Merge pull request #146 from gcarq/feature/integrate-backtesting

integrate backtesting/hyperopt into freqtrade.optimize
This commit is contained in:
Samuel Husso 2017-11-30 08:19:59 +02:00 committed by GitHub
commit 688326b58c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
17 changed files with 462 additions and 339 deletions

2
.gitignore vendored
View File

@ -76,6 +76,8 @@ target/
config.json
preprocessor.py
*.sqlite
.hyperopt
logfile.txt
.env
.venv

View File

@ -4,9 +4,6 @@ os:
language: python
python:
- 3.6
env:
- BACKTEST=
- BACKTEST=true
addons:
apt:
packages:

View File

@ -37,7 +37,7 @@ See the example below:
"40": 0.0, # Sell after 40 minutes if the profit is not negative
"30": 0.01, # Sell after 30 minutes if there is at least 1% profit
"20": 0.02, # Sell after 20 minutes if there is at least 2% profit
"0": 0.04 # Sell immediately if there is at least 4% profit
"0": 0.04 # Sell immediately if there is at least 4% profit
},
```
@ -164,25 +164,39 @@ optional arguments:
Backtesting also uses the config specified via `-c/--config`.
```
usage: freqtrade backtesting [-h] [-l] [-i INT]
usage: freqtrade backtesting [-h] [-l] [-i INT] [--realistic-simulation]
optional arguments:
-h, --help show this help message and exit
-l, --live using live data
-i INT, --ticker-interval INT
specify ticker interval in minutes (default: 5)
--realistic-simulation
uses max_open_trades from config to simulate real
world limitations
```
### Hyperopt
It is possible to use hyperopt for trading strategy optimization.
Hyperopt uses an internal config named `OPTIMIZE_CONFIG` located in `freqtrade/optimize/hyperopt.py`.
```
usage: freqtrade hyperopt [-h] [-e INT] [--use-mongodb]
optional arguments:
-h, --help show this help message and exit
-e INT, --epochs INT specify number of epochs (default: 100)
--use-mongodb parallelize evaluations with mongodb (requires mongod
in PATH)
```
### Execute tests
```
$ pytest
```
This will by default skip the slow running backtest set. To run backtest set:
```
$ BACKTEST=true pytest -s freqtrade/tests/test_backtesting.py
$ pytest freqtrade
```
### Contributing

View File

@ -4,6 +4,7 @@ Functions to analyze ticker data with indicators and produce buy and sell signal
import logging
from datetime import timedelta
from enum import Enum
from typing import List, Dict
import arrow
import talib.abstract as ta
@ -14,6 +15,7 @@ from freqtrade.vendor.qtpylib.indicators import awesome_oscillator, crossed_abov
logger = logging.getLogger(__name__)
class SignalType(Enum):
""" Enum to distinguish between buy and sell signals """
BUY = "buy"
@ -113,18 +115,13 @@ def populate_sell_trend(dataframe: DataFrame) -> DataFrame:
return dataframe
def analyze_ticker(pair: str) -> DataFrame:
def analyze_ticker(ticker_history: List[Dict]) -> DataFrame:
"""
Get ticker data for given currency pair, push it to a DataFrame and
Parses the given ticker history and returns a populated DataFrame
add several TA indicators and buy signal to it
:return DataFrame with ticker data and indicator data
"""
ticker_hist = get_ticker_history(pair)
if not ticker_hist:
logger.warning('Empty ticker history for pair %s', pair)
return DataFrame()
dataframe = parse_ticker_dataframe(ticker_hist)
dataframe = parse_ticker_dataframe(ticker_history)
dataframe = populate_indicators(dataframe)
dataframe = populate_buy_trend(dataframe)
dataframe = populate_sell_trend(dataframe)
@ -137,8 +134,13 @@ def get_signal(pair: str, signal: SignalType) -> bool:
:param pair: pair in format BTC_ANT or BTC-ANT
:return: True if pair is good for buying, False otherwise
"""
ticker_hist = get_ticker_history(pair)
if not ticker_hist:
logger.warning('Empty ticker history for pair %s', pair)
return False
try:
dataframe = analyze_ticker(pair)
dataframe = analyze_ticker(ticker_hist)
except ValueError as ex:
logger.warning('Unable to analyze ticker for pair %s: %s', pair, str(ex))
return False

View File

@ -2,7 +2,6 @@ import argparse
import enum
import json
import logging
import os
import time
from typing import Any, Callable, List, Dict
@ -129,16 +128,20 @@ def parse_args(args: List[str]):
def build_subcommands(parser: argparse.ArgumentParser) -> None:
""" Builds and attaches all subcommands """
from freqtrade.optimize import backtesting, hyperopt
subparsers = parser.add_subparsers(dest='subparser')
backtest = subparsers.add_parser('backtesting', help='backtesting module')
backtest.set_defaults(func=start_backtesting)
backtest.add_argument(
# Add backtesting subcommand
backtesting_cmd = subparsers.add_parser('backtesting', help='backtesting module')
backtesting_cmd.set_defaults(func=backtesting.start)
backtesting_cmd.add_argument(
'-l', '--live',
action='store_true',
dest='live',
help='using live data',
)
backtest.add_argument(
backtesting_cmd.add_argument(
'-i', '--ticker-interval',
help='specify ticker interval in minutes (default: 5)',
dest='ticker_interval',
@ -146,31 +149,30 @@ def build_subcommands(parser: argparse.ArgumentParser) -> None:
type=int,
metavar='INT',
)
backtest.add_argument(
backtesting_cmd.add_argument(
'--realistic-simulation',
help='uses max_open_trades from config to simulate real world limitations',
action='store_true',
dest='realistic_simulation',
)
def start_backtesting(args) -> None:
"""
Exports all args as environment variables and starts backtesting via pytest.
