book order preparation for strategy use

This commit is contained in:
Nullart
2018-06-27 08:24:15 +08:00
parent 9813c3c039
commit 66ed99cf3c
3 changed files with 32 additions and 5 deletions

View File

@@ -7,6 +7,7 @@ from enum import Enum
from typing import Dict, List, Tuple
import arrow
import pandas as pd
from pandas import DataFrame, to_datetime
from freqtrade import constants
@@ -269,3 +270,30 @@ class Analyze(object):
return roi_rate
break
return sell_rate
def order_book_to_dataframe(data: list) -> DataFrame:
"""
Gets order book list, returns dataframe with below format
-------------------------------------------------------------------
bids b_size a_sum asks a_size a_sum
-------------------------------------------------------------------
"""
cols = ['bids', 'b_size']
bids_frame = DataFrame(data['bids'], columns=cols)
# add cumulative sum column
bids_frame['b_sum'] = bids_frame['b_size'].cumsum()
cols2 = ['asks', 'a_size']
asks_frame = DataFrame(data['asks'], columns=cols2)
# add cumulative sum column
asks_frame['a_sum'] = asks_frame['a_size'].cumsum()
frame = pd.concat([bids_frame['b_sum'], bids_frame['b_size'], bids_frame['bids'], \
asks_frame['asks'], asks_frame['a_size'], asks_frame['a_sum']], axis=1, \
keys=['b_sum', 'b_size', 'bids', 'asks', 'a_size', 'a_sum'])
return frame
def order_book_dom() -> DataFrame:
# https://stackoverflow.com/questions/36835793/pandas-group-by-consecutive-ranges
return DataFrame