
||||
results.profit_percent.mean() * 100.0,
|
||||
results.profit_percent.sum() * 100.0,
|
||||
results.profit_abs.sum(),
|
||||
results.profit_percent.sum() * 100.0 / max_open_trades,
|
||||
str(timedelta(
|
||||
minutes=round(results.trade_duration.mean()))) if not results.empty else '0:00',
|
||||
len(results[results.profit_abs > 0]),
|
||||
len(results[results.profit_abs == 0]),
|
||||
len(results[results.profit_abs < 0])
|
||||
])
|
||||
# Ignore type as floatfmt does allow tuples but mypy does not know that
|
||||
return tabulate(tabular_data, headers=headers,
|
||||
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right") # type: ignore
|
||||
tabular_data.append(_generate_result_line(results, max_open_trades, 'TOTAL'))
|
||||
return tabular_data
|
||||
|
||||
|
||||
def generate_text_table_sell_reason(stake_currency: str, max_open_trades: int,
|
||||
results: DataFrame) -> str:
|
||||
def generate_sell_reason_stats(max_open_trades: int, results: DataFrame) -> List[Dict]:
|
||||
"""
|
||||
Generate small table outlining Backtest results
|
||||
:param stake_currency: Stakecurrency used
|
||||
:param max_open_trades: Max_open_trades parameter
|
||||
:param results: Dataframe containing the backtest results
|
||||
:return: pretty printed table with tabulate as string
|
||||
:param results: Dataframe containing the backtest result for one strategy
|
||||
:return: List of Dicts containing the metrics per Sell reason
|
||||
"""
|
||||
tabular_data = []
|
||||
headers = [
|
||||
"Sell Reason",
|
||||
"Sells",
|
||||
"Wins",
|
||||
"Draws",
|
||||
"Losses",
|
||||
"Avg Profit %",
|
||||
"Cum Profit %",
|
||||
f"Tot Profit {stake_currency}",
|
||||
"Tot Profit %",
|
||||
]
|
||||
|
||||
for reason, count in results['sell_reason'].value_counts().iteritems():
|
||||
result = results.loc[results['sell_reason'] == reason]
|
||||
wins = len(result[result['profit_abs'] > 0])
|
||||
draws = len(result[result['profit_abs'] == 0])
|
||||
loss = len(result[result['profit_abs'] < 0])
|
||||
profit_mean = round(result['profit_percent'].mean() * 100.0, 2)
|
||||
profit_sum = round(result["profit_percent"].sum() * 100.0, 2)
|
||||
profit_tot = result['profit_abs'].sum()
|
||||
|
||||
profit_mean = result['profit_percent'].mean()
|
||||
profit_sum = result["profit_percent"].sum()
|
||||
profit_percent_tot = round(result['profit_percent'].sum() * 100.0 / max_open_trades, 2)
|
||||
|
||||
tabular_data.append(
|
||||
[
|
||||
reason.value,
|
||||
count,
|
||||
wins,
|
||||
draws,
|
||||
loss,
|
||||
profit_mean,
|
||||
profit_sum,
|
||||
profit_tot,
|
||||
profit_percent_tot,
|
||||
]
|
||||
{
|
||||
'sell_reason': reason.value,
|
||||
'trades': count,
|
||||
'wins': len(result[result['profit_abs'] > 0]),
|
||||
'draws': len(result[result['profit_abs'] == 0]),
|
||||
'losses': len(result[result['profit_abs'] < 0]),
|
||||
'profit_mean': profit_mean,
|
||||
'profit_mean_pct': round(profit_mean * 100, 2),
|
||||
'profit_sum': profit_sum,
|
||||
'profit_sum_pct': round(profit_sum * 100, 2),
|
||||
'profit_total_abs': result['profit_abs'].sum(),
|
||||
'profit_pct_total': profit_percent_tot,
|
||||
}
|
||||
)
|
||||
return tabulate(tabular_data, headers=headers, tablefmt="orgtbl", stralign="right")
|
||||
return tabular_data
|
||||
|
||||
|
||||
def generate_text_table_strategy(stake_currency: str, max_open_trades: str,
|
||||
all_results: Dict) -> str:
|
||||
def generate_strategy_metrics(stake_currency: str, max_open_trades: int,
|
||||
all_results: Dict) -> List[Dict]:
|
||||
"""
|
||||
Generate summary table per strategy
|
||||
Generate summary per strategy
|
||||
:param stake_currency: stake-currency - used to correctly name headers
|
||||
:param max_open_trades: Maximum allowed open trades used for backtest
|
||||
:param all_results: Dict of <Strategyname: BacktestResult> containing results for all strategies
|
||||
:return: pretty printed table with tabulate as string
|
||||
:return: List of Dicts containing the metrics per Strategy
|
||||
"""
|
||||
|
||||
floatfmt = ('s', 'd', '.2f', '.2f', '.8f', '.2f', 'd', '.1f', '.1f')
|
||||
tabular_data = []
|
||||
headers = ['Strategy', 'Buys', 'Avg Profit %', 'Cum Profit %',
|
||||
f'Tot Profit {stake_currency}', 'Tot Profit %', 'Avg Duration',
|
||||
'Wins', 'Draws', 'Losses']
|
||||
for strategy, results in all_results.items():
|
||||
tabular_data.append([
|
||||
strategy,
|
||||
len(results.index),
|
||||
results.profit_percent.mean() * 100.0,
|
||||
results.profit_percent.sum() * 100.0,
|
||||
results.profit_abs.sum(),
|
||||
results.profit_percent.sum() * 100.0 / max_open_trades,
|
||||
str(timedelta(
|
||||
minutes=round(results.trade_duration.mean()))) if not results.empty else '0:00',
|
||||
len(results[results.profit_abs > 0]),
|
||||
len(results[results.profit_abs == 0]),
|
||||
len(results[results.profit_abs < 0])
|
||||
])
|
||||
# Ignore type as floatfmt does allow tuples but mypy does not know that
|
||||
return tabulate(tabular_data, headers=headers,
|
||||
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right") # type: ignore
|
||||
tabular_data.append(_generate_result_line(results, max_open_trades, strategy))
|
||||
return tabular_data
|
||||
|
||||
|
||||
def generate_edge_table(results: dict) -> str:
|
||||
|
||||
floatfmt = ('s', '.10g', '.2f', '.2f', '.2f', '.2f', 'd', '.d')
|
||||
floatfmt = ('s', '.10g', '.2f', '.2f', '.2f', '.2f', 'd', 'd', 'd')
|
||||
tabular_data = []
|
||||
headers = ['Pair', 'Stoploss', 'Win Rate', 'Risk Reward Ratio',
|
||||
'Required Risk Reward', 'Expectancy', 'Total Number of Trades',
|
||||
@ -203,40 +189,145 @@ def generate_edge_table(results: dict) -> str:
|
||||
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right") # type: ignore
|
||||
|
||||
|
||||
def show_backtest_results(config: Dict, btdata: Dict[str, DataFrame],
|
||||
all_results: Dict[str, DataFrame]):
|
||||
def generate_backtest_stats(config: Dict, btdata: Dict[str, DataFrame],
|
||||
all_results: Dict[str, DataFrame]) -> Dict[str, Any]:
|
||||
"""
|
||||
:param config: Configuration object used for backtest
|
||||
:param btdata: Backtest data
|
||||
:param all_results: backtest result - dictionary with { Strategy: results}.
|
||||
:return:
|
||||
Dictionary containing results per strategy and a stratgy summary.