:param args: arguments namespace
:return:
"""
import pytest
os.environ.update({
'BACKTEST': 'true',
'BACKTEST_LIVE': 'true' if args.live else '',
'BACKTEST_CONFIG': args.config,
'BACKTEST_TICKER_INTERVAL': str(args.ticker_interval),
'BACKTEST_REALISTIC_SIMULATION': 'true' if args.realistic_simulation else '',
})
path = os.path.join(os.path.dirname(__file__), 'tests', 'test_backtesting.py')
pytest.main(['-s', path])
# Add hyperopt subcommand
hyperopt_cmd = subparsers.add_parser('hyperopt', help='hyperopt module')
hyperopt_cmd.set_defaults(func=hyperopt.start)
hyperopt_cmd.add_argument(
'-e', '--epochs',
help='specify number of epochs (default: 100)',
dest='epochs',
default=100,
type=int,
metavar='INT',
)
hyperopt_cmd.add_argument(
'--use-mongodb',
help='parallelize evaluations with mongodb (requires mongod in PATH)',
dest='mongodb',
action='store_true',
)
# Required json-schema for user specified config

View File

@ -0,0 +1,41 @@
# pragma pylint: disable=missing-docstring
import json
import os
from typing import Optional, List, Dict
from pandas import DataFrame
from freqtrade.analyze import populate_indicators, parse_ticker_dataframe
def load_data(ticker_interval: int = 5, pairs: Optional[List[str]] = None) -> Dict[str, List]:
"""
Loads ticker history data for the given parameters
:param ticker_interval: ticker interval in minutes
:param pairs: list of pairs
:return: dict
"""
path = os.path.abspath(os.path.dirname(__file__))
result = {}
_pairs = pairs or [
'BTC_BCC', 'BTC_ETH', 'BTC_DASH', 'BTC_POWR', 'BTC_ETC',
'BTC_VTC', 'BTC_WAVES', 'BTC_LSK', 'BTC_XLM', 'BTC_OK',
]
for pair in _pairs:
with open('{abspath}/../tests/testdata/{pair}-{ticker_interval}.json'.format(
abspath=path,
pair=pair,
ticker_interval=ticker_interval,
)) as tickerdata:
result[pair] = json.load(tickerdata)
return result
def preprocess(tickerdata: Dict[str, List]) -> Dict[str, DataFrame]:
"""Creates a dataframe and populates indicators for given ticker data"""
processed = {}
for pair, pair_data in tickerdata.items():
processed[pair] = populate_indicators(parse_ticker_dataframe(pair_data))
return processed

View File

@ -2,43 +2,23 @@
import logging
import os
from typing import Tuple, Dict
import arrow
import pytest
from pandas import DataFrame
from tabulate import tabulate
from freqtrade import exchange
from freqtrade.analyze import parse_ticker_dataframe, populate_indicators, \
populate_buy_trend, populate_sell_trend
from freqtrade.analyze import populate_buy_trend, populate_sell_trend
from freqtrade.exchange import Bittrex
from freqtrade.main import min_roi_reached
from freqtrade.misc import load_config
from freqtrade.optimize import load_data, preprocess
from freqtrade.persistence import Trade
from freqtrade.tests import load_backtesting_data
logger = logging.getLogger(__name__)
def format_results(results: DataFrame):
return ('Made {:6d} buys. Average profit {: 5.2f}%. '
'Total profit was {: 7.3f}. Average duration {:5.1f} mins.').format(
len(results.index),
results.profit.mean() * 100.0,
results.profit.sum(),
results.duration.mean() * 5,
)
def preprocess(backdata) -> Dict[str, DataFrame]:
processed = {}
