Rename datahandler module to history module
Also move previous history.py into this module - so everything is bundled
This commit is contained in:
14
freqtrade/data/history/__init__.py
Normal file
14
freqtrade/data/history/__init__.py
Normal file
@@ -0,0 +1,14 @@
|
||||
"""
|
||||
Handle historic data (ohlcv).
|
||||
|
||||
Includes:
|
||||
* load data for a pair (or a list of pairs) from disk
|
||||
* download data from exchange and store to disk
|
||||
"""
|
||||
|
||||
from .history_utils import (convert_trades_to_ohlcv, # noqa: F401
|
||||
get_timerange, load_data, load_pair_history,
|
||||
refresh_backtest_ohlcv_data,
|
||||
refresh_backtest_trades_data, refresh_data,
|
||||
validate_backtest_data)
|
||||
from .idatahandler import get_datahandler, get_datahandlerclass # noqa: F401
|
375
freqtrade/data/history/history_utils.py
Normal file
375
freqtrade/data/history/history_utils.py
Normal file
@@ -0,0 +1,375 @@
|
||||
import logging
|
||||
import operator
|
||||
from datetime import datetime, timezone
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import arrow
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade import OperationalException
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS
|
||||
from freqtrade.data.converter import parse_ticker_dataframe, trades_to_ohlcv
|
||||
from freqtrade.data.history.idatahandler import IDataHandler, get_datahandler
|
||||
from freqtrade.exchange import Exchange
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def load_pair_history(pair: str,
|
||||
timeframe: str,
|
||||
datadir: Path, *,
|
||||
timerange: Optional[TimeRange] = None,
|
||||
fill_up_missing: bool = True,
|
||||
drop_incomplete: bool = True,
|
||||
startup_candles: int = 0,
|
||||
data_format: str = None,
|
||||
data_handler: IDataHandler = None,
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Load cached ticker history for the given pair.
|
||||
|
||||
:param pair: Pair to load data for
|
||||
:param timeframe: Ticker timeframe (e.g. "5m")
|
||||
:param datadir: Path to the data storage location.
|
||||
:param data_format: Format of the data. Ignored if data_handler is set.
|
||||
:param timerange: Limit data to be loaded to this timerange
|
||||
:param fill_up_missing: Fill missing values with "No action"-candles
|
||||
:param drop_incomplete: Drop last candle assuming it may be incomplete.
|
||||
:param startup_candles: Additional candles to load at the start of the period
|
||||
:param data_handler: Initialized data-handler to use.
|
||||
Will be initialized from data_format if not set
|
||||
:return: DataFrame with ohlcv data, or empty DataFrame
|
||||
"""
|
||||
data_handler = get_datahandler(datadir, data_format, data_handler)
|
||||
|
||||
return data_handler.ohlcv_load(pair=pair,
|
||||
timeframe=timeframe,
|
||||
timerange=timerange,
|
||||
fill_missing=fill_up_missing,
|
||||
drop_incomplete=drop_incomplete,
|
||||
startup_candles=startup_candles,
|
||||
)
|
||||
|
||||
|
||||
def load_data(datadir: Path,
|
||||
timeframe: str,
|
||||
pairs: List[str], *,
|
||||
timerange: Optional[TimeRange] = None,
|
||||
fill_up_missing: bool = True,
|
||||
startup_candles: int = 0,
|
||||
fail_without_data: bool = False,
|
||||
data_format: str = 'json',
|
||||
) -> Dict[str, DataFrame]:
|
||||
"""
|
||||
Load ticker history data for a list of pairs.
|
||||
|
||||
:param datadir: Path to the data storage location.
|
||||
:param timeframe: Ticker Timeframe (e.g. "5m")
|
||||
:param pairs: List of pairs to load
|
||||
:param timerange: Limit data to be loaded to this timerange
|
||||
:param fill_up_missing: Fill missing values with "No action"-candles
|
||||
:param startup_candles: Additional candles to load at the start of the period
|
||||
:param fail_without_data: Raise OperationalException if no data is found.