|
||||
"""
|
||||
stake_currency = config['stake_currency']
|
||||
max_open_trades = config['max_open_trades']
|
||||
result: Dict[str, Any] = {'strategy': {}}
|
||||
for strategy, results in all_results.items():
|
||||
|
||||
print(f"Result for strategy {strategy}")
|
||||
table = generate_text_table(btdata, stake_currency=config['stake_currency'],
|
||||
max_open_trades=config['max_open_trades'],
|
||||
pair_results = generate_pair_metrics(btdata, stake_currency=stake_currency,
|
||||
max_open_trades=max_open_trades,
|
||||
results=results, skip_nan=False)
|
||||
sell_reason_stats = generate_sell_reason_stats(max_open_trades=max_open_trades,
|
||||
results=results)
|
||||
left_open_results = generate_pair_metrics(btdata, stake_currency=stake_currency,
|
||||
max_open_trades=max_open_trades,
|
||||
results=results.loc[results['open_at_end']],
|
||||
skip_nan=True)
|
||||
strat_stats = {
|
||||
'trades': backtest_result_to_list(results),
|
||||
'results_per_pair': pair_results,
|
||||
'sell_reason_summary': sell_reason_stats,
|
||||
'left_open_trades': left_open_results,
|
||||
}
|
||||
result['strategy'][strategy] = strat_stats
|
||||
|
||||
strategy_results = generate_strategy_metrics(stake_currency=stake_currency,
|
||||
max_open_trades=max_open_trades,
|
||||
all_results=all_results)
|
||||
|
||||
result['strategy_comparison'] = strategy_results
|
||||
|
||||
return result
|
||||
|
||||
|
||||
###
|
||||
# Start output section
|
||||
###
|
||||
|
||||
def text_table_bt_results(pair_results: List[Dict[str, Any]], stake_currency: str) -> str:
|
||||
"""
|
||||
Generates and returns a text table for the given backtest data and the results dataframe
|
||||
:param pair_results: List of Dictionaries - one entry per pair + final TOTAL row
|
||||
:param stake_currency: stake-currency - used to correctly name headers
|
||||
:return: pretty printed table with tabulate as string
|
||||
"""
|
||||
|
||||
headers = _get_line_header('Pair', stake_currency)
|
||||
floatfmt = _get_line_floatfmt()
|
||||
output = [[
|
||||
t['key'], t['trades'], t['profit_mean_pct'], t['profit_sum_pct'], t['profit_total_abs'],
|
||||
t['profit_total_pct'], t['duration_avg'], t['wins'], t['draws'], t['losses']
|
||||
] for t in pair_results]
|
||||
# Ignore type as floatfmt does allow tuples but mypy does not know that
|
||||
return tabulate(output, headers=headers,
|
||||
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right")
|
||||
|
||||
|
||||
def text_table_sell_reason(sell_reason_stats: List[Dict[str, Any]], stake_currency: str) -> str:
|
||||
"""
|
||||
Generate small table outlining Backtest results
|
||||
:param sell_reason_stats: Sell reason metrics
|
||||
:param stake_currency: Stakecurrency used
|
||||
:return: pretty printed table with tabulate as string
|
||||
"""
|
||||
headers = [
|
||||
'Sell Reason',
|
||||
'Sells',
|
||||
'Wins',
|
||||
'Draws',
|
||||
'Losses',
|
||||
'Avg Profit %',
|
||||
'Cum Profit %',
|
||||
f'Tot Profit {stake_currency}',
|
||||
'Tot Profit %',
|
||||
]
|
||||
|
||||
output = [[
|
||||
t['sell_reason'], t['trades'], t['wins'], t['draws'], t['losses'],
|
||||
t['profit_mean_pct'], t['profit_sum_pct'], t['profit_total_abs'], t['profit_pct_total'],
|
||||
] for t in sell_reason_stats]
|
||||
return tabulate(output, headers=headers, tablefmt="orgtbl", stralign="right")
|
||||
|
||||
|
||||
def text_table_strategy(strategy_results, stake_currency: str) -> str:
|
||||
"""
|
||||
Generate summary table per strategy
|
||||
:param stake_currency: stake-currency - used to correctly name headers
|
||||
:param max_open_trades: Maximum allowed open trades used for backtest
|
||||
:param all_results: Dict of <Strategyname: BacktestResult> containing results for all strategies
|
||||
:return: pretty printed table with tabulate as string
|
||||
"""
|
||||
floatfmt = _get_line_floatfmt()
|
||||
headers = _get_line_header('Strategy', stake_currency)
|
||||
|
||||
output = [[
|
||||
t['key'], t['trades'], t['profit_mean_pct'], t['profit_sum_pct'], t['profit_total_abs'],
|
||||
t['profit_total_pct'], t['duration_avg'], t['wins'], t['draws'], t['losses']
|
||||
] for t in strategy_results]
|
||||
# Ignore type as floatfmt does allow tuples but mypy does not know that
|
||||
return tabulate(output, headers=headers,
|
||||
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right")
|
||||
|
||||
|
||||
def show_backtest_results(config: Dict, backtest_stats: Dict):
|
||||
stake_currency = config['stake_currency']
|
||||
|
||||
for strategy, results in backtest_stats['strategy'].items():
|
||||
|
||||
# Print results
|
||||
print(f"Result for strategy {strategy}")
|
||||
table = text_table_bt_results(results['results_per_pair'], stake_currency=stake_currency)
|
||||
if isinstance(table, str):
|
||||
print(' BACKTESTING REPORT '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
|
||||
table = generate_text_table_sell_reason(stake_currency=config['stake_currency'],
|
||||
max_open_trades=config['max_open_trades'],
|
||||
results=results)
|
||||
table = text_table_sell_reason(sell_reason_stats=results['sell_reason_summary'],
|
||||
stake_currency=stake_currency)
|
||||
if isinstance(table, str):
|
||||
print(' SELL REASON STATS '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
|
||||
table = generate_text_table(btdata,
|
||||
stake_currency=config['stake_currency'],
|
||||
max_open_trades=config['max_open_trades'],
|
||||
results=results.loc[results.open_at_end], skip_nan=True)
|
||||
table = text_table_bt_results(results['left_open_trades'], stake_currency=stake_currency)
|
||||
if isinstance(table, str):
|
||||
print(' LEFT OPEN TRADES REPORT '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
if isinstance(table, str):
|
||||
print('=' * len(table.splitlines()[0]))
|
||||
print()
|
||||
if len(all_results) > 1:
|
||||
|
||||
if len(backtest_stats['strategy']) > 1:
|
||||
# Print Strategy summary table
|
||||
table = generate_text_table_strategy(config['stake_currency'],
|
||||
config['max_open_trades'],
|
||||
all_results=all_results)
|
||||
|
||||
table = text_table_strategy(backtest_stats['strategy_comparison'], stake_currency)
|
||||
print(' STRATEGY SUMMARY '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
print('=' * len(table.splitlines()[0]))
|
||||
|
84
freqtrade/pairlist/AgeFilter.py
Normal file
84
freqtrade/pairlist/AgeFilter.py
Normal file
@ -0,0 +1,84 @@
|
||||
"""
|
||||
Minimum age (days listed) pair list filter
|
||||
"""
|
||||
import logging
|
||||
import arrow
|
||||
from typing import Any, Dict
|
||||
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.misc import plural
|
||||
from freqtrade.pairlist.IPairList import IPairList
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AgeFilter(IPairList):
|
||||
|
||||
# Checked symbols cache (dictionary of ticker symbol => timestamp)
|
||||
_symbolsChecked: Dict[str, int] = {}
|
||||
|
||||
def __init__(self, exchange, pairlistmanager,
|
||||
config: Dict[str, Any], pairlistconfig: Dict[str, Any],
|
||||
pairlist_pos: int) -> None:
|
||||
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
|
||||
|
||||
self._min_days_listed = pairlistconfig.get('min_days_listed', 10)
|
||||
|
||||
if self._min_days_listed < 1:
|
||||
raise OperationalException("AgeFilter requires min_days_listed must be >= 1")
|
||||
if self._min_days_listed > exchange.ohlcv_candle_limit:
|
||||
raise OperationalException("AgeFilter requires min_days_listed must not exceed "
|
||||
"exchange max request size "
|
||||
f"({exchange.ohlcv_candle_limit})")
|
||||
self._enabled = self._min_days_listed >= 1
|
||||
|
||||
@property
|
||||
def needstickers(self) -> bool:
|
||||
"""
|
||||
Boolean property defining if tickers are necessary.
|
||||
If no Pairlist requires tickers, an empty List is passed
|
||||
as tickers argument to filter_pairlist
|
||||
"""
|
||||
return True
|
||||
|
||||
def short_desc(self) -> str:
|
||||
"""
|
||||
Short whitelist method description - used for startup-messages
|
||||
"""
|
||||
return (f"{self.name} - Filtering pairs with age less than "
|
||||
f"{self._min_days_listed} {plural(self._min_days_listed, 'day')}.")
|
||||
|
||||
def _validate_pair(self, ticker: dict) -> bool:
|
||||
"""
|
||||
Validate age for the ticker
|
||||
:param ticker: ticker dict as returned from ccxt.load_markets()
|
||||
:return: True if the pair can stay, False if it should be removed
|
||||
"""
|
||||
|
||||
# Check symbol in cache
|
||||
if ticker['symbol'] in self._symbolsChecked:
|
||||
return True
|
||||
|
||||
since_ms = int(arrow.utcnow()
|
||||
.floor('day')
|
||||
.shift(days=-self._min_days_listed)
|
||||
.float_timestamp) * 1000
|
||||
|
||||
daily_candles = self._exchange.get_historic_ohlcv(pair=ticker['symbol'],
|
||||
timeframe='1d',
|
||||
since_ms=since_ms)
|
||||
|
||||
if daily_candles is not None:
|
||||
if len(daily_candles) > self._min_days_listed:
|
||||
# We have fetched at least the minimum required number of daily candles
|
||||
# Add to cache, store the time we last checked this symbol
|
||||
self._symbolsChecked[ticker['symbol']] = int(arrow.utcnow().float_timestamp) * 1000
|
||||
return True
|
||||
else:
|
||||
self.log_on_refresh(logger.info, f"Removed {ticker['symbol']} from whitelist, "
|
||||
f"because age {len(daily_candles)} is less than "
|
||||
f"{self._min_days_listed} "
|
||||
f"{plural(self._min_days_listed, 'day')}")
|
||||
return False
|
||||
return False
|
@ -1,16 +1,17 @@
|
||||
"""
|
||||
Static List provider
|
||||
|
||||
Provides lists as configured in config.json
|
||||
|
||||
PairList Handler base class
|
||||
"""
|
||||
import logging
|
||||
from abc import ABC, abstractmethod, abstractproperty
|
||||
from copy import deepcopy
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from cachetools import TTLCache, cached
|
||||
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.exchange import market_is_active
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@ -21,16 +22,21 @@ class IPairList(ABC):
|
||||
pairlist_pos: int) -> None:
|
||||
"""
|
||||
:param exchange: Exchange instance
|
||||
:param pairlistmanager: Instanciating Pairlist manager
|
||||
:param pairlistmanager: Instantiated Pairlist manager
|
||||
:param config: Global bot configuration
|
||||
:param pairlistconfig: Configuration for this pairlist - can be empty.