for pair, pair_data in backdata.items():
processed[pair] = populate_indicators(parse_ticker_dataframe(pair_data))
return processed
def get_timeframe(data: Dict[str, Dict]) -> Tuple[arrow.Arrow, arrow.Arrow]:
"""
Get the maximum timeframe for the given backtest data
@ -83,12 +63,12 @@ def generate_text_table(data: Dict[str, Dict], results: DataFrame, stake_currenc
return tabulate(tabular_data, headers=headers)
def backtest(config: Dict, processed, mocker, max_open_trades=0, realistic=True):
def backtest(config: Dict, processed: Dict[str, DataFrame],
max_open_trades: int = 0, realistic: bool = True) -> DataFrame:
"""
Implements backtesting functionality
:param config: config to use
:param processed: a processed dictionary with format {pair, data}
:param mocker: mocker instance
:param max_open_trades: maximum number of concurrent trades (default: 0, disabled)
:param realistic: do we try to simulate realistic trades? (default: True)
:return: DataFrame
@ -96,7 +76,6 @@ def backtest(config: Dict, processed, mocker, max_open_trades=0, realistic=True)
trades = []
trade_count_lock = {}
exchange._API = Bittrex({'key': '', 'secret': ''})
mocker.patch.dict('freqtrade.main._CONF', config)
for pair, pair_data in processed.items():
pair_data['buy'], pair_data['sell'] = 0, 0
ticker = populate_sell_trend(populate_buy_trend(pair_data))
@ -138,51 +117,50 @@ def backtest(config: Dict, processed, mocker, max_open_trades=0, realistic=True)
return DataFrame.from_records(trades, columns=labels)
def get_max_open_trades(config):
if not os.environ.get('BACKTEST_REALISTIC_SIMULATION'):
return 0
print('Using max_open_trades: {} ...'.format(config['max_open_trades']))
return config['max_open_trades']
def start(args):
# Initialize logger
logging.basicConfig(
level=args.loglevel,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
)
@pytest.mark.skipif(not os.environ.get('BACKTEST'), reason="BACKTEST not set")
def test_backtest(backtest_conf, mocker):
print('')
exchange._API = Bittrex({'key': '', 'secret': ''})
# Load configuration file based on env variable
conf_path = os.environ.get('BACKTEST_CONFIG')
if conf_path:
print('Using config: {} ...'.format(conf_path))
config = load_config(conf_path)
else:
config = backtest_conf
logger.info('Using config: %s ...', args.config)
config = load_config(args.config)
# Parse ticker interval
ticker_interval = int(os.environ.get('BACKTEST_TICKER_INTERVAL') or 5)
print('Using ticker_interval: {} ...'.format(ticker_interval))
logger.info('Using ticker_interval: %s ...', args.ticker_interval)
data = {}
if os.environ.get('BACKTEST_LIVE'):
print('Downloading data for all pairs in whitelist ...')
if args.live:
logger.info('Downloading data for all pairs in whitelist ...')
for pair in config['exchange']['pair_whitelist']:
data[pair] = exchange.get_ticker_history(pair, ticker_interval)
data[pair] = exchange.get_ticker_history(pair, args.ticker_interval)
else:
print('Using local backtesting data (ignoring whitelist in given config)...')
data = load_backtesting_data(ticker_interval)
logger.info('Using local backtesting data (ignoring whitelist in given config) ...')