|
||||
:param data_handler: Initialized data-handler to use.
|
||||
:return: dict(<pair>:<Dataframe>)
|
||||
"""
|
||||
result: Dict[str, DataFrame] = {}
|
||||
if startup_candles > 0 and timerange:
|
||||
logger.info(f'Using indicator startup period: {startup_candles} ...')
|
||||
|
||||
data_handler = get_datahandler(datadir, data_format)
|
||||
|
||||
for pair in pairs:
|
||||
hist = load_pair_history(pair=pair, timeframe=timeframe,
|
||||
datadir=datadir, timerange=timerange,
|
||||
fill_up_missing=fill_up_missing,
|
||||
startup_candles=startup_candles,
|
||||
data_handler=data_handler
|
||||
)
|
||||
if not hist.empty:
|
||||
result[pair] = hist
|
||||
|
||||
if fail_without_data and not result:
|
||||
raise OperationalException("No data found. Terminating.")
|
||||
return result
|
||||
|
||||
|
||||
def refresh_data(datadir: Path,
|
||||
timeframe: str,
|
||||
pairs: List[str],
|
||||
exchange: Exchange,
|
||||
data_format: str = None,
|
||||
timerange: Optional[TimeRange] = None,
|
||||
) -> None:
|
||||
"""
|
||||
Refresh ticker history data for a list of pairs.
|
||||
|
||||
:param datadir: Path to the data storage location.
|
||||
:param timeframe: Ticker Timeframe (e.g. "5m")
|
||||
:param pairs: List of pairs to load
|
||||
:param exchange: Exchange object
|
||||
:param timerange: Limit data to be loaded to this timerange
|
||||
"""
|
||||
data_handler = get_datahandler(datadir, data_format)
|
||||
for pair in pairs:
|
||||
_download_pair_history(pair=pair, timeframe=timeframe,
|
||||
datadir=datadir, timerange=timerange,
|
||||
exchange=exchange, data_handler=data_handler)
|
||||
|
||||
|
||||
def _load_cached_data_for_updating(pair: str, timeframe: str, timerange: Optional[TimeRange],
|
||||
data_handler: IDataHandler) -> Tuple[DataFrame, Optional[int]]:
|
||||
"""
|
||||
Load cached data to download more data.
|
||||
If timerange is passed in, checks whether data from an before the stored data will be
|
||||
downloaded.
|
||||
If that's the case then what's available should be completely overwritten.
|
||||
Otherwise downloads always start at the end of the available data to avoid data gaps.
|
||||
Note: Only used by download_pair_history().
|
||||
"""
|
||||
start = None
|
||||
if timerange:
|
||||
if timerange.starttype == 'date':
|
||||
# TODO: convert to date for conversation
|
||||
start = datetime.fromtimestamp(timerange.startts, tz=timezone.utc)