|
||||
:param pairlist_pos: Position of the filter in the pairlist-filter-list
|
||||
:param pairlistconfig: Configuration for this Pairlist Handler - can be empty.
|
||||
:param pairlist_pos: Position of the Pairlist Handler in the chain
|
||||
"""
|
||||
self._enabled = True
|
||||
|
||||
self._exchange = exchange
|
||||
self._pairlistmanager = pairlistmanager
|
||||
self._config = config
|
||||
self._pairlistconfig = pairlistconfig
|
||||
self._pairlist_pos = pairlist_pos
|
||||
self.refresh_period = self._pairlistconfig.get('refresh_period', 1800)
|
||||
self._last_refresh = 0
|
||||
self._log_cache = TTLCache(maxsize=1024, ttl=self.refresh_period)
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
@ -40,11 +46,29 @@ class IPairList(ABC):
|
||||
"""
|
||||
return self.__class__.__name__
|
||||
|
||||
def log_on_refresh(self, logmethod, message: str) -> None:
|
||||
"""
|
||||
Logs message - not more often than "refresh_period" to avoid log spamming
|
||||
Logs the log-message as debug as well to simplify debugging.
|
||||
:param logmethod: Function that'll be called. Most likely `logger.info`.
|
||||
:param message: String containing the message to be sent to the function.
|
||||
:return: None.
|
||||
"""
|
||||
|
||||
@cached(cache=self._log_cache)
|
||||
def _log_on_refresh(message: str):
|
||||
logmethod(message)
|
||||
|
||||
# Log as debug first
|
||||
logger.debug(message)
|
||||
# Call hidden function.
|
||||
_log_on_refresh(message)
|
||||
|
||||
@abstractproperty
|
||||
def needstickers(self) -> bool:
|
||||
"""
|
||||
Boolean property defining if tickers are necessary.
|
||||
If no Pairlist requries tickers, an empty List is passed
|
||||
If no Pairlist requires tickers, an empty List is passed
|
||||
as tickers argument to filter_pairlist
|
||||
"""
|
||||
|
||||
@ -55,49 +79,68 @@ class IPairList(ABC):
|
||||
-> Please overwrite in subclasses
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def _validate_pair(self, ticker) -> bool:
|
||||
"""
|
||||
Check one pair against Pairlist Handler's specific conditions.
|
||||
|
||||
Either implement it in the Pairlist Handler or override the generic
|
||||
filter_pairlist() method.
|
||||
|
||||
:param ticker: ticker dict as returned from ccxt.load_markets()
|
||||
:return: True if the pair can stay, false if it should be removed
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def gen_pairlist(self, cached_pairlist: List[str], tickers: Dict) -> List[str]:
|
||||
"""
|
||||
Generate the pairlist.
|
||||
|
||||
This method is called once by the pairlistmanager in the refresh_pairlist()
|
||||
method to supply the starting pairlist for the chain of the Pairlist Handlers.
|
||||
Pairlist Filters (those Pairlist Handlers that cannot be used at the first
|
||||
position in the chain) shall not override this base implementation --
|
||||
it will raise the exception if a Pairlist Handler is used at the first
|
||||
position in the chain.
|
||||
|
||||
:param cached_pairlist: Previously generated pairlist (cached)
|
||||
:param tickers: Tickers (from exchange.get_tickers()).
|
||||
:return: List of pairs
|
||||
"""
|
||||
raise OperationalException("This Pairlist Handler should not be used "
|
||||
"at the first position in the list of Pairlist Handlers.")
|
||||
|
||||
def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]:
|
||||
"""
|
||||
Filters and sorts pairlist and returns the whitelist again.
|
||||
|
||||
Called on each bot iteration - please use internal caching if necessary
|
||||
-> Please overwrite in subclasses
|
||||
This generic implementation calls self._validate_pair() for each pair
|
||||
in the pairlist.
|
||||
|
||||
Some Pairlist Handlers override this generic implementation and employ
|
||||
own filtration.
|
||||
|
||||
:param pairlist: pairlist to filter or sort
|
||||
:param tickers: Tickers (from exchange.get_tickers()). May be cached.
|
||||
:return: new whitelist
|
||||
"""
|
||||
if self._enabled:
|
||||
# Copy list since we're modifying this list
|
||||
for p in deepcopy(pairlist):
|
||||
# Filter out assets
|
||||
if not self._validate_pair(tickers[p]):
|
||||
pairlist.remove(p)
|
||||
|
||||
@staticmethod
|
||||
def verify_blacklist(pairlist: List[str], blacklist: List[str],
|
||||
aswarning: bool) -> List[str]:
|
||||
"""
|
||||
Verify and remove items from pairlist - returning a filtered pairlist.
|
||||
Logs a warning or info depending on `aswarning`.
|
||||
Pairlists explicitly using this method shall use `aswarning=False`!
|
||||
:param pairlist: Pairlist to validate
|
||||
:param blacklist: Blacklist to validate pairlist against
|
||||
:param aswarning: Log message as Warning or info
|
||||
:return: pairlist - blacklisted pairs
|
||||
"""
|
||||
for pair in deepcopy(pairlist):
|
||||
if pair in blacklist:
|
||||
if aswarning:
|
||||
logger.warning(f"Pair {pair} in your blacklist. Removing it from whitelist...")
|
||||
else:
|
||||
logger.info(f"Pair {pair} in your blacklist. Removing it from whitelist...")
|
||||
pairlist.remove(pair)
|
||||
return pairlist
|
||||
|
||||
def _verify_blacklist(self, pairlist: List[str], aswarning: bool = True) -> List[str]:
|
||||
def verify_blacklist(self, pairlist: List[str], logmethod) -> List[str]:
|
||||
"""
|
||||
Proxy method to verify_blacklist for easy access for child classes.
|
||||
Logs a warning or info depending on `aswarning`.
|
||||
Pairlists explicitly using this method shall use aswarning=False!
|
||||
:param pairlist: Pairlist to validate
|
||||
:param aswarning: Log message as Warning or info.
|
||||
:param logmethod: Function that'll be called, `logger.info` or `logger.warning`.
|
||||
:return: pairlist - blacklisted pairs
|
||||
"""
|
||||
return IPairList.verify_blacklist(pairlist, self._pairlistmanager.blacklist,
|
||||
aswarning=aswarning)
|
||||
return self._pairlistmanager.verify_blacklist(pairlist, logmethod)
|
||||
|
||||
def _whitelist_for_active_markets(self, pairlist: List[str]) -> List[str]:
|
||||
"""
|
||||
@ -107,6 +150,9 @@ class IPairList(ABC):
|
||||
black_listed
|
||||
"""
|
||||
markets = self._exchange.markets
|
||||
if not markets:
|
||||
raise OperationalException(
|
||||
'Markets not loaded. Make sure that exchange is initialized correctly.')
|
||||
|
||||
sanitized_whitelist: List[str] = []
|
||||
for pair in pairlist:
|
||||
|
@ -1,19 +1,37 @@
|
||||
"""
|
||||
Precision pair list filter
|
||||
"""
|
||||
import logging
|
||||
from copy import deepcopy
|
||||
from typing import Dict, List
|
||||
from typing import Any, Dict
|
||||
|
||||
from freqtrade.pairlist.IPairList import IPairList
|
||||
from freqtrade.exceptions import OperationalException
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class PrecisionFilter(IPairList):
|
||||
|
||||
def __init__(self, exchange, pairlistmanager,
|
||||
config: Dict[str, Any], pairlistconfig: Dict[str, Any],
|
||||
pairlist_pos: int) -> None:
|
||||
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
|
||||
|
||||
if 'stoploss' not in self._config:
|
||||
raise OperationalException(
|
||||
'PrecisionFilter can only work with stoploss defined. Please add the '
|
||||
'stoploss key to your configuration (overwrites eventual strategy settings).')