data = load_data(args.ticker_interval)
print('Using stake_currency: {} ...\nUsing stake_amount: {} ...'.format(
config['stake_currency'], config['stake_amount']
))
logger.info('Using stake_currency: %s ...', config['stake_currency'])
logger.info('Using stake_amount: %s ...', config['stake_amount'])
# Print timeframe
min_date, max_date = get_timeframe(data)
print('Measuring data from {} up to {} ...'.format(
min_date.isoformat(), max_date.isoformat()
))
logger.info('Measuring data from %s up to %s ...', min_date.isoformat(), max_date.isoformat())
max_open_trades = 0
if args.realistic_simulation:
logger.info('Using max_open_trades: %s ...', config['max_open_trades'])
max_open_trades = config['max_open_trades']
# Monkey patch config
from freqtrade import main
main._CONF = config
# Execute backtest and print results
realistic = os.environ.get('BACKTEST_REALISTIC_SIMULATION')
results = backtest(config, preprocess(data), mocker, get_max_open_trades(config), realistic)
print('====================== BACKTESTING REPORT ======================================\n\n')
print(generate_text_table(data, results, config['stake_currency']))
results = backtest(
config, preprocess(data), max_open_trades, args.realistic_simulation
)
logger.info(
'\n====================== BACKTESTING REPORT ======================================\n%s',
generate_text_table(data, results, config['stake_currency'])
)

View File

@ -0,0 +1,205 @@
# pragma pylint: disable=missing-docstring,W0212
import json
import logging
from functools import reduce
from math import exp
from operator import itemgetter
from hyperopt import fmin, tpe, hp, Trials, STATUS_OK
from hyperopt.mongoexp import MongoTrials
from pandas import DataFrame
from freqtrade import exchange, optimize
from freqtrade.exchange import Bittrex
from freqtrade.optimize.backtesting import backtest
from freqtrade.vendor.qtpylib.indicators import crossed_above
# Remove noisy log messages
logging.getLogger('hyperopt.mongoexp').setLevel(logging.WARNING)
logger = logging.getLogger(__name__)
# set TARGET_TRADES to suit your number concurrent trades so its realistic to 20days of data
TARGET_TRADES = 1100
TOTAL_TRIES = None
_CURRENT_TRIES = 0
# Configuration and data used by hyperopt
PROCESSED = optimize.preprocess(optimize.load_data())
OPTIMIZE_CONFIG = {
'max_open_trades': 3,
'stake_currency': 'BTC',
'stake_amount': 0.01,
'minimal_roi': {
'40': 0.0,
'30': 0.01,
'20': 0.02,
'0': 0.04,
},
'stoploss': -0.10,
}
# Monkey patch config
from freqtrade import main
main._CONF = OPTIMIZE_CONFIG
SPACE = {
'mfi': hp.choice('mfi', [
{'enabled': False},
{'enabled': True, 'value': hp.quniform('mfi-value', 5, 25, 1)}
]),
'fastd': hp.choice('fastd', [
{'enabled': False},
{'enabled': True, 'value': hp.quniform('fastd-value', 10, 50, 1)}
]),
'adx': hp.choice('adx', [
{'enabled': False},
{'enabled': True, 'value': hp.quniform('adx-value', 15, 50, 1)}
]),
'rsi': hp.choice('rsi', [
{'enabled': False},
{'enabled': True, 'value': hp.quniform('rsi-value', 20, 40, 1)}
]),
'uptrend_long_ema': hp.choice('uptrend_long_ema', [
{'enabled': False},
{'enabled': True}
]),
'uptrend_short_ema': hp.choice('uptrend_short_ema', [
{'enabled': False},
{'enabled': True}
]),
'over_sar': hp.choice('over_sar', [
{'enabled': False},
{'enabled': True}
]),
'green_candle': hp.choice('green_candle', [
{'enabled': False},
{'enabled': True}
]),
'uptrend_sma': hp.choice('uptrend_sma', [
{'enabled': False},
{'enabled': True}
]),
'trigger': hp.choice('trigger', [
{'type': 'lower_bb'},
{'type': 'faststoch10'},
{'type': 'ao_cross_zero'},
{'type': 'ema5_cross_ema10'},
{'type': 'macd_cross_signal'},
{'type': 'sar_reversal'},
{'type': 'stochf_cross'},
{'type': 'ht_sine'},
]),
}
def optimizer(params):
global _CURRENT_TRIES
from freqtrade.optimize import backtesting
backtesting.populate_buy_trend = buy_strategy_generator(params)
results = backtest(OPTIMIZE_CONFIG, PROCESSED)
result = format_results(results)