|
||||
|
||||
# Intentionally don't pass timerange in - since we need to load the full dataset.
|
||||
data = data_handler.ohlcv_load(pair, timeframe=timeframe,
|
||||
timerange=None, fill_missing=False,
|
||||
drop_incomplete=True, warn_no_data=False)
|
||||
if not data.empty:
|
||||
if start and start < data.iloc[0]['date']:
|
||||
# Earlier data than existing data requested, redownload all
|
||||
data = DataFrame(columns=DEFAULT_DATAFRAME_COLUMNS)
|
||||
else:
|
||||
start = data.iloc[-1]['date']
|
||||
|
||||
start_ms = int(start.timestamp() * 1000) if start else None
|
||||
return data, start_ms
|
||||
|
||||
|
||||
def _download_pair_history(datadir: Path,
|
||||
exchange: Exchange,
|
||||
pair: str, *,
|
||||
timeframe: str = '5m',
|
||||
timerange: Optional[TimeRange] = None,
|
||||
data_handler: IDataHandler = None) -> bool:
|
||||
"""
|
||||
Download latest candles from the exchange for the pair and timeframe passed in parameters
|
||||
The data is downloaded starting from the last correct data that
|
||||
exists in a cache. If timerange starts earlier than the data in the cache,
|
||||
the full data will be redownloaded
|
||||
|
||||
Based on @Rybolov work: https://github.com/rybolov/freqtrade-data
|
||||
|
||||
:param pair: pair to download
|
||||
:param timeframe: Ticker Timeframe (e.g 5m)
|
||||
:param timerange: range of time to download
|
||||
:return: bool with success state
|
||||
"""
|
||||
data_handler = get_datahandler(datadir, data_handler=data_handler)
|
||||
|
||||
try:
|
||||
logger.info(
|
||||
f'Download history data for pair: "{pair}", timeframe: {timeframe} '
|
||||
f'and store in {datadir}.'
|
||||
)
|
||||
|
||||
# data, since_ms = _load_cached_data_for_updating_old(datadir, pair, timeframe, timerange)
|
||||
data, since_ms = _load_cached_data_for_updating(pair, timeframe, timerange,
|
||||
data_handler=data_handler)
|
||||
|
||||
logger.debug("Current Start: %s",
|
||||
f"{data.iloc[0]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')
|
||||
logger.debug("Current End: %s",
|
||||
f"{data.iloc[-1]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')
|
||||
|
||||
# Default since_ms to 30 days if nothing is given
|
||||
new_data = exchange.get_historic_ohlcv(pair=pair,
|
||||
timeframe=timeframe,
|
||||
since_ms=since_ms if since_ms else
|
||||
int(arrow.utcnow().shift(
|
||||
days=-30).float_timestamp) * 1000
|
||||
)
|
||||
# TODO: Maybe move parsing to exchange class (?)
|
||||
new_dataframe = parse_ticker_dataframe(new_data, timeframe, pair,
|
||||
fill_missing=False, drop_incomplete=True)
|
||||
if data.empty:
|
||||
data = new_dataframe
|
||||
else:
|
||||
data = data.append(new_dataframe)
|
||||
|
||||
logger.debug("New Start: %s",
|
||||
f"{data.iloc[0]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')
|
||||
logger.debug("New End: %s",
|
||||
f"{data.iloc[-1]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')
|
||||
|
||||
data_handler.ohlcv_store(pair, timeframe, data=data)
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f'Failed to download history data for pair: "{pair}", timeframe: {timeframe}. '
|
||||
f'Error: {e}'
|
||||
)
|
||||
return False
|
||||
|
||||
|
||||
def refresh_backtest_ohlcv_data(exchange: Exchange, pairs: List[str], timeframes: List[str],
|
||||
datadir: Path, timerange: Optional[TimeRange] = None,
|
||||
erase=False, data_format: str = None) -> List[str]:
|
||||
"""
|
||||
Refresh stored ohlcv data for backtesting and hyperopt operations.
|
||||
Used by freqtrade download-data subcommand.
|
||||
:return: List of pairs that are not available.
|
||||
"""
|
||||
pairs_not_available = []
|
||||
data_handler = get_datahandler(datadir, data_format)
|
||||
for pair in pairs:
|
||||
if pair not in exchange.markets:
|
||||
pairs_not_available.append(pair)
|
||||
logger.info(f"Skipping pair {pair}...")
|
||||
continue
|
||||
for timeframe in timeframes:
|
||||
|
||||
if erase:
|
||||
if data_handler.ohlcv_purge(pair, timeframe):
|
||||
logger.info(
|
||||
f'Deleting existing data for pair {pair}, interval {timeframe}.')
|
||||
|
||||
logger.info(f'Downloading pair {pair}, interval {timeframe}.')