|
||||
self._stoploss = self._config['stoploss']
|
||||
self._enabled = self._stoploss != 0
|
||||
|
||||
# Precalculate sanitized stoploss value to avoid recalculation for every pair
|
||||
self._stoploss = 1 - abs(self._stoploss)
|
||||
|
||||
@property
|
||||
def needstickers(self) -> bool:
|
||||
"""
|
||||
Boolean property defining if tickers are necessary.
|
||||
If no Pairlist requries tickers, an empty List is passed
|
||||
If no Pairlist requires tickers, an empty List is passed
|
||||
as tickers argument to filter_pairlist
|
||||
"""
|
||||
return True
|
||||
@ -24,40 +42,25 @@ class PrecisionFilter(IPairList):
|
||||
"""
|
||||
return f"{self.name} - Filtering untradable pairs."
|
||||
|
||||
def _validate_precision_filter(self, ticker: dict, stoploss: float) -> bool:
|
||||
def _validate_pair(self, ticker: dict) -> bool:
|
||||
"""
|
||||
Check if pair has enough room to add a stoploss to avoid "unsellable" buys of very
|
||||
low value pairs.
|
||||
:param ticker: ticker dict as returned from ccxt.load_markets()
|
||||
:param stoploss: stoploss value as set in the configuration
|
||||
(already cleaned to be 1 - stoploss)
|
||||
:return: True if the pair can stay, false if it should be removed
|
||||
:return: True if the pair can stay, False if it should be removed
|
||||
"""
|
||||
stop_price = ticker['ask'] * stoploss
|
||||
stop_price = ticker['ask'] * self._stoploss
|
||||
|
||||
# Adjust stop-prices to precision
|
||||
sp = self._exchange.price_to_precision(ticker["symbol"], stop_price)
|
||||
|
||||
stop_gap_price = self._exchange.price_to_precision(ticker["symbol"], stop_price * 0.99)
|
||||
logger.debug(f"{ticker['symbol']} - {sp} : {stop_gap_price}")
|
||||
|
||||
if sp <= stop_gap_price:
|
||||
logger.info(f"Removed {ticker['symbol']} from whitelist, "
|
||||
self.log_on_refresh(logger.info,
|
||||
f"Removed {ticker['symbol']} from whitelist, "
|
||||
f"because stop price {sp} would be <= stop limit {stop_gap_price}")
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]:
|
||||
"""
|
||||
Filters and sorts pairlists and assigns and returns them again.
|
||||
"""
|
||||
stoploss = self._config.get('stoploss')
|
||||
if stoploss is not None:
|
||||
# Precalculate sanitized stoploss value to avoid recalculation for every pair
|
||||
stoploss = 1 - abs(stoploss)
|
||||
# Copy list since we're modifying this list
|
||||
for p in deepcopy(pairlist):
|
||||
ticker = tickers.get(p)
|
||||
# Filter out assets which would not allow setting a stoploss
|
||||
if not ticker or (stoploss and not self._validate_precision_filter(ticker, stoploss)):
|
||||
pairlist.remove(p)
|
||||
continue
|
||||
|
||||
return pairlist
|
||||
|
@ -1,9 +1,12 @@
|
||||
"""
|
||||
Price pair list filter
|
||||
"""
|
||||
import logging
|
||||
from copy import deepcopy
|
||||
from typing import Any, Dict, List
|
||||
from typing import Any, Dict
|
||||
|
||||
from freqtrade.pairlist.IPairList import IPairList
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@ -15,12 +18,17 @@ class PriceFilter(IPairList):
|
||||
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
|
||||
|
||||
self._low_price_ratio = pairlistconfig.get('low_price_ratio', 0)
|
||||
self._min_price = pairlistconfig.get('min_price', 0)
|
||||
self._max_price = pairlistconfig.get('max_price', 0)
|
||||
self._enabled = ((self._low_price_ratio != 0) or
|
||||
(self._min_price != 0) or
|
||||
(self._max_price != 0))
|
||||
|
||||
@property
|
||||
def needstickers(self) -> bool:
|
||||
"""
|
||||
Boolean property defining if tickers are necessary.
|
||||
If no Pairlist requries tickers, an empty List is passed
|
||||
If no Pairlist requires tickers, an empty List is passed
|
||||
as tickers argument to filter_pairlist
|
||||
"""
|
||||
return True
|
||||
@ -29,42 +37,52 @@ class PriceFilter(IPairList):
|
||||
"""
|
||||
Short whitelist method description - used for startup-messages
|
||||
"""
|
||||
return f"{self.name} - Filtering pairs priced below {self._low_price_ratio * 100}%."
|
||||
active_price_filters = []
|
||||
if self._low_price_ratio != 0:
|
||||
active_price_filters.append(f"below {self._low_price_ratio * 100}%")
|
||||
if self._min_price != 0:
|
||||
active_price_filters.append(f"below {self._min_price:.8f}")
|
||||
if self._max_price != 0:
|
||||
active_price_filters.append(f"above {self._max_price:.8f}")
|
||||
|
||||
def _validate_ticker_lowprice(self, ticker) -> bool:
|
||||
if len(active_price_filters):
|
||||
return f"{self.name} - Filtering pairs priced {' or '.join(active_price_filters)}."
|
||||
|
||||
return f"{self.name} - No price filters configured."
|
||||
|
||||
def _validate_pair(self, ticker) -> bool:
|
||||
"""
|
||||
Check if if one price-step (pip) is > than a certain barrier.
|
||||
:param ticker: ticker dict as returned from ccxt.load_markets()
|
||||
:param precision: Precision
|
||||
:return: True if the pair can stay, false if it should be removed
|
||||
"""
|
||||
precision = self._exchange.markets[ticker['symbol']]['precision']['price']
|
||||
if ticker['last'] is None or ticker['last'] == 0:
|
||||
self.log_on_refresh(logger.info,
|
||||
f"Removed {ticker['symbol']} from whitelist, because "
|
||||
"ticker['last'] is empty (Usually no trade in the last 24h).")
|
||||
return False
|
||||
|
||||
compare = ticker['last'] + 1 / pow(10, precision)
|
||||
changeperc = (compare - ticker['last']) / ticker['last']
|
||||
# Perform low_price_ratio check.
|
||||
if self._low_price_ratio != 0:
|
||||
compare = self._exchange.price_get_one_pip(ticker['symbol'], ticker['last'])
|
||||
changeperc = compare / ticker['last']
|
||||
if changeperc > self._low_price_ratio:
|
||||
logger.info(f"Removed {ticker['symbol']} from whitelist, "
|
||||
self.log_on_refresh(logger.info, f"Removed {ticker['symbol']} from whitelist, "
|
||||
f"because 1 unit is {changeperc * 100:.3f}%")
|
||||
return False
|
||||
|
||||
# Perform min_price check.
|
||||
if self._min_price != 0:
|
||||
if ticker['last'] < self._min_price:
|
||||
self.log_on_refresh(logger.info, f"Removed {ticker['symbol']} from whitelist, "
|
||||
f"because last price < {self._min_price:.8f}")
|
||||
return False
|
||||
|
||||
# Perform max_price check.
|
||||
if self._max_price != 0:
|
||||
if ticker['last'] > self._max_price:
|
||||
self.log_on_refresh(logger.info, f"Removed {ticker['symbol']} from whitelist, "
|
||||
f"because last price > {self._max_price:.8f}")
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]:
|
||||
|
||||
"""
|
||||
Filters and sorts pairlist and returns the whitelist again.
|
||||
Called on each bot iteration - please use internal caching if necessary
|
||||
:param pairlist: pairlist to filter or sort
|
||||
:param tickers: Tickers (from exchange.get_tickers()). May be cached.
|
||||
:return: new whitelist
|
||||
"""
|
||||
# Copy list since we're modifying this list
|
||||
for p in deepcopy(pairlist):
|
||||
ticker = tickers.get(p)
|
||||
if not ticker:
|
||||
pairlist.remove(p)
|
||||
|
||||
# Filter out assets which would not allow setting a stoploss
|
||||
if self._low_price_ratio and not self._validate_ticker_lowprice(ticker):
|
||||
pairlist.remove(p)
|
||||
|
||||
return pairlist
|
||||
|
51
freqtrade/pairlist/ShuffleFilter.py
Normal file
51
freqtrade/pairlist/ShuffleFilter.py
Normal file
@ -0,0 +1,51 @@
|
||||
"""
|
||||
Shuffle pair list filter
|
||||
"""
|
||||
import logging
|
||||
import random
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from freqtrade.pairlist.IPairList import IPairList
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ShuffleFilter(IPairList):
|
||||
|
||||
def __init__(self, exchange, pairlistmanager,
|
||||
config: Dict[str, Any], pairlistconfig: Dict[str, Any],
|
||||
pairlist_pos: int) -> None:
|
||||
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
|
||||
|
||||
self._seed = pairlistconfig.get('seed')
|
||||
self._random = random.Random(self._seed)
|
||||
|
||||
@property
|
||||
def needstickers(self) -> bool:
|
||||
"""
|
||||
Boolean property defining if tickers are necessary.