total_profit = results.profit.sum() * 1000
trade_count = len(results.index)
trade_loss = 1 - 0.35 * exp(-(trade_count - TARGET_TRADES) ** 2 / 10 ** 5.2)
profit_loss = max(0, 1 - total_profit / 10000) # max profit 10000
_CURRENT_TRIES += 1
logger.info('{:5d}/{}: {}'.format(_CURRENT_TRIES, TOTAL_TRIES, result))
return {
'loss': trade_loss + profit_loss,
'status': STATUS_OK,
'result': result
}
def format_results(results: DataFrame):
return ('Made {:6d} buys. Average profit {: 5.2f}%. '
'Total profit was {: 7.3f}. Average duration {:5.1f} mins.').format(
len(results.index),
results.profit.mean() * 100.0,
results.profit.sum(),
results.duration.mean() * 5,
)
def buy_strategy_generator(params):
def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
conditions = []
# GUARDS AND TRENDS
if params['uptrend_long_ema']['enabled']:
conditions.append(dataframe['ema50'] > dataframe['ema100'])
if params['uptrend_short_ema']['enabled']:
conditions.append(dataframe['ema5'] > dataframe['ema10'])
if params['mfi']['enabled']:
conditions.append(dataframe['mfi'] < params['mfi']['value'])
if params['fastd']['enabled']:
conditions.append(dataframe['fastd'] < params['fastd']['value'])
if params['adx']['enabled']:
conditions.append(dataframe['adx'] > params['adx']['value'])
if params['rsi']['enabled']:
conditions.append(dataframe['rsi'] < params['rsi']['value'])
if params['over_sar']['enabled']:
conditions.append(dataframe['close'] > dataframe['sar'])
if params['green_candle']['enabled']:
conditions.append(dataframe['close'] > dataframe['open'])
if params['uptrend_sma']['enabled']:
prevsma = dataframe['sma'].shift(1)
conditions.append(dataframe['sma'] > prevsma)
# TRIGGERS
triggers = {
'lower_bb': dataframe['tema'] <= dataframe['blower'],
'faststoch10': (crossed_above(dataframe['fastd'], 10.0)),
'ao_cross_zero': (crossed_above(dataframe['ao'], 0.0)),
'ema5_cross_ema10': (crossed_above(dataframe['ema5'], dataframe['ema10'])),
'macd_cross_signal': (crossed_above(dataframe['macd'], dataframe['macdsignal'])),
'sar_reversal': (crossed_above(dataframe['close'], dataframe['sar'])),
'stochf_cross': (crossed_above(dataframe['fastk'], dataframe['fastd'])),
'ht_sine': (crossed_above(dataframe['htleadsine'], dataframe['htsine'])),
}
conditions.append(triggers.get(params['trigger']['type']))
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
'buy'] = 1
return dataframe
return populate_buy_trend
def start(args):
global TOTAL_TRIES
TOTAL_TRIES = args.epochs
exchange._API = Bittrex({'key': '', 'secret': ''})
# Initialize logger
logging.basicConfig(
level=args.loglevel,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
)
if args.mongodb:
logger.info('Using mongodb ...')
logger.info('Start scripts/start-mongodb.sh and start-hyperopt-worker.sh manually!')
db_name = 'freqtrade_hyperopt'
trials = MongoTrials('mongo://127.0.0.1:1234/{}/jobs'.format(db_name), exp_key='exp1')
else:
trials = Trials()
best = fmin(fn=optimizer, space=SPACE, algo=tpe.suggest, max_evals=TOTAL_TRIES, trials=trials)
logger.info('Best parameters:\n%s', json.dumps(best, indent=4))
results = sorted(trials.results, key=itemgetter('loss'))
logger.info('Best Result:\n%s', results[0]['result'])

View File

@ -1,20 +0,0 @@
# pragma pylint: disable=missing-docstring
import json
import os
def load_backtesting_data(ticker_interval: int = 5):
path = os.path.abspath(os.path.dirname(__file__))
result = {}
pairs = [
'BTC_BCC', 'BTC_ETH', 'BTC_DASH', 'BTC_POWR', 'BTC_ETC',
'BTC_VTC', 'BTC_WAVES', 'BTC_LSK', 'BTC_XLM', 'BTC_OK',
]
for pair in pairs:
with open('{abspath}/testdata/{pair}-{ticker_interval}.json'.format(
abspath=path,
pair=pair,
ticker_interval=ticker_interval,
)) as tickerdata:
result[pair] = json.load(tickerdata)
return result

View File

@ -51,22 +51,6 @@ def default_conf():
return configuration
@pytest.fixture(scope="module")
def backtest_conf():
return {
"max_open_trades": 3,
"stake_currency": "BTC",
"stake_amount": 0.01,