|
||||
_download_pair_history(datadir=datadir, exchange=exchange,
|
||||
pair=pair, timeframe=str(timeframe),
|
||||
timerange=timerange, data_handler=data_handler)
|
||||
return pairs_not_available
|
||||
|
||||
|
||||
def _download_trades_history(exchange: Exchange,
|
||||
pair: str, *,
|
||||
timerange: Optional[TimeRange] = None,
|
||||
data_handler: IDataHandler
|
||||
) -> bool:
|
||||
"""
|
||||
Download trade history from the exchange.
|
||||
Appends to previously downloaded trades data.
|
||||
"""
|
||||
try:
|
||||
|
||||
since = timerange.startts * 1000 if timerange and timerange.starttype == 'date' else None
|
||||
|
||||
trades = data_handler.trades_load(pair)
|
||||
|
||||
from_id = trades[-1]['id'] if trades else None
|
||||
|
||||
logger.debug("Current Start: %s", trades[0]['datetime'] if trades else 'None')
|
||||
logger.debug("Current End: %s", trades[-1]['datetime'] if trades else 'None')
|
||||
|
||||
# Default since_ms to 30 days if nothing is given
|
||||
new_trades = exchange.get_historic_trades(pair=pair,
|
||||
since=since if since else
|
||||
int(arrow.utcnow().shift(
|
||||
days=-30).float_timestamp) * 1000,
|
||||
from_id=from_id,
|
||||
)
|
||||
trades.extend(new_trades[1])
|
||||
data_handler.trades_store(pair, data=trades)
|
||||
|
||||
logger.debug("New Start: %s", trades[0]['datetime'])
|
||||
logger.debug("New End: %s", trades[-1]['datetime'])
|
||||
logger.info(f"New Amount of trades: {len(trades)}")
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f'Failed to download historic trades for pair: "{pair}". '
|
||||
f'Error: {e}'
|
||||
)
|
||||
return False
|
||||
|
||||
|
||||
def refresh_backtest_trades_data(exchange: Exchange, pairs: List[str], datadir: Path,
|
||||
timerange: TimeRange, erase=False,
|
||||
data_format: str = 'jsongz') -> List[str]:
|
||||
"""
|
||||
Refresh stored trades data for backtesting and hyperopt operations.
|
||||
Used by freqtrade download-data subcommand.
|
||||
:return: List of pairs that are not available.
|
||||
"""
|
||||
pairs_not_available = []
|
||||
data_handler = get_datahandler(datadir, data_format=data_format)
|
||||
for pair in pairs:
|
||||
if pair not in exchange.markets:
|
||||
pairs_not_available.append(pair)
|
||||
logger.info(f"Skipping pair {pair}...")
|
||||
continue
|
||||
|
||||
if erase:
|
||||
if data_handler.trades_purge(pair):
|
||||
logger.info(f'Deleting existing data for pair {pair}.')
|
||||
|
||||
logger.info(f'Downloading trades for pair {pair}.')
|
||||
_download_trades_history(exchange=exchange,
|
||||
pair=pair,
|
||||
timerange=timerange,
|
||||
data_handler=data_handler)
|
||||
return pairs_not_available
|
||||
|
||||
|
||||
def convert_trades_to_ohlcv(pairs: List[str], timeframes: List[str],
|
||||
datadir: Path, timerange: TimeRange, erase=False,
|
||||
data_format_ohlcv: str = 'json',
|
||||
data_format_trades: str = 'jsongz') -> None:
|
||||
"""
|
||||
Convert stored trades data to ohlcv data
|
||||
"""
|
||||
data_handler_trades = get_datahandler(datadir, data_format=data_format_trades)
|
||||
data_handler_ohlcv = get_datahandler(datadir, data_format=data_format_ohlcv)
|
||||
|
||||
for pair in pairs:
|
||||
trades = data_handler_trades.trades_load(pair)
|
||||
for timeframe in timeframes:
|
||||
if erase:
|
||||
if data_handler_ohlcv.ohlcv_purge(pair, timeframe):
|
||||
logger.info(f'Deleting existing data for pair {pair}, interval {timeframe}.')