|
||||
If no Pairlist requires tickers, an empty List is passed
|
||||
as tickers argument to filter_pairlist
|
||||
"""
|
||||
return False
|
||||
|
||||
def short_desc(self) -> str:
|
||||
"""
|
||||
Short whitelist method description - used for startup-messages
|
||||
"""
|
||||
return (f"{self.name} - Shuffling pairs" +
|
||||
(f", seed = {self._seed}." if self._seed is not None else "."))
|
||||
|
||||
def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]:
|
||||
"""
|
||||
Filters and sorts pairlist and returns the whitelist again.
|
||||
Called on each bot iteration - please use internal caching if necessary
|
||||
:param pairlist: pairlist to filter or sort
|
||||
:param tickers: Tickers (from exchange.get_tickers()). May be cached.
|
||||
:return: new whitelist
|
||||
"""
|
||||
# Shuffle is done inplace
|
||||
self._random.shuffle(pairlist)
|
||||
|
||||
return pairlist
|
@ -1,25 +1,30 @@
|
||||
"""
|
||||
Spread pair list filter
|
||||
"""
|
||||
import logging
|
||||
from copy import deepcopy
|
||||
from typing import Dict, List
|
||||
from typing import Any, Dict
|
||||
|
||||
from freqtrade.pairlist.IPairList import IPairList
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class SpreadFilter(IPairList):
|
||||
|
||||
def __init__(self, exchange, pairlistmanager, config, pairlistconfig: dict,
|
||||
def __init__(self, exchange, pairlistmanager,
|
||||
config: Dict[str, Any], pairlistconfig: Dict[str, Any],
|
||||
pairlist_pos: int) -> None:
|
||||
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
|
||||
|
||||
self._max_spread_ratio = pairlistconfig.get('max_spread_ratio', 0.005)
|
||||
self._enabled = self._max_spread_ratio != 0
|
||||
|
||||
@property
|
||||
def needstickers(self) -> bool:
|
||||
"""
|
||||
Boolean property defining if tickers are necessary.
|
||||
If no Pairlist requries tickers, an empty List is passed
|
||||
If no Pairlist requires tickers, an empty List is passed
|
||||
as tickers argument to filter_pairlist
|
||||
"""
|
||||
return True
|
||||
@ -31,29 +36,19 @@ class SpreadFilter(IPairList):
|
||||
return (f"{self.name} - Filtering pairs with ask/bid diff above "
|
||||
f"{self._max_spread_ratio * 100}%.")
|
||||
|
||||
def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]:
|
||||
|
||||
def _validate_pair(self, ticker: dict) -> bool:
|
||||
"""
|
||||
Filters and sorts pairlist and returns the whitelist again.
|
||||
Called on each bot iteration - please use internal caching if necessary
|
||||
:param pairlist: pairlist to filter or sort
|
||||
:param tickers: Tickers (from exchange.get_tickers()). May be cached.
|
||||
:return: new whitelist
|
||||
Validate spread for the ticker
|
||||
:param ticker: ticker dict as returned from ccxt.load_markets()
|
||||
:return: True if the pair can stay, False if it should be removed
|
||||
"""
|
||||
# Copy list since we're modifying this list
|
||||
|
||||
spread = None
|
||||
for p in deepcopy(pairlist):
|
||||
ticker = tickers.get(p)
|
||||
assert ticker is not None
|
||||
if 'bid' in ticker and 'ask' in ticker:
|
||||
spread = 1 - ticker['bid'] / ticker['ask']
|
||||
if not ticker or spread > self._max_spread_ratio:
|
||||
logger.info(f"Removed {ticker['symbol']} from whitelist, "
|
||||
if spread > self._max_spread_ratio:
|
||||
self.log_on_refresh(logger.info, f"Removed {ticker['symbol']} from whitelist, "
|
||||
f"because spread {spread * 100:.3f}% >"
|
||||
f"{self._max_spread_ratio * 100}%")
|
||||
pairlist.remove(p)
|
||||
return False
|
||||
else:
|
||||
pairlist.remove(p)
|
||||
|
||||
return pairlist
|
||||
return True
|
||||
return False
|
||||
|
@ -1,24 +1,34 @@
|
||||
"""
|
||||
Static List provider
|
||||
|
||||
Provides lists as configured in config.json
|
||||
Static Pair List provider
|
||||
|
||||
Provides pair white list as it configured in config
|
||||
"""
|
||||
import logging
|
||||
from typing import Dict, List
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.pairlist.IPairList import IPairList
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class StaticPairList(IPairList):
|
||||
|
||||
def __init__(self, exchange, pairlistmanager,
|
||||
config: Dict[str, Any], pairlistconfig: Dict[str, Any],
|
||||
pairlist_pos: int) -> None:
|
||||
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
|
||||
|
||||
if self._pairlist_pos != 0:
|
||||
raise OperationalException(f"{self.name} can only be used in the first position "
|
||||
"in the list of Pairlist Handlers.")
|
||||
|
||||
@property
|
||||
def needstickers(self) -> bool:
|
||||
"""
|
||||
Boolean property defining if tickers are necessary.
|
||||
If no Pairlist requries tickers, an empty List is passed
|
||||
If no Pairlist requires tickers, an empty List is passed
|
||||
as tickers argument to filter_pairlist
|
||||
"""
|
||||
return False
|
||||
@ -30,6 +40,15 @@ class StaticPairList(IPairList):
|
||||
"""
|
||||
return f"{self.name}"
|
||||
|
||||
def gen_pairlist(self, cached_pairlist: List[str], tickers: Dict) -> List[str]:
|
||||
"""
|
||||
Generate the pairlist
|
||||
:param cached_pairlist: Previously generated pairlist (cached)
|
||||
:param tickers: Tickers (from exchange.get_tickers()).
|
||||
:return: List of pairs
|
||||
"""
|
||||
return self._whitelist_for_active_markets(self._config['exchange']['pair_whitelist'])
|
||||
|
||||
def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]:
|
||||
"""
|
||||
Filters and sorts pairlist and returns the whitelist again.
|
||||
@ -38,4 +57,4 @@ class StaticPairList(IPairList):
|
||||
:param tickers: Tickers (from exchange.get_tickers()). May be cached.
|
||||
:return: new whitelist
|
||||
"""
|
||||
return self._whitelist_for_active_markets(self._config['exchange']['pair_whitelist'])
|
||||
return pairlist
|
||||
|
@ -1,8 +1,7 @@
|
||||
"""
|
||||
Volume PairList provider
|
||||
|
||||
Provides lists as configured in config.json
|
||||
|
||||
Provides dynamic pair list based on trade volumes
|
||||
"""
|
||||
import logging
|
||||
from datetime import datetime
|
||||
@ -11,21 +10,26 @@ from typing import Any, Dict, List
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.pairlist.IPairList import IPairList
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
SORT_VALUES = ['askVolume', 'bidVolume', 'quoteVolume']
|
||||
|
||||
|
||||
class VolumePairList(IPairList):
|
||||
|
||||
def __init__(self, exchange, pairlistmanager, config: Dict[str, Any], pairlistconfig: dict,
|
||||
def __init__(self, exchange, pairlistmanager,
|
||||
config: Dict[str, Any], pairlistconfig: Dict[str, Any],
|
||||
pairlist_pos: int) -> None:
|
||||
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
|
||||
|
||||
if 'number_assets' not in self._pairlistconfig:
|
||||
raise OperationalException(
|
||||
f'`number_assets` not specified. Please check your configuration '
|
||||
'`number_assets` not specified. Please check your configuration '
|
||||
'for "pairlist.config.number_assets"')
|
||||
|
||||
self._stake_currency = config['stake_currency']
|
||||
self._number_pairs = self._pairlistconfig['number_assets']
|
||||
self._sort_key = self._pairlistconfig.get('sort_key', 'quoteVolume')
|
||||
self._min_value = self._pairlistconfig.get('min_value', 0)
|
||||
@ -34,18 +38,23 @@ class VolumePairList(IPairList):
|
||||
if not self._exchange.exchange_has('fetchTickers'):
|
||||
raise OperationalException(
|
||||
'Exchange does not support dynamic whitelist. '
|
||||
'Please edit your config and restart the bot'
|
||||
'Please edit your config and restart the bot.'
|
||||
)
|
||||
|
||||
if not self._validate_keys(self._sort_key):
|
||||
raise OperationalException(
|
||||
f'key {self._sort_key} not in {SORT_VALUES}')
|
||||
self._last_refresh = 0
|
||||
|
||||
if self._sort_key != 'quoteVolume':
|
||||
logger.warning(
|
||||
"DEPRECATED: using any key other than quoteVolume for VolumePairList is deprecated."