"minimal_roi": {
"40": 0.0,
"30": 0.01,
"20": 0.02,
"0": 0.04
},
"stoploss": -0.10
}
@pytest.fixture
def update():
_update = Update(0)

View File

@ -1,5 +1,6 @@
# pragma pylint: disable=missing-docstring,W0621
import json
from unittest.mock import MagicMock
import arrow
import pytest
@ -35,20 +36,30 @@ def test_populates_sell_trend(result):
def test_returns_latest_buy_signal(mocker):
buydf = DataFrame([{'buy': 1, 'date': arrow.utcnow()}])
mocker.patch('freqtrade.analyze.analyze_ticker', return_value=buydf)
mocker.patch('freqtrade.analyze.get_ticker_history', return_value=MagicMock())
mocker.patch(
'freqtrade.analyze.analyze_ticker',
return_value=DataFrame([{'buy': 1, 'date': arrow.utcnow()}])
)
assert get_signal('BTC-ETH', SignalType.BUY)
buydf = DataFrame([{'buy': 0, 'date': arrow.utcnow()}])
mocker.patch('freqtrade.analyze.analyze_ticker', return_value=buydf)
mocker.patch(
'freqtrade.analyze.analyze_ticker',
return_value=DataFrame([{'buy': 0, 'date': arrow.utcnow()}])
)
assert not get_signal('BTC-ETH', SignalType.BUY)
def test_returns_latest_sell_signal(mocker):
selldf = DataFrame([{'sell': 1, 'date': arrow.utcnow()}])
mocker.patch('freqtrade.analyze.analyze_ticker', return_value=selldf)
mocker.patch('freqtrade.analyze.get_ticker_history', return_value=MagicMock())
mocker.patch(
'freqtrade.analyze.analyze_ticker',
return_value=DataFrame([{'sell': 1, 'date': arrow.utcnow()}])
)
assert get_signal('BTC-ETH', SignalType.SELL)
selldf = DataFrame([{'sell': 0, 'date': arrow.utcnow()}])
mocker.patch('freqtrade.analyze.analyze_ticker', return_value=selldf)
mocker.patch(
'freqtrade.analyze.analyze_ticker',
return_value=DataFrame([{'sell': 0, 'date': arrow.utcnow()}])
)
assert not get_signal('BTC-ETH', SignalType.SELL)

View File

@ -1,163 +0,0 @@
# pragma pylint: disable=missing-docstring,W0212
import logging
import os
from functools import reduce
from math import exp
from operator import itemgetter
import pytest
from hyperopt import fmin, tpe, hp, Trials, STATUS_OK
from pandas import DataFrame
from freqtrade import exchange
from freqtrade.exchange import Bittrex
from freqtrade.tests import load_backtesting_data
from freqtrade.tests.test_backtesting import backtest, format_results
from freqtrade.tests.test_backtesting import preprocess
from freqtrade.vendor.qtpylib.indicators import crossed_above
logging.disable(logging.DEBUG) # disable debug logs that slow backtesting a lot
# set TARGET_TRADES to suit your number concurrent trades so its realistic to 20days of data
TARGET_TRADES = 1100
TOTAL_TRIES = 4
# pylint: disable=C0103
current_tries = 0
def buy_strategy_generator(params):
def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
conditions = []
# GUARDS AND TRENDS
if params['uptrend_long_ema']['enabled']:
conditions.append(dataframe['ema50'] > dataframe['ema100'])
if params['uptrend_short_ema']['enabled']:
conditions.append(dataframe['ema5'] > dataframe['ema10'])
if params['mfi']['enabled']:
conditions.append(dataframe['mfi'] < params['mfi']['value'])
if params['fastd']['enabled']:
conditions.append(dataframe['fastd'] < params['fastd']['value'])
if params['adx']['enabled']:
conditions.append(dataframe['adx'] > params['adx']['value'])
if params['rsi']['enabled']:
conditions.append(dataframe['rsi'] < params['rsi']['value'])
if params['over_sar']['enabled']:
conditions.append(dataframe['close'] > dataframe['sar'])
if params['green_candle']['enabled']:
conditions.append(dataframe['close'] > dataframe['open'])
if params['uptrend_sma']['enabled']:
prevsma = dataframe['sma'].shift(1)
conditions.append(dataframe['sma'] > prevsma)
# TRIGGERS
triggers = {
'lower_bb': dataframe['tema'] <= dataframe['blower'],
'faststoch10': (crossed_above(dataframe['fastd'], 10.0)),
'ao_cross_zero': (crossed_above(dataframe['ao'], 0.0)),
'ema5_cross_ema10': (crossed_above(dataframe['ema5'], dataframe['ema10'])),
'macd_cross_signal': (crossed_above(dataframe['macd'], dataframe['macdsignal'])),
