Custom_Orders - Demo.

Early demonstration of Strategy controlling
Order Type on the Exchange, Stop / Stop_limit / Market / limit etc
The stake
The price to submit

Demo allows multiple orders to be placed, so ladding buys down to a fib
Or buying and setting stop-loss
Or Take profit in stages etc.

Included a strategy demo with stubs for
limit, market, take_profit and stop_limit orders

Obviously very early code.
Submitted as buys, stops etc are working / showing in GDAX.
and we have hte order IDs to update trade table.
This commit is contained in:
creslin
2018-07-31 20:21:01 +00:00
parent 1044d15b17
commit 6748e897a5
4 changed files with 487 additions and 84 deletions

View File

@@ -14,6 +14,7 @@ from pandas import DataFrame
from freqtrade import constants
from freqtrade.exchange.exchange_helpers import parse_ticker_dataframe
from freqtrade.exchange import Exchange
from freqtrade.persistence import Trade
logger = logging.getLogger(__name__)
@@ -74,29 +75,29 @@ class IStrategy(ABC):
self.config = config
@abstractmethod
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
def populate_indicators(self, dataframe: DataFrame, pair: str) -> DataFrame:
"""
Populate indicators that will be used in the Buy and Sell strategy
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
:param metadata: Additional information, like the currently traded pair
:param pair: Pair currently analyzed
:return: a Dataframe with all mandatory indicators for the strategies
"""
@abstractmethod
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
def populate_buy_trend(self, dataframe: DataFrame, pair: str) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame
:param metadata: Additional information, like the currently traded pair
:param pair: Pair currently analyzed
:return: DataFrame with buy column
"""
@abstractmethod
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
def populate_sell_trend(self, dataframe: DataFrame, pair: str) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame
:param metadata: Additional information, like the currently traded pair
:param pair: Pair currently analyzed
:return: DataFrame with sell column
"""
@@ -106,31 +107,51 @@ class IStrategy(ABC):
"""
return self.__class__.__name__
def analyze_ticker(self, ticker_history: List[Dict], metadata: dict) -> DataFrame:
def analyze_ticker(self, ticker_history: List[Dict], pair: str) -> DataFrame:
"""
Parses the given ticker history and returns a populated DataFrame
add several TA indicators and buy signal to it
:return DataFrame with ticker data and indicator data
:return custom_orders list of dicts containing any custom trades from strategy
"""
dataframe = parse_ticker_dataframe(ticker_history)
dataframe = self.advise_indicators(dataframe, metadata)
dataframe = self.advise_buy(dataframe, metadata)
dataframe = self.advise_sell(dataframe, metadata)
return dataframe
dataframe = self.advise_indicators(dataframe, pair)
dataframe = self.advise_buy(dataframe, pair)
dataframe = self.advise_sell(dataframe, pair)
def get_signal(self, pair: str, interval: str, ticker_hist: List[Dict]) -> Tuple[bool, bool]:
## Strategy Plugin stop_stops_mgt' if in strategy.
# Analyzes stop-count of past X from Y trades, cancels BUY if True
if hasattr(self, 'stop_stops_plugin'):
dataframe = self.stop_stops_plugin(dataframe, pair)
## Strategy Plugin 'win_rate' if in strategy.
# Calls micro backslap on proposed buy=1 pair. If winrate is poor, cancels BUY
if hasattr(self, 'win_rate_plugin'):
dataframe = self.win_rate_plugin(dataframe, pair)
## Strategy Plugin 'money_mgt' if in strategy.
# Money management for any order in buy. Determines stake size, stop-loss, take-profit
# Returns dataframe, custom_orders (list of dicts)
if hasattr(self, 'money_mgt_plugin'):
dataframe, custom_orders = self.money_mgt_plugin(dataframe, pair)
return dataframe, custom_orders
def get_signal(self, exchange: Exchange, pair: str, interval: str) -> Tuple[bool, bool]:
"""
Calculates current signal based several technical analysis indicators
:param pair: pair in format ANT/BTC
:param interval: Interval to use (in min)
:return: (Buy, Sell) A bool-tuple indicating buy/sell signal
:return: (Buy, Sell, custom_orders) A bool-tuple indicating buy/sell signal,
and any custom_orders
"""
ticker_hist = exchange.get_ticker_history(pair, interval)
if not ticker_hist:
logger.warning('Empty ticker history for pair %s', pair)
return False, False
try:
dataframe = self.analyze_ticker(ticker_hist, {'pair': pair})
dataframe, custom_orders = self.analyze_ticker(ticker_hist, pair)