|
||||
ohlcv = trades_to_ohlcv(trades, timeframe)
|
||||
# Store ohlcv
|
||||
data_handler_ohlcv.ohlcv_store(pair, timeframe, data=ohlcv)
|
||||
|
||||
|
||||
def get_timerange(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]:
|
||||
"""
|
||||
Get the maximum common timerange for the given backtest data.
|
||||
|
||||
:param data: dictionary with preprocessed backtesting data
|
||||
:return: tuple containing min_date, max_date
|
||||
"""
|
||||
timeranges = [
|
||||
(arrow.get(frame['date'].min()), arrow.get(frame['date'].max()))
|
||||
for frame in data.values()
|
||||
]
|
||||
return (min(timeranges, key=operator.itemgetter(0))[0],
|
||||
max(timeranges, key=operator.itemgetter(1))[1])
|
||||
|
||||
|
||||
def validate_backtest_data(data: DataFrame, pair: str, min_date: datetime,
|
||||
max_date: datetime, timeframe_min: int) -> bool:
|
||||
"""
|
||||
Validates preprocessed backtesting data for missing values and shows warnings about it that.
|
||||
|
||||
:param data: preprocessed backtesting data (as DataFrame)
|
||||
:param pair: pair used for log output.
|
||||
:param min_date: start-date of the data
|
||||
:param max_date: end-date of the data
|
||||
:param timeframe_min: ticker Timeframe in minutes
|
||||
"""
|
||||
# total difference in minutes / timeframe-minutes
|
||||
expected_frames = int((max_date - min_date).total_seconds() // 60 // timeframe_min)
|
||||
found_missing = False
|
||||
dflen = len(data)
|
||||
if dflen < expected_frames:
|
||||
found_missing = True
|
||||
logger.warning("%s has missing frames: expected %s, got %s, that's %s missing values",
|
||||
pair, expected_frames, dflen, expected_frames - dflen)
|
||||
return found_missing
|
125
freqtrade/data/history/idatahandler.py
Normal file
125
freqtrade/data/history/idatahandler.py
Normal file
@@ -0,0 +1,125 @@
|
||||
"""
|
||||
Abstract datahandler interface.
|
||||
It's subclasses handle and storing data from disk.
|
||||
|
||||
"""
|
||||
import logging
|
||||
from abc import ABC, abstractclassmethod, abstractmethod
|
||||
from copy import deepcopy
|
||||
from datetime import datetime, timezone
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Type
|
||||
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.data.converter import clean_ohlcv_dataframe, trim_dataframe
|
||||
from freqtrade.exchange import timeframe_to_seconds
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class IDataHandler(ABC):
|
||||
|
||||
def __init__(self, datadir: Path) -> None:
|
||||
self._datadir = datadir
|
||||
|
||||
# TODO: create abstract interface
|
||||
|
||||
def ohlcv_load(self, pair, timeframe: str,
|
||||
timerange: Optional[TimeRange] = None,
|
||||
fill_missing: bool = True,
|
||||
drop_incomplete: bool = True,
|
||||
startup_candles: int = 0,
|
||||
warn_no_data: bool = True
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Load cached ticker history for the given pair.
|
||||
|
||||
:param pair: Pair to load data for
|
||||
:param timeframe: Ticker timeframe (e.g. "5m")
|
||||
:param timerange: Limit data to be loaded to this timerange
|
||||
:param fill_missing: Fill missing values with "No action"-candles
|
||||
:param drop_incomplete: Drop last candle assuming it may be incomplete.