'sar_reversal': (crossed_above(dataframe['close'], dataframe['sar'])),
'stochf_cross': (crossed_above(dataframe['fastk'], dataframe['fastd'])),
'ht_sine': (crossed_above(dataframe['htleadsine'], dataframe['htsine'])),
}
conditions.append(triggers.get(params['trigger']['type']))
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
'buy'] = 1
return dataframe
return populate_buy_trend
@pytest.mark.skipif(not os.environ.get('BACKTEST', False), reason="BACKTEST not set")
def test_hyperopt(backtest_conf, mocker):
mocked_buy_trend = mocker.patch('freqtrade.tests.test_backtesting.populate_buy_trend')
backdata = load_backtesting_data()
processed = preprocess(backdata)
exchange._API = Bittrex({'key': '', 'secret': ''})
def optimizer(params):
mocked_buy_trend.side_effect = buy_strategy_generator(params)
results = backtest(backtest_conf, processed, mocker)
result = format_results(results)
total_profit = results.profit.sum() * 1000
trade_count = len(results.index)
trade_loss = 1 - 0.35 * exp(-(trade_count - TARGET_TRADES) ** 2 / 10 ** 5.2)
profit_loss = max(0, 1 - total_profit / 10000) # max profit 10000
# pylint: disable=W0603
global current_tries
current_tries += 1
print('{:5d}/{}: {}'.format(current_tries, TOTAL_TRIES, result))
return {
'loss': trade_loss + profit_loss,
'status': STATUS_OK,
'result': result
}
space = {
'mfi': hp.choice('mfi', [
{'enabled': False},
{'enabled': True, 'value': hp.quniform('mfi-value', 5, 25, 1)}
]),
'fastd': hp.choice('fastd', [
{'enabled': False},
{'enabled': True, 'value': hp.quniform('fastd-value', 10, 50, 1)}
]),
'adx': hp.choice('adx', [
{'enabled': False},
{'enabled': True, 'value': hp.quniform('adx-value', 15, 50, 1)}
]),
'rsi': hp.choice('rsi', [
{'enabled': False},
{'enabled': True, 'value': hp.quniform('rsi-value', 20, 40, 1)}
]),
'uptrend_long_ema': hp.choice('uptrend_long_ema', [
{'enabled': False},
{'enabled': True}
]),
'uptrend_short_ema': hp.choice('uptrend_short_ema', [
{'enabled': False},
{'enabled': True}
]),
'over_sar': hp.choice('over_sar', [
{'enabled': False},
{'enabled': True}
]),
'green_candle': hp.choice('green_candle', [
{'enabled': False},
{'enabled': True}
]),
'uptrend_sma': hp.choice('uptrend_sma', [
{'enabled': False},
{'enabled': True}
]),
'trigger': hp.choice('trigger', [
{'type': 'lower_bb'},
{'type': 'faststoch10'},
{'type': 'ao_cross_zero'},
{'type': 'ema5_cross_ema10'},
{'type': 'macd_cross_signal'},
{'type': 'sar_reversal'},
{'type': 'stochf_cross'},
{'type': 'ht_sine'},
]),
}
trials = Trials()
best = fmin(fn=optimizer, space=space, algo=tpe.suggest, max_evals=TOTAL_TRIES, trials=trials)
print('\n\n\n\n==================== HYPEROPT BACKTESTING REPORT ==============================')
print('Best parameters {}'.format(best))
newlist = sorted(trials.results, key=itemgetter('loss'))
print('Result: {}'.format(newlist[0]['result']))
if __name__ == '__main__':
# for profiling with cProfile and line_profiler
pytest.main([__file__, '-s'])

View File

@ -1,15 +1,13 @@
# pragma pylint: disable=missing-docstring,C0103
import json
import os
import time
from argparse import Namespace
from copy import deepcopy
from unittest.mock import MagicMock
import pytest
from jsonschema import ValidationError
from freqtrade.misc import throttle, parse_args, start_backtesting, load_config
from freqtrade.misc import throttle, parse_args, load_config
def test_throttle():
@ -64,7 +62,7 @@ def test_parse_args_dynamic_whitelist():
def test_parse_args_backtesting(mocker):
backtesting_mock = mocker.patch('freqtrade.misc.start_backtesting', MagicMock())
backtesting_mock = mocker.patch('freqtrade.optimize.backtesting.start', MagicMock())
args = parse_args(['backtesting'])
assert args is None
assert backtesting_mock.call_count == 1
@ -80,14 +78,14 @@ def test_parse_args_backtesting(mocker):
def test_parse_args_backtesting_invalid():
with pytest.raises(SystemExit, match=r'2'):
parse_args(['--ticker-interval'])
parse_args(['backtesting --ticker-interval'])