except ValueError as error:
logger.warning(
'Unable to analyze ticker for pair %s: %s',
@@ -155,13 +176,13 @@ class IStrategy(ABC):
# Check if dataframe is out of date
signal_date = arrow.get(latest['date'])
interval_minutes = constants.TICKER_INTERVAL_MINUTES[interval]
if signal_date < (arrow.utcnow().shift(minutes=-(interval_minutes * 2 + 5))):
logger.warning(
'Outdated history for pair %s. Last tick is %s minutes old',
pair,
(arrow.utcnow() - signal_date).seconds // 60
)
return False, False
# if signal_date < (arrow.utcnow().shift(minutes=-(interval_minutes * 2 + 5))):
# logger.warning(
# 'Outdated history for pair %s. Last tick is %s minutes old',
# pair,
# (arrow.utcnow() - signal_date).seconds // 60
# )
# return False, False
(buy, sell) = latest[SignalType.BUY.value] == 1, latest[SignalType.SELL.value] == 1
logger.debug(
@@ -171,7 +192,7 @@ class IStrategy(ABC):
str(buy),
str(sell)
)
return buy, sell
return buy, sell, custom_orders
def should_sell(self, trade: Trade, rate: float, date: datetime, buy: bool,
sell: bool) -> SellCheckTuple:
@@ -212,7 +233,6 @@ class IStrategy(ABC):
"""
Based on current profit of the trade and configured (trailing) stoploss,
decides to sell or not
:param current_profit: current profit in percent
"""
trailing_stop = self.config.get('trailing_stop', False)
@@ -240,15 +260,12 @@ class IStrategy(ABC):
# check if we have a special stop loss for positive condition
# and if profit is positive
stop_loss_value = self.stoploss
sl_offset = self.config.get('trailing_stop_positive_offset', 0.0)
if 'trailing_stop_positive' in self.config and current_profit > sl_offset:
if 'trailing_stop_positive' in self.config and current_profit > 0:
# Ignore mypy error check in configuration that this is a float
stop_loss_value = self.config.get('trailing_stop_positive') # type: ignore
logger.debug(f"using positive stop loss mode: {stop_loss_value} "
f"with offset {sl_offset:.4g} "
f"since we have profit {current_profit:.4f}%")
f"since we have profit {current_profit}")
trade.adjust_stop_loss(current_rate, stop_loss_value)
@@ -275,15 +292,15 @@ class IStrategy(ABC):
"""
Creates a dataframe and populates indicators for given ticker data
"""
return {pair: self.advise_indicators(parse_ticker_dataframe(pair_data), {'pair': pair})
return {pair: self.advise_indicators(parse_ticker_dataframe(pair_data), pair)
for pair, pair_data in tickerdata.items()}
def advise_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
def advise_indicators(self, dataframe: DataFrame, pair: str) -> DataFrame:
"""
Populate indicators that will be used in the Buy and Sell strategy
This method should not be overridden.
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
:param metadata: Additional information, like the currently traded pair
:param pair: The currently traded pair
:return: a Dataframe with all mandatory indicators for the strategies
"""
if self._populate_fun_len == 2:
@@ -291,14 +308,14 @@ class IStrategy(ABC):
"the current function headers!", DeprecationWarning)
return self.populate_indicators(dataframe) # type: ignore
else:
return self.populate_indicators(dataframe, metadata)
return self.populate_indicators(dataframe, pair)
def advise_buy(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
def advise_buy(self, dataframe: DataFrame, pair: str) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
This method should not be overridden.
:param dataframe: DataFrame
:param pair: Additional information, like the currently traded pair
:param pair: The currently traded pair
:return: DataFrame with buy column
"""
if self._buy_fun_len == 2:
@@ -306,14 +323,14 @@ class IStrategy(ABC):
"the current function headers!", DeprecationWarning)
return self.populate_buy_trend(dataframe) # type: ignore
else:
return self.populate_buy_trend(dataframe, metadata)
return self.populate_buy_trend(dataframe, pair)
def advise_sell(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
def advise_sell(self, dataframe: DataFrame, pair: str) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
This method should not be overridden.
:param dataframe: DataFrame
:param pair: Additional information, like the currently traded pair
:param pair: The currently traded pair
:return: DataFrame with sell column
"""
if self._sell_fun_len == 2:
@@ -321,4 +338,4 @@ class IStrategy(ABC):
"the current function headers!", DeprecationWarning)
return self.populate_sell_trend(dataframe) # type: ignore
else:
return self.populate_sell_trend(dataframe, metadata)
return self.populate_sell_trend(dataframe, pair)