|
||||
:param startup_candles: Additional candles to load at the start of the period
|
||||
:param warn_no_data: Log a warning message when no data is found
|
||||
:return: DataFrame with ohlcv data, or empty DataFrame
|
||||
"""
|
||||
# Fix startup period
|
||||
timerange_startup = deepcopy(timerange)
|
||||
if startup_candles > 0 and timerange_startup:
|
||||
timerange_startup.subtract_start(timeframe_to_seconds(timeframe) * startup_candles)
|
||||
|
||||
pairdf = self._ohlcv_load(pair, timeframe,
|
||||
timerange=timerange_startup)
|
||||
if pairdf.empty:
|
||||
if warn_no_data:
|
||||
logger.warning(
|
||||
f'No history data for pair: "{pair}", timeframe: {timeframe}. '
|
||||
'Use `freqtrade download-data` to download the data'
|
||||
)
|
||||
return pairdf
|
||||
else:
|
||||
enddate = pairdf.iloc[-1]['date']
|
||||
|
||||
if timerange_startup:
|
||||
self._validate_pairdata(pair, pairdf, timerange_startup)
|
||||
pairdf = trim_dataframe(pairdf, timerange_startup)
|
||||
|
||||
# incomplete candles should only be dropped if we didn't trim the end beforehand.
|
||||
return clean_ohlcv_dataframe(pairdf, timeframe,
|
||||
pair=pair,
|
||||
fill_missing=fill_missing,
|
||||
drop_incomplete=(drop_incomplete and
|
||||
enddate == pairdf.iloc[-1]['date']))
|
||||
|
||||
def _validate_pairdata(self, pair, pairdata: DataFrame, timerange: TimeRange):
|
||||
"""
|
||||
Validates pairdata for missing data at start end end and logs warnings.
|
||||
:param pairdata: Dataframe to validate
|
||||
:param timerange: Timerange specified for start and end dates
|
||||
"""
|
||||
|
||||
if timerange.starttype == 'date':
|
||||
start = datetime.fromtimestamp(timerange.startts, tz=timezone.utc)
|
||||
if pairdata.iloc[0]['date'] > start:
|
||||
logger.warning(f"Missing data at start for pair {pair}, "
|
||||
f"data starts at {pairdata.iloc[0]['date']:%Y-%m-%d %H:%M:%S}")
|
||||
if timerange.stoptype == 'date':
|
||||
stop = datetime.fromtimestamp(timerange.stopts, tz=timezone.utc)
|
||||
if pairdata.iloc[-1]['date'] < stop:
|
||||
logger.warning(f"Missing data at end for pair {pair}, "
|
||||
f"data ends at {pairdata.iloc[-1]['date']:%Y-%m-%d %H:%M:%S}")
|
||||
|
||||
|
||||
def get_datahandlerclass(datatype: str) -> Type[IDataHandler]:
|
||||
"""
|
||||
Get datahandler class.
|
||||
Could be done using Resolvers, but since this may be called often and resolvers
|
||||
are rather expensive, doing this directly should improve performance.
|
||||
:param datatype: datatype to use.
|
||||
:return: Datahandler class
|
||||
"""
|
||||
|
||||
if datatype == 'json':
|
||||
from .jsondatahandler import JsonDataHandler
|
||||
return JsonDataHandler
|
||||
elif datatype == 'jsongz':
|
||||
from .jsondatahandler import JsonGzDataHandler
|
||||
return JsonGzDataHandler
|
||||
else:
|
||||
raise ValueError(f"No datahandler for datatype {datatype} available.")