|
||||
)
|
||||
|
||||
@property
|
||||
def needstickers(self) -> bool:
|
||||
"""
|
||||
Boolean property defining if tickers are necessary.
|
||||
If no Pairlist requries tickers, an empty List is passed
|
||||
If no Pairlist requires tickers, an empty List is passed
|
||||
as tickers argument to filter_pairlist
|
||||
"""
|
||||
return True
|
||||
@ -59,6 +68,31 @@ class VolumePairList(IPairList):
|
||||
"""
|
||||
return f"{self.name} - top {self._pairlistconfig['number_assets']} volume pairs."
|
||||
|
||||
def gen_pairlist(self, cached_pairlist: List[str], tickers: Dict) -> List[str]:
|
||||
"""
|
||||
Generate the pairlist
|
||||
:param cached_pairlist: Previously generated pairlist (cached)
|
||||
:param tickers: Tickers (from exchange.get_tickers()).
|
||||
:return: List of pairs
|
||||
"""
|
||||
# Generate dynamic whitelist
|
||||
# Must always run if this pairlist is not the first in the list.
|
||||
if self._last_refresh + self.refresh_period < datetime.now().timestamp():
|
||||
self._last_refresh = int(datetime.now().timestamp())
|
||||
|
||||
# Use fresh pairlist
|
||||
# Check if pair quote currency equals to the stake currency.
|
||||
filtered_tickers = [
|
||||
v for k, v in tickers.items()
|
||||
if (self._exchange.get_pair_quote_currency(k) == self._stake_currency
|
||||
and v[self._sort_key] is not None)]
|
||||
pairlist = [s['symbol'] for s in filtered_tickers]
|
||||
else:
|
||||
# Use the cached pairlist if it's not time yet to refresh
|
||||
pairlist = cached_pairlist
|
||||
|
||||
return pairlist
|
||||
|
||||
def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]:
|
||||
"""
|
||||
Filters and sorts pairlist and returns the whitelist again.
|
||||
@ -67,48 +101,21 @@ class VolumePairList(IPairList):
|
||||
:param tickers: Tickers (from exchange.get_tickers()). May be cached.
|
||||
:return: new whitelist
|
||||
"""
|
||||
# Generate dynamic whitelist
|
||||
if self._last_refresh + self.refresh_period < datetime.now().timestamp():
|
||||
self._last_refresh = int(datetime.now().timestamp())
|
||||
return self._gen_pair_whitelist(pairlist,
|
||||
tickers,
|
||||
self._config['stake_currency'],
|
||||
self._sort_key,
|
||||
self._min_value
|
||||
)
|
||||
else:
|
||||
return pairlist
|
||||
|
||||
def _gen_pair_whitelist(self, pairlist: List[str], tickers: Dict,
|
||||
base_currency: str, key: str, min_val: int) -> List[str]:
|
||||
"""
|
||||
Updates the whitelist with with a dynamically generated list
|
||||
:param base_currency: base currency as str
|
||||
:param key: sort key (defaults to 'quoteVolume')
|
||||
:param tickers: Tickers (from exchange.get_tickers()).
|
||||
:return: List of pairs
|
||||
"""
|
||||
|
||||
if self._pairlist_pos == 0:
|
||||
# If VolumePairList is the first in the list, use fresh pairlist
|
||||
# Check if pair quote currency equals to the stake currency.
|
||||
filtered_tickers = [v for k, v in tickers.items()
|
||||
if (self._exchange.get_pair_quote_currency(k) == base_currency
|
||||
and v[key] is not None)]
|
||||
else:
|
||||
# If other pairlist is in front, use the incomming pairlist.
|
||||
# Use the incoming pairlist.
|
||||
filtered_tickers = [v for k, v in tickers.items() if k in pairlist]
|
||||
|
||||
if min_val > 0:
|
||||
filtered_tickers = list(filter(lambda t: t[key] > min_val, filtered_tickers))
|
||||
if self._min_value > 0:
|
||||
filtered_tickers = [
|
||||
v for v in filtered_tickers if v[self._sort_key] > self._min_value]
|
||||
|
||||
sorted_tickers = sorted(filtered_tickers, reverse=True, key=lambda t: t[key])
|
||||
sorted_tickers = sorted(filtered_tickers, reverse=True, key=lambda t: t[self._sort_key])
|
||||
|
||||
# Validate whitelist to only have active market pairs
|
||||
pairs = self._whitelist_for_active_markets([s['symbol'] for s in sorted_tickers])
|
||||
pairs = self._verify_blacklist(pairs, aswarning=False)
|
||||
# Limit to X number of pairs
|
||||
pairs = self.verify_blacklist(pairs, logger.info)
|
||||
# Limit pairlist to the requested number of pairs
|
||||
pairs = pairs[:self._number_pairs]
|
||||
logger.info(f"Searching {self._number_pairs} pairs: {pairs}")
|
||||
|
||||
self.log_on_refresh(logger.info, f"Searching {self._number_pairs} pairs: {pairs}")
|
||||
|
||||
return pairs
|
||||
|
@ -1,10 +1,8 @@
|
||||
"""
|
||||
Static List provider
|
||||
|
||||
Provides lists as configured in config.json
|
||||
|
||||
PairList manager class
|
||||
"""
|
||||
import logging
|
||||
from copy import deepcopy
|
||||
from typing import Dict, List
|
||||
|
||||
from cachetools import TTLCache, cached
|
||||
@ -12,6 +10,8 @@ from cachetools import TTLCache, cached
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.pairlist.IPairList import IPairList
|
||||
from freqtrade.resolvers import PairListResolver
|
||||
from freqtrade.constants import ListPairsWithTimeframes
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -23,24 +23,25 @@ class PairListManager():
|
||||
self._config = config
|
||||
self._whitelist = self._config['exchange'].get('pair_whitelist')
|
||||
self._blacklist = self._config['exchange'].get('pair_blacklist', [])
|
||||
self._pairlists: List[IPairList] = []
|
||||
self._pairlist_handlers: List[IPairList] = []
|
||||
self._tickers_needed = False
|
||||
for pl in self._config.get('pairlists', None):
|
||||
if 'method' not in pl:
|
||||
logger.warning(f"No method in {pl}")
|
||||
for pairlist_handler_config in self._config.get('pairlists', None):
|
||||
if 'method' not in pairlist_handler_config:
|
||||
logger.warning(f"No method found in {pairlist_handler_config}, ignoring.")
|
||||
continue
|
||||
pairl = PairListResolver.load_pairlist(pl.get('method'),
|
||||
pairlist_handler = PairListResolver.load_pairlist(
|
||||
pairlist_handler_config['method'],
|
||||
exchange=exchange,
|
||||
pairlistmanager=self,
|
||||
config=config,
|
||||
pairlistconfig=pl,
|
||||
pairlist_pos=len(self._pairlists)
|
||||
pairlistconfig=pairlist_handler_config,
|
||||
pairlist_pos=len(self._pairlist_handlers)
|
||||
)
|
||||
self._tickers_needed = pairl.needstickers or self._tickers_needed
|
||||
self._pairlists.append(pairl)
|
||||
self._tickers_needed |= pairlist_handler.needstickers
|
||||
self._pairlist_handlers.append(pairlist_handler)
|
||||
|
||||
if not self._pairlists:
|
||||
raise OperationalException("No Pairlist defined!")
|
||||
if not self._pairlist_handlers:
|
||||
raise OperationalException("No Pairlist Handlers defined")
|
||||
|
||||
@property
|
||||
def whitelist(self) -> List[str]:
|
||||
@ -60,15 +61,15 @@ class PairListManager():
|
||||
@property
|
||||
def name_list(self) -> List[str]:
|
||||
"""
|
||||
Get list of loaded pairlists names
|
||||
Get list of loaded Pairlist Handler names
|
||||
"""
|
||||
return [p.name for p in self._pairlists]
|
||||
return [p.name for p in self._pairlist_handlers]
|
||||
|
||||
def short_desc(self) -> List[Dict]:
|
||||
"""
|
||||
List of short_desc for each pairlist
|
||||
List of short_desc for each Pairlist Handler
|
||||
"""
|
||||
return [{p.name: p.short_desc()} for p in self._pairlists]
|
||||
return [{p.name: p.short_desc()} for p in self._pairlist_handlers]
|
||||
|
||||
@cached(TTLCache(maxsize=1, ttl=1800))
|
||||
def _get_cached_tickers(self):
|
||||
@ -76,21 +77,60 @@ class PairListManager():
|
||||
|
||||
def refresh_pairlist(self) -> None:
|
||||
"""
|
||||
Run pairlist through all configured pairlists.
|
||||
Run pairlist through all configured Pairlist Handlers.