with pytest.raises(SystemExit, match=r'2'):
parse_args(['--ticker-interval', 'abc'])
parse_args(['backtesting --ticker-interval', 'abc'])
def test_parse_args_backtesting_custom(mocker):
backtesting_mock = mocker.patch('freqtrade.misc.start_backtesting', MagicMock())
backtesting_mock = mocker.patch('freqtrade.optimize.backtesting.start', MagicMock())
args = parse_args(['-c', 'test_conf.json', 'backtesting', '--live', '--ticker-interval', '1'])
assert args is None
assert backtesting_mock.call_count == 1
@ -101,29 +99,31 @@ def test_parse_args_backtesting_custom(mocker):
assert call_args.ticker_interval == 1
def test_start_backtesting(mocker):
pytest_mock = mocker.patch('pytest.main', MagicMock())
env_mock = mocker.patch('os.environ', {})
args = Namespace(
config='config.json',
live=True,
loglevel=20,
ticker_interval=1,
realistic_simulation=True,
)
start_backtesting(args)
assert env_mock == {
'BACKTEST': 'true',
'BACKTEST_LIVE': 'true',
'BACKTEST_CONFIG': 'config.json',
'BACKTEST_TICKER_INTERVAL': '1',
'BACKTEST_REALISTIC_SIMULATION': 'true',
}
assert pytest_mock.call_count == 1
def test_parse_args_hyperopt(mocker):
hyperopt_mock = mocker.patch('freqtrade.optimize.hyperopt.start', MagicMock())
args = parse_args(['hyperopt'])
assert args is None
assert hyperopt_mock.call_count == 1
main_call_args = pytest_mock.call_args[0][0]
assert main_call_args[0] == '-s'
assert main_call_args[1].endswith(os.path.join('freqtrade', 'tests', 'test_backtesting.py'))
call_args = hyperopt_mock.call_args[0][0]
assert call_args.config == 'config.json'
assert call_args.loglevel == 20
assert call_args.subparser == 'hyperopt'
assert call_args.func is not None
def test_parse_args_hyperopt_custom(mocker):
hyperopt_mock = mocker.patch('freqtrade.optimize.hyperopt.start', MagicMock())
args = parse_args(['-c', 'test_conf.json', 'hyperopt', '--epochs', '20'])
assert args is None
assert hyperopt_mock.call_count == 1
call_args = hyperopt_mock.call_args[0][0]
assert call_args.config == 'test_conf.json'
assert call_args.epochs == 20
assert call_args.loglevel == 20
assert call_args.subparser == 'hyperopt'
assert call_args.func is not None
def test_load_config(default_conf, mocker):

View File

@ -0,0 +1,16 @@
# pragma pylint: disable=missing-docstring,W0212
from freqtrade import exchange, optimize
from freqtrade.exchange import Bittrex
from freqtrade.optimize.backtesting import backtest
def test_backtest(default_conf, mocker):
mocker.patch.dict('freqtrade.main._CONF', default_conf)
exchange._API = Bittrex({'key': '', 'secret': ''})
data = optimize.load_data(ticker_interval=5, pairs=['BTC_ETH'])
results = backtest(default_conf, optimize.preprocess(data), 10, True)
num_resutls = len(results)
assert num_resutls > 0

View File

@ -0,0 +1,6 @@
# pragma pylint: disable=missing-docstring,W0212
def test_optimizer(default_conf, mocker):
# TODO: implement test
pass

View File

@ -0,0 +1,27 @@
#!/usr/bin/env python3
import multiprocessing
import os
import subprocess
PROC_COUNT = multiprocessing.cpu_count() - 1
DB_NAME = 'freqtrade_hyperopt'
WORK_DIR = os.path.join(
os.path.sep,
os.path.abspath(os.path.dirname(__file__)),
'..', '.hyperopt', 'worker'
)
if not os.path.exists(WORK_DIR):
os.makedirs(WORK_DIR)
# Spawn workers
command = [
'hyperopt-mongo-worker',
'--mongo=127.0.0.1:1234/{}'.format(DB_NAME),
'--poll-interval=0.1',
'--workdir={}'.format(WORK_DIR),
]
processes = [subprocess.Popen(command) for i in range(PROC_COUNT)]
# Join all workers
for proc in processes:
proc.wait()

21
scripts/start-mongodb.py Executable file
View File

@ -0,0 +1,21 @@
#!/usr/bin/env python3
import os
import subprocess
DB_PATH = os.path.join(
os.path.sep,
os.path.abspath(os.path.dirname(__file__)),
'..', '.hyperopt', 'mongodb'
)
if not os.path.exists(DB_PATH):
os.makedirs(DB_PATH)
subprocess.Popen([
'mongod',
'--bind_ip=127.0.0.1',
'--port=1234',
'--nohttpinterface',
'--dbpath={}'.format(DB_PATH),
]).wait()