|
||||
|
||||
|
||||
def get_datahandler(datadir: Path, data_format: str = None,
|
||||
data_handler: IDataHandler = None) -> IDataHandler:
|
||||
"""
|
||||
:param datadir: Folder to save data
|
||||
:data_format: dataformat to use
|
||||
:data_handler: returns this datahandler if it exists or initializes a new one
|
||||
"""
|
||||
|
||||
if not data_handler:
|
||||
HandlerClass = get_datahandlerclass(data_format or 'json')
|
||||
data_handler = HandlerClass(datadir)
|
||||
return data_handler
|
176
freqtrade/data/history/jsondatahandler.py
Normal file
176
freqtrade/data/history/jsondatahandler.py
Normal file
@@ -0,0 +1,176 @@
|
||||
import re
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
import numpy as np
|
||||
from pandas import DataFrame, read_json, to_datetime
|
||||
|
||||
from freqtrade import misc
|
||||
from freqtrade.configuration import TimeRange
|
||||
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS
|
||||
|
||||
from .idatahandler import IDataHandler
|
||||
|
||||
|
||||
class JsonDataHandler(IDataHandler):
|
||||
|
||||
_use_zip = False
|
||||
_columns = DEFAULT_DATAFRAME_COLUMNS
|
||||
|
||||
@classmethod
|
||||
def ohlcv_get_pairs(cls, datadir: Path, timeframe: str) -> List[str]:
|
||||
"""
|
||||
Returns a list of all pairs with ohlcv data available in this datadir
|
||||
for the specified timeframe
|
||||
:param datadir: Directory to search for ohlcv files
|
||||
:param timeframe: Timeframe to search pairs for
|
||||
:return: List of Pairs
|
||||
"""
|
||||
|
||||
_tmp = [re.search(r'^(\S+)(?=\-' + timeframe + '.json)', p.name)
|
||||
for p in datadir.glob(f"*{timeframe}.{cls._get_file_extension()}")]
|
||||
# Check if regex found something and only return these results
|
||||
return [match[0].replace('_', '/') for match in _tmp if match]
|
||||
|
||||
def ohlcv_store(self, pair: str, timeframe: str, data: DataFrame) -> None:
|
||||
"""
|
||||
Store data in json format "values".
|
||||
format looks as follows:
|
||||
[[<date>,<open>,<high>,<low>,<close>]]
|
||||
:param pair: Pair - used to generate filename
|
||||
:timeframe: Timeframe - used to generate filename
|
||||
:data: Dataframe containing OHLCV data
|
||||
:return: None
|
||||
"""
|
||||
filename = self._pair_data_filename(self._datadir, pair, timeframe)
|
||||
_data = data.copy()
|
||||
# Convert date to int
|
||||
_data['date'] = _data['date'].astype(np.int64) // 1000 // 1000
|
||||
|
||||
# Reset index, select only appropriate columns and save as json
|
||||
_data.reset_index(drop=True).loc[:, self._columns].to_json(
|
||||
filename, orient="values",
|
||||
compression='gzip' if self._use_zip else None)
|
||||
|
||||
def _ohlcv_load(self, pair: str, timeframe: str,
|
||||
timerange: Optional[TimeRange] = None,
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Internal method used to load data for one pair from disk.
|
||||
Implements the loading and conversation to a Pandas dataframe.
|
||||
Timerange trimming and dataframe validation happens outside of this method.
|
||||
:param pair: Pair to load data
|
||||
:param timeframe: Ticker timeframe (e.g. "5m")
|
||||
:param timerange: Limit data to be loaded to this timerange.
|
||||
:return: DataFrame with ohlcv data, or empty DataFrame
|
||||
"""
|
||||
filename = self._pair_data_filename(self._datadir, pair, timeframe)
|
||||
if not filename.exists():
|
||||
return DataFrame(columns=self._columns)
|
||||
pairdata = read_json(filename, orient='values')
|
||||
pairdata.columns = self._columns
|
||||
pairdata['date'] = to_datetime(pairdata['date'],
|
||||
unit='ms',
|
||||
utc=True,
|
||||
infer_datetime_format=True)
|
||||
return pairdata
|
||||
|
||||
def ohlcv_purge(self, pair: str, timeframe: str) -> bool:
|
||||
"""
|
||||
Remove data for this pair
|
||||
:param pair: Delete data for this pair.
|
||||
:param timeframe: Ticker timeframe (e.g. "5m")
|
||||
:return: True when deleted, false if file did not exist.