|
||||
"""
|
||||
|
||||
pairlist = self._whitelist.copy()
|
||||
|
||||
# tickers should be cached to avoid calling the exchange on each call.
|
||||
# Tickers should be cached to avoid calling the exchange on each call.
|
||||
tickers: Dict = {}
|
||||
if self._tickers_needed:
|
||||
tickers = self._get_cached_tickers()
|
||||
|
||||
# Process all pairlists in chain
|
||||
for pl in self._pairlists:
|
||||
pairlist = pl.filter_pairlist(pairlist, tickers)
|
||||
# Adjust whitelist if filters are using tickers
|
||||
pairlist = self._prepare_whitelist(self._whitelist.copy(), tickers)
|
||||
|
||||
# Validation against blacklist happens after the pairlists to ensure blacklist is respected.
|
||||
pairlist = IPairList.verify_blacklist(pairlist, self.blacklist, True)
|
||||
# Generate the pairlist with first Pairlist Handler in the chain
|
||||
pairlist = self._pairlist_handlers[0].gen_pairlist(self._whitelist, tickers)
|
||||
|
||||
# Process all Pairlist Handlers in the chain
|
||||
for pairlist_handler in self._pairlist_handlers:
|
||||
pairlist = pairlist_handler.filter_pairlist(pairlist, tickers)
|
||||
|
||||
# Validation against blacklist happens after the chain of Pairlist Handlers
|
||||
# to ensure blacklist is respected.
|
||||
pairlist = self.verify_blacklist(pairlist, logger.warning)
|
||||
|
||||
self._whitelist = pairlist
|
||||
|
||||
def _prepare_whitelist(self, pairlist: List[str], tickers) -> List[str]:
|
||||
"""
|
||||
Prepare sanitized pairlist for Pairlist Handlers that use tickers data - remove
|
||||
pairs that do not have ticker available
|
||||
"""
|
||||
if self._tickers_needed:
|
||||
# Copy list since we're modifying this list
|
||||
for p in deepcopy(pairlist):
|
||||
if p not in tickers:
|
||||
pairlist.remove(p)
|
||||
|
||||
return pairlist
|
||||
|
||||
def verify_blacklist(self, pairlist: List[str], logmethod) -> List[str]:
|
||||
"""
|
||||
Verify and remove items from pairlist - returning a filtered pairlist.
|
||||
Logs a warning or info depending on `aswarning`.
|
||||
Pairlist Handlers explicitly using this method shall use
|
||||
`logmethod=logger.info` to avoid spamming with warning messages
|
||||
:param pairlist: Pairlist to validate
|
||||
:param logmethod: Function that'll be called, `logger.info` or `logger.warning`.
|
||||
:return: pairlist - blacklisted pairs
|
||||
"""
|
||||
for pair in deepcopy(pairlist):
|
||||
if pair in self._blacklist:
|
||||
logmethod(f"Pair {pair} in your blacklist. Removing it from whitelist...")
|
||||
pairlist.remove(pair)
|
||||
return pairlist
|
||||
|
||||
def create_pair_list(self, pairs: List[str], timeframe: str = None) -> ListPairsWithTimeframes:
|
||||
"""
|
||||
Create list of pair tuples with (pair, timeframe)
|
||||
"""
|
||||
return [(pair, timeframe or self._config['timeframe']) for pair in pairs]
|
||||
|
@ -86,11 +86,15 @@ def check_migrate(engine) -> None:
|
||||
logger.debug(f'trying {table_back_name}')
|
||||
|
||||
# Check for latest column
|
||||
if not has_column(cols, 'open_trade_price'):
|
||||
if not has_column(cols, 'timeframe'):
|
||||
logger.info(f'Running database migration - backup available as {table_back_name}')
|
||||
|
||||
fee_open = get_column_def(cols, 'fee_open', 'fee')
|
||||
fee_open_cost = get_column_def(cols, 'fee_open_cost', 'null')
|
||||
fee_open_currency = get_column_def(cols, 'fee_open_currency', 'null')
|
||||
fee_close = get_column_def(cols, 'fee_close', 'fee')
|
||||
fee_close_cost = get_column_def(cols, 'fee_close_cost', 'null')
|
||||
fee_close_currency = get_column_def(cols, 'fee_close_currency', 'null')
|
||||
open_rate_requested = get_column_def(cols, 'open_rate_requested', 'null')
|
||||
close_rate_requested = get_column_def(cols, 'close_rate_requested', 'null')
|
||||
stop_loss = get_column_def(cols, 'stop_loss', '0.0')
|
||||
@ -103,9 +107,18 @@ def check_migrate(engine) -> None:
|
||||
min_rate = get_column_def(cols, 'min_rate', 'null')
|
||||
sell_reason = get_column_def(cols, 'sell_reason', 'null')
|
||||
strategy = get_column_def(cols, 'strategy', 'null')
|
||||
ticker_interval = get_column_def(cols, 'ticker_interval', 'null')
|
||||
# If ticker-interval existed use that, else null.
|
||||
if has_column(cols, 'ticker_interval'):
|
||||
timeframe = get_column_def(cols, 'timeframe', 'ticker_interval')
|
||||
else:
|
||||
timeframe = get_column_def(cols, 'timeframe', 'null')
|
||||
|
||||
open_trade_price = get_column_def(cols, 'open_trade_price',
|
||||
f'amount * open_rate * (1 + {fee_open})')
|
||||
close_profit_abs = get_column_def(
|
||||
cols, 'close_profit_abs',
|
||||
f"(amount * close_rate * (1 - {fee_close})) - {open_trade_price}")
|
||||
sell_order_status = get_column_def(cols, 'sell_order_status', 'null')
|
||||
|
||||
# Schema migration necessary
|
||||
engine.execute(f"alter table trades rename to {table_back_name}")
|
||||
@ -117,13 +130,15 @@ def check_migrate(engine) -> None:
|
||||
|
||||
# Copy data back - following the correct schema
|
||||
engine.execute(f"""insert into trades
|
||||
(id, exchange, pair, is_open, fee_open, fee_close, open_rate,
|
||||
(id, exchange, pair, is_open,
|
||||
fee_open, fee_open_cost, fee_open_currency,
|
||||
fee_close, fee_close_cost, fee_open_currency, open_rate,
|
||||
open_rate_requested, close_rate, close_rate_requested, close_profit,
|
||||
stake_amount, amount, open_date, close_date, open_order_id,
|
||||
stop_loss, stop_loss_pct, initial_stop_loss, initial_stop_loss_pct,
|
||||
stoploss_order_id, stoploss_last_update,
|
||||
max_rate, min_rate, sell_reason, strategy,
|
||||
ticker_interval, open_trade_price
|
||||
max_rate, min_rate, sell_reason, sell_order_status, strategy,
|
||||
timeframe, open_trade_price, close_profit_abs
|
||||
)
|
||||
select id, lower(exchange),
|
||||
case
|
||||
@ -133,7 +148,9 @@ def check_migrate(engine) -> None:
|
||||
else pair
|
||||
end
|
||||
pair,
|
||||
is_open, {fee_open} fee_open, {fee_close} fee_close,
|
||||
is_open, {fee_open} fee_open, {fee_open_cost} fee_open_cost,
|
||||
{fee_open_currency} fee_open_currency, {fee_close} fee_close,
|
||||
{fee_close_cost} fee_close_cost, {fee_close_currency} fee_close_currency,
|
||||
open_rate, {open_rate_requested} open_rate_requested, close_rate,
|
||||
{close_rate_requested} close_rate_requested, close_profit,
|
||||
stake_amount, amount, open_date, close_date, open_order_id,
|
||||
@ -142,8 +159,9 @@ def check_migrate(engine) -> None:
|
||||
{initial_stop_loss_pct} initial_stop_loss_pct,
|
||||
{stoploss_order_id} stoploss_order_id, {stoploss_last_update} stoploss_last_update,
|
||||
{max_rate} max_rate, {min_rate} min_rate, {sell_reason} sell_reason,
|
||||
{strategy} strategy, {ticker_interval} ticker_interval,
|
||||
{open_trade_price} open_trade_price
|
||||
{sell_order_status} sell_order_status,
|
||||
{strategy} strategy, {timeframe} timeframe,
|
||||
{open_trade_price} open_trade_price, {close_profit_abs} close_profit_abs
|
||||
from {table_back_name}
|
||||
""")
|
||||
|
||||
@ -182,14 +200,19 @@ class Trade(_DECL_BASE):
|
||||
pair = Column(String, nullable=False, index=True)
|
||||
is_open = Column(Boolean, nullable=False, default=True, index=True)
|
||||
fee_open = Column(Float, nullable=False, default=0.0)
|
||||
fee_open_cost = Column(Float, nullable=True)
|
||||
fee_open_currency = Column(String, nullable=True)
|
||||
fee_close = Column(Float, nullable=False, default=0.0)
|
||||
fee_close_cost = Column(Float, nullable=True)