|
||||
"""
|
||||
filename = self._pair_data_filename(self._datadir, pair, timeframe)
|
||||
if filename.exists():
|
||||
filename.unlink()
|
||||
return True
|
||||
return False
|
||||
|
||||
def ohlcv_append(self, pair: str, timeframe: str, data: DataFrame) -> None:
|
||||
"""
|
||||
Append data to existing data structures
|
||||
:param pair: Pair
|
||||
:param timeframe: Timeframe this ohlcv data is for
|
||||
:param data: Data to append.
|
||||
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
@classmethod
|
||||
def trades_get_pairs(cls, datadir: Path) -> List[str]:
|
||||
"""
|
||||
Returns a list of all pairs for which trade data is available in this
|
||||
:param datadir: Directory to search for ohlcv files
|
||||
:return: List of Pairs
|
||||
"""
|
||||
_tmp = [re.search(r'^(\S+)(?=\-trades.json)', p.name)
|
||||
for p in datadir.glob(f"*trades.{cls._get_file_extension()}")]
|
||||
# Check if regex found something and only return these results to avoid exceptions.
|
||||
return [match[0].replace('_', '/') for match in _tmp if match]
|
||||
|
||||
def trades_store(self, pair: str, data: List[Dict]) -> None:
|
||||
"""
|
||||
Store trades data (list of Dicts) to file
|
||||
:param pair: Pair - used for filename
|
||||
:param data: List of Dicts containing trade data
|
||||
"""
|
||||
filename = self._pair_trades_filename(self._datadir, pair)
|
||||
misc.file_dump_json(filename, data, is_zip=self._use_zip)
|
||||
|
||||
def trades_append(self, pair: str, data: List[Dict]):
|
||||
"""
|
||||
Append data to existing files
|
||||
:param pair: Pair - used for filename
|
||||
:param data: List of Dicts containing trade data
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def trades_load(self, pair: str, timerange: Optional[TimeRange] = None) -> List[Dict]:
|
||||
"""
|
||||
Load a pair from file, either .json.gz or .json
|
||||
# TODO: respect timerange ...
|
||||
:param pair: Load trades for this pair
|
||||
:param timerange: Timerange to load trades for - currently not implemented
|
||||
:return: List of trades
|
||||
"""
|
||||
filename = self._pair_trades_filename(self._datadir, pair)
|
||||
tradesdata = misc.file_load_json(filename)
|
||||
if not tradesdata:
|
||||
return []
|
||||
|
||||
return tradesdata
|
||||
|
||||
def trades_purge(self, pair: str) -> bool:
|
||||
"""
|
||||
Remove data for this pair
|
||||
:param pair: Delete data for this pair.
|
||||
:return: True when deleted, false if file did not exist.
|
||||
"""
|
||||
filename = self._pair_trades_filename(self._datadir, pair)
|
||||
if filename.exists():
|
||||
filename.unlink()
|
||||
return True
|
||||
return False
|
||||
|
||||
@classmethod
|
||||
def _pair_data_filename(cls, datadir: Path, pair: str, timeframe: str) -> Path:
|
||||
pair_s = pair.replace("/", "_")
|
||||
filename = datadir.joinpath(f'{pair_s}-{timeframe}.{cls._get_file_extension()}')
|
||||
return filename
|
||||
|
||||
@classmethod
|
||||
def _get_file_extension(cls):
|
||||
return "json.gz" if cls._use_zip else "json"
|
||||
|
||||
@classmethod
|
||||
def _pair_trades_filename(cls, datadir: Path, pair: str) -> Path:
|
||||
pair_s = pair.replace("/", "_")
|
||||
filename = datadir.joinpath(f'{pair_s}-trades.{cls._get_file_extension()}')
|
||||
return filename
|
||||
|
||||
|
||||
class JsonGzDataHandler(JsonDataHandler):
|
||||
|
||||
_use_zip = True
|
Reference in New Issue
Block a user