|
||||
fee_close_currency = Column(String, nullable=True)
|
||||
open_rate = Column(Float)
|
||||
open_rate_requested = Column(Float)
|
||||
# open_trade_price - calcuated via _calc_open_trade_price
|
||||
# open_trade_price - calculated via _calc_open_trade_price
|
||||
open_trade_price = Column(Float)
|
||||
close_rate = Column(Float)
|
||||
close_rate_requested = Column(Float)
|
||||
close_profit = Column(Float)
|
||||
close_profit_abs = Column(Float)
|
||||
stake_amount = Column(Float, nullable=False)
|
||||
amount = Column(Float)
|
||||
open_date = Column(DateTime, nullable=False, default=datetime.utcnow)
|
||||
@ -212,8 +235,9 @@ class Trade(_DECL_BASE):
|
||||
# Lowest price reached
|
||||
min_rate = Column(Float, nullable=True)
|
||||
sell_reason = Column(String, nullable=True)
|
||||
sell_order_status = Column(String, nullable=True)
|
||||
strategy = Column(String, nullable=True)
|
||||
ticker_interval = Column(Integer, nullable=True)
|
||||
timeframe = Column(Integer, nullable=True)
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
@ -229,21 +253,59 @@ class Trade(_DECL_BASE):
|
||||
return {
|
||||
'trade_id': self.id,
|
||||
'pair': self.pair,
|
||||
'is_open': self.is_open,
|
||||
'exchange': self.exchange,
|
||||
'amount': round(self.amount, 8),
|
||||
'stake_amount': round(self.stake_amount, 8),
|
||||
'strategy': self.strategy,
|
||||
'ticker_interval': self.timeframe, # DEPRECATED
|
||||
'timeframe': self.timeframe,
|
||||
|
||||
'fee_open': self.fee_open,
|
||||
'fee_open_cost': self.fee_open_cost,
|
||||
'fee_open_currency': self.fee_open_currency,
|
||||
'fee_close': self.fee_close,
|
||||
'fee_close_cost': self.fee_close_cost,
|
||||
'fee_close_currency': self.fee_close_currency,
|
||||
|
||||
'open_date_hum': arrow.get(self.open_date).humanize(),
|
||||
'open_date': self.open_date.strftime("%Y-%m-%d %H:%M:%S"),
|
||||
'open_timestamp': int(self.open_date.timestamp() * 1000),
|
||||
'open_rate': self.open_rate,
|
||||
'open_rate_requested': self.open_rate_requested,
|
||||
'open_trade_price': self.open_trade_price,
|
||||
|
||||
'close_date_hum': (arrow.get(self.close_date).humanize()
|
||||
if self.close_date else None),
|
||||
'close_date': (self.close_date.strftime("%Y-%m-%d %H:%M:%S")
|
||||
if self.close_date else None),
|
||||
'open_rate': self.open_rate,
|
||||
'close_timestamp': int(self.close_date.timestamp() * 1000) if self.close_date else None,
|
||||
'close_rate': self.close_rate,
|
||||
'amount': round(self.amount, 8),
|
||||
'stake_amount': round(self.stake_amount, 8),
|
||||
'stop_loss': self.stop_loss,
|
||||
'close_rate_requested': self.close_rate_requested,
|
||||
'close_profit': self.close_profit,
|
||||
'close_profit_abs': self.close_profit_abs,
|
||||
|
||||
'sell_reason': self.sell_reason,
|
||||
'sell_order_status': self.sell_order_status,
|
||||
'stop_loss': self.stop_loss, # Deprecated - should not be used
|
||||
'stop_loss_abs': self.stop_loss,
|
||||
'stop_loss_ratio': self.stop_loss_pct if self.stop_loss_pct else None,
|
||||
'stop_loss_pct': (self.stop_loss_pct * 100) if self.stop_loss_pct else None,
|
||||
'initial_stop_loss': self.initial_stop_loss,
|
||||
'stoploss_order_id': self.stoploss_order_id,
|
||||
'stoploss_last_update': (self.stoploss_last_update.strftime("%Y-%m-%d %H:%M:%S")
|
||||
if self.stoploss_last_update else None),
|
||||
'stoploss_last_update_timestamp': (int(self.stoploss_last_update.timestamp() * 1000)
|
||||
if self.stoploss_last_update else None),
|
||||
'initial_stop_loss': self.initial_stop_loss, # Deprecated - should not be used
|
||||
'initial_stop_loss_abs': self.initial_stop_loss,
|
||||
'initial_stop_loss_ratio': (self.initial_stop_loss_pct
|
||||
if self.initial_stop_loss_pct else None),
|
||||
'initial_stop_loss_pct': (self.initial_stop_loss_pct * 100
|
||||
if self.initial_stop_loss_pct else None),
|
||||
'min_rate': self.min_rate,
|
||||
'max_rate': self.max_rate,
|
||||
|
||||
'open_order_id': self.open_order_id,
|
||||
}
|
||||
|
||||
def adjust_min_max_rates(self, current_price: float) -> None:
|
||||
@ -298,7 +360,7 @@ class Trade(_DECL_BASE):
|
||||
def update(self, order: Dict) -> None:
|
||||
"""
|
||||
Updates this entity with amount and actual open/close rates.
|
||||
:param order: order retrieved by exchange.get_order()
|
||||
:param order: order retrieved by exchange.fetch_order()
|
||||
:return: None
|
||||
"""
|
||||
order_type = order['type']
|
||||
@ -311,14 +373,14 @@ class Trade(_DECL_BASE):
|
||||
if order_type in ('market', 'limit') and order['side'] == 'buy':
|
||||
# Update open rate and actual amount
|
||||
self.open_rate = Decimal(order['price'])
|
||||
self.amount = Decimal(order['amount'])
|
||||
self.amount = Decimal(order.get('filled', order['amount']))
|
||||
self.recalc_open_trade_price()
|
||||
logger.info('%s_BUY has been fulfilled for %s.', order_type.upper(), self)
|
||||
self.open_order_id = None
|
||||
elif order_type in ('market', 'limit') and order['side'] == 'sell':
|
||||
self.close(order['price'])
|
||||
logger.info('%s_SELL has been fulfilled for %s.', order_type.upper(), self)
|
||||
elif order_type in ('stop_loss_limit', 'stop-loss'):
|
||||
elif order_type in ('stop_loss_limit', 'stop-loss', 'stop'):
|
||||
self.stoploss_order_id = None
|
||||
self.close_rate_requested = self.stop_loss
|
||||
logger.info('%s is hit for %s.', order_type.upper(), self)
|
||||
@ -334,14 +396,45 @@ class Trade(_DECL_BASE):
|
||||
"""
|
||||
self.close_rate = Decimal(rate)
|
||||
self.close_profit = self.calc_profit_ratio()
|
||||
self.close_profit_abs = self.calc_profit()
|
||||
self.close_date = datetime.utcnow()
|
||||
self.is_open = False
|
||||
self.sell_order_status = 'closed'
|
||||
self.open_order_id = None
|
||||
logger.info(
|
||||
'Marking %s as closed as the trade is fulfilled and found no open orders for it.',
|
||||
self
|
||||
)
|
||||
|
||||
def update_fee(self, fee_cost: float, fee_currency: Optional[str], fee_rate: Optional[float],
|
||||
side: str) -> None:
|
||||
"""
|
||||
Update Fee parameters. Only acts once per side
|
||||
"""
|
||||
if side == 'buy' and self.fee_open_currency is None:
|
||||
self.fee_open_cost = fee_cost
|
||||
self.fee_open_currency = fee_currency
|
||||
if fee_rate is not None:
|
||||
self.fee_open = fee_rate
|
||||
# Assume close-fee will fall into the same fee category and take an educated guess
|
||||
self.fee_close = fee_rate
|
||||
elif side == 'sell' and self.fee_close_currency is None:
|
||||
self.fee_close_cost = fee_cost
|
||||
self.fee_close_currency = fee_currency
|
||||
if fee_rate is not None:
|
||||
self.fee_close = fee_rate
|
||||
|
||||
def fee_updated(self, side: str) -> bool:
|
||||
"""
|
||||
Verify if this side (buy / sell) has already been updated
|
||||
"""
|
||||
if side == 'buy':
|
||||
return self.fee_open_currency is not None
|
||||
elif side == 'sell':
|
||||
return self.fee_close_currency is not None
|
||||
else:
|
||||
return False
|
||||
|
||||
def _calc_open_trade_price(self) -> float:
|
||||
"""
|
||||
Calculate the open_rate including open_fee.
|
||||
@ -476,6 +569,7 @@ class Trade(_DECL_BASE):
|
||||
def get_best_pair():
|
||||
"""
|
||||
Get best pair with closed trade.
|
||||
:returns: Tuple containing (pair, profit_sum)
|
||||
"""
|
||||
best_pair = Trade.session.query(
|
||||
Trade.pair, func.sum(Trade.close_profit).label('profit_sum')
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user